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LAURICELLA HYPERGEOMETRIC FUNCTIONS, UNIPOTENT
FUNDAMENTAL GROUPS OF THE PUNCTURED RIEMANN

SPHERE, AND THEIR MOTIVIC COACTIONS

FRANCIS BROWN and CLÉMENT DUPONT

Abstract. The goal of this paper is to raise the possibility that there exists a

meaningful theory of ‘motives’ associated with certain hypergeometric integrals,

viewed as functions of their parameters. It goes beyond the classical theory of

motives, but should be compatible with it. Such a theory would explain a recent

and surprising conjecture arising in the context of scattering amplitudes for a

motivic Galois group action on Gauss’s 2F1 hypergeometric function, which

we prove in this paper by direct means. More generally, we consider Lauricella

hypergeometric functions and show, on the one hand, how the coefficients in

their Taylor expansions can be promoted, via the theory of motivic fundamental

groups, to motivic multiple polylogarithms. The latter are periods of ordinary

motives and admit an action of the usual motivic Galois group, which we call the

local action. On the other hand, we define lifts of the full Lauricella functions

as matrix coefficients in a Tannakian category of twisted cohomology, which

inherit an action of the corresponding Tannaka group. We call this the global

action. We prove that these two actions, local and global, are compatible with

each other, even though they are defined in completely different ways. The

main technical tool is to prove that metabelian quotients of generalised Drinfeld

associators on the punctured Riemann sphere are hypergeometric functions. We

also study single-valued versions of these hypergeometric functions, which may

be of independent interest.
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§1. Introduction

Let Σ = {σ0,σ1, . . . ,σn} be distinct points in C, where σ0 = 0. In this paper, we study

the Lauricella hypergeometric functions with singularities in Σ which are defined by

(LΣ)ij = −sj

∫ σi

0

xs0

n∏
k=1

(1−xσ−1
k )sk

dx

x−σj
, for 1≤ i, j ≤ n. (1)

The most familiar examples are Euler’s beta function β(a,b) = Γ(a)Γ(b)
Γ(a+b) (see §1.2) and

Gauss’s hypergeometric function F = 2F1 (see §9), which satisfies the integral formula

β(b,c− b)F (a,b,c;y) =

∫ 1

0

xb−1(1−x)c−b−1(1−yx)−adx (2)

whenever it converges. It can be expressed in terms of (1) for Σ = {0,1,y−1}.
There are two possible ways in which one might try to define a ‘motivic’ Galois group

acting on these functions using Tannakian theory, by viewing them in one of the following

ways.

(G) Globally, for generic values of the exponents sk ∈ C, where genericity means that the

sk /∈ Z for each k and s0+ · · ·+ sn /∈ Z. For such generic sk, it is known [A1], [DM]

how to interpret (1) as ‘periods ’1 of the cohomology of XΣ =A1\Σ with coefficients in

a rank-one algebraic vector bundle with integrable connection (or local system). One

can interpret these twisted cohomology groups as realizations of objects in a suitable

Tannakian category, and hence interpret them as representations of a global Tannaka

group.

(L) Locally, as formal power series in the sk around the non-generic point s0 = · · ·= sn = 0.

Even though the integral in (1) is divergent at that point, the prefactor sj compensates

the pole and (1) has a Taylor expansion in the sk at the origin. Its coefficients are

generalized polylogarithms, which can be lifted to periods of mixed Tate motives.

They admit an action of the usual motivic Galois group, which acts term by term on

coefficients in the series expansion.

As is customary in the Tannakian formalism, it is easier to compute the motivic coaction

of the Hopf algebra of functions on the motivic Galois group, which is dual to the group

action. In this article, we compute the global (G) and local (L) motivic coactions and prove

1 These numbers are not periods in the sense of Kontsevich and Zagier [KZ2] unless the exponents si are
rational.
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that they are formally identical. This strongly suggests that there exists an underlying

‘Lauricella motive’, viewed as a function of the sk, of which (G) and (L) are two different

incarnations, or realizations. The realization (G) is obtained by specializing sk to generic

complex numbers; the realization (L) is obtained by expanding locally in the sk. Such

a theory has a consequence for ordinary motives: it implies that the ordinary motivic

Galois group acts on the coefficients of the power series expansion (L) in a uniform way.

This is surprising since in general these coefficients are periods of unrelated motives. For

example, in the case of the Euler beta function, it implies that the motivic Galois group acts

uniformly on all (motivic) zeta values of all weights (see §1.2). For the general Lauricella

function (1), the main geometric object in the local framework (L) is the mixed Tate

motivic fundamental groupoid of the punctured Riemann sphereXΣ with respect to suitable

tangential basepoints.

The impetus for this work came from a remarkable conjecture [ABD+3], [ABD+4] arising

in the study of dimensionally regularized one-loop and two-loop Feynman amplitudes

in 4− 2ε space-time dimensions, which can be expressed in terms of hypergeometric

functions [ABD+1], [ABD+2]. It was observed experimentally that the motivic coaction

(L), computed order by order in an ε-expansion of F (n1+a1ε,n2+a2ε,n3+a3ε;y), where

n1,n2,n3,a1,a2,a3 are integers, could, at least to low orders in ε, be succinctly packaged

into a coaction formula on the hypergeometric function itself with only two terms. We give a

rigorous sense to these statements and prove a complete (global and local) coaction formula

for the hypergeometric function.

A large part of this paper is also devoted to studying the single-valued versions of the

integrals (LΣ)ij , defined by the following complex integrals:

(Ls
Σ)ij =

sj
2πi

∫∫
C

|z|2s0
n∏

k=1

|1−zσ−1
k |2sk

(
dz

z−σi
− dz

z

)
∧ dz

z−σj
, for 1≤ i, j ≤ n. (3)

The prototype for such functions is the single-valued (or ‘complex ’) beta function

β s(a,b) =
1

2πi

∫∫
C

|z|2a|1−z|2b dz

z(1−z)
∧ dz

z(1−z)
=

Γ(a)Γ(b)Γ(1−a− b)

Γ(a+ b)Γ(1−a)Γ(1− b)
·

They are closely related to constructions in conformal field theory (see [BPZ, (E)], [KZ1, §4],
[DF]) and have been studied from the global point of view (G) in [A2], [Mi], [MY]. We recast

them and their double copy formulae in the general framework of single-valued integration

developed in [BD1], [BD2]. In particular, we prove that they can also be interpreted as

single-valued versions of Lauricella hypergeometric functions in the local sense (L), that is,

by applying the single-valued period homomorphism term by term to the coefficients in the

series expansion. As a special case, we define and study two single-valued versions of the

hypergeometric function (2), one of which may be new.

In summary, we prove that both the Galois coaction and single-valued period map

coincide for (G) and (L); in other words, they ‘commute’ with Taylor expanding at

s0 = · · ·= sn = 0.

1.1 Contents

This paper is in two parts, corresponding to the two points of view (G) and (L). In the

first part (G), we interpret the Lauricella function as a matrix coefficient in a Tannakian
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category of Betti and de Rham realizations of cohomology with coefficients. To make this

a little more precise, consider the trivial algebraic vector bundle of rank one on XΣ with

the integrable connection

∇s = d+
n∑

k=0

sk
dx

x−σk
·

Let Ls be the rank one local system generated by x−s0
∏n

k=1(1− xσ−1
k )−sk , which is a

flat section of ∇s. For generic s0, . . . , sn, integration defines a canonical pairing between

algebraic de Rham cohomology and locally finite homology groups

H1
dR(XΣ,∇s) and H lf

1 (XΣ(C),L∨
s )

which are both of rank n. The period matrix, with respect to suitable bases, is exactly the

(n×n) matrix (1). Its entries can be promoted to equivalence classes

(Lm
Σ)ij =

[
MΣ , δi⊗xs0

n∏
k=1

(1−xσ−1
k )sk , −sj d log(x−σj)

]m
of Betti–de Rham matrix coefficients (a.k.a. motivic periods), where δi is a path from 0 to

σi, and MΣ is an object of a Tannakian category encoding the data of the Betti and de

Rham cohomology together with the integration pairing. They map to (1) under the period

homomorphism:

per(Lm
Σ) = LΣ.

We also define de Rham versions of (Lm
Σ)ij as equivalence classes of matrix coefficients as

follows. Consider the (classes of the) logarithmic 1-forms:

νi =
dx

x−σi
− dx

x
for 1≤ i≤ n,

with residues at 0 and σi only (see Remark 3.2 for an interpretation of these forms as

de Rham ‘versions ’ of the paths δi). They define de Rham cohomology classes in the

space H1
dR(XΣ,∇−s), which is isomorphic, via the de Rham intersection pairing, to the

dual H1
dR(XΣ,∇s)

∨. Consider the de Rham–de Rham matrix coefficients (a.k.a. de Rham

periods) (
Ldr
Σ

)
ij
= [MΣ , νi, −sj d log(x−σj)]

dr
.

Comultiplication of matrix coefficients immediately implies a global coaction formula which

takes the very simple matrix form:

ΔLm
Σ = Lm

Σ ⊗Ldr
Σ . (4)

The period map cannot be applied to the de Rham Lauricella functions, but one can replace

them with variants L̃dr
Σ by passing to a slightly different Tannakian category (where a

coaction formula similar to (4) holds) which takes into account the real Frobenius, that
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is, complex conjugation. This added feature yields a single-valued period homomorphism s

which can be applied to de Rham periods, whenever all the si are real.2 We recover in this

way the single-valued Lauricella hypergeometric functions (3):

s(L̃dr
Σ ) = Ls

Σ.

This implies, by the definition of the single-valued period homomorphism, the identity

Ls
Σ(s) = LΣ(−s)−1LΣ(s), (5)

where Σ = {σ0,σ1, . . . ,σn}, and LΣ(s) denotes the matrix (1) with dependence on s =

(s0, . . . , sn) made explicit. After applying twisted period relations [CM], (5) can be rewritten

as a quadratic formula for single-valued Lauricella functions, which we call a double copy

formula:

Ls
Σ(s) =

1

2πi
tLΣ(s)I

B
Σ
(−s)LΣ(s), (6)

where IB
Σ
(−s) is a Betti intersection matrix computed in terms of intersection numbers on

XΣ(C).

In §4, we make the transition from the global to the local picture and explain how

to renormalise the integrals (1), following a similar procedure to [BD2], to expose their

poles in the s0, . . . , sn in a neighborhood of the origin. These poles are compensated by the

prefactors sj in the definition (1), yielding Taylor expansions for both the functions (LΣ)ij
(Proposition 4.4) and their single-valued versions (Ls

Σ)ij (Proposition 4.8).

In the remaining, local, part of the paper, we compute the periods, single-valued periods,

and motivic coaction order by order in the Taylor expansion with respect to the si. For

this, we assume that the σi lie in a number field k ⊂C and work in the Tannakian category

MT (k) of mixed Tate motives over k [DG]. It has a canonical fiber functor �. Alternatively,

one can avoid fixing the σi by working in the category of mixed Tate motives over the moduli

space of configurations Σ, which leads to identical formulae. The motivic torsor of paths

πmot
1 (XΣ, t0,−ti), where t0 is the tangent vector 1 at 0, and ti is the tangent vector σi at

σi, is dual to an ind-object of MT (k) whose periods are regularized iterated integrals of

logarithmic 1-forms. Since it is a torsor over the motivic fundamental group based at t0, one

can define its metabelian (or double-commutator) quotient. It turns out that the periods of

the latter are very closely related to generalized beta integrals of the form (1). To make this

more precise, for any formal power series F ∈ R〈〈e0, . . . , en〉〉 in non-commuting variables

e0, . . . , en with coefficients in a commutative ring R, consider its abelianisation and jth beta

quotient

F and Fj ∈ R[[s0, . . . , sn]],

where S denotes the image of a formal power series S under the abelianization map ek 
→ sk,

where the sk are commuting variables, and the Fj are the unique power series such that

F = F∅+F0e0+ · · ·+Fnen,

2 This is an unnatural technical assumption that is forced upon us by the fact that the parameters si are
not treated as formal variables (see §3.5), but formulae such as (5) and (6) remain valid for complex si.
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where F∅ ∈R is simply the constant term of F. The motivic torsor of paths from t0 to −ti
defines formal power series Zm,i, Z�,i in the e0, . . . , en whose coefficients are motivic periods

and (canonical) de Rham periods of MT (k), respectively,3 and whose abelianizations and

beta quotients are of interest. We assemble them into a matrix of formal power series in

s0, . . . , sn:

(FLm
Σ)ij = 1i=jZm,i−sjZm,i

j ,

for 1 ≤ i, j ≤ n (resp. with m replaced with �). The following result (Theorems 6.18 and

7.11) states that these are indeed local motivic lifts of the expanded Lauricella functions

(viewed as power series in the sk). This justifies the notation FLΣ where the letter F stands

for formal.

Theorem 1.1. We have the equalities of formal power series in s0, . . . , sn:

(i) per(FLm
Σ) = LΣ,

(ii) s(FL�
Σ ) = Ls

Σ ,

where per and s are the period map and single-valued period map of MT (k) applied order

by order to the coefficients in the expansion in the variables sk.

In the special case Σ = {0,1}, part (i) of the theorem reduces to Drinfeld’s well-known

computation of the metabelian quotient of the Drinfeld associator in terms of Euler’s beta

function.

Having therefore established that FLm
Σ is a local motivic lift of the Lauricella functions

viewed as power series, we then prove that its local motivic coaction is given by the same

formula as the global motivic coaction (4) of the global motivic lift Lm
Σ .

Theorem 1.2. The (local) motivic coaction on the formal power series FLm
Σ reads:

ΔFLm
Σ(s0, . . . , sn) = FLm

Σ(s0, . . . , sn)⊗FL�
Σ (s0(L

�)−1, . . . , sn(L
�)−1), (7)

where L� is the (canonical) de Rham Lefschetz motivic period (motivic version of 2πi). In

this formula, the variables sk should be viewed as having weight −2 and as such admit a

nontrivial motivic coaction: Δ(sk) = sk (1⊗ (L�)−1).

In the last two sections, we apply our results to Gauss’s hypergeometric function F = 2F1.

Via the integral formula (2) we define global and local lifts of the function F (a,b,c;y). In

the global setting, a,b,c are generic complex numbers, that is, a,b,c,c−a,c−b /∈Z, whereas

in the local setting, they are formal variables around a = b = c = 0. The global motivic

coaction formula reads:

ΔFm(a,b,c;y) = Fm(a,b,c;y)⊗F dr(a,b,c;y)− y

1+ c
Fm(a+1, b+1, c+2;y)⊗Gdr(a,b,c;y),

and the local formula (Theorem 10.9) is formally similar, with dr replaced with � and extra

(L�)−1 factors inserted as in Theorem 1.2. The term Gdr appearing in the formula is a de

3 The reader should be warned that the superscripts m, �, dr, corresponding to different types of matrix
coefficients in Tannakian categories, have two different interpretations in this paper: one in the global
setting, and one is the local setting. This should not create any ambiguity.
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Rham version of the function

G(a,b,c;y) =
sin(πa)sin(π(c−a))

π sin(πc)
β(b,c− b)−1

∫ y−1

∞
xb−1(1−x)c−b−1(1−yx)−a dx,

which equals y1−cF (1+b−c,1+a−c,2−c;y) up to a prefactor. We also study single-valued

versions of the functions F and G, both in the global and local settings, and prove double

copy formulae relating them to F and G (see Proposition 9.12).

1.2 Example

Let n = 1, Σ = {0,1}, k = Q, and XΣ = P1\{0,1,∞}. The canonical fiber functor � on

MT (Q) is simply the de Rham fiber functor.

1.2.1. Cohomology with coefficients

Let s0, s1 ∈ C be generic, that is, {s0, s1, s0 + s1} ∩ Z = ∅. The algebraic de Rham

cohomology H1
dR(X,∇s) has rank one over Q(s0, s1) and is spanned by the class of s1

dx
1−x .

The locally finite homology H lf
1 (X(C),L∨

s ) also has rank one over Q(e2πis0 , e2πis1), and is

spanned by the class of (0,1)⊗xs0(1−x)s1 . The corresponding period matrix is the (1×1)

matrix

L{0,1} =

(
s1

∫ 1

0

xs0(1−x)s1
dx

1−x

)
=

(
s0s1

s0+s1
β(s0, s1)

)
.

Note that L{0,1} is a priori only defined for generic s0, s1. It turns out a posteriori that

it admits a Taylor expansion at the point (s0, s1) = (0,0), which is not generic. The lifted

(global) period matrix Lm
{0,1} also has a single entry and satisfies the (global) coaction

formula

ΔLm
{0,1} = Lm

{0,1}⊗Ldr
{0,1}. (8)

This is immediate from the fact that the matrix has rank one.

1.2.2. Formal series expansion

Consider the Drinfeld associator

Z =
∑

w∈{e0,e1}×

ζ(w)w = 1+ ζ(2)(e0e1−e1e0)+ · · · ,

where ζ(w) are shuffle regularized multiple zeta values. Its abelianization satisfies Z = 1.

The (1×1) matrix of formal expansions of Lauricella functions FL{0,1} is therefore

FL{0,1} =
(
1−s1Z1

)
.

Its entry is the formal power series

1−s1

∫
dch

xs0(1−x)s1
dx

x−1
=

s0s1
s0+s1

β(s0, s1),
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where dch is the straight line path between tangential basepoints at 0 and 1, and the second

equality follows from Proposition 6.16. It is well known that

s0s1
s0+s1

β(s0, s1) = exp

⎛⎝∑
n≥2

(−1)n−1ζ(n)

n
((s0+s1)

n−sn0 −sn1 )

⎞⎠ . (9)

The above objects have motivic and de Rham versions Zm,FLm
{0,1} (resp. Zdr, FLdr

{0,1}),

formally denoted by adding superscripts in the appropriate places, which are formal power

series in s0, s1 whose coefficients are motivic (resp. de Rham) periods of MT (Q).4 For

example, the entry of the matrix FLm
{0,1} is exactly the right-hand side of (9), in which ζ(n)

is replaced by ζm(n). The (local) motivic coaction satisfies5

ΔFLm
{0,1}(s0, s1) = FLm

{0,1}(s0, s1)⊗FLdr
{0,1}((L

dr)−1s0,(L
dr)−1s1), (10)

where Δ acts term by term and on the formal variables sk via Δ(sk) = sk(1⊗(Ldr)−1). The

formula (10) is equivalent to the equation:

Δζm(n) = ζm(n)⊗ (Ldr)n+1⊗ ζdr(n), (11)

for all n ≥ 2, using a variant of the well-known fact that in a complete Hopf algebra,

an element is group-like if and only if it is the exponential of a primitive element. Since

ζdr(2n) = 0, for n≥ 1, we retrieve the known coaction formulae on motivic zeta values [B1].

Remark 1.3. Equation (11) is equivalent to the fact that zeta values are periods

of simple extensions in the category MT (Q). It is very interesting that this nontrivial

statement shows up as the apparently simpler fact (8) that the cohomology group underlying

L{0,1} has rank one. It also explains why the formula is uniform for all values of n.

1.2.3. Single-valued versions

The single-valued beta integral is

− s1
2πi

∫∫
C

|z|2s0 |1−z|2s1
(

dz

z−1
− dz

z

)
∧ dz

1−z
=

s0s1
s0+s1

β s(s0, s1), (12)

where the single-valued (or ‘complex ’) beta function β s(s0, s1) satisfies the formula

s0s1
s0+s1

β s(s0, s1) =− β(s0, s1)

β(−s0,−s1)
.

The expansion of (12) can be expressed in the form

1−s1 s(Zdr
1 ) = exp

⎛⎝∑
n≥2

(−1)n−1ζsv(n)

n
((s0+s1)

n−sn0 −sn1 )

⎞⎠ ,

where the single-valued zeta ζsv(n) equals 2ζ(n) for n odd ≥ 3 and vanishes for even n.

4 They are actually motivic and de Rham periods of the Tannakian subcategory MT (Z).
5 If one writes this in terms of the motivic beta function βm(s0,s1) defined by (s−1

0 +s−1
1 ) times the entry

of FLm
{0,1}, then it takes the form

Δβm(s0,s1) =
s0s1

s0+s1
βm(s0,s1)⊗βdr((Ldr)−1s0,(L

dr)−1s1).
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This discussion of the beta function generalizes to the case of the moduli spaces of curves

of genus zero with marked points. It has been studied in [BD2], [SS1], [VZ].

1.3 Comments

1.3.1. Comparing local expansions

It is natural to ask what can be said about Taylor expansions of Lauricella functions

around different (rational) values of the parameters sk. Clearly, the expansions around

different values of sk are independent from each other: trying to compare them quickly

leads to identities involving infinite sums of the kind

∞∑
n=2

(ζ(n)−1) = 1,

for which there is no motivic interpretation. In fact, the coefficients of expansions at

different rational points are very different from the motivic point of view. For example,

the value of β(s0, s1) at non-integer rational values of s0, s1 is not a mixed Tate period in

general. However, we believe that there should be a general Tannakian framework which,

when correctly interpreted, controls the motivic Galois theory of all the expansions of

Lauricella functions (and related hypergeometric-type integrals) around rational values of

the parameters. This is beyond the scope of this article.

1.3.2. Divergences

The main technical point in this paper is, as usual, dealing with divergences. For

cohomology with coefficients, this appears as non-genericity of the parameters sk. For

motivic fundamental groups, it takes the form of tangential basepoints. The following key

example illustrates the point.

Example 1.4. Suppose that Re(s)> 0. Then, viewed as a function of s,

I(s) =

∫ 1

0

xs dx

x
=

1

s
·

The renormalized version Iren(s) of this integral (defined in §4) removes the pole in s, and

hence Iren(s) = 0. Now, consider the integral as a formal power series in s. We perform a

Taylor expansion of the integrand and integrate term by term. Since the integrals diverge,

they are regularized with respect to a tangent vector of length 1 at the origin, which is

equivalent to integrating along the straight line path dch (for droit chemin):

I local(s) =
∑
n≥0

sn

n!

∫
dch

logn(x)
dx

x
= 0.

Thus, I local(s) is indeed the Taylor expansion of Iren(s), which would not be true if one

were to regularize with respect to a different tangential basepoint. In general, our tangential

basepoints are chosen to be consistent with the renormalization of divergent integrals.

1.3.3. Higher-dimensional generalizations

There are precursors in the physics literature to coaction formulae on generating series of

motivic periods. Indeed, in [SS2], open string amplitudes in genus 0 (which can be computed
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in terms of associators [BSS+]) were recast in terms of series of motivic multiple zeta values,

and some conjectures were formulated about their f -alphabet decomposition to all orders.

For four particles, this is equivalent to Example 1.2.

We can make these conjectures precise as a simple application of the framework described

here. Let M0,S denote the moduli space of curves with points marked by a set S with n+3

elements, and let ∇s, Ls be the Koba–Nielsen connection and local system considered

in [BD2, §6]. The periods and single-valued periods studied in that paper can be easily

formalized using the Tannakian categories defined in this paper: in brief, the triple

MS =
(
Hn

B(M0,S ,Ls) , H
n
dR(M0,S ,∇s) , compB,dR

)
defines an object of any of the global Tannakian categories considered in §3. From this, one

can define global Tannakian lifts of the closed and open superstring amplitudes in genus 0.

Local lifts (after expanding in the variables sij) were worked out in [BD2]. We can define

global matrix coefficients

Im(ω) = [MS ,γ,ω]m and Idr(ν,ω) = [MS ,ν,ω]dr

for suitable Betti homology classes γ and de Rham (resp. dual de Rham) classes ω (resp.

