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Abstract
With the emerging developments in millimeter-wave/5G technologies, the potential for wire-
less Internet of things devices to achieve widespread sensing, precise localization, and high
data-rate communication systems becomes increasingly viable. The surge in interest sur-
rounding virtual reality (VR) and augmented reality (AR) technologies is attributed to the
vast array of applications they enable, ranging from surgical training to motion capture and
daily interactions in VR spaces. To further elevate the user experience, and real-time and
accurate orientation detection of the user, the authors proposes the utilization of a frequency-
modulated continuous-wave (FMCW) radar system coupled with an ultra-low-power, sticker-
like millimeter-wave identification (mmID).ThemmID features four backscattering elements,
multiplexed in amplitude, frequency, and spatial domains. This design utilizes the training
of a supervised learning classification convolutional neural network, enabling accurate real-
time three-axis orientation detection of the user. The proposed orientation detection system
exhibits exceptional performance, achieving a noteworthy accuracy of 90.58% over three axes
at a distance of 8m. This high accuracy underscores the precision of the orientation detec-
tion system, particularly tailored for medium-range VR/AR applications. The integration of
the FMCW-based mmID system with machine learning proves to be a promising advance-
ment, contributing to the seamless and immersive interaction within virtual and augmented
environments.

Introduction

Sensing is a fundamental requirement in systems dealing with human–computer andmachine–
machine interactions.The escalating demand for applications such as the Internet of things and
digital twins highlight the pressing need to enhance sensing capabilities for systems that collect
precise and accurate data [1]. Recent years have witnessed a surge in interest in millimeter-
wave (mmWave) technologies, driven by factors such as the deployment of 5G networks and
the widespread adoption of mobile computing, transforming our mobile devices into high-
performance computers capable of rapid data processing. In the realm of sensing, mmWave
technologies offer distinct advantages, including the potential to reduce system component
size, achieve sub-millimeter accuracy in detecting spatial changes, and support very high data
rate communications [2, 3]. As a result, mmWave systems emerge as a promising avenue for
developing the next generation of ubiquitous sensing devices. Simultaneously, the technical
advancements of recent years have facilitated the widespread integration of virtual reality (VR)
and augmented reality (AR) into various domains, including healthcare, the automotive indus-
try, and the metaverse [4]. The burgeoning interest in VR and AR underscores the importance
of the ability to detect, localize, and determine the orientation of a target for providing an
immersive user experience.

Localization, a crucial aspect in VR/AR applications, is commonly performed using radio-
frequency identification (RFID) technology, known for its cost-effectiveness and ultra-low-
power consumption [5]. The emergence of mmWave readers allows the extension of RFID
technology to higher frequencies through the utilization of millimeter-wave identification
(mmID) tags. When operating at mmWave frequencies, the path loss is larger due to higher
absorption and greater sensitivity to obstacles such as buildings, resulting in greater signal atten-
uation [6]. However, by leveraging the bandwidth allocated by the Federal Communications
Commission and operating at high frequencies, mmIDs-based systems inherently benefit from
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increased ranging accuracy and compact, wearable form-factors
essential for VR/AR applications. Recent studies, employing a
frequency-modulated continuous-wave (FMCW) reader [5, 7],
have demonstrated highly accurate localization estimations.While
location detection remains integral in VR/AR, the equally vital
ability to detect the precise object orientation is emphasized,
defined by the roll, yaw, and pitch axes of rotation in three-
dimensional space. Previous works have explored the use of RFID
tags for orientation tracking, demonstrating single-axis orienta-
tion detection at lower operational frequencies ranging from 1 to
4GHz [8–10]. However, these systems are intrinsically limited by
large size and limited reading range. Machine learning has shown
promise in enhancing accuracy, as demonstrated in [11]. Notably,
[12, 13] showcased the ability to detect orientation estimation in
multiple axes using multiple tags, albeit limited by low operational
frequency, large form factor, and low detection accuracy.

