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Abstract

We describe all groups that can be generated by two twists along spherical sequences in
an enhanced triangulated category. It will be shown that with one exception such a group
is isomorphic to an abelian group generated by not more than two elements, the free group
on two generators or the braid group of one of the types A2, B2 and G2 factorised by a
central subgroup. The last mentioned subgroup can be nontrivial only if some specific linear
relation between length and sphericity holds. The mentioned exception can occur when one
has two spherical sequences of length 3 and sphericity 2. In this case the group generated by
the corresponding two spherical twists can be isomorphic to the nontrivial central extension
of the symmetric group on three elements by the infinite cyclic group. Also we will apply
this result to give a presentation of the derived Picard group of selfinjective algebras of the
type D4 with torsion 3 by generators and relations.

2020 Mathematics Subject Classification: 18G80 (Primary); 20F36, 16G70 (Secondary)

1. Introduction

Triangulated categories are a powerful tool that have been studied by many mathemati-
cians. They have applications in algebraic geometry, representation theory and many other
parts of mathematics. The equivalences and autoequivalences of triangulated categories play
a special role here. Motivated by occurrences of braid groups in symplectic geometry and
by Kontsevich’s homological mirror conjecture, the authors of [18] introduced the notion
of a twist endofunctor along an object of a good enough triangulated category. They have
shown that twists along so called spherical objects are autoequivalences. Later in [1] the
general notions of a spherical functor and a twist along it were introduced. Note that from
the results of [17] any autoequivalence can be realised as a twist along a spherical functor.
The author of [7] considered spherical functors induced by spherical sequences of objects
and shows that such sequences behave in a very similar way to spherical objects. In par-
ticular, one can define a � configuration of spherical sequences that under some conditions
gives an action of the braid group of the type �. It was shown in the same paper that such
an action determined by an An-configuration of m-spherical sequences of length k is faithful
for m � 2k. This result generalises the original result on the faithfulness of the action of a
braid group determined by an An-configuration of spherical objects proved in [18]. It was
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also shown in [3] that an action determined by a �-configuration of 2-spherical objects is
faithful for � = An, Dn, E6, E7, E8. For the derived category of a Ginzburg algebra this result
was generalised to an arbitrary n � 2 in [24]. At the same time an example from [8] shows
that even A3-configuration of 1-spherical objects does not have to determine a faithful action
of the braid group on 4 strands. On the other hand, m-spherical objects with m�0 deserve
attention too. They were considered, for example, in [4, 5, 6, 10].

In this paper we consider the actions generated by two twists along spherical sequences.
If there are no morphisms from one sequence to another, then it is known that twist functors
commute, and hence the group under consideration is an abelian group generated by two
elements. In other cases, we will show that this group is isomorphic to the free group on two
generators with several exceptions. These exceptions take place in the case where one spher-
ical sequence has length k and sphericity m, the second one has length rk and sphericity rm
for some r ∈ {1, 2, 3}, and there are exactly rk morphisms from the first spherical sequence
to the second one. We will show that the group generated by two autoequivalences under
consideration is a factor of the braid group corresponding to the diagram A2 if r = 1, to the
diagram B2 if r = 2, and to the diagram G2 if r = 3 by some subgroup H. Except in the cases
k = k′ = 3, m = m′ = 2 and k′ = 2k = 4, m′ = 2m = 2, the subgroup H is central and can be
nontrivial only if r = 1 and 3m = 4k, r = 2 and 2m = 3k or r = 3 and 3m = 5k. In the case
k = k′ = 3, m = m′ = 2, the subgroup H is either trivial or is generated as a normal subgroup
by the relation equalising the squares of standard generators. We will show that the last men-
tioned case really occurs in the derived category of a hereditary algebra of type D4. Thus,
we will give a new example where a braid group action induced by twists along spherical
sequences is extremely not faithful. In the case k′ = 2k = 4, m′ = 2m = 2, the subgroup H is
either trivial or contains the commutator of the braid group. We will show that in the last
mentioned case one gets an action of the group (Z×Z)/(2t, −2t) for some integer t. We will
show also that this occurs in the derived category of a hereditary algebra of type A3. Thus, we
will give an example where two twists along spherical sequences generate an abelian group
in a nontrivial way. In particular, for two spherical objects that generate a nonabelian group,
the group under consideration is isomorphic either to the free group on two generators or to
the braid group on 3 strands even in the case of 1-spherical objects.

Due to [14], if two derived categories of algebras over a field are equivalent, then there is
an equivalence induced by a tensor product with a tilting complex of bimodules. Such equiv-
alences are closed under composition, and hence give a subgroup of the group of derived
autoequivalences. This group is called the derived Picard group of an algebra and was first
introduced in [16] and [25]. Later it was shown in [6] that this group is locally algebraic.
Examples of computations of derived Picard groups can be found, for example, in [11, 12].

It was shown in [21] that AR quiver of a selfinjective algebra of finite representation is
isomorphic to Z�/G for � ∈ {An, Dn, E6, E7, E8} and some admissible subgroup G of the
automorphism group of Z�. Such a group G is cyclic and generated by an element of the
form τ qm�φ, where τ is the AR translation, m� is the Loewy length of the mesh category
of Z�, q is some rational number and φ is an automorphism of �. In this case one says
that the corresponding selfinjective algebra has the type (�, q, r), where r is the order of φ.
Derived equivalent algebras have the same type. The diagram � is called the tree type, the
number q is called frequency and the number r is called torsion order of the correspond-
ing algebra. It was shown in [2] that all the possible types are

(
An, k/n, 1

)
, (A2t+1, k, 2),(

Dn, k/gcd(n, 3), 1
)

, (Dn, k, 2), (D4, k, 3), (E6, k, 2) and (El, k, 1), where all numbers are
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integer and 6�l�8. Moreover, it was shown in the same work that all the types except the
type (D3n, 1/3, 1) in characteristic 2 determine the corresponding algebra uniquely modulo
derived equivalence. The type (D3n, 1/3, 1) in characteristic 2 corresponds to two derived
equivalence classes of algebras. The algebras of the type (An, q, 1) are exactly algebras
derived equivalent to selfinjective Nakayama algebras. The derived Picard group for these
algebras was described in [23]. The faithfulness of an action of a braid group determined
by an An-configuration of 0-spherical objects played a crucial role in this description. Using
our results on the faithfulness of actions of braid groups generated by two spherical twists,
we will describe here the derived Picard group of representation finite selfinjective alge-
bras of the type (D4, k, 3). It is is a unique series of algebras with torsion of order 3. It was
considered [19, 20], where its Hochschild cohomology was computed.