ν). The period of Im(ω) is an open string amplitude, and the single-valued period of (a

slight variant of) Idr(ν,ω) is a closed string amplitude. The general coaction formalism (33)

or [B3] yields

ΔIm(ω) =
∑
η

Im(η)⊗ Idr(η∨,ω),

where η ranges over a basis of Hn
dR(M0,S ,∇s) and η∨ is the dual basis. The objects Im(ω)

can be viewed as versions of open string amplitudes, and the objects Idr(η∨,ω) can be viewed

as versions of closed string amplitudes. In terms of the de Rham intersection pairing, this

can equivalently be written

ΔIm(ω) =
∑
η,η′

〈η,η′〉dR Im(η)⊗ Idr(η′,ω),

where η,η′ range over bases of Hn
dR(M0,S ,∇s) and Hn

dR(M0,S ,∇−s), respectively. We

proved in [BD2] that the Laurent expansions of open and closed string amplitudes admit

(noncanonical) motivic lifts. In the light of the present paper, it is natural to expect that

their coactions are compatible with the global formula written above. It would be interesting

to see if this is equivalent to the conjectures of Stieberger and Schlotterer mentioned above.

1.3.4. Generalizations to other settings

There should be interesting possible generalizations of our results to the elliptic [Ma2]

and 
-adic [IKY], [N] settings.

Convention

Throughout this paper, we use the following convention: we denote the coordinate on

the affine line C by x when dealing with line integrals, and by z when dealing with double

(single-valued) integrals.
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§2. Cohomology with coefficients of a punctured Riemann sphere

We first recall the interpretation of the integrals (1) as periods of the cohomology of the

punctured Riemann sphere with coefficients in a rank-one algebraic vector bundle or local

system. Most of the results of this section can be found in the classical literature [A1], [CM],

[HK], [KN], [KY1], [KY2]. However, we provide an original treatment of the single-valued

period homomorphism for cohomology with coefficients. It is based on the Frobenius at

infinity, as in the general setting of [BD1], [BD2] and not on the complex conjugation of

coefficients, as in [HY], [MY].

2.1 Periods of cohomology with coefficients

Let k ⊂ C be a field, and let Σ = {σ0, . . . ,σn} be distinct points in k with σ0 = 0. Write

XΣ = A1
k\Σ.

We consider a tuple s = (s0, . . . , sn) of complex numbers that we shall often assume to be

generic, meaning that we have

{s0, s1, . . . , sn, s0+s1+ · · ·+sn}∩Z=∅. (13)

An alternative point of view, that we do not develop here, would be to treat the si as formal

variables (see §3.5).

2.1.1. Algebraic de Rham cohomology

For any subfield k ⊂ C, denote by

kdRs = k(s0, . . . , sn).

The algebraic de Rham cohomology groups that we will consider are kdRs -vector spaces with

a natural QdR
s -structure. Define the following logarithmic 1-forms on P1

k:

ωi =
dx

x−σi
for i= 0, . . . ,n, (14)

which have residue 0 or 1 at points of Σ, and −1 at ∞. They form a basis of the

space of global logarithmic forms Γ(P1
k,Ω

1
P1
k
(logΣ∪{∞})), which maps isomorphically to

H1
dR(XΣ/k).

Definition 2.1. Let OXΣ denote the trivial rank-one bundle on XΣ ×k k
dR
s , and

consider the following logarithmic connection upon it:

∇s :OXΣ −→ Ω1
XΣ

given by ∇s = d+
n∑

i=0

siωi.

It is automatically integrable since XΣ has dimension one, and is in fact closely related

to the abelianization of the canonical connection on the de Rham unipotent fundamental

group of XΣ. Consider the algebraic de Rham cohomology groups

Hr
dR(XΣ,∇s) =Hr

dR(XΣ,(OXΣ ,∇s)),

which are finite-dimensional kdRs -vector spaces. The fact that the si are generic implies, by

[D1, Prop. II.3.13], that one has a logarithmic comparison theorem for (OXΣ ,∇s). Since

the cohomology of XΣ is spanned by global logarithmic forms, this implies (see [ESV]) that
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the cohomology groups Hr
dR(XΣ,∇s) are computed by the complex of global logarithmic

forms

0−→ kdRs
∇s−→ kdRs ω0⊕·· ·⊕kdRs ωn −→ 0,

where ∇s(1) =
∑n

i=0 siωi. Again, by genericity of the si, H
r
dR(XΣ,∇s) vanishes for r �= 1,

and H1
dR(XΣ,∇s) has dimension n. It is generated by the ωi subject to the single relation

n∑
i=0

siωi = 0. (15)

Since the forms ωi have rational residues, they in fact define a natural QdR
s -structure on

H1
dR(XΣ,∇s) which we shall denote by H1

�(XΣ,∇s). We therefore have

H1
�(XΣ,∇s)∼=

(
n⊕

i=0

QdR
s ωi

)
/ QdR

s

n∑
i=0

siωi. (16)

We shall use the following basis for (16):

{−siωi, for i= 1, . . . ,n}. (17)

2.1.2. Betti (co)homology

We introduce the subfield of C defined by

QB
s =Q(e2πis0 , . . . , e2πisn).

Definition 2.2. Let Ls denote the rank-one local system of QB
s -vector spaces on the

complex points XΣ(C) = C\Σ defined as

Ls =QB
s x−s0

n∏
k=1

(1−xσ−1
k )−sk .

The local system Ls has monodromy e−2πisk around the point σk. After extending scalars

to C, it is identified with the horizontal sections of the (analytified) connexion ∇s on the

trivial vector bundle of rank one on XΣ(C):

Ls⊗QB
s
C∼=

(
Oan

XΣ

)∇s
.

We will be interested in its cohomology

Hr
B(XΣ,Ls) =Hr(C\Σ,Ls) ∼= Hr(C\Σ,L∨

s )
∨,

where L∨
s is the dual local system

L∨
s =QB

s xs0

n∏
k=1

(1−xσ−1
k )sk .

The genericity assumption (13) implies that Ls and L∨
s have nontrivial monodromy around

every point of Σ and around ∞, which implies that the natural map

Hr(C\Σ,L∨
s )−→H lf

r (C\Σ,L∨
s )
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from ordinary homology to locally finite homology is an isomorphism. Its inverse is some-

times called regularization. An easy computation shows that all homology is concentrated

in degree one and H lf
1 (C\Σ,L∨

s ) has rank n. It has a basis consisting of the (classes of the)

locally finite chains

δi⊗xs0

n∏
k=1

(1−xσ−1
k )sk , (18)

for i= 1, . . . ,n, where δi : (0,1)→ C\Σ is a smooth path from 0 to σi that can be extended

to a smooth path δi : [0,1]→ C, and xs0
∏n

k=1(1−xσ−1
k )sk denotes some choice of section

of L∨
s on δi.

Remark 2.3. In all that follows, we assume that the choices of representatives are such

that δi does not wind infinitely around 0 and σi, that is, that the argument of δi(t) is

bounded as t approaches 0 and that the argument of δi(t)−σi is bounded as t approaches

1. This assumption will ensure the convergence of the integrals considered below.

2.1.3. Comparison isomorphism.

There is a canonical isomorphism [D1, §6]

compB,dR(s) :H
1
dR(XΣ,∇s)⊗kdR

s
C

∼−→H1
B(XΣ,Ls)⊗QB

s
C, (19)

whose restriction to the QdR
s -structure we shall denote by

compB,�(s) :H1
�(XΣ,∇s)⊗QdR

s
C

∼−→H1
B(XΣ,Ls)⊗QB

s
C. (20)

Assuming (13), we can identify Betti cohomology H1
B(XΣ,Ls) with the dual of locally finite

homology, which leads to a bilinear pairing

H lf
1 (C\Σ,L∨

s )×H1
�(XΣ,∇s)−→ C.

It is well-known that the comparison isomorphism is computed by integration when it makes

sense.

Lemma 2.4. Assuming (13), a matrix representative for the comparison isomorphism

in the bases (17) and (18) is the (n×n) period matrix LΣ with entries

(LΣ)ij =−sj

∫
δi

xs0

n∏
k=1

(1−xσ−1
k )sk

dx

x−σj
,

provided that Res0 >−1 and Resi >

{
−1, if i �= j ,

0, if i= j.

Proof. By definition, the pairing that we wish to compute is

〈δi⊗xs0

n∏
k=1

(1−xσ−1
k )sk , compB,dR(s)(−sjωj)〉=−sj

∫
δi

xs0

n∏
k=1

(1−xσ−1
k )sk ω̃j ,
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where ω̃j is a smooth form on C \Σ with compact support, representing the cohomology

class of ωj = dz/(z−σj). In other words, we have

ω̃j −ωj =∇sφ= dφ+

n∑
k=0

skφd log(z−σk),

where φ is a smooth function on P1(C). Since ω̃j vanishes in the neighborhood of Σ∪∞,

taking residues in the previous equation along points of Σ∪∞ implies that φ vanishes at

every σk, k �= j, including at σ0 = 0. Now, we only need to prove that the integral∫
δi

xs0

n∏
k=1

(1−xσ−1
k )sk ∇sφ

vanishes. Since xs0
∏n

k=1(1− xσ−1
k )sk ∇sφ = d(xs0

∏n
k=1(1− xσ−1

k )sk φ), this integral is

computed by Stokes’ theorem and we need to prove that xs0
∏n

k=1(1−xσ−1
k )skφ vanishes

at 0 and at σi.

– At 0, this amounts to proving that δ(t)s0φ(δ(t)) goes to 0 when t→ 0. Since φ is smooth

and vanishes at 0, we have |φ(δ(t))|<C|δ(t)| for some constant C, and so

|δ(t)s0φ(δ(t))|<C|δ(t)s0+1|= C|δ(t)|Re(s0)+1 exp(−Im(s0)arg(δ(t))).

By assumption, Re(s0)+1> 0 and arg(δ(t)) is bounded as t approaches zero (see Remark

2.3), which implies that the limit of δ(t)s0+1, and also δ(t)s0φ(δ(t)), is zero when t→ 0.

– At σi, the same argument gives the desired vanishing, by using the fact that φ vanishes

at σi if i �= j.

The result follows.

2.2 Intersection pairings

For generic si (13), the natural map H1(C\Σ,L∨
s ) → H lf

1 (C\Σ,L∨
s ) is an isomorphism.

Poincaré duality gives an isomorphism

H lf
1 (C\Σ,L∨

s )�H1(C\Σ,Ls)
∨ �H1(C\Σ,L∨

−s)
∨,

where we set −s= (−s0, . . . ,−sn). By combining these two isomorphisms, we get a perfect

pairing, called the Betti intersection pairing [KY1, §2], [CM], [MY, §2]:

〈 , 〉B :H1(C\Σ,L∨
−s)⊗QB

s
H1(C\Σ,L∨

s )−→QB
s ,

or dually in cohomology:

〈 , 〉B :H1
B(XΣ,L−s)⊗QB

s
H1

B(XΣ,Ls)−→QB
s . (21)

The de Rham counterpart is the de Rham intersection pairing [CM], [Ma1]:

〈 , 〉dR :H1
dR(XΣ,∇−s)⊗kdR

s
H1

dR(XΣ,∇s)−→ kdRs , (22)

which comes from Poincaré duality and the fact that the natural map

H1
dR,c(XΣ,∇s)−→H1

dR(XΣ,∇s) (23)
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is an isomorphism if the si are generic, where the subscript c denotes compactly supported

cohomology. The map (22) respects the natural QdR
s -structures and induces

〈 , 〉� :H1
�(XΣ,∇−s)⊗QdR

s
H1

�(XΣ,∇s)−→QdR
s .

We set

νi =
dx

x−σi
− dx

x
for 1≤ i≤ n (24)

and use the same notation for the corresponding class in H1
�(XΣ,∇−s).

Lemma 2.5. For all 1≤ i, j ≤ n, and s0, . . . , sn satisfying (13),

〈νi,ωj〉dR =− 1

si
1i=j . (25)

Proof. By definition, the de Rham intersection pairing that we wish to compute is

〈νi,ωj〉dR =
1

2πi

∫∫
P1(C)

ν̃i∧ωj ,

where ν̃i is a smooth form on C \Σ with compact support, representing the cohomology

class of νi. In other words, we have

ν̃i−νi =∇−sφ= dφ−
n∑

k=0

skφd log(x−σk),

where φ is a smooth function on P1(C). Since ν̃i vanishes in the neighborhood of Σ∪∞,

taking residues along points of Σ∪∞ implies that φ vanishes at every σk, k /∈ {0, i}, and at

∞, and

φ(0) =− 1

s0
, φ(σi) =

1

si
.

By noticing that νi∧ωj = 0 and d log(x−σk)∧ωj = 0, we thus get

〈νi,ωj〉dR =
1

2πi

∫∫
P1(C)

dφ∧ωj =
1

2πi

∫∫
P1(C)

d(φωj).

By Stokes, this last integral can be computed as the limit when ε goes to zero of

− 1

2πi

∫
∂Pε

φωj ,

where Pε is the complement in P1(C) of ε-disks around the points of Σ∪∞, and the sign

comes from the orientation of ∂Pε. By using the fact that φ(∞) = 0 and ωj is regular at

every σk, k �= j, a local computation (variant of Cauchy’s formula) thus gives

〈νi,ωj〉dR =−Resσj (φωj) =− 1

si
1i=j .

This lemma implies that the dual basis to (17) is given by the classes

νi ∈ H1
�(XΣ,∇−s) for i= 1, . . . ,n.
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Remark 2.6. The Betti and de Rham intersection pairings are compatible with the

comparison isomorphism, which leads to quadratic relations among periods of cohomology

with coefficients, known in the literature as twisted period relations [CM], [G]. In matrix

form, they read:

tLΣ(−s)IBΣ(s)LΣ(s) = 2πiIdRΣ (s), (26)

where IBΣ(s) and IdRΣ (s) are the matrices of the Betti and de Rham intersection pairings

(21) and (22), respectively.

2.3 Single-valued periods of cohomology with coefficients

We can define and compute a period pairing on de Rham cohomology classes by

transporting complex conjugation.

2.3.1. Definition of the single-valued period map

Let Σ = {σ0,σ1, . . . ,σn} denote the complex conjugates of the points in Σ. We have an

anti-holomorphic diffeomorphism

conj : C\Σ−→ C\Σ

given by complex conjugation. We note that the induced map H1(C\Σ)→H1(C\Σ) sends
the class of a positively oriented loop around σj to the class of a negatively oriented

loop around σj . Since a rank one local system on C\Σ (resp. C\Σ) is equivalent to a

representation of the abelian group H1(C\Σ) (resp. H1(C\Σ)), we see that we have an

isomorphism of local systems:

conj∗Ls � L−s. (27)

We thus get a morphism of local systems on C\Σ:

Ls −→ conj∗conj
∗Ls � conj∗L−s,

which at the level of cohomology induces a morphism of QB
s -vector spaces

F∞ :H1
B(C\Σ,Ls)−→H1

B(C\Σ,L−s).

We call F∞ the real Frobenius or Frobenius at the infinite prime. We will use the notation

F∞(s) when we want to make the dependence on s explicit. One checks that the Frobenius

is involutive: F∞(−s)F∞(s) = id.

Remark 2.7. The isomorphism (27) is induced by the trivialisation of the tensor

product conj∗Ls⊗Ls given by the section

gs = |z|−2s0

n∏
k=1

|1−zσ−1
k |−2sk .

Thus, the homological real Frobenius

F∞ :HB
1 (C\Σ,Ls)−→HB

1 (C\Σ,L−s)
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is computed at the level of representatives by the formula

δ⊗z−s0

n∏
k=1

(1−zσk
−1)−sk 
→ δ⊗z−s0

n∏
k=1

(1−zσk
−1)−sk g−1

s = δ⊗zs0
n∏

k=1

(1−zσ−1
k )sk .

Remark 2.8. A morphism similar to F∞ was considered in [HY] and leads to similar

formulae but has a different definition and a different interpretation. Our definition only

uses the action of complex conjugation on the complex points of the variety XΣ relative

to two complex conjugate embeddings of k in C, whereas the definition in [HY] conjugates

the field of coefficients of the local systems, which requires the si to be real. Note that our

definition does not require the assumption that the si ∈ R.

In the rest of this article, however, we often assume that the si are real. (This is an

unnatural assumption and would not be necessary if the si were treated as formal variables;

see §3.5.) In this way, the complex conjugate of the field kdRs inside C is the field k(s1, . . . , sn).

We use the notation (−)⊗kdR
s

C for the tensor product with C, viewed as a kdRs -vector space

via the complex conjugate embedding. We thus have an additional C-linear comparison

isomorphism:

compB,dR(s) :H
1
dR(XΣ,∇s)⊗kdR

s
C−→H1

B(C\Σ,Ls)⊗QB
s
C.

Definition 2.9. Assume that the si are real. The single-valued period map is the C-

linear isomorphism

s :H1
dR(XΣ,∇s)⊗kdR

s
C−→H1

dR(XΣ,∇−s)⊗kdR
s

C

defined as the composite

s= comp−1

B,dR
(−s)◦ (F∞⊗ id)◦ compB,dR(s).

In other words, it is defined by the commutative diagram

H1
dR(XΣ,∇s)⊗kdR

s
C

s

��

compB,dR(s)
�� H1

B(C\Σ,Ls)⊗QB
s
C

F∞⊗id

��
H1

dR(XΣ,∇−s)⊗kdR
s

C
compB,dR(−s)

�� H1
B(C\Σ,L−s)⊗QB

s
C .

We will use the notation s(s) when we want to make the dependence on s explicit.

The single-valued period map is a transcendental comparison isomorphism that is

naturally interpreted at the level of analytic de Rham cohomology via the isomorphisms

H1
dR(XΣ,∇s)⊗kdR

s
C�H1

dR,an(C\Σ,(OC\Σ,∇s))

and

H1
dR(XΣ,∇−s)⊗kdR

s
C�H1

dR,an(C\Σ,(OC\Σ,∇−s)).

To avoid any confusion, we use the coordinate w = z on C\Σ.
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Lemma 2.10. Assume that the si are real. In analytic de Rham cohomology, the single-

valued period map is induced by the morphism of smooth de Rham complexes

san : (A•
C\Σ,∇s)−→ conj∗(A•

C\Σ,∇−s)

given on the level of sections by

A•
C\Σ(U) � ω 
→ |w|2s0

n∏
k=1

|1−wσ−1
k |2sk conj∗(ω) ∈ A•

C\Σ(U).

Proof. Let P = |w|2s0
∏n

k=1 |1−wσ−1
k |2sk . We first check that san is a morphism of

complexes:

∇−s(san(ω)) =∇−s(P conj∗(ω))

= P

((
n∑

k=0

sk d log(w−σk)+

n∑
k=0

sk d log(w−σk)

)
∧ conj∗(ω)+d(conj∗(ω))

)

−
n∑

k=0

sk d log(w−σk)∧ (P conj∗(ω))

= P

(
n∑

k=0

sk d log(w−σk)∧ conj∗(ω)+d(conj∗(ω))

)

= P conj∗

(
n∑

k=0

sk d log(z−σk)∧ω+dω

)
= san(∇s(ω)).

On the level of horizontal sections, we compute

san

(
z−s0

n∏
k=1

(1−zσ−1
k )−sk

)
= |w|2s0

n∏
k=1

|1−wσ−1
k |2sk w−s0

n∏
k=1

(1−wσ−1
k )−sk

= ws0

n∏
k=1

(1−wσk
−1)sk .

Thus, san induces the morphism Ls → conj∗L−s and the result follows.

2.3.2. Integral formula for single-valued periods

We derive a formula for the single-valued period map s using the de Rham intersection

pairing (22), that is, for the single-valued period pairing,

H1
dR(XΣ,∇s)×H1

dR(XΣ,∇s)−→ C , (ν,ω) 
→ 〈ν,sω〉dR. (28)

Note that this pairing is kdRs -linear in each argument, where in the first slot the complex

conjugate embedding of kdRs inside C is understood: this means that we have, for a,b∈ kdRs ,

〈aν,sbω〉dR = ab〈ν,sω〉dR.

Proposition 2.11. Assume that s0, . . . , sn are real and generic (13). Let ω,ν ∈
Γ(P1

k,Ω
1
P1
k
(logΣ∪∞)), and write ω and ν for their classes in H1

dR(XΣ,∇s). Assume that ν
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has no pole at ∞. Then the single-valued pairing is

〈ν, sω〉dR =− 1

2πi

∫∫
C

|z|2s0
n∏

k=1

|1−zσ−1
k |2sk ν ∧ω (29)

whenever si > 0 for all 0≤ i≤ n, and s0+ · · ·+sn < 1/2.

Proof. Let us first note that the integral in (29) converges under the assumptions on ω,

ν, and the si. To check this, pass to local polar coordinates z = ρeiθ in the neighbourhood

of every point in Σ, and verify that |z|2s dzdz
zz is proportional to ρ2s−1dρdθ and is integrable

when Re(s) > 0. At ∞, use the fact that ν has no pole to obtain a local estimate of the

form ρ−2s0−···−2sndρdθ, which is integrable for s0+ · · ·+sn < 1/2.

We use the notation ω = ωσ for the smooth form on C \Σ induced by ω, and ωσ for

the smooth form on C\Σ induced by ω. (It is obtained by replacing each occurrence of σj

in ω by a σj .) Then, by definition, we have 〈ν,sω〉 = 〈νσ,sanωσ〉. By Lemma 2.10 and the

definition of the de Rham intersection pairing, this equals the integral

1

2πi

∫∫
P1(C)

|w|2s0
n∏

k=1

|1−wσk
−1|2sk ν̃σ ∧ conj∗(ωσ), (30)

where ν̃σ is a smooth form on C \Σ with compact support, representing the cohomology

class of νσ. In other words, we have

ν̃σ−νσ =∇sφ= dφ+

n∑
k=0

skφd log(w−σk),

where φ is a smooth function on P1(C). The assumption that ν has no pole at ∞ and the

fact that s0+ · · ·+sn �= 0 imply, by taking residues, that φ(∞) = 0. We first prove that we

may remove the tilde in (30), that is, that the integral∫∫
P1(C)

|w|2s0
n∏

k=1

|1−wσk
−1|2sk ∇sφ∧ conj∗(ωσ) (31)

vanishes. Its integrand equals

d

(
|w|2s0

n∏
k=1

|1−wσk
−1|2skφ conj∗(ω)

)

because dw∧conj∗(ωσ) = conj∗(dz∧ωσ) = 0. By Stokes, the integral (31) can be computed

as the limit when ε goes to zero of

−
∫
∂Pε

|w|2s0
n∏

k=1

|1−wσk
−1|2skφ conj∗(ω),

where Pε is the complement in P1(C) of ε-disks around the points of Σ∪∞, and the sign

comes from the orientation of ∂Pε. The contribution of each point of Σ vanishes, as can be

seen from a computation in a local coordinate, because of the assumption that si > 0 for

all i. The contribution of the point ∞ also vanishes because of the fact that φ(∞) = 0 and
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the assumption that s0+ · · ·+sn < 1/2. Thus, we have

〈ν, sω〉dR =
1

2πi

∫∫
P1(C)

|w|2s0
n∏

k=1

|1−wσk
−1|2sk νσ ∧ conj∗(ωσ)

=− 1

2πi

∫∫
P1(C)

|z|2s0
n∏

k=1

|1−zσk
−1|2sk conj∗(νσ)∧ωσ

=− 1

2πi

∫∫
P1(C)

|z|2s0
n∏

k=1

|1−zσ−1
k |2sk νσ ∧ωσ.

The second equality follows from performing a change of variables via conj : C\Σ→ C\Σ,
which reverses the orientation of C, hence the minus sign. The third equality relies on

conj∗(νσ) = νσ, which is obvious. The result follows.