An earlier version of this paper was presented at the 2023
IEEE 20th European Radar Conference (EuRAD 2023) and was
published in its proceedings [14]. Within that work, the authors
presented a machine learning enhanced mmID system enabling
highly accurate,> 90%, three-axis orientation prediction at ranges
up to 7m. In this effort, the authors expand on this work by
increasing the angular resolution of the system from 10∘ to 5∘

over the entire detection region and performing a dynamic eval-
uation of the system to highlight its robustness. Additionally, a
classification convolutional neural network (CNN) is developed
and employed to increase the orientation detection accuracy of the
system, thereby addressing the limitations of existing systems.

Proposed low cost mmWave system

Architecture of ultra-low-power Gyro mmID tag

ThemmID tag, designed for operation at 24.125GHz, is comprised
of two main sections: the RF front end and the baseband circuit.
The RF front end design, similar to the approach presented in
[11], was selected for a three-axes orientation-detecting mmID.
This design features four distributed cross-polarized antenna ele-
ments, each incorporating a modulating loading constructed with
a super low noise amplifier (LNA) field-effect transistor (FET)
(CE3520K3 from CEL) and radial stubs. While the tracking of ori-
entation necessitates only three elements, as demonstrated by [13],
a fourth antenna was integrated for enhanced reliability and to
facilitate finer amplitude encoding along the roll axis. Figure 1(a)

illustrates the tag layout, where elements A-D exhibit modulating
frequencies of 49 kHz, 69 kHz, 85 kHz, and 110 kHz, respectively.
The chosen modulation frequencies are carefully selected to avoid
harmonic interference, ensuring they remain below the third har-
monic of each other. Furthermore, the reduction in modulation
frequency contributes to the mmID tag’s low power consumption.
Employing a cross-polarization configuration for each antenna
minimizes interference from received signals to the reader, with
each antenna designed to possess a polarization offset of 15∘ from
one another. This configuration enables the encoding of roll angle
of rotation information based on the relative received amplitude
of each element, while the relative phase difference between two
elements remains minimal during rotation in the roll axis.

To validate the operational frequency of the mmID, the nor-
malized gain was captured, which is displayed in Fig. 2. Here it
can be seen that tag has good agreement with the expected oper-
ational frequency. The design of the mmID is implemented on
Rogers RO4350B (𝜖r = 3.66, tan 𝛿 = 0.0037), with a thickness of
0.51mm, and antenna elements spaced at 6.5mm, correspond-
ing to ≈ 𝜆

2
. The baseband circuit generates the modulating signal

for each antenna element. In this design, the resistor set voltage-
controlled oscillator (VCO) LTC6906 is employed for its ability
to control the frequency of the generated signal, as well as its low
power consumption,≈ 14.4𝜇W.To ensure consistent performance
of the mmID, a 1.8V voltage regulator is employed to provide sta-
ble voltage to the VCO. Powering of the system is achieved through
the utilization of a 3V coin cell battery, which contributes to the
portability of the system.

Proof-of-concept FMCW radar system

The proof-of-concept (PoC) reader for the three-axis orientation
detection Gyro tag was the Analog Devices EV-RADAR-MMIC2
Evaluation Board, operating at 24GHz and utilizes FMCW radar
technology.This evaluation board integrates the ADF5901 24GHz
monolithic microwave integrated circuit (MMIC) transmitter,
ADF5904 24GHz MMIC receiver, and the ADF4159 13GHz
phase-locked loop. Figure 1(c) shows the block diagram break-
down of the PoC reader. For both the transmitter and receiver,
A-INFO LB-180400-20-C-KF horn antennas with 20 dBi gain
were employed in a cross-polarized configuration. To enhance
system sensitivity, a 40 dB LNA with a noise figure of 3.2 dB
was integrated into the receiving antenna. The radar system was

Figure 1. (a) Proof-of-concept 24 GHz Gyro mmID tag. (b) Diagram of rotational movements for each axis of the mmID. (c) Block diagram of transmitting and receiving
chains of the FMCW radar utilized for the interrogation of the mmID tag.
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Figure 2. Measured normalized gain vs frequency of the cross-polarized mmID.