2. Generalised braid groups and spherical twists

In this section we give main definitions and notions considered in this paper and recall
some basic facts about them. A major part of this section can be found in [7] written in a
slightly diferent style. At the end of the section we will formulate the main result of this
paper.

Let us first define a generalised braid group. Sometimes these groups are called Artin
groups.

Definition 2·1. Let M = (mi,j)1�i,j�s be a symmetric square matrix such that each element
mi,j is either some integer not less than 2 or ∞. We associate to this matrix the graph �M

with s vertices numbered by integers from 1 to s. Two distinct vertices i and j are connected
by an edge if mi,j > 2. If mi,j > 3, then we also put the number mi,j on the corresponding
edge. The braid group of type �M is the group with s standard generators σ1, . . . , σs and

relations (σiσj)ti,jσ
mi,j−2ti,j
i = (σjσi)ti,jσ

mi,j−2ti,j
j for all 1�i < j�s such that mi,j < ∞, where

ti,j =
⌊

mi,j/2
⌋

. Whenever a braid group appears, we denote by σi its standard generators.

Thus, the braid group of type 1 ∞ 2 is the free group F2 on two generators. We will be
mainly interested in the braid groups of types A2 = (1 2), B2 = (1 4 2) and G2 = (1 6 2).
Note that all these braid groups have a cyclic center as any braid group of finite type. The
center of the braid groups of the types A2 and G2 are generated by (σ1σ2)3 and the center
of the braid groups of the type B2 is generated by (σ1σ2)2. We denote the corresponding
element generating the center by �A, �B or �G and the corresponding braid group by BA,
BB or BG respectively.

Another group that we will meet in this paper is the nontrivial central extension of the
symmetric group on three elements by the infinite cyclic group. We will denote this group
by SZ3 . It can be defined by generators and relation by the equality SZ3 = 〈σ1, σ2 | σ1σ2σ1 =
σ2σ1σ2, σ 2

1 = σ 2
2 〉.

In this paper we will work with algebraic triangulated categories (see [3] and references
there in) over some fixed algebraically closed field k. In fact, all that we need is to take
the cones of morphisms between exact functors and we may assume that our triangulated
categories are equipped with any enhancement that allows us to do this (see [3]). If T is
an algebraic triangulated category, then for each X ∈ T we have the derived Hom-functor
RHomT (X, −):T → Dk with the left adjoint − ⊗ X:Dk → T . Here Dk denotes the derived
category of the category of k-linear spaces. If for each Y ∈ T the complex RHomT (Y , X)
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has finite dimensional total homology, then the functor − ⊗ X:Dk → T has also the left
adjoint DRHomT (−, X):T → Dbk, where D = RHomDbk(−, k) is the usual duality on the
bounded derived category Dbk of finite dimensional vector spaces. We will call the object
X ∈ T twisting if for each Y ∈ T the complexes RHomT (Y , X) and RHomT (X, Y) have finite
dimensional total homology.

Let us recall that a Serre functor on a triangulated T with finite dimensional Hom-
spaces is an equivalence S:T → T commuting with the shift functor such that there is a
bifunctorial isomorphism φF,G:HomT (F, G) → DHomT (G, SF) for any F, G ∈ T , where
D = Homk(−, k) is the usual duality. If a Serre functor exists, it is unique up to isomor-
phism, but we will not be interested in categories with Serre functor in this paper. Instead
we will be interested in objects in a more or less arbitrary triangulated category for which
the Serre functor exists in a weak sense.

Definition 2·2. The object F ∈ T admits Serre functor if HomT (F, G) and HomT (G, F)
are finite dimensional for any G ∈ T and there exist F′ ∈ T and η:HomT (F, F) → k such
that the composition map

HomT (G, F′) × HomT (F, G) −→ HomT (F, F′) η−−→ k

is a perfect pairing for any G ∈ T . In this case the pair (F′, η) satisfying this condition is
unique modulo isomorphism. We will denote it by (SF, ηF). In particular, whenever we
write SF we mean that F admits Serre functor. We say that F admits inverse Serre functor
if there exists F′′ admitting Serre functor such that SF′′ = F. Of course, such an object is
unique modulo isomorphism and we denote it by S−1F. Whenever we write SkF for some
k ∈Z, we assume that all the required powers of S are defined on F.

Note that if F and G admit Serre functor, then F ⊕ G admits Serre functor and one
can set S(F ⊕ G) = SF ⊕ SG and ηF⊕G = ηFπF + ηGπG, where πF and πG are canonical
projections from

HomT (F ⊕ G, SF ⊕ SG)
∼= HomT (F, SF) ⊕ HomT (F, SG) ⊕ HomT (G, SF) ⊕ HomT (G, SG)

to HomT (F, SF) and HomT (G, SG) correspondingly. For convenience, we introduce also
τ : = S[ − 1], i.e. τ tX = S tX[ − t] by definition.

Definition 2·3. The twisting object E is called m-spherical if τE ∼= E[m − 1] and the space
⊕l∈ZHomT (E[l], E) is two dimensional with the basis IdE, f E, where f E ∈ HomT (E[ −
m], E) and f E ◦ f E = 0 if m = 0.

Definition 2·4. An m-spherical sequence of length k � 2 is a collection of twisting objects
Ei (i ∈Z/kZ) of the category T such that τEi ∼= Ei+1[mi − 1] for some integers mi with∑
i∈Z/kZ

mi = m and

HomT (Ei[l], Ej) =
{

1, if either j = i, l = 0 or j = i + 1, l = −mi,

0, otherwise.