Corollary 2.12. Assume that s0, . . . , sn are real and generic (13). Then, for all

1 ≤ i, j ≤ n, the single-valued Lauricella function (Ls
Σ)ij (3) is a single-valued period of

cohomology with coefficients:

(Ls
Σ)ij = 〈νi,s(−sjωj)〉dR

for sk > 0 for all 0≤ k ≤ n and s0+ · · ·+sn < 1/2.

Proof. This follows from Proposition 2.11.

Corollary 2.13. Under the assumptions of the previous corollary, we have the matrix

equality

Ls
Σ(s0, . . . , sn) = LΣ(−s0, . . . ,−sn)

−1LΣ(s0, . . . , sn) , (32)

where it is understood that the Lauricella functions (LΣ)ij and (LΣ)ij are computed via

choices of paths which are complex conjugate to each other.

Proof. This follows from the definition of the single-valued period homomorphism and

Corollary 2.12 since the classes νi are the dual basis, with respect to the de Rham pairing,

of the basis (−siωi) by Lemma 2.5.

Remark 2.14. The inverse of the matrix LΣ(−s) appearing in (32) can be computed

in terms of LΣ(s) from the twisted period relation (26). This leads to quadratic expressions

of the single-valued Lauricella function in terms of ordinary Lauricella functions, which we

call double copy formulae. They read, in matrix form,

Ls
Σ(s) =

1

2πi
tLΣ(s)I

B
Σ
(−s)LΣ(s).

This is because the matrix IdR
Σ

(−s) is the identity matrix in the bases (+siωi) and (νi) by

Lemma 2.5. They are related to double copy formulae in the physics literature such as the

Kawai–Lewellen–Tye formula [KLT], which was interpreted in the framework of cohomology

with coefficients in [Mi2].

§3. Tannakian interpretations and global coaction

Using some simple Tannakian formalism, we compute a global coaction formula on

Tannakian lifts of Lauricella functions. We also consider a more refined Tannakian formalism
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which takes into account the Frobenius at infinity and interpret single-valued Lauricella

functions in this more refined framework.

3.1 Minimalist version

Let kdR ⊂ C and QB ⊂ C be two subfields of C. Consider the Q-linear abelian category

T whose objects consist of triples V = (VB,VdR, c) where VB,VdR are finite-dimensional

vector spaces over QB and kdR, respectively, and c : VdR⊗kdR
C

∼→ VB⊗QB C is a C-linear

isomorphism. The morphisms φ in T are pairs of linear maps φB, φdR compatible with the

isomorphisms c. The category T is Tannakian with two fiber functors

ωdR : T −→VeckdR
and ωB : T −→VecQB .

The ring Pm
T = O(Isom⊗

T (ωdR,ωB)) is the (QB,kdR)-bimodule spanned by equivalence

classes of matrix coefficients [V,σ,ω]m where σ ∈ V ∨
B and ω ∈ VdR. The kdR-algebra

Pdr
T =O(Aut⊗T (ωdR)) is spanned by equivalence classes of matrix coefficients [V,f,ω]dr where

f ∈ V ∨
dR and ω ∈ VdR. The multiplicative structure is given by tensor products. There is a

natural coaction

Δ : Pm
T −→Pm

T ⊗kdR
Pdr
T ,

which expresses Pm
T as an algebra comodule over the Hopf algebra Pdr

T . It is given by the

formula

Δ[V,σ,ω]m =
∑
i

[V,σ,ei]
m⊗ [V,e∨i ,ω]

dr, (33)

where the sum ranges over a kdR-basis {ei} of VdR, and e∨i denotes the dual basis of V ∨
dR.

Definition 3.1. For generic complex numbers si (13), let kdR = QdR
s and QB = QB

s ,

and define

MΣ =
(
H1

B(XΣ,Ls) , H
1
�(XΣ,∇s) , compB,�(s)

)
∈ Ob(T ).

Define a matrix Lm
Σ ∈Mn×n(Pm

T ) by

(Lm
Σ)ij =

[
MΣ , δi⊗xs0

n∏
k=1

(1−xσ−1
k )sk , −sjωj

]m
,

where the basis elements are given by (17) and (18). We will use the notation MΣ(s) and

Lm
Σ(s) when we want to make the dependence on s explicit.

The image of Lm
Σ under the period homomorphism

per : Pm
T −→ C

[(VB,VdR, c),σ,ω]
m 
→ 〈σ , c(ω)〉

is precisely the matrix of Lauricella functions (when the integral converges; see Lemma 2.4):

per(Lm
Σ)ij =−sj

∫
δi

xs0

n∏
k=1

(1−xσ−1
k )sk

dx

x−σj
·

For this reason, we think of Lm
Σ as a (global) motivic lift of the matrix of Lauricella functions

(1). Define a (global) de Rham version

(Ldr
Σ )ij = [MΣ , νi , −sjωj ]

dr
,
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where the forms νi, defining classes in H1
�(XΣ,∇−s), were defined in (24). Recall that

the de Rham pairing (23) induces an isomorphism H1
�(XΣ,∇−s)�H1

�(XΣ,∇s)
∨ and that

Lemma 2.5 implies that the basis {νi} is dual to the basis {−siωi}.

Remark 3.2. The class of νi is the image of the relative homology class (viewed in

homology with trivial coefficients) of the path δi under the map c∨0 studied in [BD1, §4.5.1].
It would be interesting to know whether this map can be naturally defined at the level of

cohomology with coefficients by relying on Hodge theoretic arguments as in [BD1].

Example 3.3. For all n ∈ Z, one has ‘Tate’ objects

Qs(−n) = (QB
s ,Q

dR
s ,1 
→ (2πi)n).

The Betti and de Rham pairings (21) and (22), along with their compatibility with the

comparison map (19) (a.k.a. the twisted period relations), can be succinctly encoded as a

perfect pairing

MΣ(−s)⊗MΣ(s)−→Qs(−1)

in the category T . Equivalently, MΣ(s)
∨ �MΣ(−s)(1), where (n) is the standard notation

for Tate twist, that is, tensor product with Qs(n).

Proposition 3.4. The (global) coaction satisfies

ΔLm
Σ = Lm

Σ ⊗Ldr
Σ .

Proof. This is an immediate consequence of the formula (33).

Remark 3.5. The coproduct Δ in the Hopf algebra Pdr
T is given by a formula similar

to (33) and satisfies ΔLdr
Σ = Ldr

Σ ⊗Ldr
Σ .

3.2 Version with real Frobenius involutions

In order to incorporate the real Frobenius isomorphism, and hence single-valued periods,

into a Tannakian framework, we are obliged to consider a more complicated version of

the previous categorical construction. This is somewhat artificial, but is forced upon us by

the fact that complex conjugation does not define an involution on H1
B(X,Ls), but rather

relates the cohomology of Ls with that of L−s. For this reason, we must consider two de

Rham and two Betti realizations corresponding to coefficients ∇s, ∇−s and Ls, L−s, which

we denote by superscripts +/−.

Let si ∈ R be real numbers satisfying the genericity conditions (13). Let kdR ⊂ C and

QB ⊂ C be two subfields of C. We let (−)⊗kdR
C denote the tensor product taken with

respect to the complex conjugate embedding. One solution is to consider a category T∞
defined in a similar manner as T , except that the objects are given by:

1. a pair of finite-dimensional kdR-vector spaces V
+
dR, V

−
dR;

2. two pairs of finite-dimensional QB-vector spaces V
+
B , V −

B and V +

B
, V −

B
;

3. two C-linear comparison isomorphisms

c+B,dR : V +
dR⊗kdR

C
∼−→ V +

B ⊗QB C ,

c+
B,dR

: V +
dR⊗kdR

C
∼−→ V +

B
⊗QB C ,

and another two defined in the same way with all +’s replaced by −,
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4. two QB-linear real Frobenius maps

V +
B

∼−→ V −
B

and V +

B

∼−→ V −
B ,

and another two with the +’s and −’s interchanged. These maps will simply be

denoted by F∞, since the source and, hence, the target will be clear from context.

The composition of any two such maps, when defined, is the identity: F∞F∞ = id.

The morphisms φ between objects are given by the data of two kdR-linear maps φ+
dR,φ

−
dR,

and four QB-linear maps φ+
B , φ

−
B , φ

+

B
, φ−

B
which are compatible with (3) and (4). One checks

that this category is Tannakian, equipped with six fiber functors ω±
dR,ω

±
B ,ω

±
B
(over kdR,QB,

respectively) which are obtained by forgetting all data except one of the vector spaces in

(1) or (2).

Remark 3.6. For objects of T∞ coming from geometry such as the ones that we will

shortly define, there are compatibilities between the real Frobenius isomorphisms F∞ and

the comparison isomorphisms. We do not include such compatibilities in our definition

because they will be irrelevant to the computations that we will be performing.

The category T∞ admits various rings of periods defined in a similar manner as before.

Consider the eight rings of periods:

PB±,dR±

T∞
=O(Isom⊗

T∞
(ω±

dR,ω
±
B )) and PB

±
,dR±

T∞
=O(Isom⊗

T∞
(ω±

dR,ω
±
B
)),

corresponding to all possible choices of signs. The four comparison isomorphisms define four

period homomorphisms:

per : PB+,dR+

T∞
−→ C and per : PB

+
,dR+

T∞
−→ C

and similarly with + replaced with −. The four Frobenius maps define isomorphisms:

F∞ : PB+,•
T∞

∼= PB
−
,•

T∞
and F∞ : PB−,•

T∞
∼= PB

+
,•

T∞
,

where • ∈ {dR+,dR−}. By composing with the period homomorphism per, one obtains a

full set of eight period homomorphisms for each of our period rings, for example, perF∞ :

PB+,dR−

T∞
→ C.

There are also four possible rings of de Rham periods. We shall mainly consider two of

them:

PdR−,dR+

T∞
=O(Isom⊗

T∞
(ω+

dR,ω
−
dR)) and PdR+,dR−

T∞
=O(Isom⊗

T∞
(ω−

dR,ω
+
dR)).

Duality induces a canonical isomorphism PdR−,dR+

T∞
∼= PdR+,dR−

T∞
which we shall not make

use of here. Both of these rings admit a single-valued period map, which can be used to

detect the nonvanishing of de Rham periods.

Definition 3.7. There is a homomorphism single-valued period

s−,+ : PdR−,dR+

T∞
−→ C⊗kdR C

defined by the composite

V +
dR⊗kdR

C
c+B,dR �� V +

B ⊗QB C
F∞⊗id �� V −

B
⊗QB C

(c−
B,dR

)−1

�� V −
dR⊗kdR

C .
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Since C and C have different kdR-structures, this map defines a point on the torsor of

isomorphisms from ω+
dR to ω−

dR only after extending scalars to C⊗kdR
C. The single-valued

map therefore sends [V,f,ω]dr to 〈f,(c−
B,dR

)−1F∞c+B,dRω〉.
However, in the case when kdR ⊂R, which is the case that we shall mostly consider, we can

compose with the multiplication homomorphism C⊗kdR C→C to obtain a homomorphism

s−,+ : PdR−,dR+

T∞
−→ C.

There is a variant s+,−obtained by interchanging all +’s and −’s in the above. When it is

clear from the context, we drop the superscripts and simply write s.

Remark 3.8. Alternatively, one can view s−,+ as a morphism of the (kdR,kdR)-

bimodule PdR−,dR+

T∞
to C, with the bimodule structure on the latter given by (kdR,kdR).

In other words, for λ1,λ2 ∈ kdR, one has s−,+(λ1ξλ2) = λ1s
−,+(ξ)λ2. When k is real, these

bimodule structures coincide and we obtain a genuine linear map.

The composition of torsors between fiber functors defines several coaction morphisms,

including

Δ : PB+,dR+

T∞
−→PB+,dR−

T∞
⊗kdR

PdR−,dR+

T∞
, (34)

and likewise with +,− interchanged. The period homomorphisms defined earlier are

compatible with composition of torsors between fiber functions. In particular, one has

per(ξ) = (perF∞⊗ s)(Δξ) for all ξ ∈ PB+,dR+

T∞
. (35)

Definition 3.9. For si real and generic (13), let kdR =QdR
s and QB =QB

s , and define

an object of rank n in T∞, denoted by M̃Σ, whose underlying vector spaces are given by

V +
dR =H1

�(XΣ,∇+s) , V +
B =H1(C\Σ,L+s) , V +

B
=H1(C\Σ,L+s)

and similarly with all +’s replaced with −’s. The Frobenius maps F∞ are induced on Betti

cohomology by complex conjugation conj∗ and its inverse. The comparison isomorphisms

c+B,dR, c
+

B,dR
are defined by

compB,�(+s) :H1
�(XΣ,∇+s)⊗kdR

C−→H1(C\Σ,L+s)⊗QB C,

compB,�(+s) :H1
�(XΣ,∇+s)⊗kdR C−→H1(C\Σ,L+s)⊗QB C,

and c−B,dR, c
−
B,dR

are similarly defined by replacing all +’s with −’s. Since kdR = QdR
s ⊂ R,

the complex conjugate C in the left-hand side of the previous equation can, in fact, be

replaced with C.

The image of M̃Σ under the functor T∞ → T which forgets all data except for

(V +
B ,V +

dR, cB,dR) is the object MΣ, which was defined in Definition 3.1.

Let us define an (n×n) matrix

L̃m
Σ ∈ Mn×n(PB+,dR+

T∞
)

whose entries are (
L̃m
Σ

)
ij
=

[
M̃Σ , δi⊗xs0

n∏
k=1

(1−xσ−1
k )sk , −sjωj

]m
,
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where the Betti homology class lies in H1
B(XΣ,Ls)

∨ =H1(C\Σ,L∨
s ) and the de Rham class

lies in H1
�(XΣ,∇s). We will use the notation M̃Σ(s) and L̃m

Σ(s) when we want to make the

dependence on s explicit. The image of L̃m
Σ under the natural map PB+,dR+

T∞
→Pm

T is Lm
Σ ,

and its period is the Lauricella matrix

per L̃m
Σ = LΣ. (36)

3.3 de Rham motivic version and single-valued periods

Now, let us define a de Rham motivic Lauricella function(
L̃dr
Σ

)
ij
=

[
M̃Σ , νi , −sjωj

]dr
∈ PdR−,dR+

T∞
,

where the de Rham class νi is to be viewed in H1
�(XΣ,∇s) =H1

�(XΣ,∇−s)
∨ and the second

is to be viewed in H1
�(XΣ,∇s). Note that this differs from the earlier definition of the de

Rham Lauricella matrix in the ring of de Rham periods of the category T because the de

Rham classes reside in different cohomology groups. This is required so that we may speak

of its single-valued period. By Corollary 2.12, the matrix of single-valued periods consists

of the single-valued Lauricella hypergeometric functions (3):

s(L̃dr
Σ ) = Ls

Σ,

whenever all the si are real and generic and satisfy si > 0 for all 0≤ i≤ n, and s0+ · · ·+sn <

1/2.

3.4 Coaction

The coaction (34), applied to the motivic Lauricella function, will give rise to a third but

closely related quantity, given by the matrix(
L̃m,−
Σ (s)

)
ij
=

[
M̃Σ(s) , δi⊗xs0

n∏
k=1

(1−xσ−1
k )sk , sjωj

]m
∈ PB+,dR−

T∞
,

where the de Rham class sjωj is in H1
�(XΣ,∇−s). It is the image under F∞ of(

L̃m

Σ
(−s)

)
ij
=

[
M̃Σ(s) , δi⊗x−s0

n∏
k=1

(1−xσ−1
k )−sk , sjωj

]m
∈ PB

−
,dR−

T∞
,

where the Betti class is viewed in H1(C\Σ,L∨
−s) (see Remark 2.7) and the de Rham class

sjωj is viewed in H1
�(XΣ,∇−s) as before. More precisely, we have

L̃m,−
Σ (s) = F∞L̃m

Σ
(−s),

and hence, by definition of the period homomorphism perF∞ : PB+,dR−

T∞
→C, the period is

perF∞
(
L̃m,−
Σ (s)

)
= LΣ(−s).

Corollary 3.10. The coaction (34) satisfies

ΔL̃m
Σ(s) = L̃m,−

Σ (s)⊗ L̃dr
Σ (s).

Proof. This is an immediate consequence of the formula for the coaction on matrix

coefficients in a Tannakian category.
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Equation (35), applied to the matrix L̃m
Σ(s), reduces to the equation

LΣ(s) = LΣ(−s)Ls
Σ(s),

which is another way of writing formula (32). Consider the following refinement of the

period map:

PB+,dR+

T∞

Δ �� PB+,dR−

T∞
⊗kdR

PdR−,dR+

T∞

perF∞⊗s−,+

�� C⊗QC .

Indeed, by composing it with the multiplication map C⊗QC→ C, one recovers the usual

period map, by (35). Then, under this map, the elements (L̃m
Σ(s))ij , for 1 ≤ i, j ≤ n, map

to

n∑

=1

(
s


∫
δi

x−s0

n∏
k=1

(1−xσk
−1)−sk

dx

x−σ


)
⊗

sj
2πi

(∫∫
C

|z|2s0
n∏

k=1

|1−zσ−1
k |2sk

(
dz

z−σ

− dz

z

)
∧ dz

z−σj

)
. (37)

The point of this formula is that both sides of the tensor product admit a Taylor expansion

in the si, which is the subject of the next section.

3.5 Variant

We had to assume that the parameters si are real in order to obtain a Tannakian

interpretation of the single-valued period homomorphism. This was so that the subfield

k(s0, . . . , sn) ⊂ C is isomorphic to k(s0, . . . , sn), which ensures that there is a comparison

map for de Rham cohomology associated with the complex conjugate embedding of k :

H1
dR(XΣ,∇s)⊗kdR

s
C−→H1

B(C\Σ,Ls)⊗QdR
s

C.

However, such an assumption is unnatural, for instance, because formulae such as (5) are

true for all si ∈ C for which they make sense. A way to remedy this would be to treat

the si as formal parameters and work with modules over the polynomial ring k[s0, . . . , sn].

This would also be needed to build a bridge between the framework of cohomology with

coefficients that we discussed in this section and the Taylor expansions that we consider in

the rest of this article.

§4. Laurent series expansion of periods of cohomology with coefficients

The Lauricella functions (1) are not a priori defined for s0, . . . , sn at the origin. We show

using a renormalization procedure that they extend to a neighborhood of the origin and

admit a Taylor expansion there. We prove a similar statement for their single-valued versions

(3). The reason for the (ab)use of the word ‘renormalization’ is explained in [BD2].

4.1 Renormalization of line integrals

Let Σ = {σ0, . . . ,σn} be distinct complex numbers with σ0 = 0. We fix an index i ∈
{1, . . . ,n} and a locally finite path δi in C\Σ from 0 to σi. More precisely, δi : (0,1)→C\Σ
is a smooth path that can be extended to a smooth path δi : [0,1]→ C satisfying δi(0) = 0

and δi(1) = σi. As in all this paper, we assume that δi does not wind infinitely around 0 or

σi (Remark 2.3).
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Let ω be a global meromorphic form on P1(C) with logarithmic poles at Σ∪{∞}. We

define

Ω = xs0

n∏
k=1

(1−xσ−1
k )sk ω

and view it as a multivalued 1-form which depends holomorphically on the parameters s,

and that we wish to integrate along δi.

Remark 4.1. Since we shall only consider the integral of Ω along δi, it suffices to define

the pullback δ∗iΩ, which is a 1-form on the contractible space (0,1). It depends only on a

determination of log(σi), which we choose once and for all. Hence, σs0
i = exp(s0 log(σi))

is defined. This fixes a branch of δ∗iΩ as follows. Close to 1 (i.e., for x near σi), the

function xs0 is prescribed and so δ∗i x
s0 is analytically continued to the open interval

(0,1). Close to 0 (i.e., for x near 0), the function log(1−xσ−1
k ) is analytic and the terms

(1−xσ−1
k )sk = exp

(
sk log(1−xσ−1

k )
)
are well-defined, and so their pullbacks along δ are

analytically continued to (0,1).

Remark 4.2. Let us fix a parameter s= (s0, . . . , sn)∈Cn+1. The recipe given in Remark

4.1 gives rise to a determination of xs0
∏n

k=1(1−xσ−1
k )sk along the path δi, and thus a class

in the cohomology group H lf
1 (XΣ(C),L∨

s ) which we denote δi,s.

Without any assumption on the residues of ω at 0 and σi, the integral of Ω along δi
defines a holomorphic function of the parameters s in the domain {Re(s0),Re(si)> 0}.

Definition 4.3. Following [BD2], let us define the renormalized version of Ω with

respect to the points {0,σi}to be

Ωreni =Ω−Res0(ω)x
s0
dx

x
−Resσi(ω)

(
σs0
i

∏
k �=i

(1−σiσ
−1
k )sk

)
(1−xσ−1

i )si
dx

x−σi
·

Proposition 4.4. We have, for every s in the domain {Re(s0),Re(si)> 0}, the equality∫
δi

Ω=Res0(ω)
σs0
i

s0
−Resσi(ω)

σs0
i

∏
k �=i(1−σiσ

−1
k )sk

si
+

∫
δi

Ωreni . (38)

The integral of Ωreni along δi defines a holomorphic function of the parameters s in the

domain {Re(s0),Re(si)>−1}.

Proof. The equality follows from the computations:∫
δi

xs0
dx

x
=

σs0
i

s0
and

∫
δi

(1−xσ−1
i )si

dx

x−σi
=− 1

si
·

Since ω−Res0(ω)
dx
x does not have a pole at 0, the singularities of Ωreni at 0 are at worst

of the type xs0dx and therefore integrable for Re(s0)>−1. Likewise, its singularities at σi

are at worst of the type (1−xσ−1
i )sidx and are integrable for Re(si)>−1.

Since s= 0 is in the domain of convergence of the integral of Ωreni along δi, we see that

(38) yields a Laurent series expansion at s = 0 for the integral of Ω along δi. We record

the following special case, which shows that the Lauricella functions (LΣ)ij admit Taylor

expansions around s = 0. Here, the integrand of (LΣ)ij is understood according to the

conventions of Remark 4.1.

https://doi.org/10.1017/nmj.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.27


176 F. BROWN AND C. DUPONT

Proposition 4.5. We have the following equality:

(LΣ)ij = 1i=j

(
σs0
i

∏
k �=i

(1−σiσ
−1
k )sk

)
−sj

∫
δi

Ωreni
j ,

where

Ωreni
j =

(
xs0

∏
k �=i

(1−xσ−1
k )sk −1i=j σ

s0
i

∏
k �=i

(1−σiσ
−1
k )sk

)
(1−xσ−1

i )si
dx

x−σj
,

and the integral on the right-hand side defines a holomorphic function of the parameters s

in the domain {Re(s0),Re(si)>−1}.

Proof. This follows from applying Proposition 4.4 to the case ω = ωj = d log(x−σj) and

multiplying (38) by −sj .

4.2 Renormalization of complex volume integrals

Let Σ = {σ0, . . . ,σn} be distinct complex numbers with σ0 = 0. Let ω be a global

meromorphic form on P1(C) with logarithmic poles at Σ∪{∞}. We define

Ωs = |z|2s0
n∏

k=1

|1−zσ−1
k |2sk ω

and view it as a smooth 1-form on P1(C) \ (Σ∪{∞}), which depends holomorphically on

the parameters s. We fix an index i ∈ {1, . . . ,n} and consider the integral

− 1

2πi

∫∫
C

(
dz

z−σi
− dz

z

)
∧Ωs.

Without any assumption on the residues of ω, this integral defines a holomorphic function

of the parameters s in the domain

D = {Re(s0),Re(si)> 0 , Re(sk)>−1/2 (k /∈ {0, i}) , Re(s0)+ · · ·+Re(sn)< 1/2}.

One can check this by passing to local coordinates around every point of Σ∪{∞}.