Table 1. Chirp parameters of PoC FMCW radar

Chirp parameter Value

Operational frequency range 23.925–24.325 GHz

Bandwidth 400MHz

Slope 80MHz ms−1

Sampling rate 200Hz

Chirp periodicity 10ms

configuredwith a triangular chirpwaveform, featuring a frequency
slope of 400MHz/𝜇s and a chirp period of 5ms. The complete
chirp parameters of the PoC FMCW radar system can be found
in Table 1.

Signal processing framework

Extraction of Gyro mmID amplitude and phase response

Figure 3 a shows the block diagram of the proposed signal process-
ing scheme. Utilizing the received signal for each corresponding
chirp signal sent from the FMCW radar, a range fast Fourier trans-
form (FFT) is applied. Commonly used in scenarios involving
FMCW signals, the range FFT is an essential signal processing
technique, as it allows for the precise extraction of a targets range
and motion information [2]. This method works by transforming
time-domain radar signals into the frequency domain through the
application of the FFT algorithm. The resulting frequency spec-
trum provides a detailed representation of spectral characteristics,
which can then be used in the identification of the targets distance.
Peaks in the frequency spectrum correspond to distinct target dis-
tances, enhancing the spatial understanding of radar return signal.
A sample spectrum is depicted in Fig. 4.This spectrum enables the
extraction of modulating beat frequencies for each element on the
tag. The negative and positive modulating peaks of each element
can be observed, centered around their respective modulation
frequencies.

After executing the range FFT, a custom peak detection algo-
rithm is used to recognize the modulating beat frequencies asso-
ciated with each element. Subsequently, the phase differences
between elements B-A, C-B, D-C, and A-D can be computed.
The significance of phase differences in received signals becomes

particularly pronounced at extended reading distances. This is
attributed to the diminishing signal strength of each element as
the range from the reader increases, which results in a reduction
in the dynamic range of the amplitude response, with respect to
rotation [15]. Arctangent demodulation is a signal processing tech-
nique crucial in communication systems for extracting informa-
tion encoded inmodulated signals.The process involves taking the
arctangent of the ratio between the in-phase and quadrature com-
ponents of themodulated signal [16].The in-phase and quadrature
components represent the amplitude and phase information of the
signal, respectively. By applying arctangent demodulation, phase
information is unwraped, which leads to the extraction of the
modulating signal.This demodulation technique is effective in sce-
narios where accurate phase information retrieval is essential, as it
helps mitigate the impact of phase wrapping that can occur in con-
ventional phase demodulationmethods. Arctangent demodulation
enhances the fidelity of signal demodulation, contributing to the
recovery of information transmitted through frequencymodulated
radar signals.

Machine learning

In this study, a comprehensive performance evaluation was con-
ducted for two machine learning algorithms, K-nearest neighbors
(KNN) and CNN. KNN is a popular machine learning algo-
rithm, commonly employed for classification and regression tasks.
Operating on the principle of proximity, KNN makes predic-
tions based on the majority class or average of the K-nearest
data points in the feature space [17]. While KNN is versa-
tile and widely applicable, its performance is influenced by the
choice of the ‘K’ value, determining the number of neighbors
considered.

Classification CNNs are a specialized deep learning architec-
ture designed explicitly for the task of classifying input data into
distinct categories. Typically used in image classification scenar-
ios, these networks are adept at learning hierarchical represen-
tations of features within the data [17]. Comprised of convo-
lutional layers for feature extraction, pooling layers for spatial
down-sampling, and fully connected layers for classification, these
networks automatically learn and discern intricate patterns, which
are crucial for accurate classification. The convolutional layers
utilize filters to convolve over input data, capturing local and
global features, while pooling layers enhance computational effi-
ciency by reducing spatial dimensions. The final fully connected
layers employ learned features to make predictions and assign
input data to predefined classes. This training process involves
optimizing network parameters through backpropagation and gra-
dient descent, ensuring the model generalizes well to unseen data.
To determine the optimal hyper-parameters for the classifica-
tion CNN, a random-search based optimization technique was
applied [18]. The designed network is made up of a two hidden
layers, each containing 10 neurons, with a rectified linear activa-
tion and softmax activation functions applied to layers 1 and 2,
respectively.