In the case where k = 2 and m = 0 we require also E1 ∼= E0. For each i ∈Z/kZ we choose
some basic element in HomT (Ei[ − mi], Ei+1) and denote it by f E

i . The collection (E0)
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formed by one object is m-spherical sequence of length one if E0 is an m-spherical object. In
this case f E

0 is the element completing IdE0 to the basis of HomT (E0, E0) from the definition
of an m-spherical object.

For an m-spherical sequence (E0, . . . , Ek−1) of length k, we set E = ⊕i∈Z/kZEi. Moreover,
we will sometimes call E an m-spherical sequence meaning that it is a direct sum of
members of such a sequence. One has the adjoint functors RHomT (Ei, −) and − ⊗ Ei

for each i ∈Z/kZ. The sum of counits of these adjunctions gives a morphism of functors
⊕i∈Z/kZRHomT (Ei, −) ⊗ Ei

ev−→ IdT .

Definition 2·5. Given an m-spherical sequence E, the cone endofunctor of the morphism
⊕i∈Z/kZRHomT (Ei, −) ⊗ Ei

ev−→ IdT is called a spherical twist along the sequence E and is
denoted by TE.

Let us recall some basic properties of spherical twists (see [7]). First of all, for any
spherical sequence E, the functor TE is an autoequivalence whose inverse is the cocone

of the sum of units IdT
ev′−→ ⊕i∈Z/kZDRHomT (−, Ei) ⊗ Ei. If (E0, . . . , Ek−1) is an m-

spherical sequence and E′
i ∼= Ei+t[li] for some integers t and li (i ∈Z/kZ), then the sequence

(E′
0, . . . , E′

k−1) is m-spherical too and TE′ ∼= TE. We will write E′ ∼ E in this case and E′ ∼ E
in the opposite case. Note also that if E and E′ are spherical sequences and Ei ∼= Ej[l] for
some integers i, j, l, then, using the condition Ei+1 ∼= SEi[− mi], one gets E′ ∼ E. Since in
the case E′ ∼ E the group generated by TE and TE′ coincides with the group generated by
TE, we will concentrate on the case E′ ∼ E.

Though we are interested in the action of TE and TE′ on the whole category T , in the
major part of our proof we will consider their action on a smaller set. Namely, let us denote
by SphT the equivalence classes of spherical sequences modulo the relation ∼. It is clear
that the action of TE and TE′ on T induces an action of TE and TE′ on SphT . For a spherical
sequence F we will denote its class in SphT by F too.

If mi (i ∈Z/kZ) are numbers from the definition of an m-spherical sequence, then

TE(Ei+1) = Ei[1 − mi] ∼= τ−1Ei+1 (2·1)

for i ∈Z/kZ. In particular, Tk
E(E) = E[k − m], and hence the group generated by TE is an

infinite cyclic group if m = k. In the case m = k, the autoequivalence TE generates either the
infinite cyclic group or a cyclic group of some order divisible by k. Another known property
of spherical twists (see [7, lemma 3·7]) is presented in the next lemma.

LEMMA 2·6. Let 	 be an autoequivalence of the category T and E be an m-spherical
sequence in T . Then 	TE is naturally isomorphic to T	E	.

If E is an m-spherical sequence of length k and E′ is an m′-spherical sequence of length
k′ such that HomT (E, E′[l]) = 0 for any l ∈Z, then TE and TE′ commute, and hence gen-
erate an abelian group. This group is isomorphic to Z×Z if m = k and m′ = k′ since

Tak
E Tbk′

E′ (E) = E[a(k − m)] and Tak
E Tbk′

E′ (E′) = E′[b(k′ − m′)]. If m = k or m′ = k′, then the
group generated by TE and TE′ can be not isomorphic to Z×Z and can be even finite.
We are not going to consider this problem in detail here and will concentrate on the case
where ⊕l∈ZHomT (E, E′[l]) = 0.
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Another situation considered in [7] occurs when k = k′, m = m′ and∑
l∈Z

dimk HomT (E, E′[l]) = k. In this case it can be deduced from Lemma 2·6 that TE

and TE′ satisfy the braid relation TETE′TE = TE′TETE′ . Let us also recall the main result
of [7] that generalises the main result of [18]. We say that the m-spherical sequences
E1, . . . , En of length k form an An-configuration if∑

l∈Z
dimk HomT (Ei, Ej[l]) =

{
k, if |i − j| = 1,

0, if |i − j| > 1.

Then the main result of [7] says that if the m-spherical sequences E1, . . . , En of length
k form an An-configuration and m � 2k, then the group generated by TE1 , . . . , TEn is iso-
morphic to the braid group on n + 1 strands, i.e. the braid group of type An, where
An = (

1 2 · · · (n − 1) n
)
.

The main result of this paper is the following theorem.

THEOREM 2·7. Let E be an m-spherical sequence of length k and E′ be an m’-spherical
sequence of length k’ such that k�k′,

∑
l∈Z

dimkHomT (E, E′[l]) = 0 and E ∼ E′.

(i) Suppose that k′ = k, m′ = m and
∑
l∈Z

dimkHomT (E, E′[l]) = k.

(a) If 3m = 4k and (m, k) = (2, 3), then the group generated by TE and TE′ is
isomorphic to the braid group of type A2.

(b) If 3m = 4k, then the group generated by TE and TE′ is isomorphic to the factor
group of the braid group of type A2 by the cyclic group generated by the element

�
t k

gcd(k,3)
A for some t ∈Z.

(c) If m = 2 and k = 3, then the group generated by TE and TE′ is isomorphic either to

the braid group of type A2 or to the group SZ3 .

(ii) Suppose that k′ = 2k, m′ = 2m and
∑
l∈Z

dimk HomT (E, E′[l]) = 2k.

(a) If 2m = 3k and (m, k) = (1, 2), then the group generated by TE and TE′ is
isomorphic to the braid group of type B2.