Definition 4.6. Following [BD2], let us define the renormalized version of Ωs with

respect to the points {0,σi}to be

Ωs,reni =Ωs−Res0(ω) |z|2s0
dz

z
−Resσi(ω)

(
|σi|2s0

∏
k �=i

|1−σiσ
−1
k |2sk

)
|1−zσ−1

i |2si dz

z−σi
·

The following lemma will be used several times in the sequel. It is a single-valued analog

of the identity
∫ σ

0
zs dz

z = σs

s .

Lemma 4.7. For any σ,s ∈ C with Re(s)> 0, we have

− 1

2πi

∫∫
C

(
dz

z−σ
− dz

z

)
∧|z|2sdz

z
=

|σ|2s
s

.

Proof. One verifies in local polar coordinates that the integral converges. Let

F =−1

s
|z|2s

(
dz

z−σ
− dz

z

)
.
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Its total derivative is the integrand on the left-hand side. By Stokes’s formula applied to

the complement of three disks in P1(C) centered at 0, ∞, σ, it suffices to compute

− 1

2πi

∫
Dε

F =
1

s

1

2πi

∫
Dε

|z|2s
(

dz

z−σ
− dz

z

)
,

where Dε is the union of three circles of radius ε winding negatively around 0, ∞, and σ.

When ε goes to zero, the integral around the first and the second vanish, and the integral

around the third gives 2πi |σ|2s.

Proposition 4.8. We have, for every s in the domain D, the equality

− 1

2πi

∫∫
C

(
dz

z−σi
− dz

z

)
∧Ωs =

Res0(ω)
|σi|2s0
s0

−Resσi(ω)
|σi|2s0

∏
k �=i |1−σiσ

−1
k |2sk

si
− 1

2πi

∫∫
C

(
dz

z−σi
− dz

z

)
∧Ωs,reni .

(39)

The integral on the right-hand side defines a holomorphic function of the parameters s in

the domain

D′ = {Re(sk)>−1/2 (k ∈ {0, . . . ,n}) , Re(s0)+ · · ·+Re(sn)< 1/2}. (40)

Proof. The equality follows from the computations

− 1

2πi

∫∫
C

(
dz

z−σi
− dz

z

)
∧|z|2s0 dz

z
=

|σi|2s0
s0

,

and

− 1

2πi

∫∫
C

(
dz

z−σi
− dz

z

)
∧|1−zσ−1

i |2si dz

z−σi
=− 1

si
,

which follows from Lemma 4.7 (for the second, apply the change of variables z ↔ σ− z

and multiply by |σ|−2s). Since ω−Res0(ω)
dx
x does not have a pole at 0, the singularities of

Ωs,reni at 0 are at worst of the type |z|2s0dz and therefore(
dz

z−σi
− dz

z

)
∧Ωs,reni

is integrable around zero for Re(s0)>−1/2. Likewise, it is integrable around σi for Re(si)>

−1/2.

Since s = 0 lies in the domain D′, this proposition provides a Laurent series expansion

at s = 0 for the integral on the left-hand side. We record the following special case which

shows that the single-valued Lauricella functions (3) admit Taylor expansions around s= 0.

Proposition 4.9. We have the following equality:

(Ls
Σ)ij = 1i=j

(
|σi|2s0

∏
k �=i

|1−σiσ
−1
k |2sk

)
+

sj
2πi

∫∫
C

(
dz

z−σi
− dz

z

)
∧Ωs,reni

j ,

where

Ωs,reni

j =
(
|z|2s0

∏
k �=i

|1−zσ−1
k |2sk −1i=j |σi|2s0

∏
k �=i

|1−σiσ
−1
k |2sk

)
|1−zσ−1

i |2si dz

z−σj
·
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The integral on the right-hand side defines a holomorphic function of the parameters s in

the domain D′ described in (40).

Proof. This follows from applying Proposition 4.8 to the case ω = ωj = d log(x−σj) and

multiplying (39) by −sj .

§5. Notations relating to motivic fundamental groups

In this, the second part of the paper, we of the paper, we study (1) from the point of

view of the motivic fundamental group of the punctured Riemann sphere. This requires a

number of notations and background, mostly from [DG], [B3], which we recall here. Let

k ⊂ C be a number field.

5.1 Categorical and Tannakian

1. Let MT (k) denote the category of mixed Tate motives over k. One can replace MT (k)

with a category of Betti and de Rham realizations, with essentially no change to our

arguments. The category MT (k) has a canonical fiber functor � :MT (k)→VecQ. Let

us set

G�
MT (k) =Aut⊗�MT (k).

It is an affine group scheme over Q. Let us denote by ωB : MT (k) → VecQ the Betti

realization functor with respect to the given embedding k⊂C. The de Rham realization

functor ωdR :MT (k)→Veck is obtained from � by extending scalars: ωdR =�⊗Q k.

2. Let Pm = O(Isom⊗
MT (k)(�,ωB)) denote the Q-algebra of motivic periods on MT (k).

Let

P� =O(G�
MT (k))

denote the Q-algebra of (canonical, i.e., (�,�))) de Rham motivic periods. The latter

is a graded Hopf algebra, and the former is a graded algebra comodule over it. Denote

the corresponding motivic coaction by

Δ : Pm −→Pm⊗QP�.

We let per : Pm → C denote the period homomorphism and let s : P� → C denote the

single-valued period homomorphism (see [BD1, §2.6]).
3. Let Lm = [Q(−1),1∨B,1�]m, respectively, L� = [Q(−1),1∨�,1�]�, denote the Lefschetz

motivic period, whose period is 2πi, respectively, its (canonical) de Rham version.

4. Let Pm,+ ⊂ Pm denote the subspace of effective motivic periods. It is spanned by the

motivic periods of objects M ∈MT (k) with W−1M = 0. It is a nonnegatively graded

subalgebra and sub-P�-comodule of Pm, and contains the Lefschetz motivic period Lm.

There is a canonical projection homomorphism

πm,+
� : Pm,+ −→P�,

which, in particular, sends Lm to zero. It can be defined by composing the coaction Δ

with projection onto the weight-graded zero piece W0Pm,+ ∼=Q.

https://doi.org/10.1017/nmj.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.27


MOTIVIC GALOIS ACTIONS ON LAURICELLA HYPERGEOMETRIC FUNCTIONS 179

5.2 Geometric

Let Σ = {σ0,σ1, . . . ,σn} ⊂ A1(k) be distinct points with σ0 = 0. Recall that XΣ = A1
k\Σ.

1. Let t0 ∈ T0A
1
k denote the tangent vector 1 at 0. For each i≥ 1, let

tσi ∈ TσiA
1
k

be the tangent vector σi based at the point σi. Let πtop
1 (XΣ(C), ti,−tj) denote the

fundamental torsor of homotopy classes of paths between the tangential basepoints ti
and −tj . Concretely, an element of this set is represented by a (piecewise) smooth path

γ : (0,1)→C\Σ that can be extended to a path γ : [0,1]→C which is smooth at 0 and 1

and satisfies γ(0) = σi and γ(1) = σj , with prescribed velocities γ′(0) = ti and γ′(1) = tj .

2. For all 0≤ i, j ≤ n, denote by

iΠ
•
j = π•

1(XΣ, ti,−tj) where • ∈ {B,�,mot}

the Betti, (canonical) de Rham, or motivic fundamental torsor of paths from the

tangential basepoint ti at σi, to −tj at σj . The versions iΠ
B
j and iΠ

�
j are affine Q-

schemes; the version iΠ
mot
j is an affine scheme in the category MT (k), which simply

means that its affine ring is isomorphic to an algebra ind-object O(iΠ
mot
j ) in MT (k),

whose (B, resp. �) realizations are O(iΠ
B
j ) and O(iΠ

�
j ). There is a groupoid structure

aΠ
•
b × bΠ

•
c −→ aΠ

•
c , for all a,b,c in the set of our tangential basepoints (composition of

paths). There are maps

γ 
→ γB : πtop
1 (XΣ(C), ti,−tj)−→ iΠ

B
j (Q),

which are Zariski-dense and compatible with the groupoid structure. (They identify iΠ
B
j

as the Malčev, or pro-unipotent, completion of πtop
1 (XΣ(C), ti,−tj).)

3. The scheme iΠ
�
j does not depend on i, j, although the action of the (canonical) motivic

Galois group G�
MT (k) upon it does depend on i, j. On XΣ, we considered the logarithmic

1-forms ωi for i = 0, . . . ,n (14). Since they have residue 0 or ±1 at points of Σ, they

generate the canonical Q-structure (or �-structure) on the de Rham realization of

H1(XΣ) ∈ Ob(MT (k)), which we shall denote simply by H1
�(XΣ). It is the Q-vector

space spanned by the classes ωi. The affine ring of the de Rham canonical torsor of paths

is

O(iΠ
�
j )∼=

⊕
n≥0

H1
�(XΣ)

⊗n.

It is isomorphic to the graded tensor coalgebra on H1
�(XΣ), equipped with the shuffle

product x and deconcatenation coproduct. For any commutative unital Q-algebra R,

the R-points of iΠ
�
j ,

iΠ
�
j (R) ⊂ R〈〈e0, . . . , en〉〉,

are the set of group-like formal power series with respect to the continuous coproduct

for which the ei are primitive. They are formal power series

S =
∑

w∈{e0,e1,...,en}×

S(w)w ∈ R〈〈e0, . . . , en〉〉,
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where the linear extension of the map w 
→ S(w) is a homomorphism with respect to

the shuffle product. The letters ei, for 1≤ i≤ n, are dual to the ωi.

4. For all 0 ≤ i ≤ n, let 01i ∈ 0Π
�
i (Q) denote the canonical �-path. It is defined by the

augmentation map O(0Π
�
i )→Q onto the degree zero component (or by quotienting by

the Hodge filtration F 1). It is the formal power series 1 ∈Q〈〈e0, . . . , en〉〉 consisting only

of the empty word.

5. Since the motivic fundamental torsor of paths is the spectrum of an ind-object in the

category MT (k), there is a canonical universal comparison isomorphism of schemes (see

[B3, §4.1])

compmB,� : iΠ
B
j ×QPm ∼−→ iΠ

�
j ×QPm,

for all 0 ≤ i, j ≤ n, compatible with the groupoid structure. Composing compmB,� with

the period homomorphism gives back the canonical comparison isomorphism whose

coefficients are regularized iterated integrals:

compB,� : iΠ
B
j ×QC

∼−→ iΠ
�
j ×QC.

§6. Generalized associators and their beta quotients

We now study the generalized associators Zi, which are formal power series in non-

commuting variables e0, . . . , en whose coefficients are regularized iterated integrals on XΣ.

We compute their beta quotients, which are formal power series in commuting variables

s0, . . . , sn, and use them to define a matrix FLΣ of power series which we prove to be the

matrix of Taylor series of the Lauricella functions LΣ (1) (Theorem 6.18, which is Theorem

1.1(i) from the introduction).

6.1 Generalized (motivic) associators

Let us fix an index 1≤ i≤ n. The generalized associator Zi, that we will soon define, is a

formal power series that records all the iterated integrals that can be computed on XΣ on

a given (homotopy class of) path γi between the tangential basepoints t0 and −ti. For this,

we will need to fix a class γi ∈ πtop
1 (XΣ(C), t0,−ti) as in §5.2(1). We will need to impose an

extra condition on γi that can be stated as follows. Consider the following maps between

fundamental torsors:

πtop
1 (XΣ(C), t0,−ti)−→ πtop

1 (C\{0,σi}, t0,−ti)−→ πtop
1 (C\{σi},0,−ti)� Z. (41)

The first map is induced by the inclusion XΣ(C) ↪→ C \ {0,σi}. The second map is also

induced by the inclusion C\{0,σi} ↪→ C\{σi}, where the tangential basepoint t0 becomes

the usual basepoint 0. There is a canonical element in πtop
1 (C \ {σi},0,−ti), namely the

homotopy class of the straight path t 
→ σit, which provides the identification of the torsor

πtop
1 (C\{σi},0,−ti) with the fundamental group πtop

1 (C\{σi},0)� Z.

Definition 6.1. The class γi ∈ πtop
1 (XΣ(C), t0,−ti) is said to be admissible if its image

under the composite (41) is the class of the straight path t 
→ σit.

Roughly speaking, it means that γi ‘does not wind around ’ σi. A representative of an

admissible class in πtop
1 (XΣ(C), t0,−ti) can be constructed as follows: first, travel via a small

arc from the tangential basepoint t0 to σiε for a small ε > 0, and then travel via the straight

path t 
→ σit toward the tangential basepoint −ti (avoiding if necessary the points σj that

are on the line segment between σiε and σi via small arcs). We see in Remark 6.12 that
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the admissibility of γi is equivalent to the vanishing of the following regularized iterated

integral: ∫
γi

ωi = 0.

We fix an admissible class γi for every 1≤ i≤ n for the remainder of this article.

Definition 6.2. Define a formal power series

Zi,m ∈ 0Π
�
i (Pm)⊂ Pm〈〈e0, . . . , en〉〉

by Zi,m = compmB,�(γB
i ) where γB

i ∈ 0Π
B
i (Q) is the image of γi as in §5.2(2). It is called a

generalized motivic associator.

Since O(0Π
�
i ) has weights ≥ 0, it follows that Zi,m actually lies in 0Πi(Pm,+). Explicitly,

Zi,m =
∑

w∈{e0,...,en}×

[
O(πmot

1 (XΣ, t0,−ti)),γ
B
i ,w

]m
w,

where the sum is over all words w in ei, which are in turn dual to words in the ωi (14) and

hence define an element w ∈ O(0Π
�
i ). The path γB

i is viewed as an element in O(0Π
B
i )

∨.

Definition 6.3. The image Zi = per
(
Zi,m

)
of Zi,m under the period homomorphism

is called a generalized associator.

Explicitly, it is the group-like formal power series

Zi =
∑

w∈{e0,...,en}×

(∫
γi

w

)
w ∈ C〈〈e0, . . . , en〉〉,

where the sum is over all words w in {e0, . . . , en}, and the integral is the regularized iterated

integral (from left to right) of the corresponding word in {ω0, . . . ,ωn}.
When we wish to emphasize the dependence on the variables ei, we shall write

Zi,m(e0, . . . , en) for Zi,m, and so on.

Example 6.4. Let Σ = {0,1} and k =Q. Then Z1,m = Zm, where

Zm =
∑

w∈{e0,e1}×

ζm(w)w ∈ Pm
MT (Q)〈〈e0, e1〉〉 (42)

is the motivic Drinfeld associator. Drinfeld’s associator is Z = per(Zm) ∈ R〈〈e0, e1〉〉.

6.2 Beta quotients

Let R be any commutative unital Q-algebra.

Definition 6.5. Consider the abelianization map

F 
→ F : R〈〈e0, . . . , en〉〉 −→R[[s0, . . . , sn]],

which sends ei to si, where the si are commuting variables. We shall call F the abelianization

of F.

Computing the abelianization of a group-like series is easy, as the next lemma shows.
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Lemma 6.6. For a group-like series F, we have

F = exp(F (e0)s0+ · · ·+F (en)sn) =
n∏

k=0

exp(F (ek)sk).

Proof. Since F is group-like, F = exp(logF )), where log(F ) is a Lie series of the form

log(F ) =
n∑

k=0

F (ek)ek+commutators.

The exponential and the logarithm are taken with respect to the concatenation product,

and commute with the abelianization map. Since abelianization sends all commutators to

zero, we have logF =
∑n

k=0F (ek)sk and the result follows.

Definition 6.7. For any series F ∈R〈〈e0, . . . , en〉〉, let us write

F = F∅+F0e0+ · · ·+Fnen, (43)

where F∅ ∈ R denotes the coefficient of the empty word (constant coefficient) and Fj

is obtained from F by deleting the last letter from all words ending in ej . We call the

abelianization Fj the jth beta quotient of F.

Remark 6.8. The Fj are very closely related to the image of F in what is known as

the metabelian quotient.

For any two series A,B ∈R〈〈e0, . . . , en〉〉, their product satisfies

(AB)j =A(Bj)+AjB∅. (44)

We verify that, if F is invertible, then

(F−1)j =− 1

F∅

Fj

F
. (45)

This follows from applying (44) to FF−1 = 1, which gives F (F−1)j +FjF
−1
∅ = 0, and

then applying the abelianization map. All series F that we shall consider are group-like (for

the continuous coproduct on formal power series for which all letters ek are primitive) and

therefore have constant term F∅ = 1.

Recall that F (w) denotes (a linear combination of) coefficients of words w in F.

Lemma 6.9. For any series F ∈R〈〈e0, . . . , en〉〉, we have

Fj =
∑

m0,...,mn≥0

F
([
exm0
0 x · · · xexmn

n

]
ej

) sm0
0

m0!
· · · s

mn
n

mn!
,

where [w]ej denotes the right concatenation of ej to any linear combination w of words in

the letters e0, . . . , en. The previous expression can also be written

Fj =
∑

m0,...,mn≥0

F ([em0
0 x · · · xemn

n ]ej)s
m0
0 · · ·smn

n .

Proof. Notice that

Fj =
∑
w

wF (wej) =
∑

m0,...,mn≥0

sm0
0 · · ·smn

n

⎛⎝ ∑
w=s

m0
0 ···smn

n

F (wej)

⎞⎠
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and substitute in the expression⎛⎝ ∑
w=s

m0
0 ···smn

n

w

⎞⎠ =
exm0
0

m0!
x · · · x exmn

n

mn!
= em0

0 x · · · xemn
n .

6.3 Beta quotients of generalized associators

Definition 6.10. We define the following n×n matrices of power series:

(FLm
Σ)ij = 1i=jZi,m−sjZi,m

j ∈ Pm[[s0, . . . , sn]].

(FLΣ)ij = 1i=jZi−sjZi
j ∈ C[[s0, . . . , sn]].

We clearly have per(FLm
Σ) =FLΣ, where per :Pm →C denotes the period map ofMT (k)

applied coefficientwise. Our next goal (Theorem 6.18) is to prove that FLΣ equals the matrix

of Taylor series of the Lauricella functions LΣ (1). (This justifies the notation FLΣ where

the letter F stands for formal.) We now compute the abelianization and beta quotients of

the generalized associators Zi.

We first need a lemma that clarifies the role of the choice of tangential basepoints. For

a point x = γi(t), for t ∈ (0,1), we let γx
i denote the restriction of γi to the interval (0, t).

By abuse of notation, we manipulate functions and forms on C\Σ when we actually mean

their pullbacks to (0,1) via the path γi.

Lemma 6.11. For 0≤ k ≤ n, we have the equalities, for x= γi(t) with t ∈ (0,1):∫
γx
i

ωk =

{
log(x), if k = 0 ,

log(1−xσ−1
k ), if 1≤ k ≤ n.

Furthermore, for x= σi, that is, for t= 1, we have

∫
γi

ωk =

⎧⎪⎨⎪⎩
log(σi), if k = 0 ,

log(1−σiσ
−1
k ), if 1≤ k �= i≤ n ,

0, if k = i.

Proof. For the first claim, the 1≤ k ≤ n case is clear, since the differential form ωj does

not have a singularity at 0. For j = 0, we compute, by definition,∫
γx
i

ω0 =Regε→0

∫ t

ε

γ∗
i ω0 =Regε→0(log(x)− log(γi(ε))),

where applying Regε→0 amounts to formally setting log(ε) = 0 and ε= 0 in the logarithmic

asymptotic development (see [BGF, Def. 3.237]). Since γi extends to a smooth function on

[0,1] whose derivative at 0 is 1, we have γi(ε) = ε+O(ε2) and thus log(γi(ε)) = log(ε)+O(ε).

We thus have Regε→0(log(γi(ε))) = 0 and the claim follows.

For the second claim, only the k = i case requires a comment since in the other cases the

form ωj does not have a singularity at σi and we can simply pass to the limit x → σi in

the first statement. We will use the admissibility condition (Definition 6.1). Since ωi only

has poles at σi and ∞, its iterated integral along γi only depends on the image of γi in

πtop
1 (C \ {σi},0,−ti). By the admissibility condition, this image is the class of γ̃i(t) = σit
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and we can compute∫
γi

ωi =

∫
γ̃i

ωi =Regε→0

∫ 1−ε

ε

γ̃i
∗ωi =Regε→0

∫ 1−ε

ε

dt

t−1
= Regε→0 log

(
ε

1−ε

)
= 0.

The claim follows.

Remark 6.12. From the proof of Lemma 6.11, one sees that the admissibility condition

on γi (Definition 6.1) is equivalent to the vanishing of the regularized iterated integral
∫
γi
ωi.

In general, that iterated integral could be any integer multiple of 2πi.

Proposition 6.13. The abelianization of the generalized associator Zi is

Zi = σs0
i

∏
k �=i

(1−σiσ
−1
k )sk . (46)

For every 0≤ j ≤ n, the jth beta quotient of Zi is

Zi
j =

∫
γi

xs0

n∏
k=1

(
1−xσ−1

k

)sk dx

x−σj
. (47)

These expressions are formal power series in the si obtained by expanding the exponentials

as power series and interpreting the various logarithms which appear as coefficients as

regularized iterated integrals via Lemma 6.11.

Proof. Since Zi is a group-like series, the first claim follows from Lemma 6.6 and the

computations of Zi(ej) performed in the second part of Lemma 6.11. The second claim

follows from Lemma 6.9 and the equality∫
γi

[exm0
0 x · · · xexmn

n ]ej =

∫
γi

(∫
γx
i

ω0

)m0

· · ·
(∫

γx
i

ωn

)mn

ωj ,

which by the first part of Lemma 6.11 equals∫
γi

logm0(x)

n∏
k=1

logmk(1−xσ−1
k )

dx

x−σj
·

The claim follows.

Equation (47) in the case Σ= {0,1} reduces to Drinfeld’s computation of the metabelian

quotient of his associator in terms of the usual beta function [D2]. See also [E], [L] for

further developments.

The following lemma will be useful.

Lemma 6.14. For all m≥ 0,∫
γi

logm(1−xσ−1
i )

dx

x−σi
= 0. (48)

Proof. The integral is proportional to the (m+1)-fold iterated integral of dx
x−σi

along

γi, which, by the shuffle product formula, is in turn proportional to the (m+1)th power of

the integral of dx
x−σi

along γi, which vanishes by Lemma 6.11.
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6.4 Comparing LΣ and FLΣ

Up until now, we have considered two types of integrals: convergent line integrals of

smooth 1-forms along a smooth (locally finite) path δi from 0 to σi, and regularized iterated

integrals of words in the ωj ’s along a path γi from 0 to σi with prescribed tangent directions

at 0 and σi. In order to compare these two different objects, we have to impose some

compatibility between γi and δi. Let us first fix parameters s = (s0, s1, . . . , sn). There is a

natural map

hi : π
top
1 (XΣ(C), t0,−ti)−→H lf

1 (XΣ(C),L∨
s )

defined in the following way. For a class in πtop
1 (XΣ(C), t0,−ti) represented by a continuous

map γ : (0,1) → C \Σ, its image under hi has γ as its underlying (locally finite) path,

together with the section of L∨
s given by

xs0

n∏
k=1

(1−xσ−1
k )sk =

n∏
k=0

exp
(
sk

∫
γx

ωk

)
,

which makes sense thanks to Lemma 6.11. One checks that this is well defined.

Let δi : (0,1) → C \Σ be a smooth map that can be extended to a smooth map δi :

[0,1]→ C, and which does not wind infinitely around 0 or σi (see Remark 2.3). Let us fix

a determination of log(σi) for every 1 ≤ i ≤ n. In Remark 4.2, we defined out of this data

a class δi,s ∈H lf
1 (XΣ(C),L∨

s ) for every parameter s= (s0, . . . , sn) ∈ Cn+1. Let γi be a class

in πtop
1 (XΣ(C), t0,−ti).