Each model utilizes the phase difference from neighboring
antennas, i.e. elements B-A, C-B, D-C, and A-D, along with the
amplitude response from each element with respect to orientation
as inputs. To standardize the dataset, each feature was scaled using
min-max normalization. Additional information on the dataset
used for these two models are discussed in more detail below in
“Experimental validation of proposed system” section.
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Figure 3. Signal processing chain to extract amplitude and phase response of the tag and the classification CNN neural network used to predict the orientation angle of the
mmID tag.

Figure 4. Range-FFT spectrum of the proof-of-concept
mmID at broadside with the response of tag elements A-D
highlighted.

Experimental validation of proposed system

Measurement setup

Theexperimental setup, illustrated in Fig. 5, was designed to enable
complete evaluation of the tag’s behavior across different orienta-
tions. To enable rotation along all three axes, the tag was affixed to
a three-axis gimbal holder, with individual control exerted on each
axis facilitated by planetary geared stepper motors, allowing for
precise angular steps of 5∘. The motors traversed a range of ±90∘,
resulting in 50,653 diverse orientations for the tag. This carefully
chosen range ensures complete coverage within the angular space
conducive to tag detection.

For the visualization and extraction of the transmitted
and received signals, the Tektronix DPO 7354 Oscilloscope
was employed. Operating at a sampling rate of 500 kHz,
the oscilloscope recorded 19 up and down ramps for each

angular configuration, totaling 38 observations and yielding
1,924,814 unique samples. Furthermore, a synchronized clock
is used to ensure precise alignment between the radar and the
oscilloscope, which is crucial for timing purposes to acquire
the relative phase differentials between elements accurately. The
extracted signals were then exported to MATLAB to allow for
post-processing. The experimental parameters where specifically
chosen to provide an accurate and robust understanding of the
tag’s performance across diverse orientations.

Analysis of machine learningmodels

Experiments were conducted at 11 distinct distances (0.5m, 1m,
2m, 3m, 4m, 5m, 6m, 7m, 8m, 9m, and 10m), forming
a comprehensive dataset of 21,172,954 samples by aggregating
data from each experiment. Given the dataset’s substantial size,
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Figure 5. Experimental setup of the system at a distance of 10m.

Table 2. Comparison of accuracy using K-nearest neighbors and classification
CNN models

Range K-nearest neighbors Classification CNN

0.5m 98.72% 99.89%

1m 97.64% 99.91%

2m 97.23% 99.87%

3m 96.48% 97.12%

4m 91.86% 96.17%

5m 88.56% 94.58%

6m 84.73% 91.60%

7m 80.27% 91.33%

8m 76.44% 90.58%

9m 72.68% 86.17%

10m 69.83% 85.72%

an 80/20 train-test split was employed, with 80% of the data
utilized for model training and the remaining 20% for assessing
its performance.

The results, presented in Table 2, reveal that while the KNN
demonstrated comparable accuracy to the CNN at distances up
to 3m, its accuracy significantly declined at longer distances.
Conversely, the CNN achieved high accuracy (> 90%) at distances

up to 8m.While the KNN demonstrated acceptable results in [14],
this study faced challenges in replicating similar accuracy.The ele-
vation of angular resolution from 10∘ to 5∘ resulted in increased
similarity in amplitude and phase for each of the four antennas
during tag rotation. Consequently, data for each angular config-
uration grouped closely together, which hinders the algorithm’s
ability to distinguish different orientation configurations. Tailored
for advanced feature extraction, the CNN excelled in capturing
intricate patterns and spatial relationships in the phase difference
and amplitude response of four antennas, contributing to their
excellent performance in this study.