(b) If 2m = 3k, then the group generated by TE and TE′ is isomorphic to the factor
group of the braid group of type B2 by the cyclic group generated by the element

�
t 2k

gcd(k−2,4)
B for some t ∈Z.

(c) If m = 1 and k = 2, then the group generated by TE and TE′ is isomorphic either to
the braid group of type B2 or to the group (Z×Z)/(2t, −2t) for some integer t.

(iii) Suppose that k′ = 3k, m′ = 3m and
∑
l∈Z

dimk HomT (E, E′[l]) = 3k.

(a) If 3m = 5k, then the group generated by TE and TE′ is isomorphic to the braid
group of type G2.

(b) If 3m = 5k, then the group generated by TE and TE′ is isomorphic to the factor
group of the braid group of type G2 by the cyclic group generated by the element
�tk

G for some t ∈Z.

(iv) In all the remaining cases TE and TE′ generate the free group F2 on two generators.
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Assume that E and E′ are twisting objects such that Sk(E) ∼= E[m] and Sk′(E′) ∼= E′[m′].
If HomT (E, E′[l]) = 0, then

HomT (E, E′[l + km′ − k′m]) = HomT (E[k′m], E′[l + km′])

= dimk (Skk′E, Skk′E′[l]) = dimk HomT (E, E′[l]) = 0.

Thus, if k′m = km′, then HomT (E, E′[l]) = 0 for any l ∈Z.

3. Free group actions

In this section we will prove the last assertion of Theorem 2·7. We assume that E and E′
are two spherical sequences such that E ∼ E′. Let us start with an easy observation.

LEMMA 3·1. The values of ai = ∑
l∈Z

dimk HomT (Ei, E′[l]) and bi′ =∑
l∈Z

dimk HomT (E, E′
i′[l]) do not depend on i ∈Z/kZ and i′ ∈Z/k′Z. Moreover, kai = k′bi′ .

Proof. Note that

dimk HomT (Ei, E′
i′[l]) = dimk HomT (SEi, SE′

i′[l])
= dimk HomT (Ei+1, E′

i′+1[l + ti,i′])

for some integers ti,i′ (i ∈Z/kZ,d i′ ∈Z/k′Z). Taking the sum over all l and i′ we get ai+1 =
ai and taking the sum over all l and i we get bi′+1 = bi′ . Now, taking the sum over all l, i and
i′, we get kai = k′bi′ .

We will denote the numbers ai from the lemma by aE,E′ . Then Lemma 3·1 guarantees
that aE,E′ is well defined. Note also that from the equality dimk HomT (E′

i′ , Ei+1[mi − l]) =
dimk HomT (Ei, E′

i′[l]) it follows the number bi′ from the lemma is equal to aE′,E.
Let us now give some facts and constructions related to spherical sequences and twists

along them. Suppose that X ∈ T is an object admitting Serre functor such that EndT (X) is
local with the maximal ideal I . Suppose also that f :X → SX is such that fI = 0. If g:Y → X
is such that fg = 0, then g is a split epimorphism, and hence X is a direct summand of Y .
Indeed, if fg = 0, then there is some g′:X → Y such that fgg′ = 0, and hence gg′ ∈ EndT (E)
is not annihilated by f . Then gg′ ∈ I , and hence this element is invertible. Analogously, if
h:SX → Z is such that hf = 0, then SX is a direct summand of Z. In particular, if E and E′
are a spherical sequences such that E′ ∼ E, then hf E

i = f E
i [mi]g = 0 for any integer l and any

h:E → E′[l] and g:E′[l] → E. To see this, it is enough to take X = Ei and f = f E
i in the asser-

tion proved above. For a spherical sequence E, let us introduce f E = ⊕i∈Z/kZf E
i :S−1E → E.

Note that S tE ∼ E is a spherical sequence for any integer t, and hence fS
tE makes sense.

Let us now describe how one can construct Ts
E(E′) in the case where E′ ∼ E. First we

have a triangle
⊕

i∈Z/kZ

a
E,E

′⊕
j=1

Ei[ri,j] → E′ → TEE′ → ⊕
i∈Z/kZ

a
E,E

′⊕
j=1

Ei[ri,j + 1] for some ri,j ∈Z

(i ∈Z/kZ, 1�j�aE,E′). Note that this triangle can be rewritten as

a
E,E

′⊕
t=1

Et
ε0

E,E
′

−−→ E′
ρ0

E,E
′

−−→ TEE′
θ0

E,E
′

−−→
a

E,E
′⊕

t=1

Et[1], (3·1)
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where Et ∼ E for each 1�t�aE,E′ . This triangle satisfies the following properties. For any

i ∈Z/kZ, l ∈Z, f :Ei[l] → E′ and g:TEE′ → Ei[l] there are f̄ and ḡ such that f = ε0
E,E′ f̄ and

g = ḡθ0
E,E′ . Applying the functor Ts

E to this triangle, we get the triangle

a
E,E

′⊕
t=1

τ−sEt
εs

E,E
′

−−→ Ts
EE′

ρs

E,E
′

−−→ Ts+1
E E′

θ s

E,E
′

−−→
a

E,E
′⊕

t=1

τ−sEt[1] (3·2)

satisfying the analogous property. Moreover, we may assume that (θ s−1
E,E′εs

E,E′)[− 1] =
a

E,E
′⊕

t=1
f τ 1−sEt

for each s ∈Z. This equality can be justified for s = 0 and then proceeded via the

functor Ts
E.

Later we will need the following standard lemma.

LEMMA 3·2. For any X ∈ T and any integer s one has

dimk Im HomT
(
θ s

E,E′ , X
)

= dimk Im HomT
(

X, θ s
SE,SE′

)
.

Proof. Let us denote

a
E,E

′⊕
t=1

τ−sEt[1] by H. Since the triangle (3·2) can be obtained from

(3·1) by applying an autoequivalence, it is enough to prove the required equality for s = 0.
It is not difficult to check the required equality for direct summands of TEE′, and so we will
assume that X does not have such direct summands. Then it is enough to show that

Im HomT
(
θ0

E,E′ , X
)

= {f ∈ HomT
(
TEE′, X

) | KerHomT
(

X, θ0
SE,SE′

)
f = 0}.