Definition 6.15. We say that δi and γi are compatible if for every s ∈ Cn+1 we have

hi(γi) = δi,s.

Note that this implies that the determinations of log(σi) are given by the regularized

iterated integrals log(σi) =
∫
γi
ω0.

For all 1≤ j ≤ n, we define

Ωj = xs0

n∏
k=1

(1−xσ−1
k )sk

dx

x−σj
, (49)

which we interpret as a 1-form on δi as in Remark 4.1. Let Ωreni
j denote its renormalized

versions (Definition 4.3) with respect to {0,σi}, given by

Ωren,i
j =

(
xs0

∏
k �=i

(1−xσ−1
k )sk −1i=j σ

s0
i

∏
k �=i

(1−σiσ
−1
k )sk

)
(1−xσ−1

i )si
dx

x−σj
·

According to Proposition 4.5, the integral
∫
δi
Ωreni

j defines a holomorphic function of the

parameters s around s = 0 and thus has a Taylor expansion. In the next proposition, we

identify this Taylor expansion with the j th beta quotient Zi
j of the generalized associator,

defined via regularized iterated integrals along γi.

Proposition 6.16. For all 1≤ j ≤ n, the Taylor series at s= 0 of the integral
∫
δi
Ωreni

j

is Zi
j.

Before proving the proposition, we need a technical lemma that allows us to exchange

summation and integration.
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Lemma 6.17. Let us write Ωreni
j as a formal power series:

Ωreni
j =

∑
m0,...,mn≥0

Ωreni
j (m)

sm0
0 · · ·smn

n

m0! · · ·mn!
·

Then we have the equality of formal power series:∫
δi

Ωreni
j =

∑
m0,...,mn≥0

∫
δi

Ωreni
j (m)

sm0
0 · · ·smn

n

m0! · · ·mn!
·

Proof. Let us write δ∗iΩ
reni
j (m) = fm(t)dt. By Fubini, it is enough to prove that the

multiple series ∑
m0,...,mn≥0

∫ 1

0

|fm(t)|dt s
m0
0 · · ·smn

n

m0! · · ·mn!
(50)

is absolutely convergent for |s| small enough, and therefore we need to estimate the integral

of |fm(t)|. We do so in the case j = i; the case j �= i is even simpler. For simplicity, we only

treat the case n= 1. The general case is similar and is left to the reader. We write σ = σ1

and δ = δ1. For indices m0,m1 ≥ 0, we have, according to Definition 4.3,

fm0,m1(t) =
logm0(δ(t))− logm0(σ)

δ(t)−σ
logm1(1− δ(t)σ−1)δ′(t).

Note that δ′(t) is bounded for t ∈ (0,1). To prove convergence, we can clearly assume that

there exist small closed disks D0 and Dσ around 0 and σ, respectively, and constants

0<α< β < 1, such that δ(t) /∈Dσ for all t ∈ (0,β), and δ(t) /∈D0 for all t ∈ (α,1). We treat

separately the cases t ∈ (0,β) and t ∈ (α,1), and assume that m0,m1 ≥ 1.

– For t ∈ (0,β), log(1− δ(t)σ−1) is bounded and δ(t)− σ is bounded below in absolute

value, which gives an estimate

|fm0,m1(t)|< (| logm0(δ(t))|+ | logm0(σ)|)Am1

for some positive constant A. Now, since by assumption (Remark 2.3) the argument of

δ(t) is bounded as t approaches zero, and since | log |δ(t)|| tends to infinity when t goes to

zero, we have | log(δ(t))|<B| log |δ(t)|| for some positive constant B, and therefore since

δ is smooth at 0, we have | log(δ(t))| < B′| log(t)| for all t ∈ (0,1/2), for some positive

constant B′. We deduce the estimate | logm0(δ(t))|+ | logm0(σ)| < (B′′)m0 | log(t)|m0 for

all t ∈ (0,β), for some positive constant B′′. Therefore,

|fm0,m1(t)|<Cm0+m1 | log(t)|m0 ,

for all t ∈ (0,β), for some positive constant C.

– For t ∈ (α,1), the quotient logm0(δ(t))−logm0(σ)
δ(t)−σ is bounded by Dm0 for some positive

constant D, and by the same argument as before (using the assumption of Remark 2.3)

we have an estimate | logm1(1− δ(t)σ−1)|< Em1 | log(1− t)|m1 for all t ∈ (α,1), for some

positive constant E. Therefore,

|fm0,m1(t)|< Fm0+m1 | log(1− t)|m1 ,

for all t ∈ (α,1), for some positive constant F.
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Putting those two contributions together, we get∫ 1

0

|fm0,m1(t)|dt < Gm0+m1

∫ 1

0

(| log(t)|m0 + | log(t)|m1)dt

for some positive constant G. Since
∫ 1

0
| log(t)|mdt = m! for all m, we therefore get the

estimate ∫ 1

0

|fm0,m1(t)|dt < Gm0+m1(m0!+m1!)

for some positive constant G. Therefore, the series (50) converges for |s0|, |s1| < G−1, and

the claim follows.

We now give two proofs of Proposition 6.16, since they are instructive.

Proof (First proof). We consider only the case Zi
i since the argument for Zi

j with j �= i

is even simpler. According to Definition 4.3, we have, with the notation of Lemma 6.17,

Ωreni
i (m) = logmi(1−xσ−1

i )
dx

x−σi

×

⎛⎝logm0(x)
∏

1≤k �=i

logmk(1−xσ−1
k )− logm0(σi)

∏
1≤k �=i

logmk(1−σiσ
−1
k )

⎞⎠ .

According to Lemma 6.17, the Taylor series of
∫
δi
Ωreni

i has coefficients
∫
δi
Ωreni

i (m), and

we claim that they equal ∫
δ

Ωreni
i (m) =

∫
γi

Ωreni
i (m), (51)

where the integral on the left is an ordinary, convergent integral, and the one on the right

is regularized along the path γi between tangential basepoints (see §5.2). To see this, use

the fact that regularization with respect to the tangential basepoint −ti is equivalent to

taking a primitive of Ωreni
i (m) in the ring C[[x−σi]][log(x−σi)], and formally setting all

log(x−σi) terms to zero, before in turn setting x to σi. Since the term in brackets in the

above expression for Ωreni
i (m) vanishes at x= σi, it actually has a primitive in the subspace

(x−σi)C[[x−σi]][log(x−σi)], and one can simply take its limit as x → σi, which is the

procedure for computing an ordinary integral (without tangential basepoint regularization).

A simpler argument applies at x= 0 and proves (51).

The formula for Zi
i follows by applying Lemma 6.14 and implies that∫

γi

Ωreni
i (m) =

∫
γi

logm0(x)
n∏

k=1

logmk(1−xσ−1
k )

dx

x−σi
.

This is precisely the coefficient of
s
m0
0

m0!
· · · s

mn
n

mn!
in the Taylor expansion of (47).

Proof (Second proof). For γ a path between (tangential) basepoints x,y ∈XΣ, and ω a

closed formal 1-form taking values in the Lie algebra of the ring of formal non-commutative

power series C〈〈e0, . . . , en〉〉, consider the formal power series defined by iterated integration:

Iγ(ω) = 1+

∫
γ

ω+

∫
γ

ωω+ · · · .

https://doi.org/10.1017/nmj.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.27


188 F. BROWN AND C. DUPONT

It is known as the transport of (the connection associated with) ω along γ, and satisfies

the composition of paths formula Iγγ′(ω) = Iγ(ω)Iγ′(ω). By applying the prescription

for computing iterated integrals with respect to tangential basepoints, we find that the

transport of the formal 1-form ωΣ = e0ω0 + · · ·+ enωn along the path γi defined in §5.2
equals

Zi = Iγi(ωΣ) = Iγx
i
(ωΣ)Iνx(ωΣ)

= lim
x→σi

(
Iγx

i
(ωΣ)Iνx(ωΣ)

)
= lim

x→σi

(
Iγx

i
(ωΣ)Iνx(eiωi)

)
,

where x= γi(t) for some 0< t < 1; γx
i is the restriction of γi to [0, t]; and νx is a path from

x to −ti. The first equation is simply the composition of paths formula. Since the left-hand

side does not depend on the choice of point x, we may take a limit as x→ σi, which implies

the second equation. In the third equation, we view the path νx as a path in the tangent

space at σi, which we identify with P1\{σi,∞}. The form eiωi is the localisation of ωΣ to

the punctured tangent space and captures the divergent iterated integrals terminating in

the letter ei.

It follows from (44) that

Zi
j = lim

x→σi

(
Iγx

i
(ωΣ)Iνx(eiωi)j + Iγx

i
(ωΣ)j

)
. (52)

The tangential integral Iνx(eiωi) is simply an exponential:

Iνx(eiωi) = exp(−ei log(1−xσ−1
i )), (53)

and its abelianization is therefore obtained by replacing ei with si in the previous expression.

Equation (53) follows, for example, from∫ −ti

x

dz

z−σi
=

(∫ t0

x

+

∫ −ti

t0

)
dz

z−σi

(48)
=

∫ 0

x

dz

z−σi
+0 =− log(1−xσ−1

i ).

From equation (53), the expression Iνx(eiωi)j vanishes if j �= i, but equals

Iνx(eiωi)i =
1

si

(
(1−xσ−1

i )−si −1
)

otherwise. Thus, if j �= i, the term Iγx
i
(ωΣ)Iνx(eiωi)j in (52) vanishes and we find that

Zi
j = lim

x→σi

(
Iγx

i
(ωΣ)j

)
= lim

x→σi

(∫ x

0

xs0

n∏
k=1

(
1−xσ−1

k

)sk dx

x−σj

)
,

using the version of (47) with the upper range of integration replaced with the point x

(which follows from the computations in the second paragraph of the proof of Proposition

6.13—one needs only check that one can replace γx
i with an ordinary path from 0 to x,

i.e., that the tangential component of γx
i at the origin plays no role since the integral is

convergent there). This proves the formula for j �= i, thanks to Lemma 6.17. In the case

j = i, a version of (46) with upper range of integration x implies that

Iγx
i
(ωΣ) = xs0

n∏
k=1

(
1−xσ−1

k

)sk
.
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Substituting this into (52) gives

Zi
i = lim

x→σi

(
xs0

n∏
k=1

(
1−xσ−1

k

)sk × 1

si

(
(1−xσ−1

i )−si −1
)
+

∫ x

0

xs0

n∏
k=1

(
1−xσ−1

k

)sk dx

x−σi

)
.

Using the identity (1− xσ−1
i )si ×

(
(1−xσ−1

i )−si −1
)
= 1− (1− xσ−1

i )si , the previous

expression can be rewritten in the form

lim
x→σi

(
σs0
i

∏
k �=i

(1−σiσ
−1
k )sk × 1

si

(
1− (1−xσ−1

i )si
)
+

∫ x

0

xs0

n∏
k=1

(
1−xσ−1

k

)sk dx

x−σi

)
.

Finally, substitute in the following identity

1

si

(
1− (1−xσ−1

i )si
)
=−

∫ x

0

(1−xσ−1
i )si

dx

x−σi
(54)

to deduce the stated formula for Zi
i , thanks to Lemma 6.17.

We are now ready to prove Theorem 1.1(i) from the introduction.

Theorem 6.18. For all i, j, (FLΣ)ij is the Taylor series at s = 0 of the Lauricella

function (LΣ)ij.

Proof. This follows from comparing the definition of (FLΣ)ij with the expression in

Proposition 4.5, and using the expressions for Zi and Zi
j of Propositions 6.13 and 6.16.

§7. Generalized single-valued associators and their beta quotients

This section is the single-valued version of the previous one. We introduce the single-

valued versions Zi,s of the generalized associators, which are non-commutative power series

whose coefficients are single-valued versions of iterated integrals on XΣ. Through their

beta quotients, we define a matrix FLs
Σ of power series which we prove to be the matrix

of Taylor series of the single-valued Lauricella functions Ls
Σ (3) (Theorem 7.11, which is

Theorem 1.1(ii) from the introduction).

7.1 Generalized de Rham and single-valued associators

We fix an index 1 ≤ i ≤ n. We start by defining de Rham and single-valued versions of

the generalized associators from the previous section.

Definition 7.1. We define

Zi,� ∈ 0Π
�
i (P�)⊂ P�〈〈e0, . . . , en〉〉

to be the canonical element in Hom(O(0Π
�
i ),P�) given by the morphism of schemes

G�
MT (k) → 0Π

�
i induced by the action g 
→ g.01i of G

�
MT (k) on the canonical �-path 01i. It

is called a generalized (canonical) de Rham associator.

It is given explicitly by the group-like formal power series

Zi,� =
∑

w∈{e0,...,en}×

[
O(πmot

1 (XΣ, t0,−ti)),01i,w
]�

w
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whose coefficients are (canonical) de Rham versions of iterated integrals. Since the empty

iterated integral along γi is 1, it follows that Zi,� is the image of Zi,m under the coefficient-

wise application of the projection πm,+
� , that is,

Zi,� = πm,+
� Zi,m. (55)

Definition 7.2. We define

Zi,s = s(Zi,�) ∈ C〈〈e0, . . . , en〉〉,

where s : P� → C is the single-valued period map of MT (k) applied coefficientwise. It is

called a generalized single-valued associator.

The coefficients of Zi,s are single-valued versions of iterated integrals.

Remark 7.3. As should be clear from the definitions, the power series Zi,� and Zi,s

do not depend on the choice of a (class of a) path γi as in the previous section.

Example 7.4. Let Σ = {0,1} and k =Q. Then � = ωdR and Z1,� = Zdr where

Zdr =
∑

w∈{e0,e1}×

ζdr(w)w ∈ Pdr
MT (Q)〈〈e0, e1〉〉

is the de Rham Drinfeld associator. It is obtained from the motivic Drinfeld associator (42)

by replacing every motivic multiple zeta value ζm with its de Rham version ζdr. Its image

under the single-valued period map is the Deligne associator

Zs =
∑

w∈{e0,e1}×

ζs(w)w ∈ R〈〈e0, e1〉〉,

whose coefficients are single-valued multiple zeta values [B2].

The following definition is parallel to Definition 6.10.

Definition 7.5. We define the following n×n matrices of power series:

(FL�
Σ )ij = 1i=jZi,�−sjZi,�

j ∈ P�[[s0, . . . , sn]],

(FLs
Σ)ij = 1i=jZi,s−sjZi,s

j ∈ C[[s0, . . . , sn]].

We clearly have

s(FL�
Σ ) = FLs

Σ,

where s : P� → C denotes the single-valued period map of MT (k) applied coefficientwise.

By (55), we also have

FL�
Σ = πm,+

� FLm
�,

where πm,+
� : Pm,+ →Pdr is the de Rham projection applied coefficientwise.

Our next goal (Theorem 7.11) is to prove that FLs
Σ equals the matrix of Taylor

series of the single-valued Lauricella functions Ls
Σ (3). To this end, we first compute the

abelianization and beta quotients of the generalized single-valued associators Zi,s. Our

techniques can be used more generally to give integral formulae for the single-valued periods

of motivic torsors of paths between tangential basepoints.
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Proposition 7.6. The abelianization of the generalized single-valued associator Zi,s

satisfies

Zi,s = |σi|2s0
∏
k �=i

∣∣1−σiσ
−1
k

∣∣2sk .
Proof. This follows from Lemma 6.6 and the following claim about the length one

coefficients of Zi,s:

Zi,s(ek) =

⎧⎪⎨⎪⎩
log |σi|2, for k = 0 ,

log |1−σiσ
−1
k |2, for 1≤ k �= i≤ n ,

0, for k = i.

Let us prove this claim. By definition and since ωk only has poles at σk and ∞, we have

Zi,�(ek) =
[
W2O(πmot

1 (A1
k \{σk}, t0,−ti)),01i, [ωk]

]�
.

The object W2O(πmot
1 (A1

k \{σk}, t0,−ti)) denotes the weight ≤ 2 (or length ≤ 1) subobject;

it has rank 2, with de Rham basis (1, [ωk]) and Betti basis ([γ], [γ′]− [γ]) for some paths γ, γ′

from t0 to −ti such that the closed path γ′γ−1 is homologous to a small positively oriented

loop around σk. (Note that for k �= 0, t0 denotes the usual basepoint 0, and for k �= i, −ti
denotes the usual basepoint σi.) We note that, by definition, 01i(1) = 1 and 01i([ωk]) = 0.

The period matrix in these bases is

P =

(
1

∫
γ
ωk

0 2πi

)
.

By the definition of the single-valued period homomorphism [BD1, Def. 2.5], Zi,s(ek) =

s(Zi,�(ek)) is the top-right coefficient of the single-valued period matrix P
−1

P , where

P denotes the complex conjugate matrix. An easy computation shows that this equals

Zi,s(ek) = 2Re(
∫
γ
ωk) and the claim follows from Lemma 6.11.

7.2 Beta quotients of generalized single-valued associators

We start with a version of beta quotients which have finite, rather than tangential,

basepoints. We extend Definition 7.1, and let

I�(x,y) ∈ xΠ
�
y (P�)

denote the generating series of canonical de Rham periods from x to y, where x and y

are either finite basepoints in XΣ(k) or tangential basepoints ±tk, for 0 ≤ k ≤ n. We let

Is(x,y) = s(I�(x,y)) denote its image by the single-valued period homomorphism. We thus
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have Zi,• = I•(t0,−ti) for • ∈ {�,s}. Note that the same method of proof as in Proposition

7.6 gives the abelianization of Is(x,y):

Is(x,y) =
∣∣∣y
x

∣∣∣2s0 n∏
k=1

∣∣∣∣1−yσ−1
k

1−xσ−1
k

∣∣∣∣2sk · (56)

We will need the following lemma, which gives a single-valued version of the integral∫ z

x

dw

w−σ
= log

(
z−σ

x−σ

)
.

Lemma 7.7. Suppose that σ,x,z ∈ C are distinct. Then

− 1

2πi

∫∫
C

(
dw

w−z
− dw

w−x

)
∧ dw

w−σ
= log

∣∣∣∣ z−σ

x−σ

∣∣∣∣2.
Proof. See [BD1, §6.3].

Proposition 7.8. For every 0≤ j ≤ n, the jth beta quotient of Is(x,y) is

Is(x,y)j =− 1

2πi

∫∫
C

∣∣∣ z
x

∣∣∣2s0 n∏
k=1

∣∣∣∣1−zσ−1
k

1−xσ−1
k

∣∣∣∣2sk (
dz

z−y
− dz

z−x

)
∧ dz

z−σj
. (57)

This expression is a formal power series in the si obtained by expanding the exponentials

as power series.

Proof. The following argument is slightly more intuitive using motivic, rather than de

Rham periods, so we shall first compute Imγ (x,y)∈ xΠ
�
y (Pm), the image under the universal

comparison map (see §5.2(5)) of a path γ ∈ π1(C\Σ,x,y), and then use the projection

I�(x,y) = πm,+
�

(
Imγ (x,y)

)
to deduce a formula for I�(x,y). Since x,y are ordinary basepoints, the motive underlying

the torsor of paths is given by Beilinson’s cosimplicial construction [DG, §3.3] and

Imγ (x,y) =
∑

w∈{e0,...,en}×,|w|=


[H
(X

Σ,Y


),[γΔ
] ,w]
mw,

where |w| denotes the length of a word w, and the divisor Y 
 ⊂X

Σ is

Y 
 = {z1 = x}∪{z1 = z2}∪ · · ·∪{z
−1 = z
}∪{z
 = y},

and Δ
 is the standard simplex

Δ
 = {ti ∈ R : 0≤ t1 ≤ t2 ≤ ·· · ≤ t
 ≤ 1} ⊂ R
.

The coordinates z1, . . . , z
 are the coordinates on X

Σ. By Lemma 6.9, the coefficient of

s
m0
0

m0!
. . .

smn
n

mn!
in Imγ (x,y)j is[

Hm+1(Xm+1
Σ ,Y m+1) , [γΔm+1] , e

xm0
0 x . . . xexmn

n ej
]m

,

where m = m0 + · · ·+mn. By expanding out the shuffle products, we get a sum of m!

terms indexed by permutations σ ∈Sm. After permuting the coordinates, the sum can be

rewritten as

ξ =
[
Hm+1(Xm+1

Σ , Ỹ m+1) , [γCm+1] , e
m0
0 . . . emn

n ej

]m
, (58)
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where

Ỹ m+1 =
⋃

σ∈Sm

σY m+1 and Cm+1 =
⋃

σ∈Sm

σΔm+1

and σ ∈Sm ranges over permutations of all but the last coordinate, that is,

σ(z1, . . . , zm, zm+1) = (zσ−1(1), . . . , zσ−1(m), zm+1).

The union of the m! simplices σΔm+1 glue together to form a cone

Cm+1 = {ti ∈ R : 0≤ t1, . . . , tm ≤ tm+1 ≤ 1} ⊂ Rm+1.

The boundary of γ(Cm+1) is contained in the complex points of the divisor V ⊂ Xm+1
Σ

defined by the union of {zi = x}, {zi = zm+1} for 1 ≤ i ≤ m, and {zm+1 = y}. In (58),

therefore, we can replace Hm+1(Xm+1
Σ , Ỹ m+1) with Hm+1(Xm+1

Σ ,V ). Now, take the image

of (58) under the projection πm,+
� . By [BD1, §4.4], the image of the homology framing under

the rational period map c∨0 studied in [BD1] is the differential form (writing z = zm+1):

ν = (−1)
m(m+1)

2

m∧
i=1

(
dzi

zi−z
− dzi

zi−x

)
∧

(
dz

z−y
− dz

z−x

)
.

It follows, then, from Theorem 3.17 in [BD1] that the single-valued period of πm,+
� ξ is

(−1)
m(m+1)

2

(−2πi)m+1

∫∫
Cm+1

ν ∧ dz1
z1−β1

∧· · ·∧ dzm
zm−βm

∧ dz

z−σj
,

where (β1, . . . ,βm) is (0m0 ,σm1
1 , . . . ,σmn

n ) (a sequence of m0 0’s followed by m1 σ1’s, and

so on), corresponding to the differential form associated with the word em0
0 . . . emn

n ej in the

affine ring of the de Rham fundamental groupoid. Now, rearrange the integrand and apply

Lemma 7.7 repeatedly to perform the m integrals:

−1

2πi

∫∫
C

(
dzi

zi−z
− dzi

zi−x

)
∧ dzi
zi−βi

= log

(∣∣∣∣ z−βi

x−βi

∣∣∣∣2)
for 1≤ i≤m to obtain

− 1

2πi

∫∫
C

logm0

(∣∣∣ z
x

∣∣∣2) n∏
k=1

logmk

(∣∣∣∣1−zσ−1
k

1−xσ−1
k

∣∣∣∣2)(
dz

z−y
− dz

z−x

)
∧ dz

z−σj
.

This yields (57) after expanding the exponential factors as power series in the si.

Our next step is to replace x by t0 and y by −ti in (57). This is slightly subtle because

Beilinsons’s description of the motivic fundamental group with finite basepoints that was

used in the proof of Proposition 7.8 is not available in the case of tangential basepoints.

Thus, we will proceed as in [DG, §4] and use the composition of paths to travel between

two tangential basepoints by using finite basepoints as intermediate steps. We will thus

need to understand the behaviour of single-valued versions of iterated integrals between a

tangential basepoint and an infinitesimally close finite basepoint.

We will consider non-commutative power series F (τ) ∈C〈〈e0, e1, . . . , en〉〉 depending on a

‘small ’ rational point τ ∈ k× and having constant coefficient 1. We say that such a series

F (τ) has logarithmic growth if each of its coefficients a(τ) satisfies a(τ) = O(logr |τ |) for
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some integer r (that may depend on the coefficient) when τ → 0. We say that such a series

F (τ) is asymptotic to 1 and write F (τ) ∼τ→0 1 if each of its nonconstant coefficients a(τ)

satisfies a(τ) = O(|τ |1−ε) for every ε > 0 when τ → 0. The class of series with logarithmic

growth and the subclass of series asymptotic to 1 are stable under products and inversion.