In Fig. 6, the confusion matrices for all three axes at a dis-
tance of 5m are illustrated using the classification CNN. Each
matrix is a composite representation of rotations, where one axis
is held constant at a specific angle, and the remaining two axes
rotate within ± 90∘. For instance, the yaw confusion matrix at
90∘ encompasses all rotations of pitch and roll while maintain-
ing the yaw axis at 90∘. Here, it can be seen that the model was
able to achieve high accuracy along each axis. Additionally, this
measurement was able to achieve a true positive rate of 93%, high-
lighting the models ability to correctly predict the orientation of
the mmID. Notably, a discernible pattern emerges as false estima-
tions manifest consistently when the angle exceeds ± 80∘ across
all three axes. This consistent trend is observable in other experi-
ments and is likely attributed to the tag exceeding the beamwidth of
the transmitting and receiving antennas, leading to the diminished
accuracy.
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Figure 6. Confusion matrices at 5m: (a) roll axis fixed with yaw and pitch axes rotating, (b) yaw axis fixed with roll and pitch axes rotating, (c) pitch axis fixed with roll and
yaw axes rotating.

Figure 7. Programmed path of the mmID for system
evaluation.
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Table 3. Comparison of accuracy using K-nearest neighbors and classification
CNN for varying rotation speeds

mmID rotational speed
(∘/sec) K-nearest neighbor Classification CNN

3.5 88.43% 99.43%

7 89.28% 98.27%

10.5 87.67% 98.84%

14 87.43% 95.89%

17.5 82.71% 95.43%

20 83.54% 93.27%

23.5 74.25% 92.04%

Dynamic system evaluation

To evaluate the system’s robustness, a dynamic evaluation was
conducted involving a sequence of experiments where the mmID
traversed a predetermined path, as seen in Fig. 7. With the tag
placed at a range of 5m, seven experiments were executed, encom-
passing a range of rotation speeds from 0.25× to 1.75×, equivalent
to 3.5–23.5∘/sec, relative to the tag’s rotation speed used during
the training of both machine learning models. The detailed results
of these experiments are outlined in Table 3. An analysis of the
results indicate that, although the accuracy of theCNNexperiences
a decline with increasing speed, it consistently maintains a high
accuracy rate exceeding 92%. Additionally, the CNNmodel consis-
tently outperforms the KNNmodel, consistent with the previously
presented findings. These experiments not only highlights the
system’s adaptability to dynamic conditions but also emphasizes
the CNN model’s effectiveness in sustaining accurate orientation
tracking, even under varying rotational dynamics.

Conclusion

In summary, the authors introduced a highly scalable, ultra-low
power 24GHz mmID tag for predicting its three-axis orientation
at extended ranges by employing a classification CNN machine
learning algorithm. The proposed system exhibited an accuracy
exceeding 90% even at a range of 8m from the PoC reader. An
evaluation of the system was performed at various rotation speeds,
in which the system was able to maintain high accuracy (> 90%)
throughout each experiment. Further evaluation of the proposed
system will be explored including the dynamic orientation track-
ing of the mmID integrated with a moving target. In the context of
VR and AR applications demanding low latency and devices with
highly accurate orientation tracking, this cost-effective mmID tag
emerges as a promising solution. Moreover, the system presents a
unique opportunity for drone swarms applications, with the inte-
gration of multiple tags. With capabilities extending to immersive
experiences and the mapping of AR objects into user interactions,
this mmID tag stands out as a viable candidate for future systems.
Additionally, the proposed PoC mmID sensor holds potential for
advancing wireless motion capture systems. By integrating mul-
tiple mmID tags to provide accurate location and orientation
information, the system offers a cost-effective alternative to tra-
ditional optical camera configurations, contributing to increased
accessibility and efficiency in motion capture technology.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S1759078724000965.

Competing interests. The author(s) declare none.

References
1. Jones D (2020) Characterising the digital twin: A systematic literature

review. CIRP Journal of Manufacturing Science and Technology 29(Part A),
36–52.

2. Lynch C, Adeyeye AO, Eid A, Hester JGD and Tentzeris MM
(2023) 5G/mm-Wave fully-passive dual rotman lens-based har-
monic mmID for long range microlocalization over wide angular
ranges. IEEE Transactions on Microwave Theory and Techniques 71(1),
330–338.

3. Kimionis J (2021) A printed millimetre-wave modulator and antenna
array for backscatter communications at gigabit data rates. Nature
Electronics 4(6), 439–446.

4. Uddin M (2023) Unveiling the metaverse: Exploring emerging trends,
multifaceted perspectives, and future challenges. IEEE Access 11,
87087–87103.