We will denote the set on the right-hand side by KerHomT
(

X, θ s
SE,SE′

)⊥
.

Let us consider a morphism of the form gθ0
E,E′ :TEE′ → X. Suppose that there is some

h:X → TSESE′ such that hgθ0
E,E′ = 0 and θ0

SE,SE′h = 0. Then we have some morphism

u:TSESE′ → SH such that uhg = 0, and hence also a morphism ū : SH → SH such that
u = ūθ0

SE,SE′ . We get a contradiction, because 0 = uhg = ūθ0
SE,SE′hg = 0. Thus, we have

Im HomT
(
θ0

E,E′ , X
)

⊂ KerHomT
(

X, θ s
SE,SE′

)⊥
.

Let us now pick some f ∈ KerHomT
(

X, θ s
SE,SE′

)⊥
. If f ∈ Im HomT

(
θ0

E,E′ , X
)

, then

f ρ0
E,E′ = 0. Then there is a morphism g:X → SE′ such that gf ρ0

E,E′ = 0. By our

assumptions we have ρ0
SE,SE′gf = 0, and hence there is h:TEE′ → SH[ − 1] such that

gf = ε0
SE,SE′h. Then there is h̄:H → SH[ − 1] such that h = h̄θ0

E,E′ . We get a con-

tradiction, because 0 = gf ρ0
E,E′ = ε0

SE,SE′hρ0
E,E′ = ε0

SE,SE′ h̄θ0
E,E′ρ0

E,E′ = 0. Thus, we have

KerHomT
(

X, θ s
SE,SE′

)⊥ ⊂ Im HomT
(
θ0

E,E′ , X
)

.
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For twisting objects F, G ∈ T , let us set

uF(G) =
∑
l∈Z

dimk HomT (F, G[l]).

If E ∼ F are two spherical sequences, then uE(G) = uF(G) and uG(E) = uG(F) for any G. In
particular, the notation uF(G) makes sense if F or G is considered as an element of SphT . It
is clear also that uF(G) = uG(SF) whenever F admits Serre functor and that for any equiv-
alence 	 one has u	F(	G) = uF(G). Since E ∼ SE for any spherical sequence E, we have
that uG(E) = uG(SE) = uE(G). Applying (2·1), we get also uE(TEG) = uT−1

E E(G) = uE(G).
The crucial technical ingredient of our proof is the following lemma.

LEMMA 3·3. Suppose that aE,E′aE′,E � 4 and X ∈ SphT is such that

uE′(X)�
(
aE,E′aE′,E − 2

)
uE(X)/aE′,E. Then uE′(Ts

EX) � aE,E′uE(X) − uE′(X) for any
nonzero integer s. Moreover, the last mentioned inequality cannot be an equality if X ∼ E′.

Proof. We will prove the required condition simultaneously for all X satisfying the con-
ditions of the lemma. Applying the functor HomT (X, −) to (3·1), we get pieces of a long
exact sequence of the form

HomT (X, TEE′[l − 1])
HomT (X,θ0

E,E
′ [l−1])

−−−−−−−−−−−→
a

E,E
′⊕

t=1

HomT (X, Et[l])

HomT (X,ε0

E,E
′ [l])

−−−−−−−−−−→ HomT (X, E′[l]).

Since Et ∼ E′ for any 1 � t � aE,E′ , the map HomT
(

E′, ε0
E,E′

)
is not surjective. Then we

get the inequalities

dimk Im HomT (X, θ0
E,E′[l − 1])

�
a

E,E
′∑

t=1

dimk HomT (X, Et[l]) − dimk HomT (X, E′[l]),

one of which is not an equality if X ∼ E′. Taking the sum over all l ∈Z, we get the
inequality ∑

l∈Z
dimk Im HomT

(
X, θ0

E,E′[l]
)
� aE,E′uE(X) − uE′(X).

Moreover, this inequality cannot turn into an equality if X ∼ E′. Note also that applying the
functor HomT (−, X) to the triangle (3·2) with s = −1 one gets in an analogous way the
inequality ∑

l∈Z
dimk Im HomT

(
ε−1

E,E′[l], X
)
� aE,E′uE(X) − uE′(X).

that cannot turn into an equality if X ∼ E′.
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For s > 0 let us introduce

As =
∑
l∈Z

dimk Im HomT
(

X, θ s−1
E,E′[l]

)
and Bs =

∑
l∈Z

dimk Im HomT
(
ε−s

E,E′[l], X
)

.

We will prove by induction on s that As, Bs � aE,E′uE(X) − uE′(X) for s > 0 and the inequal-

ity is strict if X ∼ E′. Note that uE′
(
T−s

E X
)
� As and uE′

(
Ts

EX
)
� Bs, and hence we will

get the assertion of the lemma. Everything is already done for s = 1. Suppose that we
have already proved the required equality for s. In particular, we have uE′

(
T±s

E E′) >

aE,E′uE(E′) − uE′(E′) = (
aE,E′aE′,E − 2

)
uE

(
T±s

E E′) /aE′,E, and hence X ∼ T±s
E E′.

Let us consider a nonzero morphism f : X →
a

E,E
′⊕

t=1
τ 1−sEt[l + 1] from

Im HomT (X, θ s−1
E,E′[l]). Let us pick some φ(f ):

a
E,E

′⊕
t=1

τ−sEt[l] → X such that

ηa
E,E

′⊕
t=1

τ−sEt[l]

(
f φ(f )

) = 0. Then we get the diagram

with f̄ such that θ s−1
E,E′[l]f̄ = f . Suppose that φ(f )θ s

E,E′[l − 1] = 0. Then we have φ(f ) =
gεs

E,E′[l] for some g:Ts
EE′[l] → X, and hence f φ(f ) = θ s−1

E,E′[l]f̄ gεs
E,E′[l]. Since X ∼ Ts

EE′ and

both of them are spherical sequences, the morphism f̄ g is annihilated by any morphism
h:Y → Ts

EE′[l] if Y and Ts
EE′[l] do not have isomorphic nonzero direct summands. In

particular, we have fgεs
E,E′[l] = 0, because Ts

EE′ ∼ E.