This implies that the following relation is an equivalence relation that is compatible with

products:

F (τ) ∼
τ→0

G(τ) ⇔ F (τ)G(τ)−1 ∼
τ→0

1.

Lemma 7.9. We have, for τ ∈XΣ(k),

Is(t0, τ) ∼
τ→0

exp(e0 log |τ |2).

Proof. By a slight generalization of [B2, (5.4)] to the case of the projective line minus

several points Σ (which follows, e.g., by the argument in [B2, 6.3]), we have an expression

of the form

Is(t0, τ) = I(t0, τ)Ĩ(t0, τ),

where Ĩ is the complex conjugate of the series I(t0, τ), in which the letters ei, for i≥ 1, are

replaced with certain power series, the letter e0 is unchanged, and all words are reversed.

Note that in that paper, the order is reversed because iterated integrals were computed

from left to right, but it makes no difference to the conclusion of the lemma. Since

I(t0, τ) ∼
τ→0

exp(e0 logτ),

it follows also that Ĩ(t0, τ) ∼
τ→0

exp(e0 logτ) and hence Is(t0, τ) ∼
τ→0

exp(e0 log |τ |2).

For all 1≤ j ≤ n, we define

Ωs
j = |z|2s0

n∏
k=1

|1−zσ−1
k |2sk dz

z−σj
. (59)

Let Ωs,reni

j denote its renormalized versions (Definition 4.6) with respect to {0,σi}, given
by

Ωs,ren,i
j =

(
|z|2s0

∏
k �=i

|1−zσ−1
k |2sk −1i=j |σi|2s0

∏
k �=i

|1−σiσ
−1
k |2sk

)
|1−zσ−1

i |2si dz

z−σj
·

According to Proposition 4.9, the integral − 1
2πi

∫∫
C

(
dz

z−σi
− dz

z

)
∧Ωs,reni

j defines a holomor-

phic function of the parameters s around s = 0 and thus has a Taylor expansion. We now

identify this Taylor expansion with the j th beta quotient Zi,s
j of the generalized single-

valued associator Zi,s.

Proposition 7.10. For all 1≤ j ≤ n, the jth beta quotient of Zi,s
j is the Taylor series

at s= 0 of the integral

− 1

2πi

∫∫
C

(
dz

z−σi
− dz

z

)
∧Ωs,reni

j . (60)
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Proof. By the composition of paths formula, we have, for any small enough τ ∈XΣ(k),

the equality

Zi,s = Is(t0, τ)I
s(τ,σi− τ)Is(σi− τ,−ti). (61)

Now, Lemma 7.9 implies that we have

Is(t0, τ) ∼
τ→0

exp(e0 log |τ |2) and Is(σi− τ,−ti) ∼
τ→0

exp(−ei log |τ |2+ei log |σi|2).

(For the second claim, one needs to apply the change of variables x 
→ 1−xσ−1
i .) Since Zi,s

is independent of τ , we conclude that

Zi,s
j =Regτ→0 (I

s(τ,σi− τ)exp(ei log |σi|2))j ,

where Regτ→0 means the following: formally set log |τ |2 to zero, and then take the limit

as τ → 0. Since the coefficients in the formal power series Is(τ,σi− τ) can be expressed as

elements in C[[τ,τ ]][log |τ |2], this operation is well defined. By (44), we thus get

Zi,s
j =Regτ→0

(
Is(τ,σi− τ)(|σi|2ei)j + Is(τ,σi− τ)j

)
. (62)

Note that by (56) we have

Is(τ,σi− τ) =

∣∣∣∣σi− τ

τ

∣∣∣∣2s0 n∏
k=1

∣∣∣∣1− (σi− τ)σ−1
k

1− τσ−1
k

∣∣∣∣2sk ,
so that

Regτ→0(I
s(τ,σi− τ)) = |σi|2s0 |σi|−2si

∏
k �=i

|1−σiσ
−1
k |2sk .

Indeed, the factors |τ |2s0 and |τ |2si are sent to 1 by the regularization map. We also have

(|σi|2ei)j = 1i=j
1
si
(|σi|2si −1), which yields

Regτ→0(I
s(τ,σi− τ)(|σi|2ei)j) = 1i=j |σi|2s0

⎛⎝∏
k �=i

|1−σiσ
−1
k |2sk

⎞⎠ 1

si
(1−|σi|−2si) · (63)

Using a variant of Lemma 4.7, we interpret the right-most factor as

1

si

(
1−|σi|−2si

)
=Regτ→0

(
1

2πi

∫∫
C

∣∣1−zσ−1
i

∣∣2si ( dz

z−σi+ τ
− dz

z

)
∧ dz

z−σi

)
.

This allows us to rewrite (63) as

Regτ→0

(
1

2πi

∫∫
C

1i=j |σi|2s0
∏
k �=i

|1−σiσ
−1
k |2sk ×|1−zσ−1

i |2si
(

dz

z−σi+ τ
− dz

z

)
∧ dz

z−σi

)
.

(64)

By Proposition 7.8,

Is(τ,σi− τ)j =− 1

2πi

∫∫
C

(∣∣∣z
τ

∣∣∣2s0 n∏
k=1

∣∣∣∣1−zσ−1
k

1− τσ−1
k

∣∣∣∣2sk
)(

dz

z−σi+ τ
− dz

z− τ

)
∧ dz

z−σj
,
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which implies that

Regτ→0(I
s(τ,σi− τ)j) = Regτ→0

(
− 1

2πi

∫∫
C

(
dz

z−σi+ τ
− dz

z

)
∧Ωs

j

)
, (65)

since one has

Regτ→0

(∣∣∣z
τ

∣∣∣2s0 n∏
k=1

∣∣∣∣1−zσ−1
k

1− τσ−1
k

∣∣∣∣2sk
)

dz

z−σj
=Ωs

j

and the left-hand side can be expanded out in terms in τ,τ and log |τ |2, which factor out

of the integral. Resubstituting (64) and (65) into (62) yields

Zi,s
j =Regτ→0

(
− 1

2πi

∫∫
C

(
dz

z−σi+ τ
− dz

z

)
∧Ωren,i

j

)
=− 1

2πi

∫∫
C

(
dz

z−σi
− dz

z

)
∧Ωren,i

j .

Here, Regτ→0 is simply the limit when τ → 0 since the last integral is convergent by

Proposition 4.9. The claim follows.

7.3 Comparing Ls
Σ and FLs

Σ

We are now ready to prove Theorem 1.1(ii) from the introduction.

Theorem 7.11. For every i, j, (FLs
Σ)ij is the Taylor series at s= 0 of the single-valued

Lauricella function (Ls
Σ)ij.

Proof. This follows from comparing the definition of (FLs
Σ)ij with the expression in

Proposition 4.9 and using the expressions for Zi,s and Zi,s
j from Propositions 7.6 and 7.10,

respectively.

§8. Local motivic coaction

We compute the action of the motivic Galois group (or equivalently, the motivic coaction)

on the full motivic torsor of paths, and use it to deduce a formula for the local coaction on

the beta quotients and on the Lauricella functions viewed as formal power series in their

parameters.

8.1 Formula for the motivic Galois action

Since the iΠ
�
j are (dual to) realizations of ind-objects in the Tannakian category MT (k),

they admit an action of the motivic Galois group. More precisely, the Galois group G�
MT (k)

acts on the left on the Q-algebra O(0Π
�
i ) and thus naturally acts on the right on the set

of points 0Π
�
i (R) for every Q-algebra R. Let

λ :G�
MT (k) →Gm , g 
→ λg

denote the homomorphism given by the action of G�
MT (k) on �(Q(−1)) =Q.

Proposition 8.1. Let R be any Q-algebra. For every element g ∈G�
MT (k)(R), its right

action on any F ∈ 0Π
�
i (R) is given by a version of Ihara’s formula:

(F ·g)(e0, e1, . . . , en) = F
(
λge0,λgG1e1G

−1
1 , . . . ,λgGnenG

−1
n

)
Gi, (66)

where Gk ∈Q〈〈e0, . . . , en〉〉is the group-like formal power series Gk = 01k ·g for all 1≤ k≤ n.

https://doi.org/10.1017/nmj.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.27


MOTIVIC GALOIS ACTIONS ON LAURICELLA HYPERGEOMETRIC FUNCTIONS 197

Proof. The argument is a very mild generalization of the argument given in [DG, §5]
(with the reverse conventions) or [B1, Prop. 2.5], so we shall be brief. One first computes

the action of g on 0Π
�
0 . It acts on the element exp(e0) ∈ 0Π

�
0 by scaling

exp(e0) ·g = exp(λge0),

since exp(e0) is in the image of the local monodromy πmot
1 (Gm,1), which is isomorphic

to Q(1) = Q(−1)∨. The fact that we get a λg and not a λ−1
g is because g acts on the

right. Another way to see this is that g acts on the element coefficient of en0 , which lies in

�(Q(−n)), by λn
g . For all 1≤ i≤ n, the element exp(ei) ∈ iΠ

�
i is in the image of the local

monodromy

x 
→ σix : (Gm,1)−→ ((TσiA
1
k)

×, ti),

and hence, by a similar argument, is also acted upon by g by scaling exp(ei) ·g = exp(λgei).

We transport this action back to 0Π
�
0 via

iΠ
�
i −→ 0Π

�
0 , iFi 
→ (01i) iFi (01i)

−1,

where xFy ∈ xΠ
�
y denotes the element defined by a power series F ∈ Q〈〈e0, . . . , en〉〉. Since

the action of the motivic Galois group is compatible with the composition of paths, we

deduce that g acts on exp(ei) ∈ 0Π
�
0 via exp(ei) 
→Gi exp(λgei)G

−1
i = exp(λgGieiG

−1
i ) for

all 1≤ i≤ n since Gi is by definition 01i ·g. Finally, use the torsor structure

0Π
�
0 −→ 0Π

�
i , 0F0 
→ 0F0 01i

to conclude that the action of g on any F ∈ 0Π
�
i is indeed as claimed.

The motivic Galois group acts in (at least) two different ways on the set 0Π
�
i (Pm):

1. on the right via the Ihara action (66) for R= Pm, described in 66;

2. on the left via its action on the coefficients Pm, that is, term by term on the coefficients

of formal power series in Pm〈〈e0, . . . , en〉〉.
We are interested in computing the action (2) on the generalized motivic associators Zi,m.

The next lemma shows that this action is equivalent to the action (1) on these elements.

Lemma 8.2. The Ihara action (1) and the action on the coefficients (2) coincide on the

motivic associator Zi,m, that is, we have, for every g ∈G�
MT (k)(Q),

Zi,m ·g = g ·Zi,m.

Proof. We have a map O(0Π
�
i ) → Pm that sends a word w to the motivic period

[O(0Π
mot
i ),γi,w]

m. It is left G�
MT (k)-equivariant by definition, and induces a map

0Π
�
i (O(0Π

�
i ))−→ 0Π

�
i (Pm) (67)

that is also left G�
MT (k)-equivariant, where G�

MT (k) acts on the coefficients, that is, by

(2). It is also obviously right G�
MT (k)-equivariant for the action (1). By definition, Zi,m

is the image under (67) of the element Φi ∈ 0Π
�
i (O(0Π

�
i )) which corresponds to the map

id :O(0Π
�
i )→O(0Π

�
i ). It is thus enough to prove the claim that Φi · g = g ·Φi, where the

right and left actions of G�
MT (k) on 0Π

�
i (O(0Π

�
i )) = HomAlg(O(0Π

�
i ),O(0Π

�
i )) are on the

source and on the target, respectively. It is obvious that id ·g = g · id, from which the claim

follows.
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Applying 66 to the series F =Zi,m and using Lemma 8.2, we deduce that the action (2)

of G�
MT (k) term by term on the coefficients of Zi,m is given by the formula

g ·Zi,m(e0, e1, . . . , en) = Zi,m
(
λge0,λgG1e1G

−1
1 , . . . ,λgGnenG

−1
n

)
Gi , (68)

where Gk = 01i · g. The same formula holds with m replaced by �. This formula can be

re-expressed as a universal coaction formula for

ΔZi,m ∈ (Pm⊗QP�)〈〈e0, . . . , en〉〉,

where Δ is applied term by term to each coefficient and acts trivially on the ei. The action

of g is retrieved by the usual formula g ·Zi,m = (id⊗g)ΔZi,m.

Proposition 8.3. The coaction Δ : Pm〈〈e0, e1, . . . , en〉〉 → (Pm ⊗P�)〈〈e0, e1, . . . , en〉〉
applied to the generalized motivic associator Zi,m is

ΔZi,m = Zi,m (L�e0,L
�e′1, . . . ,L

�e′n) Zi,�, (69)

where e′1, . . . , e
′
n are defined by

e′k =
(
Zk,�

)
ek

(
Zk,�

)−1
for all 1≤ k ≤ n. (70)

In the right-hand side of (69), we view Zi,m inside (Pm ⊗ P�)〈〈e0, e1, . . . , en〉〉 via

the natural inclusion Pm〈〈e0, e1, . . . , en〉〉 ⊂ (Pm ⊗ P�)〈〈e0, e1, . . . , en〉〉 which replaces

every coefficient am with am ⊗ 1. Similarly, the terms L�e0, L�e′k, and Zi,� are

viewed in (Pm ⊗P�)〈〈e0, e1, . . . , en〉〉 via the natural inclusion P�〈〈e0, . . . , en〉〉 ⊂ (Pm ⊗
P�)〈〈e0, e1, . . . , en〉〉 which replaces every coefficient b� with 1⊗b�. Thus, we interpret the

term Zi,m (L�e0,L
�e′1, . . . ,L

�e′n) as a composition of noncommutative formal power series

with coefficients in the ring Pm⊗P�. This composition makes sense since e0 and the e′k
have vanishing constant coefficient. All products in the formulae in the proposition are

given by concatenation of non-commutative formal power series.

Proof. For all g ∈G�
MT (k), Gk = 01k ·g is obtained by applying to g the function (more

precisely the power series of functions) Zk,� ∈ 0Π
�
k (O(G�

MT (k))), and λg is obtained by

applying to g the function L�. The claim follows from equation (68).

Example 8.4. In the setting of Examples 6.4 and 7.4, Proposition 8.3 yields

ΔZm(e0, e1) = Zm
(
Ldre0,L

drZdre1
(
Zdr

)−1 )
Zdr(e0, e1),

which is a motivic version of Ihara’s formula, and expresses the coaction on motivic multiple

zeta values. For example, reading off the coefficient of −e1e
n−1
0 yields

Δζm(n) = ζm(n)⊗ (Ldr)n+1⊗ ζdr(n).

Note that this provides a very efficient method of computing the coaction.

8.2 Motivic coaction on the beta quotients

We want to use Proposition 8.3 to derive a formula for the motivic coaction on the series

FLm
Σ(s0, . . . , sn). We now make a slight modification and consider the normalized coaction

Δnor : Pm[[s0, . . . , sn]]→ (Pm⊗P�)[[s0, . . . , sn]]
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obtained by acting via Δ on each coefficient and on the formal variables sk by

Δnor(sk) = (1⊗ (L�)−1)sk.

This is equivalent to viewing the variables sk as spanning a copy of Q(1)dR. In particular,

they have motivic weight −2. This is the correct normalisation which makes the factors

ysk = exp(sk log(y)) =
∑
n≥0

logn(y)

n!
sn

have total weight 0, and all the coefficients in the expansion of FLm
Σ have total weight 0.

Another effect of this normalization is that it makes the coaction formulae below land in

the subspace

Pm[[s0, . . . , sn]]⊗Q[[s0,...,sn]]P�[[s0, . . . , sn]] ⊂ (Pm⊗QP�)[[s0, . . . , sn]].

Note that the tensor product on the left-hand side is an ordinary, not a completed, tensor

product. It is a highly restrictive condition for an element in the space on the right-hand side

to lie in the subspace defined by the left-hand side. It is a crucial, and nontrivial fact, that

this condition is satisfied for the image of the motivic coaction on generalized associators.

Indeed, this can already be seen from the abelianization of (69):

ΔnorZi,m(s0, . . . , sn) = Zi,m(s0, . . . , sn)⊗Zi,�((L�)−1s0, . . . ,(L
�)−1sn). (71)

Theorem 8.5. The (normalized) motivic coaction, applied to the entries of FLm
Σ ,

satisfies

ΔnorFL
m
Σ(s0, . . . , sn) = FLm

Σ(s0, . . . , sn)⊗FL�
Σ ((L�)−1s0, . . . ,(L

�)−1sn). (72)

Proof. It is convenient to compute modulo L� = 1 and restore all powers of L� at the

end, since they are uniquely determined by the weight grading. Using formula (69), we have

ΔnorZi,m
j = (Zi,m (e0, e′1, . . . , e

′
n) Zi,�)j .

The right-hand side reduces via (44) to

Zi,m(s0, s1, . . . , sn)⊗Zi,�
j (s0, s1, . . . , sn)+Zi,m (e0, e′1, . . . , e

′
n)j ,

since e′k is conjugate to ek via equation (70) and so they have the same image ek = e′k = sk
under abelianization. The previous expression can in turn be written as

Zi,m⊗Zi,�
j +

n∑
k=1

Zi,m
k ⊗ (e′k)j = Zi,m⊗Zi,�

j +
n∑

k=1

Zi,m
k ⊗

(
Zk,�ek (Zk,�)

−1
)
j
,

by applying definition (43) to Zi,m (e′0, e
′
1, . . . , e

′
n)j and using (70). We have(

Zk,�ek (Zk,�)
−1

)
j

(44)
= Zk,�ek

(
(Zk,�)

−1
)
j
+Zk,�1j=k

(45)
= −skZk,�

j +1j=kZj,�.

Putting the pieces together and multiplying by −sj , we get

Δnor

(
−sjZi,m

j

)
=−sjZi,m⊗Zi,�

j −sjZi,m
j ⊗Zj,�+

n∑
k=1

skZi,m
k ⊗sjZk,�

j . (73)
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Now, by (71), we have

ΔnorZi,m = Zi,m⊗Zi,�. (74)

Substituting (73) and (74) into the definitions (FL•
Σ)ij = 1i=jZi,•−sjZi,•

j , we get

ΔnorFLm
Σ = FLm

Σ ⊗FL�
Σ .

On the other hand, homogeneity in the weight forces the right-hand side of the coaction to

have weight equal to the degree in the si. This determines the powers of L� as in equation

(72).

Remark 8.6. The (normalized) coproduct in P�[[s0, . . . , sn]] is given on the

elements FL�
Σ by a formula similar to (72): ΔnorFL�

Σ (s0, . . . , sn) = FL�
Σ (s0, . . . , sn)⊗

FL�
Σ ((L�)−1s0, . . . ,(L

�)−1sn).

§9. Example: single-valued version of 2F1 and double copy formula

A large family of special functions commonly found in the mathematical literature can

be derived as special cases or limits of the Gauss hypergeometric function. As a result,

one can derive single-valued versions for a range of special functions from the single-valued

versions of the hypergeometric functions (106) and (107), which we shall prove here.

9.1 The Gauss hypergeometric function

We denote it by F = 2F1. It is defined for y ∈ C, |y|< 1, by the power series

F (a,b,c;y) =
∞∑

n=0

(a)n(b)n
(c)n

yn

n!
, (75)

where (x)n =
∏n

i=1(x+i−1) is the rising Pochhammer symbol. It is a solution of the famous

hypergeometric differential equation(
y(1−y)

d2

dy2
+(c− (a+ b+1)y)

d

dy
−ab

)
F (a,b,c;y) = 0. (76)

9.1.1. Integral representation

Traditionally, F is viewed as a function of y for fixed values of the exponents a,b,c. In

this case, it admits an analytic continuation to a multivalued function on C\{0,1} via the

following integral representation which is valid for Re(c)> Re(b)> 0:

F (a,b,c;y) =
1

β(b,c− b)

∫ 1

0

xb−1(1−x)c−b−1(1−yx)−adx , (77)

where β denotes Euler’s beta function.

To fix branches, it is convenient to assume that y /∈ R>0. The path of integration in

(77) can then be chosen to be the line segment (0,1), and the branch of (1− yx)−a =

exp(−a log(1−yx)) is determined by log(1−yx) =
∫ x

0
d log(1−yu) for x ∈ (0,1).

We multiply through by the β factor and set

F(a,b,c;y) = β(b,c− b)F (a,b,c;y) =

∫ 1

0

xb(1−x)c−b(1−yx)−a dx

x(1−x)
· (78)
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It can be expressed in terms of the Lauricella functions (1) for Σ = {σ0,σ1,σ2} with

σ0 = 0 , σ1 = 1 , σ2 = y−1 and s0 = b , s1 = c− b , s2 =−a.

Indeed, we find that

F(a,b,c;y) =
c

b(c− b)
L11+

1

b
L12, (79)

where we use the shorthand notation

Lij =
(
L{0,1,y−1}(b,c− b,−a)

)
ij
. (80)

Equation (79) can be proved by writing dx
x(1−x) =

dx
x + dx

1−x , eliminating dx
x using

b
dx

x
− (c− b)

dx

1−x
+a

ydx

1−xy
= d log

(
xb(1−x)c−b(1−yx)−a

)
,

and integrating by parts.

9.1.2. Contiguity relations

By integrating by parts in the integral representation (78), one proves the following

contiguity relations for F(a,b,c;y), which are valid when Re(c)> Re(b)> 0.⎧⎪⎨⎪⎩
F(a,b,c;y) =

c

b
F(a,b+1, c+1;y)− a

b
yF(a+1, b+1, c+2;y),

F(a,b,c;y) =
c

c− b
F(a,b,c+1;y)+

a

c− b
yF(a+1, b+1, c+2;y).

(81)

One can use these relations to prove that the integral (78) can be analytically continued

as a holomorphic function of a, b, c in the domain b,c− b /∈ Z≤0. (This also follows from

the expression (75) and the properties of the beta function.) For instance, the first relation

extends F(a,b,c;y) to Re(c− b) > 0,Re(b) > −1 and the second extends it to Re(c− b) >

−1,Re(b)> 0.

9.1.3. Laurent series expansion

When viewed as a function of a,b,c, the function F(a,b,c) can be renormalized around

zero as in Proposition 4.4:

F(a,b,c;y) =
1

b
+

(1−y)−a

c− b
+

∫ 1

0

Ωa,b,c ,

where the following form, denoted by Ωren,1 in Definition 4.3,

Ωa,b,c = xb(1−x)c−b(1−yx)−a dx

x(1−x)
−xbdx

x
− (1−x)c−b(1−y)−a dx

1−x
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is absolutely integrable on (0,1) for Re(c)> Re(b)>−1. After expanding it, one obtains a

Laurent series in the variables a, b, c− b:

F(a,b,c;y)

=
1

b
+

(1−y)−a

c− b
+

∑
i,j,k≥0

(j,k) �=(0,0)

bi

i!

(c− b)j

j!

(−a)k

k!

∫ 1

0

logi(x) logj(1−x) logk(1−yx)
dx

x

+
∑

i,j,k≥0
(i,k) �=(0,0)

bi

i!

(c− b)j

j!

(−a)k

k!

∫ 1

0

logi(x) logj(1−x)
(
logk(1−yx)−1i=0 log

k(1−y)
) dx

1−x
·

(82)

The first integral converges at x=0 since at least one of the terms logj(1−x) or logk(1−yx)

vanishes at x= 0; the second integral converges at x= 1 for similar reasons.