5. Lynch CA, Adeyeye AO, Hester JG and Tentzeris MM (2021) When a
single chip becomes the rfid reader: An ultra-low-cost 60 GHz reader and
mmID system for ultra-accurate 2D microlocalization. Proceedings of the
2021 IEEE International Conference on RFID (RFID), Atlanta, GA, USA,
1–8.

6. Torres R (2021) Backscatter communications. IEEE Journal of Microwaves
1(4), 864–878.

7. Strobel A, Carlowitz C, Wolf R, Ellinger F and Vossiek M (2013) A
millimeter-wave low-power active backscatter tag for FMCW radar sys-
tems. IEEE Transactions on Microwave Theory and Techniques 61(5),
1964–1972.

8. Gupta G, Singh BP, Bal A, Kedia D and Harish AR (2014) Orientation
detection using passive UHF RFID technology [education column]. IEEE
Antennas and Propagation Magazine 56(6), 221–237.

9. Genovesi S, Costa F, Borgese M, Dicandia FA, Monorchio A and
Manara G (2017) Chipless RFID sensor for rotation monitoring.
Proceedings of the 2017 IEEE International Conference on RFID Technology
& Application (RFID-TA), Warsaw, Poland, 233–236.

10. Barbot N, Rance O and Perret E (2021) Cross-polarization chipless tag
for orientation sensing. Proceedings of the 2020 50th European Microwave
Conference (EuMC), Utrecht, Netherlands, 1119–1122.

11. AdeyeyeA, LynchC,Hester J andTentzerisM (2022) Amachine learning
enabled mmwave RFID for rotational sensing in human gesture recogni-
tion and motion capture applications. Proceedings of the 2022 IEEE/MTT-
S International Microwave Symposium - IMS 2022, Denver, CO, USA,
137–140.

12. Wang Z, Xu M and Xiao F (2021) Recognizing 3D orientation of a two-
RFID-tag labeled object in multipath environments using deep transfer
learning. Proceedings of the 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), DC, USA, 652–662.

13. Akbar MB, Qi C, Alhassoun M and Durgin GD (2016) Orientation
sensing using backscattered phase from multi-antenna tag at 5.8 GHz.
Proceedings of the 2016 IEEE International Conference on RFID (RFID),
Orlando, FL, USA, 1–8.

14. Joshi M, Lynch C, Soto-Valle G, Adeyeye A, Bahr R and Tentzeris MM
(2023) Machine learning-enhanced Gyro mmID-sensor for virtual reality
and motion tracking applications. Proceedings of the 2023 20th European
Radar Conference (EuRAD), Berlin, Germany, 127–130.

15. Hekimian-Williams C, Grant B, Liu X, Zhang Z and Kumar P (2010)
Accurate localization of RFID tags using phase difference. Proceedings
of the 2010 IEEE International Conference on RFID (IEEE RFID 2010),
Orlando, FL, USA, 89–96.

16. Park B-K, Boric-Lubecke O and Lubecke VM (2007) Arctangent demod-
ulation with DC offset compensation in quadrature doppler radar receiver
systems. IEEE Transactions on Microwave Theory and Techniques 55(5),
1073–1079.

17. Goodfellow I, Bengio Y and Courville A (2016) Deep Learning.
Cambridge, MA, USA: MIT Press, (available at: http://www.
deeplearningbook.org).

18. Bergstra J and Bengio Y (2012) Random search for hyper-parameter
optimization. Journal of machine learning research 13(0), 281–305.

https://doi.org/10.1017/S1759078724000965 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078724000965
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1017/S1759078724000965


8 Joshi et al.

Marvin Joshi received the B.S. and M.S. degree
in electrical engineering from the University of
Tennessee, Knoxville, TN, USA in 2020 and 2022,
respectively. He is currently pursuing the Ph.D.
degree in electrical engineering at the Georgia
Institute of Technology, Atlanta, GA, USA. He is
currently a Research Assistant with the ATHENA
Group, Georgia Institute of Technology. His cur-
rent research interest focuses on the integration of

RADAR and artificial intelligence/machine learning with RF modules, specifi-
cally mmIDs for localization and tracking applications.