Now, if f1, . . . , fp is a basis of Im HomT
(

X, θ s−1
E,E′[l]

)
, then we can choose φ(f1), . . . , φ(fp)

in such a way that ηa
E,E

′⊕
t=1

τ−sEt[l]

(
fiφ(fj)

) = 0 for 1�i, j�p, i = j and get p linearly indepen-

dent elements φ(f1)θ s
E,E′[l − 1], . . . , φ(fp)θ s

E,E′[l − 1] of Im HomT
(
θ s

E,E′[l − 1], X
)

. Then

we have

dimk Im HomT
(
θ s

E,E′[l − 1], X
)
� dimk Im HomT

(
X, θ s−1

E,E′[l]
)

.

Taking the sum over all l ∈Z and using Lemma 3·2, we get

As+1 � As � aE,E′uE(X) − uE′(X).

Moreover, by induction hypothesis, the inequality is strict if X ∼ E′. The proof of the
inequality for Bs is dual.
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To prove the last assertion of Theorem 2·7, we will use the ping-pong lemma. To apply this
lemma we need to introduce two disjoint nonempty sets X , X ′ ⊂ SphT such that Ts

E(X ′) ⊂
X and Ts

E′(X ) ⊂X ′ for any nonzero integer s. In fact, we will prove that the action of the

free group on two generators induced by twists along E and E′ is faithful not only on SphT ,
but even on the union of orbits of E and E′ in SphT under the action of the group generated
by TE and TE′ . We denote the last mentioned subset of SphT by SphE,E′ . Hence we define

X =
{

X ∈ SphE,E′ | uE′(X) >
aE,E′

2
uE(X)

}
and

X ′ =
{

X ∈ SphE,E′ | uE(X) >
aE′,E

2
uE′(X)

}
.

It follows directly from the definitions of X and X ′ that X ∩X ′ =∅ if aE,E′aE′,E � 4.

COROLLARY 3·4. If aE,E′aE′,E � 4, then TE and TE′ generate a free subgroup on two
generators in the group of permutations of SphE,E′ .

Proof. By Lemma 3·3, we have

uE′(TEE′) > aE,E′uE(E′) − uE′(E′) = aE,E′aE′,E − 2

aE′,E
uE(E′) �

aE,E′
2

uE(TEE′),

and hence TEE′ ∈X , i.e. X is nonempty. The non emptiness of X ′ will follow from the
condition TE′X ⊂X ′ that we will prove below.

If X ∈X ′, then uE′(X) < 2uE(X)/aE′,E�
(
aE,E′aE′,E − 2

)
uE(X)/aE′,E, and hence by

Lemma 3·3 one has

uE′(Ts
EX) � aE,E′uE(X) − uE′(X) >

aE,E′aE′,E − 2

aE′,E
uE(X) �

aE,E′
2

uE(Ts
EX)

for any nonzero integer s. Thus, Ts
EX ′ ⊂X for any nonzero integer s. Analogously, one has

Ts
E′X ⊂X ′. Thus, the required assertion follows from the ping-pong lemma.

Now we are ready to prove the last item of Theorem 2·7.

Proof of Theorem 2·7 (iv). By Lemma 3·4 it is enough to prove that aE,E′aE′,E � 4 if
none of (i), (ii) and (iii) hold. Since kaE,E′ = k′aE′,E = ∑

l∈Z
dimk HomT (E, E′[l]), one has

aE,E′ , aE′,E � 2 if k � k′ or
∑
l∈Z

dimk HomT (E, E′[l]) > k′. If
∑
l∈Z

dimk HomT (E, E′[l]) = k′ =
kr, then aE′,E = 1 and aE,E′ = r. Thus, one has aE,E′aE′,E � 4 if r ∈ {1, 2, 3}. Finally, the
equality m′ = mr follows from the condition k′m = km′.

Before finishing this section, we will give one more result following from Lemma 3·3 and
the ping-pong lemma. We will need this result in the next section.

COROLLARY 3·5. Let E, E′ and E′′ be m-spherical sequences of length k such that aE,E′ =
aE,E′′ = aE′,E′′ = 3 and there exists a triangle E → E′ → E′′. Let us denote by SphE,E′,E′′ the
union of orbits of E, E′ and E′′ in SphT under the action of the group generated by TE, TE′
and TE′′ . Then the subgroup of the group of permutations of SphE,E′,E′′ generated by TE, TE′
and TE′′ is isomorphic to the free group on three generators.
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Proof. Let us define

X = {X ∈ SphE,E′,E′′ | uE(X) < min
(
uE′(X), uE′′(X)

)},
X ′ = {X ∈ SphE,E′,E′′ | uE′(X) < min

(
uE(X), uE′′(X)

)},
X ′′ = {X ∈ SphE,E′,E′′ | uE′′(X) < min

(
uE(X), uE′(X)

)}.
It is clear that X , X ′ and X ′′ are pairwise disjoint. Since uE′(E) = uE′′(E) = 3

2 uE(E) >

uE(E), we have E ∈X , and hence X is nonempty. Analogously X ′ and X ′′ are
nonempty too.

It follows from the existence of the triangle E → E′ → E′′ that uE(X)�uE′(X) + uE′′(X),
uE′(X)�uE(X) + uE′′(X) and uE′′(X)�uE(X) + uE′(X) for any X ∈ T . It follows from
Lemma 3·3 that, for X ∈X ′ and a nonzero integer s, one has

uE′(Ts
EX) � aE,E′uE(X) − uE′(X) > 3uE(X) − uE(X) > uE(X)

and

uE′′(Ts
EX) � aE,E′′uE(X) − uE′′(X) � 3uE(X) − (

uE(X) + uE′(X)
)
> uE(X),

i.e. Ts
EX ∈X . Analogously one can show that Ts

EX ′′ ∈X , Ts
E′(X ∪X ′′) ∈X ′ and Ts

E′′(X ∪
X ′) ∈X ′′ for any nonzero integer s. Thus, the required assertion follows from the ping-pong
lemma.