9.1.4. The companion functions G and G
The formulae involving F and F frequently involve companion functions G and G which

we now introduce. We first define

G(a,b,c;y) =
∫ y−1

∞
xb(1−x)c−b(1−yx)−a dx

x(1−x)
(83)

for all a,b,c such that Re(c)<Re(a)+1< 2. When discussing specific branches, under the

assumption that y /∈ R>0, we adopt the convention that the above integral is computed

along the path given by x= y−1/t for t ∈ (0,1). Let us set log(−1) = πi for our fixed choice

of i. This determines a branch of the complex logarithm on C\ [0,∞), and in particular a

value of log(y−1). (Beware that this branch satisfies log(y−1) = − log(y)+ 2πi.) We fix a

branch of xb(1−x)c−b(1− yx)−a along (∞,y−1) by fixing branches of log(y−1/t), log(1−
y−1/t), and log(1− yy−1/t) = log(1−1/t) on (0,1). We set log(y−1/t) = log(y−1)− log(t);

log(1−y−1/t) = log(−1)+log(y−1)− log(t)+log(1−yt), where log(1−yt) equals 0 if t= 0;

and finally log(1−1/t) = log(−1)+ log(1− t)− log(t).

We have the following expression for G in terms of F :

G(a,b,c;y) = eπi(c−a−b)y(y−1)cF(1+ b− c,1+a− c,2− c;y),

which follows by making the change of variables x = y−1/t in (83) and comparing with

(78). This proves that G(a,b,c;y) extends to a holomorphic function of the variables a,b,c

in the domain a,c− a /∈ Z≥1 and a multivalued holomorphic function of y ∈ C \ {0,1}. It
is a solution of the hypergeometric differential equation (76). Note that G(a,b,c;y) is not

meromorphic at y = 0 because of the prefactor (y−1)c.

The following expression of G in terms of the Lauricella functions (80) will be proved

below (see §9.2.4) using homological intersection pairings:

G(a,b,c;y)

=
ce2πi(c−b)

b(e2πia−e2πic)

(
e2πic−e2πib

c− b
L11+

e2πic−e2πib

c
L12−

e2πic−1

c− b
L21−

e2πic−1

c
L22

)
.

(84)
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Here, we choose the path δ2 to be the straight path between 0 and y−1. The branch of log(x)

on this path is our chosen branch of the complex logarithm on C\ [0,∞); the branches of

log(1−x) and log(1−yx) are chosen so that they vanish when x= 0.

Since the integral (83) is convergent near a= b= c= 0, it has the Taylor expansion:

G(a,b,c;y) =
∑

i,j,k≥0

bi

i!

(c− b)j

j!

(−a)k

k!

∫ y−1

∞
logi(x) logj(1−x) logk(1−yx)

dx

x(1−x)
. (85)

We introduce the following normalization of the function G(a,b,c;y):

G(a,b,c;y) =
sin(πa)sin(π(c−a))

π sin(πc)
β(b,c− b)−1G(a,b,c;y). (86)

The prefactor is chosen so that G(a,b,c;y) is symmetric in a and b. Indeed, it can be

expressed in terms of F as

G(a,b,c;y) = eπi(c−a−b) y(y
−1)c

1− c

F (1+ b− c,1+a− c,2− c;y)

β(a,c−a)β(b,c− b)
. (87)

This expression can be derived from the identity

β(1+a− c,1−a) = (1− c)−1β(a,c−a)−1 π sin(πc)

sin(πa)sin(π(c−a))
, (88)

which easily follows from the functional equations of the gamma function.

9.2 Cohomology with coefficients

As in §2, we can view F(a,b,c;y) as a ‘period ’ of cohomology with coefficients. We work

with parameters a,b,c ∈ C that are generic in the sense that

a,b,c,c−a,c− b /∈ Z. (89)

This is the genericity condition (13) plus the requirement that c /∈ Z which we add in order

to be able to work with preferred bases of cohomology with coefficients. Let k ⊂ C be a

subfield, and let us fix y ∈ k \ {0,1}. We consider the coefficient fields kdR = k(a,b,c) and

QB =Q(e2πia, e2πib, e2πic) and work in the corresponding category T as in §3.1. (We could

work in the more refined setting of the category T∞ as in §3.2 without any substantial

changes.) We write Ma,b,c(y) for the object M{0,1,y−1}(b,c− b,−a) in T ; it has rank 2 and

we now describe its de Rham and Betti components along with the comparison between

the two, and the intersection pairings.

9.2.1. de Rham

The de Rham component Ma,b,c(y)dR is the first hypercohomology group (in the Zariski

topology) of X = A1
kdR

\ {0,1,y−1} with coefficients in the twisted de Rham complex

(Ω•
X ,∇a,b,c) where

∇a,b,c(1) = bd log(x)+(c− b)d log(1−x)−ad log(1−yx).

Concretely, it is spanned by the (classes of) d log(x), d log(1−x), and d log(1−yx), modulo

the relation ∇a,b,c(1) = 0. Since we are interested in (78), we choose to work with the ad

https://doi.org/10.1017/nmj.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.27


204 F. BROWN AND C. DUPONT

hoc basis of Ma,b,c(y)dR consisting of (the classes of) the logarithmic forms

η1 =
dx

x(1−x)
and η2 =

dx

1−yx
· (90)

They are expressed in terms of the basis (17) via the change of basis matrix(
η1
η2

)
=

(
c

b(c−b)
1
b

0 − 1
ay

)(
(b− c)ω1

aω2

)
, (91)

where ω1 = d log(1−x) and ω2 = d log(1− yx). This matrix is invertible because c �= 0 by

(89) and therefore (η1,η2) indeed forms a basis of Ma,b,c(y)dR.

9.2.2. Betti

The Betti component Ma,b,c(y)B is the first singular cohomology group of C\{0,1,y−1}
with coefficients in the QB-local system La,b,c whose local sections are branches of the

function x−b(1−x)−(c−b)(1− yx)+a. It is convenient to work with locally finite homology

via the isomorphism

Ma,b,c(y)
∨
B

∼−→H lf
1 (C\{0,1,y−1},L∨

a,b,c). (92)

We choose to work with a basis of Ma,b,c(y)
∨
B which has the simplest possible intersection

pairing and consider the two locally finite paths defined by the following parametrizations:

p1 : (0,1)→ C\{0,1,y−1} , t 
→ t and p2 : (0,1)→ C\{0,1,y−1} , t 
→ y−1

t
·

Note that for this to make sense, we have to assume as before that y /∈ (1,+∞) so that

p1(t) �= y−1 and p2(t) �= 1 for all t ∈ (0,1). Note that p1 is a locally finite path from 0 to

1, p2 is a locally finite path from ∞ to y−1, and the images of p1 and p2 have disjoint

closures. We denote by ϕ1 the class in Ma,b,c(y)
∨
B corresponding via (92) to the path p1

with the canonical branch of xb(1− x)c−b(1− yx)−a defined in §9.1.1. We denote by ϕ2

the class in Ma,b,c(y)
∨
B corresponding via (92) to the path p2, together with the branch of

xb(1−x)c−b(1−yx)−a defined in §9.1.4.
In order to justify the fact that (ϕ1,ϕ2) indeed forms a basis of Ma,b,c(y)

∨
B, we use the

homological Betti intersection pairing

〈 , 〉B :M−a,−b,−c(y)
∨
B⊗QB Ma,b,c(y)

∨
B −→QB,

discussed in §9.2.4. We denote by ϕ−
i the class ϕi viewed in M−a,−b,−c(y)

∨
B, and by ϕ+

i the

class ϕi viewed in Ma,b,c(y)
∨
B, for i= 1,2. We compute in the proof of Lemma 9.3

〈ϕ−
1 ,ϕ

+
1 〉B =

1

2i

sin(πc)

sin(πb)sin(π(c− b))
and 〈ϕ−

2 ,ϕ
+
2 〉B =− 1

2i

sin(πc)

sin(πa)sin(π(c−a))
,

which are nonzero because c /∈ Z by assumption (89), and 〈ϕ−
1 ,ϕ

+
2 〉B = 0. It follows that the

classes ϕ+
1 and ϕ+

2 are linearly independent in Ma,b,c(y)
∨
B.

9.2.3. Period matrix

We let Pa,b,c(y) denote the matrix of the natural comparison isomorphism

compB,dR :Ma,b,c(y)dR⊗kdR
C−→Ma,b,c(y)B⊗QB C
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in the bases (η1,η2) and (ϕ1,ϕ2). It is naturally described in terms of the functions F and

G.

Proposition 9.1. For all generic values of a,b,c, the period matrix of Ma,b,c(y) reads

Pa,b,c(y) =

⎛⎝F(a,b,c;y) F(1+a,1+ b,2+ c;y)

G(a,b,c;y) G(1+a,1+ b,2+ c;y)

⎞⎠ .

Proof. By the argument in Lemma 2.4, the (i, j)th entry of the period matrix Pa,b,c(y)i,j
is given explicitly by an integral of the form

〈ϕi,compB,dR(ηj)〉=
∫
pi

xb(1−x)c−b(1−yx)−a ηj

whenever a,b,c lie in the region where the integral converges. Note that there exist no values

of a,b,c for which all four entries of the period matrix are simultaneously convergent. We

first verify, therefore, that each individual entry of the period matrix is as stated for a

restricted range of values of a,b,c. We then explain how to extend this for all generic values

of a,b,c.

First, the top-left entry (i= j = 1) is defined for all generic a,b,c with Re(c)>Re(b)> 0

by F(a,b,c;y) by definition (78). For the bottom-left entry (i = 2, j = 1), use the integral

formula (83), valid in the region Re(c)<Re(a)+1< 2. In order to deduce formulae for the

entries in the right-hand column j = 2, use the fact that

η2 =
dx

1−yx
= x(1−x)(1−xy)−1 dx

x(1−x)
,

which amounts to shifting (b,c− b,−a) 
→ (b+1, c− b+1,−a−1) in the arguments of F or

G, respectively, that is, (a,b,c) 
→ (a+1, b+1, c+2). Thus, the top-right entry (i= 1, j = 2)

is valid for Re(c)+1>Re(b)>−1, and the bottom right (i= j = 2) for Re(c)<Re(a)< 0.

Finally, to show that these formulae remain valid for generic values of a,b,c, we use the

fact that the entries of Pa,b,c(y), as well as the functions F(a,b,c;y) and G(a,b,c;y), satisfy
contiguity relations. This follows from the fact that multiplication by x, (1−x) and (1−xy)

can be expressed as cohomology relations. For example, using the fact that

∇a,b,c(1) = b
dx

x
+(b− c)

dx

1−x
+a

ydx

1−xy
,

we find that the following relation holds in Ma,b,c(y)dR:

[xη1] =

[
dx

1−x

]
=

b

c
[η1]+

ay

c
[η2],

since both sides differ by 1
c∇a,b,c(1). Therefore,

Pa,b+1,c+1(y)1,1 =
b

c
Pa,b,c(y)1,1+

ay

c
Pa,b,c(y)1,2.

From this and similar relations for the other entries, we deduce that all entries of Pa,b,c(y)

extend to a holomorphic function of (a,b,c) on the domain where they are generic. Since

the same is true for F ,G, we conclude by analytic continuation.
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9.2.4. Intersection pairings and twisted period relations

The de Rham intersection pairing

〈 , 〉dR :M−a,−b,−c(y)dR⊗kdR
Ma,b,c(y)dR −→ kdR (93)

is easily computed. Let us denote by η−i the class ηi viewed in M−a,−b,−c(y)dR and by η+i
the class ηi viewed in Ma,b,c(y)dR, for i= 1,2.

Lemma 9.2. The matrix of the de Rham intersection pairing (93) in the bases (η−1 ,η
−
2 )

and (η+1 ,η
+
2 ) is as follows:

IdRa,b,c(y) =

(
− c

b(c−b) 0

0 1
y2

c
a(c−a)

)
.

Proof. We check that(
η−1
η−2

)
=

(
−1 0
(b−c)
y(a−c)

c
y(a−c)

)(
ν1
ν2

)
and

(
η+1
η+2

)
=

(
c

b(c−b)
1
b

0 − 1
ay

)(
(b− c)ω1

aω2

)
,

where the second equation is (91). The result follows from Lemma 2.5, which states in this

case that 〈ν1,ω1〉dR = (b− c)−1, 〈ν1,ω2〉dR = 〈ν2,ω1〉dR = 0, and 〈ν2,ω2〉dR = a−1.

We now turn to the (cohomological) Betti intersection pairing

〈 , 〉B :M−a,−b,−c(y)B⊗QB Ma,b,c(y)B −→QB. (94)

Let us denote by ϕ−
i the class ϕi viewed in M−a,−b,−c(y)

∨
B, and by ϕ+

i the class ϕi viewed

in Ma,b,c(y)
∨
B, for i= 1,2.

Lemma 9.3. The matrix of the Betti intersection pairing (94) in the bases (ϕ−
1 ,ϕ

−
2 ) and

(ϕ+
1 ,ϕ

+
2 ) is as follows:

IBa,b,c(y) =

(
2i sin(πb)sin(π(c−b))

sin(πc) 0

0 −2i sin(πa)sin(π(c−a))
sin(πc)

)
.

Proof. By the same computation as in [KY1], one easily computes the homological Betti

pairing:

〈ϕ−
1 ,ϕ

+
1 〉B =

1

2i

sin(πc)

sin(πb)sin(π(c− b))
, 〈ϕ−

2 ,ϕ
+
2 〉B =− 1

2i

sin(πc)

sin(πa)sin(π(c−a))
,

and 〈ϕ−
i ,ϕ

+
j 〉B = 0 for i �= j since the closures of p1 and p2 do not intersect. In fact, the

top-left entry reduces to a statement equivalent to [MY, (7)], and the bottom right can be

deduced from it by applying z 
→ z/y. One deduces the matrix of the cohomological Betti

pairing by inverting the matrix (〈ϕ−
i ,ϕ

+
j 〉B), and the claim follows.

The compatibility between the intersection pairings and the comparison isomorphism

gives rise to the twisted period relations:

tP−a,−b,−c(y)I
B
a,b,c(y)Pa,b,c(y) = 2πiIdRa,b,c(y). (95)

Reinserting the beta factor (77) leads to quadratic relations for the hypergeometric function

F as in [CM, §4]. For example, the bottom-left entry is equivalent to Gauss’s relation

F (a,b,c;y)F (1−a,1− b,2− c;y) = F (−a+ c,−b+ c,c;y)F (1+a− c,1+ b− c,2− c;y).
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We end this paragraph with a proof of the expression (84) of G in terms of Lauricella

functions.

Proof of(84). We denote by δ±1 (resp. δ±2 ) the class in M±a,±b,±c(y)
∨
B of the path (0,1)

(resp. of the path (0,y−1)) together with the branch of xb(1−x)c−b(1− yx)−a defined in

§9.1.1 (resp. in §9.1.4). By the same computation as in [KY1], we see that the matrix of

the Betti intersection pairing (94) in the bases (δ−1 , δ
−
2 ) and (δ+1 , δ

+
2 ) is as follows:

J =
1

e2πib−1

(
e2πic−1

e2πi(c−b)−1
e2πib

1 e2πi(b−a)−1
e−2πia−1

)
.

Let us denote by ψ the class in Ma,b,c(y)
∨
B of the path from ∞ to y−1 together with the

branch of xb(1−x)c−b(1−yx)−a defined in §9.1.4. By the same computation as in [KY1],

we have 〈δ−1 ,ψ〉B = 0 because (0,1) and (∞,y−1) do not intersect, and

〈δ−2 ,ψ〉B =
e2πi(c−b−a)

e−2πia−1
·

Therefore, we have ψ = u1δ
+
1 +u2δ

+
2 where(

u1

u2

)
= J−1

(
0

e2πi(c−b−a)

e−2πia−1

)
=

e2πi(c−b−a)

e2πic−e2πia

(
e2πib−e2πic

e2πic−1

)
.

On the other hand, we have the identity in Ma,b,c(y)dR:

η1 =
c

b(c− b)
(b− c)ω1+

1

b
aω2,

which follows from (91). This leads to an expression of G(a,b,c;y) = 〈ψ,compB,dR(η1)〉 in

terms of the Lij = 〈δi,compB,dR(−sjωj)〉 for 1≤ i, j ≤ 2. One checks that it is given by (84).

9.3 The single-valued period matrix and the double copy formula

We have the single-valued period map

s :Ma,b,c(y)dR⊗kdR
C−→M−a,−b,−c(y)dR⊗kdR

C,

where C denotes C with the conjugate structure of a kdR-algebra (it amounts to conjugating

y). As discussed in §2.3.1, strictly speaking, this only makes sense if a,b,c are real. In general,

one would need to replace the target of s with the analytic de Rham cohomology of C\Σ
with differential ∇−a,−b,−c, which does not have a natural kdR-structure. However, all the

formulae below make sense in this setting and we will continue to treat a,b,c as complex

numbers.

Let us denote by Sa,b,c(y) the single-valued period matrix of Ma,b,c(y), that is, the matrix

of s, in the bases (η+1 ,η
+
2 ) in the source and (η−1 ,η

−
2 ) in the target. From the recipe given

in Remark 2.7, one sees that the matrix of the real Frobenius in the bases (ϕ+
1 ,ϕ

+
2 ) and

(ϕ−
1 ,ϕ

−
2 ) is the identity matrix. Therefore, the definition of s reads, in matrix form:

Sa,b,c(y) = P−a,−b,−c(y)
−1Pa,b,c(y). (96)

This leads directly to formulae for the entries of the single-valued period matrix Sa,b,c(y),

using the fact that the determinant of the period matrix can be computed explicitly (see,
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e.g., [LS]). In more detail, we find that in the bases used here we have

det(Pa,b,c(y)) = eπi(c−a−b) y−c−1(1−y)c−a−bβ(b,c− b)β(−a,−c+a). (97)

It follows then from (96) that the top-left entry of Sa,b,c(y) is the single-valued function:

Sa,b,c(y)1,1 = e−πi(c−a−b)y1−c(1−y)c−a−bβ(a,c−a)−1β(−b,−c+ b)−1

×
(
F(a,b,c;y)G(1−a,1− b,2− c;y)−G(a,b,c;y)F(1−a,1− b,2− c;y)

)
.

However, a more symmetric looking formula, called double copy formula, is obtained by

using the twisted period relations, which is the approach which we shall adopt henceforth.

9.3.1. The single-valued period matrix

We provide formulae (see (105)) for the single-valued periods ofMa,b,c(y) after composing

s with the isomorphism

M−a,−b,−c(y)dR⊗kdR
C−→Ma,b,c(y)

∨
dR⊗kdR

C (98)

obtained from the de Rham intersection pairing (93). Note that the matrix of (98) is

IdR−a,−b,−c(y) =− tIdRa,b,c(y). (99)

Proposition 9.4. The matrix IdR−a,−b,−c(y)Sa,b,c(y) has entries given by the complex

integrals

〈ηi,sηj〉dR =− 1

2πi

∫∫
C

|z|2b|1−z|2(c−b)|1−yz|−2a ηi∧ηj , (100)

for 1≤ i, j ≤ 2, which converge for a,b,c in the domains⎧⎪⎨⎪⎩
0< Re(b)< Re(c)< Re(a)+1< 2, for (i, j) = (1,1) ,

−1
2 < Re(b)< Re(c)+ 1

2 < Re(a)+1< 3
2 , for (i, j) = (1,2) and (i, j) = (2,1) ,

−1< Re(b)< Re(c)+1< Re(a)+1< 1, for (i, j) = (2,2).

Proof. This follows from Proposition 2.11.

Remark 9.5. By Proposition 9.1, the entries of the period matrix Pa,b,c(y) are

holomorphic functions of generic arguments a,b,c. This implies that the entries of the

single-valued period matrix Sa,b,c(y) have the same property and that (100) extends to a

holomorphic function of generic a,b,c. One could also prove this directly by using variants

of the contiguity relations (81).

Definition 9.6. For generic values of a,b,c, the single-valued versions of F(a,b,c;y)

and G(a,b,c;y) are given by

F s(a,b,c;y) = 〈−η1,sη1〉dR and G s(a,b,c;y) = 〈−yη2,sη1〉dR.

The heuristic for these formulae (see Remark 3.2) is that the form −η1 has simple poles

and residues −1 at 0 and 1 at 1, and is the image under the map c∨0 of [BD1] of the class of

a path from 0 to 1. Similarly, the form −yη2 = d log(1−yx) has simple poles and residues

−1 at ∞ and 1 at y−1, and is thus the image under c∨0 of the class of a path from ∞ to

y−1.

https://doi.org/10.1017/nmj.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.27


MOTIVIC GALOIS ACTIONS ON LAURICELLA HYPERGEOMETRIC FUNCTIONS 209

Remark 9.7. By expressing η1 in the basis ((b− c)ω1,aω2) as in (91) and noting that

−η1 equals the form ν1 defined in (24), one gets the following expression:

F s(a,b,c;y) =
c

b(c− b)
Ls
11+

1

b
Ls
12 , (101)

where we have used the shorthand notation

Ls
ij =

(
Ls
{0,1,y−1}(b,c− b,−a)

)
ij
.

In view of the similar expression (79), Theorem 1.1 implies that F s(a,b,c;y) has a Laurent

expansion in the variables a,b,c− b, whose coefficients are obtained by applying the de

Rham projection and the single-valued period map to (motivic lifts of) the coefficients of

the Laurent expansion (82) of F(a,b,c;y). This justifies the fact that we call F s a single-

valued version of F . A similar computation, using the identity

−yη2 =− c− b

c−a
ν1+

c

c−a
ν2

in Ma,b,c(y)dR, leads to the expression

Gs(a,b,c;y) =
c

b(a− c)

(
Ls
11+

c− b

c
Ls
12−

c

c− b
Ls
21−Ls

22

)
. (102)

By comparing it with (84) and applying Theorem 1.1, one deduces that Gs(a,b,c;y) has a

Laurent expansion in the variables a,b,c−b whose coefficients are obtained by applying the

de Rham projection and the single-valued period map to (motivic lifts of) the coefficients

of the Laurent expansion of G(a,b,c;y). This is because the de Rham projection sends the

Lefschetz element Lm of MT (k), which is a motivic lift of 2πi, to zero.

Remark 9.8. Note that even though G(a,b,c;y) is essentially F(1+ b− c,1+a− c,2−
c;y), there does not seem to be a natural way to express G s in terms of F s. This should not

be surprising since the single-valued versions of the functions F and G are related to the

original functions by looking at Laurent expansions around a= b= c= 0, and the Laurent

expansion of F(1+ b− c,1+a− c,2− c;y) is not directly related to that of F(a,b,c;y).

Proposition 9.4 gives the integral formulae

F s(a,b,c;y) =
1

2πi

∫∫
C

|z|2b|1−z|2(c−b)|1−zy|−2a dz∧dz

|z|2|1−z|2 (103)

and

G s(a,b,c;y) =
1

2πi

∫∫
C

|z|2b|1−z|2(c−b)|1−zy|−2a ydz∧dz

(1−y z)z(1−z)
, (104)

that are valid in the domains 0<Re(b)<Re(c)<Re(a)+1< 2 and −1
2 <Re(b)<Re(c)+

1
2 < Re(a)+1< 3

2 , respectively.

In view of Remark 9.5, F s and G s are holomorphic functions of the generic complex

parameters a,b,c. This will also be apparent in the double copy formulae (106) and (107).
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The single-valued period matrix Sa,b,c(y) can now be written entirely in terms of F s and

G s via

−IdR−a,−b,−c(y)Sa,b,c(y) =

⎛⎝ F s(a,b,c;y) y−1G s(a,b,c;y)

y−1G s(a,b,c;y) F s(a+1, b+1, c+2;y)

⎞⎠ , (105)

where the de Rham intersection matrix IdR can be found in Lemma 9.2.