Charles A. Lynch III received the B.S. degree in
electrical engineering fromRose-Hulman Institute
of Technology, Terre Haute, IN, USA, in 2019. He
is currently pursuing the M.S. and Ph.D. degrees
in electrical engineering at the Georgia Institute
of Technology, Atlanta, GA, USA. He is cur-
rently a Research Assistant with the ATHENA
Group, Georgia Institute of Technology. His cur-
rent research interest focuses on the design, sim-

ulation, and fabrication of RF and millimeterwave devices, specifically RFIDs
and mmIDs and combining these low-power, wearable, ultralow-cost devices
with radar for localized sensing in the Internet of things systems. Mr. Lynch
received the audience choice in the 3MT Competition at the 2023 IEEE IMS
conference.

Ajibayo Adeyeye received his B.S. degree in
electrical and electronics engineering magna
cum laude from the Rose-Hulman Institute of
Technology, Terre Haute, IN, USA. He went
on to complete both his Master’s and Ph.D.
degrees in electrical engineering at the Georgia
Institute of Technology, Atlanta, GA, USA, in
2022. His research interests are centered around
the integration of RADAR and RFID systems for

localization applications. Adeyeye has been recognized for his contributions
to the field, securing first place in the 2019 IEEE Microwave Theory and
Techniques Society International Microwave Symposium Student Design
Competition on Backscatter Radio. He was also a Best Student Paper finalist at
the 2021 International Microwave Symposium.

Genaro Soto-Valle received the B.S. degree in
nanotechnology from the National Autonomous
University of Mexico, in 2020. He is currently
pursuing the M.S. and Ph.D. degrees in electrical
engineering at the Georgia Institute of Technology,
in Atlanta, GA. As a Research Assistant in the
ATHENA group, his research interests focus on
additively manufactured RF systems for wireless
environmental sensing and localization, particu-

larly by using mmWave modules targeted for Internet of things systems. More
recently, he has been working on novel additive manufacturing techniques to
enable micrometer-scale modules for sub-THz applications.

Manos M. Tentzeris (S’89-M’92-SM’03-F’10)
received the Diploma degree (magna cum laude)
in electrical and computer engineering from the
National Technical University of Athens, Athens,
Greece, and the M.S. and Ph.D. degrees in elec-
trical engineering and computer science from the
University of Michigan, Ann Arbor, MI, USA. He
is currently Ed and Pat JoyChair Professor with the
School of Electrical and Computer Engineering,
Georgia Institute of Technology,Atlanta,GA,USA,