4. Actions of generalised braid groups

In this section we will prove the remaining assertions of Theorem 2·7. Thus, we
assume during this section that we are in the settings of Theorem 2·7 and, moreover,∑
l∈Z

dimk HomT (E, E′[l]) = k′ = kr and m′ = mr for some r ∈ {1, 2, 3}. We also set � = A2

if r = 1, � = B2 if r = 2 and � = G2 if r = 3.
Let us first prove that TE and TE′ satisfy the corresponding braid relation. To do this

we adjust degrees of morphisms between E and E′. Since we can apply arbitrary shifts
to direct summands of E and E′ and shift the indices in the enumeration of summands of
E′, we may assume that E and E′ are justified in such a way that HomT (Ei, E′

i′[l]) = 0 if
and only if k | i − i′ and l = 0. Then HomT (E′

i′ , Ei[l]) = 0 if and only if k | i − 1 − i′ and
l = mi−1, where mi (i ∈Z/kZ) are numbers from the definition of a spherical sequence. Note
that for i′ ∈Z/k′Z, one has m′

i′ = mi′ , where m′
i′ are the corresponding numbers for E′. For

i ∈Z, let hi be some nonzero element of HomT (Ei, E′
i) and gi be some nonzero element of

HomT (E′
i−1[ − mi−1], Ei).

LEMMA 4·1. Suppose that
∑
l∈Z

dimk HomT (E, E′[l]) = k′ = kr and m′ = mr for some r ∈
{1, 2, 3}.

(i) If r = 1, then TETE′TE = TE′TETE′ .
(ii) If r = 2, then (TETE′)2 = (TE′TE)2.

(iii) If r = 3, then (TETE′)3 = (TE′TE)3.
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Proof. The first case is known, see [7]. As a result of Lemma 2·6, it is enough to prove
that (TETE′TE)E′ ∼ E′ if r = 2 and (TETE′TETE′TE)E′ ∼ E′ if r = 3.

If r = 2, then, for 0 � i � 2k − 1, we have

TEE′
i ∼= cone

(
Ei

hi−→ E′
i

)
,

TE′ cone

(
Ei

hi−→ E′
i

)
∼= cone

(
E′

i+k−1[ − mi−1]
gi+k−−→ Ei

)
[1],

TE cone
(

E′
i+k−1[ − mi−1]

gi+k−−→ Ei

)
[1] ∼= E′

i+k−1[2 − mi−1].

If r = 3, then, for 0 � i � 3k − 1, we have

TEE′
i ∼= cone

(
Ei

hi−→ E′
i

)
,

TE′ cone

(
Ei

hi−→ E′
i

)
∼= cone

(
(E′

i+k−1 ⊕ E′
i+2k−1)[ − mi−1]

(gi+k gi+2k)−−−−−→ Ei

)
[1],

TE cone

(
(E′

i+k−1 ⊕ E′
i+2k−1)[ − mi−1]

(gi+k gi+2k)−−−−−→ Ei

)
[1]

∼= cone

⎛⎝Ei−1

(
hi+k−1

−hi+2k−1

)
−−−−−→ E′

i+k−1 ⊕ E′
i+2k−1

⎞⎠ [2 − mi−1],

TE′ cone

⎛⎝Ei−1

(
hi+k−1

−hi+2k−1

)
−−−−−→ E′

i+k−1 ⊕ E′
i+2k−1

⎞⎠ [2 − mi−1]

∼= cone
(

E′
i−2[ − mi−2]

gi−1−−→ Ei−1

)
[3 − mi−1],

TE cone
(

E′
i−2[ − mi−2]

gi−1−−→ Ei−1

)
[3 − mi−1] ∼= E′

i−2[4 − mi−1 − mi−2].

All of these isomorphisms can be obtained by a direct application of the octahedral axiom.
Then the required conditions are proved.

Thus, we get a homomorphism γ from B� to the group of autoequivalences of T defined
by the equalities γ (σ1) = TE and γ (σ2) = TE′ and it remains for us to find the kernel of γ .
Applying the octahedral axiom as in the proof of Lemma 4·1, one can show that:

(i) (TETE′)3(Ei) = Ei−3[4 − mi−1 − mi−2 − mi−3] and (TETE′)3(E′
i) = E′

i−3[4 − mi−1 −
mi−2 − mi−3] if r = 1;

(ii) (TETE′)2(Ei) = Ei−2[3 − mi−1 − mi−2] and (TETE′)2(E′
i) = E′

i+k−2[3 − mi−1 − mi−2]
if r = 2;

(iii) (TETE′)3(Ei) = Ei−3[5 − mi−1 − mi−2 − mi−3] and (TETE′)3(E′
i) = E′

i−3[5 − mi−1 −
mi−2 − mi−3] if r = 3;

In particular, one has (γ��)(E) ∼ E and (γ��)(E′) ∼ E′. Note that if 	 is an autoequiva-
lence such that 	(E) ∼ E and 	(E′) ∼ E′, then the permutation of SphE,E′ induced by 	 is
trivial. Indeed, 	TE = T	E	 = TE	, 	TE′ = T

	E′	 = TE′	, and hence 	X ∼ X if and only
if 	TEX ∼ TEX and 	TE′X ∼ TE′X. Lemma 4·1 and the argument above show that γ induces
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an action of the group B�/Z� on SphE,E′ , where Z� denotes the center of the group B� . Our
next goal is to show that this action is faithful with only two exceptions. To do this we will
use the following lemma about groups of the form B�/Z� .

LEMMA 4·2. Suppose that � ∈ {A, B, G} and φ:B�/Z� → K is a homomorphism of
groups. The homomorphism φ is injective if one of the following conditions holds:

(i) � = A and the elements φ(σ1) and φ(σ 2
2 σ1σ

−2
2 ) generate a subgroup isomorphic to

F2;

(ii) � = B and the elements φ(σ1) and φ(σ2σ1σ
−1
2

)
generate a subgroup isomorphic to

F2;

(iii) � = G and the elements φ(σ1), φ(σ2σ1σ
−1
2 ) and φ(σ2σ1σ2σ1σ

−1
2 σ−1

1 σ−1
2 ) generate a

subgroup isomorphic to F3.