9.3.2. Double copy formula

Proposition 9.9. We have the equality, for all generic values of a,b,c:

IdR−a,−b,−c(y)Sa,b,c(y) =
1

2πi
tPa,b,c(y)I

B
−a,−b,−c(y)Pa,b,c(y).

Proof. This formula follows directly from (95) and (96).

The top-left entry of the double copy formula reads

F s(a,b,c;y) =
sin(πb)sin(π(c− b))

π sin(πc)
F(a,b,c;y)F(a,b,c;y)

− sin(πa)sin(π(c−a))

π sin(πc)
G(a,b,c;y)G(a,b,c;y).

(106)

The bottom-left entry is

y−1G s(a,b,c;y) =
sin(πb)sin(π(c− b))

π sin(πc))
F(a,b,c;y)F(a+1, b+1, c+2;y)

− sin(πa)sin(π(c−a))

π sin(πc))
G(a,b,c;y)G(a+1, b+1, c+2;y).

(107)

The other entries are easily deduced from these two.

Remark 9.10. Certain special cases of entries of single-valued period matrix Sa,b,c(y)

were previously considered in [Mi 1], [MY], along the lines of Remark 2.8. The presentation

above seems to be the first systematic approach to constructing all the single-valued periods

associated with the hypergeometric function.

9.4 The single-valued hypergeometric function

Recall the formula

β s(s0, s1) =
1

2πi

∫∫
C

|z|2s0 |1−z|2s1 dz∧dz

|z|2|1−z|2 =
Γ(s0)Γ(s1)Γ(1−s0−s1)

Γ(s0+s1)Γ(1−s0)Γ(1−s1)

for the single-valued (or ‘complex ’) version of the beta function [BD2, §1.1]. In view of

(77), we propose the following definition of a single-valued hypergeometric function. We

also define a single-valued of the function G(a,b,c;y).

https://doi.org/10.1017/nmj.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.27


MOTIVIC GALOIS ACTIONS ON LAURICELLA HYPERGEOMETRIC FUNCTIONS 211

Definition 9.11. For generic values of a,b,c, the single-valued versions of F and G are

given by

F s(a,b,c;y) = β s(b,c− b)−1F s(a,b,c;y) and

Gs(a,b,c;y) =
a(c−a)

c
β s(b,c− b)−1G s(a,b,c;y).

As explained in Remark 9.7, the coefficients of the Laurent expansion of F s(a,b,c;y)

around a= b= c=0 are obtained by applying the de Rham projection and the single-valued

period map to (motivic lifts of) the coefficients of the Laurent expansion of F (a,b,c;y). The

same statement is true for Gs and G in view of (86) (again because the Lefschetz element

Lm of MT (k), which is a motivic lift of 2πi, is sent to zero by the de Rham projection.)

There is no natural expression for Gs in terms of F s for the same reasons as in Remark

9.8.

The next proposition expresses single-valued hypergeometric functions as a double

copy of the classical hypergeometric functions. It shows in particular that F s and Gs

are holomorphic functions of generic complex numbers a,b,c and (single-valued) analytic

functions of y ∈ C\{0,1}.

Proposition 9.12. For all generic a,b,c, we have the double copy formulae

F s(a,b,c;y) = F (a,b,c;y)F (a,b,c;y)−wa,c−awb,c−bG(a,b,c;y)G(a,b,c;y)

and

Gs(a,b,c;y) =
a(c−a)b(c− b)y

c2(1+ c)

(
F (a,b,c;y)F (b+1,a+1, c+2;y)

−wa,c−awb,c−bG(a,b,c;y)G(b+1,a+1, c+2;y
)
,

where we have set

ws,t =
π sin(π(s+ t))

sin(πs)sin(πt)
·

Proof. This follows from multiplying (106) by β s(b,c−b)−1 and using the identities (88)

and

β s(b,c− b) =
sin(πb)sin(π(c− b))

π sin(πc)
β(b,c− b)2.

Remark 9.13. It is obvious from the double copy formula that both F s and Gs satisfy

the holomorphic part of the hypergeometric differential equation (76), namely(
y(1−y)

∂2

∂y2
+(c− (a+ b+1)y)

∂

∂y
−ab

)
f(y) = 0,

for f(y) = F s(a,b,c;y) or f(y) =Gs(a,b,c;y). This can also be derived from first principles.

§10. Example: motivic coaction of 2F1

We derive formulae for the motivic coaction of the hypergeometric function F = 2F1 both

in the global and in the local setting (Proposition 10.5 and Theorem 10.9, respectively). As
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in the case of Lauricella functions, these formulae turn out to be formally identical, even

though the contexts in which they appear are very different.

10.1 Motivic coaction of the hypergeometric function: the global point of

view

As in the previous section, let k ⊂ C be a subfield and let us fix y ∈ k \ {0,1}. We

consider the coefficient fields kdR = k(a,b,c) and QB =Q(e2πia, e2πib, e2πic) and work in the

Tannakian category T defined in §3.1. We define the (global) motivic and canonical de

Rham variants of F(a,b,c;y):

Fm(a,b,c;y) = [Ma,b,c(y),ϕ1,η1]
m ∈ Pm

T ,

Fdr(a,b,c;y) = [Ma,b,c(y),−η1,η1]
dr ∈ Pdr

T .

We will also need the (global) de Rham variant of G(a,b,c;y):

Gdr(a,b,c;y) = [Ma,b,c(y),−yη2,η1]
dr ∈ Pdr

T ,

where ηi and ϕi were defined in §9.2. Applying the period map per :Pm
T →C to Fm(a,b,c;y)

gives back F(a,b,c;y). If one works in the more refined Tannakian formalism of §3.2, one can
replace Fdr(a,b,c;y) and Gdr(a,b,c, ;y) with elements in the ring PdR+,dR−

T∞
whose single-

valued periods are F s(a,b,c;y) and G s(a,b,c;y), respectively. We now compute the (global)

motivic coaction Δ : Pm
T →Pm

T ⊗kdR
Pdr
T .

Proposition 10.1. We have the following (global) motivic coaction formula:

ΔFm(a,b,c;y) =
b(c− b)

c
Fm(a,b,c;y) ⊗ Fdr(a,b,c;y)

− y
a(c−a)

c
Fm(1+a,1+ b,2+ c;y)⊗Gdr(a,b,c;y).

Proof. By the general formula for the motivic coaction, we have, writingM forMa,b,c(y),

ΔFm(a,b,c;y) = [M,ϕ1,η1]
m⊗ [M,η∨1 ,η1]

dr+[M,ϕ1,η2]
m⊗ [M,η∨2 ,η1]

dr.

By Lemma 9.2, the dual basis elements η∨1 and η∨2 are represented in M−a,−b,−c(y)dR by

the elements

η∨1 =−b(c− b)

c
η1 and η∨2 = y2

a(c−a)

c
η2.

Thus, what remains is to prove the equality [M,ϕ1,η2]
m =Fm(1+a,1+b,2+c). We describe

an isomorphism

α :M1+a,1+b,2+c(y)
∼−→M

in the category T . At the level of de Rham components, it is induced by multiplication of

(smooth) differential forms by x(1−x)(1−yx)−1. The equality

∇a,b,c(x(1−x)(1−yx)−1f) = x(1−x)(1−yx)−1∇1+a,1+b,2+c(f)

proves that it induces an isomorphism of de Rham complexes. On the level of Betti

components, it is induced by multiplication of sections by x(1− x)(1− yx)−1. On easily
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checks that this gives rise to an isomorphism α in the category T . It satisfies α∨
B(ϕ1) = ϕ1

and αdR(η1) = η2, and therefore induces the desired equality of motivic periods.

We now define a motivic version of the function F and compute its motivic coaction.

We first need to record a few facts about the motivic and de Rham versions of the beta

function. For complex numbers s0, s1 ∈ kdR such that s0, s1, s0 + s1 /∈ Z, we let Ms0,s1 =

M{0,1}(s0, s1) ∈ T and let ϕ denote the class of (0,1)⊗ xs0(1− x)s1 ∈ (Ms0,s1)
∨
B and η

denote the class of dx
x(1−x) in (Ms0,s1)dR. We thus have the (global) motivic and de Rham

beta functions

βm(s0, s1) = [Ms0,s1 ,ϕ,η]
m ∈ Pm

T and βdr(s0, s1) = [Ms0,s1 ,−η,η]
dr ∈ Pdr

T .

They are related to the Lauricella function via

β•(s0, s1) =
s0+s1
s0s1

L•
{0,1} (• ∈ {m,dr}),

and thus we have the coaction formula

Δβm(s0, s1) =
s0s1

s0+s1
βm(s0, s1)⊗βdr(s0, s1). (108)

Lemma 10.2. The matrix coefficients βm(s0, s1) ∈ Pm
T and βdr(s0, s1) ∈ Pdr

T are invert-

ible.

Proof. The object M =Ms0,s1 ∈ T has rank one. Thus, the evaluation map M∨⊗M
∼→1

is an isomorphism, where 1 denotes the unit object (QB,kdR, idC) in the Tannakian category

T . Since the matrix coefficients βm(s0, s1)∈Pm
T and βdr(s0, s1)∈Pdr

T are defined by nonzero

classes, they are invertible and their inverses are matrix coefficients of M∨.

We can thus mimic (78) to define (global) motivic and de Rham lifts of F (a,b,c;y).

Definition 10.3. We define the (global) motivic and de Rham hypergeometric

functions

F •(a,b,c;y) = β•(b,c− b)−1F•(a,b,c;y) ∈ P•
T (• ∈ {m,dr}).

In view of Definition 9.11, we also define

Gdr(a,b,c;y) =
a(c−a)

c
βdr(b,c− b)−1Gdr(a,b,c;y) ∈ Pdr

T .

Before turning to the motivic coaction on the motivic hypergeometric function, let us

prove a motivic lift of the functional equation of the beta function.

Lemma 10.4. We have the identities

βm(s0+1, s1) =
s0

s0+s1
βm(s0, s1) and βm(s0, s1+1) =

s1
s0+s1

βm(s0, s1).

Proof. We describe an isomorphism

α :Ms0+1,s1
∼−→Ms0,s1 .

At the level of de Rham components, it is induced by multiplication of (smooth) differential

forms by x. The equality∇s0,s1(xf) = x∇s0+1,s1(f) proves that this induces an isomorphism

of de Rham complexes. At the level of Betti components, it is induced by multiplication by
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x. One easily checks that this gives rise to an isomorphism α in the category T . One checks

that it satisfies

α∨
B(ϕ) = ϕ , αdR(η) =

s0
s0+s1

η,

and the first identity follows. The second is proved in a similar way.

Proposition 10.5. The (global) motivic coaction on the motivic hypergeometric

function is

ΔFm(a,b,c;y) = Fm(a,b,c;y)⊗F dr(a,b,c;y)− y

1+ c
Fm(1+a,1+ b,2+ c;y)⊗ Gdr(a,b,c;y) ,

where the terms F •(a,b,c;y) and Gdr(a,b,c;y) are as in Definition 10.3.

Proof. The coaction is multiplicative and thus satisfies

ΔFm(a,b,c;y) = (Δβm(b,c− b))−1ΔFm(a,b,c;y).

The result follows from Proposition 10.1 and (108) and the equality

βm(c− b,b)−1 =
b(c− b)

c(c+1)
βm(c− b+1, b+1)−1,

which follows from Lemma 10.4.

10.2 Motivic coaction for the hypergeometric function: the local point of

view

We now study motivic lifts of the functions F(a,b,c;y) and F (a,b,c;y) in the local setting,

that is, by lifting the coefficients of their Laurent expansions around a= b= c=0 to motivic

periods of mixed Tate motives over k. Our main theorem is that the global coaction formulae

of Propositions 10.1 and 10.5 admit local counterparts. We use the shorthand notation

FL•
i,j = (FL•

{0,1,y−1}(b,c− b,−a))i,j

for 1 ≤ i, j ≤ 2 and • ∈ {m,�}. Here, we assume that the class γ1 corresponds to the line

segment (0,1) and γ2 is the line segment (0,y−1), assuming that y /∈ R>0. We set

F•
loc(a,b,c;y) =

c

b(c− b)
FL•

1,1+
1

b
FL•

1,2 ∈ P•
MT (k)[[a,b,c]][b

−1(c− b)−1] (109)

for • ∈ {m,�}. They are motivic lifts of the Laurent expansions of the functions F and F s

around a = b = c = 0, respectively; more precisely, we get from (79) and (101) and from

Theorems 6.18 and 7.11 the equalities between Laurent series:

perFm
loc(a,b,c;y) = F(a,b,c;y) and sF�

loc(a,b,c;y) = F s(a,b,c;y),

where the period map per : Pm
MT (k) → C and the single-valued period map s : P�

MT (k) →
C are applied term by term to the Laurent series. One can also obtain F�

loc(a,b,c;y) by

applying the projection πm,+
� term by term to Fm

loc(a,b,c;y):

πm,+
� Fm

loc(a,b,c;y) = F�
loc(a,b,c;y).

We also introduce

Fm
loc(1+a,1+ b,2+ c;y) =− 1

ya
FLm

1,2.
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Remark 10.6. Strictly speaking, it does not make sense to multiply a motivic period

by 1
y since the ring Pm

MT (k) is only Q-linear. This is because the Betti and (canonical) de

Rham fiber functors take values in Q-vector spaces. This prefactor comes about in the above

definition because the form η2 =
dx

1−yx is not in fact in the Q-structure H1
�(XΣ), having

residue −y−1 at x = y−1. However, the form yη2 is Q-rational, and therefore the term

yFm
loc(1+a,1+ b,2+ c;y), which is the one which appears in the coaction formula (110), is

a well-defined series of motivic periods in Pm
MT (k), although Fm

loc(1+a,1+ b,2+ c;y) itself

is not. Alternatively, one could extend scalars and work with a (canonical) de Rham fiber

functor valued in Q(y)-vector spaces.

Remark 10.7. A warning about the notation is in order. Note that Fm
loc(1 + a,1+

b,2+ c;y) is not obtained from Fm
loc(a,b,c;y) by shifting the formal variables via (a,b,c) 
→

(1+ a,1+ b,2+ c), which does not make sense in the setting of power series. Rather, the

notation is justified by the fact that we have the equality between Laurent series:

perFm
loc(1+a,1+ b,2+ c;y) = F(1+a,1+ b,2+ c;y),

which follows from Theorem 6.18 and the equality dx
1−yx =− 1

ya(aω2). Note that the function

F(1+a,1+b,2+c;y) can also be expressed as a combination of F(a,b,c;y) and its derivative

with respect to y.

We will also need the following definition:

G�
loc(a,b,c;y) =

−c

b(c−a)

(
FL�

1,1+
c− b

c
FL�

1,2−
c

c− b
FL�

2,1− FL�
2,2

)
.

By (102) and Theorem 7.11, we get the equality between Laurent series:

sG�
loc(a,b,c;y) = G s(a,b,c;y).

We now turn to the local coaction formulae. As in §8.2, we consider the normalized

motivic coaction

Δnor : Pm
MT (k)[[a,b,c]][(bc(c− b))−1]−→ (Pm

MT (k)⊗P�
MT (k))[[a,b,c]][(bc(c− b))−1],

which consists in applying the coaction of MT (k) on each coefficient and coacting on the

formal variables via

Δnor(a) = a(1⊗ (L�)−1) , Δnor(b) = b(1⊗ (L�)−1) , Δnor(c) = c(1⊗ (L�)−1).

Theorem 10.8. We have the following (local) coaction formula:

ΔnorFm
loc(a,b,c;y) =

b(c− b)

c
Fm

loc(a,b,c;y) ⊗ F�
loc((L

�)−1a,(L�)−1b,(L�)−1c;y)

−y
a(c−a)

c
Fm

loc(1+a,1+ b,2+ c;y) ⊗ G�
loc((L

�)−1a,(L�)−1b,(L�)−1c;y).

(110)

Proof. We drop the Lefschetz de Rham periods L� from the notation; they can be taken

care of by weight considerations as in the proof of Theorem 8.5. On the one hand, by (109)

and Theorem 8.5, the left-hand side equals

c

b(c− b)

(
FLm

1,1⊗FL�
1,1+FLm

1,2⊗FL�
2,1

)
+

1

b

(
FLm

1,2⊗FL�
2,2+FLm

1,1⊗FL�
1,2

)
.
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On the other hand, the right-hand side is expressed as

b(c− b)

c

(
c

b(c− b)
FLm

1,1+
1

b
FLm

1,2

)
⊗

(
c

b(c− b)
FL�

1,1+
1

b
FL�

1,2

)
−y

a(c−a)

c

(
− 1

ya
FLm

1,2

)
⊗

(
− c

b(c−a)

)(
FL�

1,1+
c− b

c
FL�

1,2−
c

c− b
FL�

2,1− FL�
2,2

)
.

By expanding it, one sees that simplications occur and that both sides are equal.

It is notable, and a priori not at all obvious, that this local motivic coaction formula is

formally identical to the global motivic coaction formula obtained in a different context in

Proposition 10.1.

We now turn to the hypergeometric function F and reinsert the beta factors. We recall

the definition of the local motivic beta functions

β•
loc(s0, s1)

=
s0+s1
s0s1

exp

(∑
n≥2

(−1)n−1ζ•(n)

n
((s0+s1)

n−sn0 −sn1 )

)
∈ P•

MT (k)[[s0, s1]][(s0s1)
−1],

for • ∈ {m,�}. We have the local motivic coaction formula

Δnorβ
m
loc(s0, s1) =

s0s1
s0+s1

βm
loc(s0, s1)⊗β�

loc((L
�)−1s0,(L

�)−1s1). (111)

In view of (78), we define

F •
loc(a,b,c;y) = (β•

loc(b,c− b))−1F•
loc(a,b,c;y) ∈ P•

MT (k)[[a,b,c]][(bc(c− b))−1],

for • ∈ {m,�}. (The term β•
loc(b,c− b) is invertible since we have inverted c in the ring of

power series.) They satisfy the equalities between Laurent series:

perFm
loc(a,b,c;y) = F (a,b,c;y) and sF�

loc(a,b,c;y) = F s(a,b,c;y),

where the period map per : Pm
MT (k) → C and the single-valued period map s : P�

MT (k) → C

are applied term by term to the Laurent series. One can also obtain F�
loc(a,b,c;y) by applying

the projection πm,+
� term by term to Fm

loc(a,b,c;y):

πm,+
� Fm

loc(a,b,c;y) = F�
loc(a,b,c;y).

We also introduce

Fm
loc(1+a,1+ b,2+ c;y) =

c(c+1)

b(c− b)
(βm

loc(b,c− b))−1Fm
loc(1+a,1+ b,2+ c;y).

The same warning as in Remark 10.7 is in order: since we are working with formal power

series, Fm
loc(1+ a,1+ b,2+ c;y) is not obtained from Fm

loc(a,b,c;y) by a shift of variables,

which would not make sense. Rather, the notation is justified by the equality between formal

Laurent series:

perFm
loc(1+a,1+ b,2+ c;y) = F (1+a,1+ b,2+ c;y),

which follows from the functional equation β(b+1, c− b+1) = b(c−b)
c(c+1)β(b,c− b) for the beta

function.
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Lastly, we introduce

G�
loc(a,b,c;y) =

a(c−a)

c
(β�

loc(b,c− b))−1G�
loc(a,b,c;y).

It satisfies

sG�
loc(a,b,c;y) =Gs(a,b,c;y),

where Gs(a,b,c;y) was defined in Definition 9.11.

Theorem 10.9. We have the following (local) motivic coaction formula for the (local)

motivic hypergeometric function:

ΔnorF
m
loc(a,b,c;y) = Fm

loc(a,b,c;y) ⊗ F�
loc

(
(L�)−1a,(L�)−1b,(L�)−1c;y

)
− y

1+ c
Fm
loc(1+a,1+ b,2+ c;y) ⊗ G�

loc

(
(L�)−1a,(L�)−1b,(L�)−1c;y

)
.

(112)

Proof. It follows from Theorem 10.8 by using the multiplicativity of the coaction and

(111).

Again, it is a priori not at all obvious, but certainly true, that this local motivic coaction

formula is comparable with the global motivic coaction formula for the hypergeometric

function obtained in Proposition 10.5.

Remark 10.10. Up until this point, we have fixed a point y ∈ k\{0,1}. It is also

possible to view y as a variable by working with families; this will enable us to derive

the hypergeometric differential equation from the coaction, which we presently explain.

The local motivic and (canonical) de Rham hypergeometric functions can be viewed as

power series with coefficients in a ring of families of motivic periods over the base scheme

S = P1\{0,1,∞} with coordinate y. For this, we need to work with a Tannakian category

M(S) of motives over S, such as the category MT (S) of mixed Tate motives over S [EL]

or, for the following application, the category H(S) considered in [B3, §7] is sufficient. We

regard F •
loc, and G�

loc as Laurent series with coefficients in P•
M(S), where •= {m,�} relative

to suitable fiber functors (whose definition is not important for the following discussion).

To the lowest two orders, we find that

F�
loc(a,b,c;y) = β�

loc(b,c− b)−1F�
loc(a,b,c;y) = 1− ab

c
log�(1−y)+ · · · ,

G�
loc(a,b,c;y) =

a(c−a)

c
(β�

loc(b,c− b))−1

G�
loc(a,b,c;y) =−ab(c−a)(c− b)

c2
log�(1−y)+ · · · ,

where the · · · denote iterated integrals of length ≥ 2, and log� is the (canonical) de Rham

logarithm (see [B3, §§5.3 and 7]). This is consistent with the Laurent expansions (82)

and (85). The rings of families of motivic periods P•
M(S) are equipped with a canonical

differential operator ∇∂/∂y which is compatible with the coaction Δ : Pm
M(S) → Pm

M(S) ⊗
P�
M(S) in the sense that the following equation holds:

Δ◦∇∂/∂y = (id⊗∇∂/∂y)◦Δ.
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Furthermore, ∇∂/∂y decreases the length of (canonical) de Rham iterated integrals by one,

and one checks that

∇∂/∂y log
�(1−y) =− 1

1−y
and ∇∂/∂y(1) = 0.

The ring of (canonical) de Rham periods P�
M(S) is a Hopf algebra with counit ev, such that

(id⊗ ev)Δ = id. It satisfies ev(Ldr) = 1 and annihilates all (canonical) de Rham iterated

integrals of length ≥ 1 which occur in the expansions above. Let us apply ∇∂/∂y to the

(unnormalized version of the) coaction formula (112). Therefore, by combining (112) with

the formulae stated above, we find that

∇∂/∂yF
m
loc(a,b,c;y) = ((id⊗ ev)Δ)

(
∇∂/∂yF

m
loc(a,b,c;y)

)
= (id⊗ ev∇∂/∂y)ΔFm

loc(a,b,c;y)

=
ab

c
Fm
loc(a,b,c;y)⊗

1

1−y
− y

1+ c
Fm
loc(1+a,1+ b,2+ c;y)⊗ ab(c−a)(c− b)

c2
1

1−y
.

Since the connexion is compatible with the period homomorphism, we deduce that

∂

∂y
F (a,b,c;y) =

ab

c

1

1−y
F (a,b,c;y)− ab(c−a)(c− b)

c2(1+ c)

y

1−y
F (1+a,1+ b,2+ c;y),

as formal power series near a= b= c= 0. One verifies that this is equivalent, by contiguity

relations, to

∂

∂y
F (a,b,c;y) =

ab

c
F (a+1, b+1, c+1;y),

or to the hypergeometric differential equation (76).

Remark 10.11. It is also a general fact that the (local) motivic coaction is compatible

with the monodromy of the (local) hypergeometric function. This, as well as the connection

above, provides a priori constraints on the shape of the motivic coaction.
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