where he headsthe ATHENA Research Group (20 researchers). He has served
as the Head of the GT ECE Electromagnetics Technical Interest Group, as
the Georgia Electronic Design Center Associate Director of RFID/Sensors
research, as the Georgia Institute of Technology NSF-Packaging Research
Center Associate Director of RF Research, and as the RF Alliance Leader.
He has helped develop academic programs in 3D/inkjet-printed RF electron-
ics and modules, flexible electronics, origami and morphing electromagnetics,
highly integrated/multilayer packaging for RF, millimeter-wave, sub-THz and
wireless applications using ceramic and organic flexible materials, paper-based
RFID’s and sensors, wireless sensors and biosensors, wearable electronics,
“Green” and transient electronics, energy harvesting and wireless power trans-
fer, nanotechnology applications in RF, microwave MEMs, and SOP-integrated
(UWB, multiband, mmW, and conformal) antennas. He has authored more
than 850 papers in refereed journals and conference proceedings, 7 books, and
26 book chapters. He was a Visiting Professor with the Technical University
of Munich, Munich, Germany, in 2002, with GTRI-Ireland, Athlone, Ireland,
in 2009 and with LAAS-CNRS, Toulouse, France, in 2010 and a Humboldt
Guest Professor with FAU, Nuremberg, Germany in 2019. Dr. Tentzeris was
a recipient/co-recipient of the 2024 Georgia Tech Outstanding Achievement
in Research Innovation Award, 2023 Proceedings of IEEE Best Paper Award,
2022 Georgia Tech Outstanding Doctoral Thesis Advisor Award, the 2021
IEEE Antennas and Propagation Symposium (APS) Best Student Paper Award,
the 2019 Humboldt Research Prize, the 2017 Georgia Institute of Technology
Outstanding Achievement in Research Program Development Award, the
2016 Bell Labs Award Competition 3rd Prize, the 2015 IET Microwaves,
Antennas, and Propagation Premium Award, the 2014 Georgia Institute of
Technology ECE Distinguished Faculty Achievement Award, the 2014 IEEE
RFID-TA Best Student Paper Award, the 2013 IET Microwaves, Antennas and
Propagation Premium Award, the 2012 FiDiPro Award in Finland, the iCMG
Architecture Award of Excellence, the 2010 IEEE Antennas and Propagation
Society Piergiorgio L. E. Uslenghi Letters Prize Paper Award, the 2011
International Workshop on Structural Health Monitoring Best Student Paper
Award, the 2010 Georgia Institute of Technology Senior Faculty Outstanding
Undergraduate ResearchMentor Award, the 2009 IEEE TRANSACTIONS ON
COMPONENTS AND PACKAGING TECHNOLOGIES Best Paper Award,
the 2009 E. T. S. Walton Award from the Irish Science Foundation, the 2007
IEEE AP-S Symposium Best Student Paper Award, the 2007 IEEE MTT-S
IMSThird Best Student Paper Award, the 2007 ISAP 2007 Poster Presentation
Award, the 2006 IEEE MTT-S Outstanding Young Engineer Award, the 2006
Asia Pacific Microwave Conference Award, the 2004 IEEE TRANSACTIONS
ON ADVANCED PACKAGING Commendable Paper Award, the 2003 NASA
Godfrey “Art” Anzic Collaborative Distinguished Publication Award, the
2003 IBC International Educator of the Year Award, the 2003 IEEE CPMT
Outstanding Young Engineer Award, the 2002 International Conference on
Microwave and Millimeter-Wave Technology Best Paper Award (Beijing,
China), the 2002 Georgia Institute of Technology–ECE Outstanding Junior
Faculty Award, the 2001 ACES Conference Best Paper Award, the 2000 NSF
CAREER Award, and the 1997 Best Paper Award of the International Hybrid
Microelectronics and Packaging Society. He was the General Co-Chair of
the 2023 IEEE Wireless Power Transfer Technology Conference and Expo
(WPTCE) in San Diego and of the 2019 IEEE APS Symposium in Atlanta.
He was the TPC Chair of the IEEE MTT-S IMS 2008 Symposium and the
Chair of the 2005 IEEE CEM-TD Workshop. He is the Vice-Chair of the RF
Technical Committee (TC16) of the IEEE CPMT Society. He is the Founder
and Chair of the RFID Technical Committee (TC24) of the IEEE MTT-S and
the Secretary/Treasurer of the IEEE C-RFID. He has served as an Associate
Editor of the IEEE TRANSACTIONS ON MICROWAVE THEORY AND
TECHNIQUES, the IEEE TRANSACTIONS ON ADVANCED PACKAGING,
and the International Journal on Antennas and Propagation. He has given
more than 150 invited talks to various universities and companies all over
the world. He is a member of the URSI-Commission D and the MTT-15
Committee, an Associate Member of EuMA, a Fellow of the Electromagnetic
Academy, and a member of the Technical Chamber of Greece. He is currently
one IEEE EPS Distinguished Lecturer and he has served as one of the IEEE
MTT-S Distinguished Microwave Lecturers and as one of the IEEE CRFID
Distinguished Lecturers.

https://doi.org/10.1017/S1759078724000965 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078724000965

	Neural networks empowered: a machine learning-enabled, Gyro mmID for enhanced virtual reality and motion tracking applications
	Introduction
	Proposed low cost mmWave system
	Architecture of ultra-low-power Gyro mmID tag
	Proof-of-concept FMCW radar system

	Signal processing framework
	Extraction of Gyro mmID amplitude and phase response
	Machine learning

	Experimental validation of proposed system
	Measurement setup
	Analysis of machine learning models
	Dynamic system evaluation

	Conclusion
	References