Proof. Let us first prove the (ii) and (iii). Note that BB/ZB ∼=Z ∗Z/2Z= 〈x, y | y2 = 1〉
and BG/ZG ∼=Z ∗Z/3Z= 〈x, y | y3 = 1〉, where both isomorphisms send σ1 to x and σ2 to
x−1y. Hence, it is enough to prove that if H is a group generated by x and y such that yr = 1
and the elements x, yxy−1, . . . , yr−1xy1−r generate a free group on r generators, then H is
a free product of Z and Z/rZ. This can be shown, for example, in the following way. It is
clear that the subgroup Fr = 〈x, yxy−1, . . . , yr−1xy1−r〉 ⊂ H is normal. Let us consider the
action of H on it by conjugation. Let us define X ⊂ Fr as the set of elements whose reduced
expressions start and finish with xk for some nonzero integer k and Y ⊂ Fr as the set of
elements whose reduced expressions do not start and do not finish with xk for some nonzero
integer k. It is easy to see that xkYx−k ⊂ X and ylXy−l ⊂ Y for any nonzero integer k and any
1�l�r − 1. Thus, the required assertion follows from the ping-pong lemma.

To prove the first item, let us note first that the group generated by φ(σ1) and
φ(σ 2

2 ) is isomorphic to BB/ZB ∼=Z ∗Z/2Z by the just proved assertion. Let us prove
by induction on the length of the word in σ1 and σ2 representing w ∈BA/ZA that it
can be presented in the form w = (σ2σ1)kw′, where 0�k�2 and w′ ∈ 〈σ1, σ 2

2 〉. Suppose
that w = (σ2σ1)kw′ with w′ ∈ 〈σ1, σ 2

2 〉. We have to prove that σ±1
1 w and σ±1

2 w can be
presented in the required form. If k = 0, then σ±1

1 w = σ±1
1 w′ ∈ 〈σ1, σ 2

2 〉. If k = 1, then
σ1w = σ1σ2σ1w′ = (σ2σ1)2(σ−1

1 w′) and σ−1
1 w = σ−1

1 σ2σ1w′ = (σ2σ1)2(σ 2
2 σ1w′). If k = 2,

then σ1w = σ1σ2σ1σ2σ1w′ = (σ2σ1)(σ 2
2 σ1w′) and σ−1

1 w = σ−1
1 σ2σ1σ2σ1w′ = σ2σ1(σ1w′).

The case of the word σ±1
2 w can be considered in the same manner. Let us now suppose that

(σ2σ1)kw ∈ Kerφ for some w ∈ 〈σ1, σ 2
2 〉. Since 〈σ1, σ 2

2 〉 maps injectively to K, it follows from
φ(w3) = 1 that w = 1. Thus, we have (σ2σ1)k ∈ Kerφ, and hence k = 0, i.e. (σ2σ1)kw = 1.

Now we are ready to prove the results on the faithfulness of the action of B�/Z� on
SphE,E′ .

COROLLARY 4·3. If r = 1 and T2
E′E ∼ E, then the action of BA/ZA on SphE,E′ induced by γ

is faithful.

Proof. From Lemma 4·2, it is enough to prove that TE and T2
E′TET−2

E′ = TT2

E
′E generate

a subgroup isomorphic to the free group on two generators in the group of permutations
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of SphE,E′ . Note that T2
E′E is an m-spherical sequence of length k, and hence as a result of

Corollary 3·4 it is enough to check that aE,T2

E
′E = 2.

Taking the direct summands of the triangle (3·2) with s = 0, 1 we get the triangles

Ei −→ TE′Ei −→ E′
i−1[1 − mi−1] and TE′Ei −→ T2

E′Ei −→ E′
i−2[2 − mi−1 − mi−2]

for all i ∈Z/kZ. It is not difficult to get from the first triangle that aE,T
E
′E = 1 and that the

basis of ⊕l∈ZHomT (E, TE′Ei[l]) is formed by the morphism Ei → TE′Ei from the afore men-
tioned triangle. Since aE,E′ = 1, we get from the second triangle above that either aE,T2

E
′E = 2

or aE,T2

E
′E = 0. Suppose that aE,T2

E
′E = 0. Then combining the triangles above and using the

octahedral axiom we get the commutative diagram

whose right column is a triangle for any i ∈Z/kZ. Applying TE′[mi−1 − 1] to the just
mentioned triangle, we get also the triangle

E′
i−3[1 − mi−2 − mi−3]

f E
′

i−2[1−mi−2]−−−−−−−→ E′
i−2[1 − mi−2] −→ (T3

E′Ei ⊕ TE′Ei[1])[mi−1 − 1].

Then it follows from the uniqueness of a triangle containing a given morphism mod-
ulo isomorphism that (T3

E′Ei ⊕ TE′Ei[1])[mi−1 − 1] ∼= T2
E′Ei−1 ⊕ Ei−1[1], and hence either

TE′Ei[mi−1] ∼= T2
E′Ei−1 or TE′Ei[mi−1] ∼= Ei−1[1]. In any case we get TE′E ∼ E, which is

impossible since aE,T
E
′E = 1. The obtained contradiction implies that aE,T2

E
′E = 2, and thus

the corollary is proved.
Thus, we have the required faithfulness of the action of BA/ZA if T2

E′E ∼ E. The next
lemma shows that this condition is satisfied except the case m = 2, k = 3 mentioned in
Theorem 2·7(i) and that in the exceptional case we really have an action of the group SZ3 .
Moreover, in the next section we will show that this situation really can occur.

LEMMA 4·4. If r = 1 and T2
E′E ∼ E, then (m, k) = (2, 3) and the group generated by TE

and TE′ is isomorphic to SZ3 .

Proof. Suppose that T2
E′E ∼ E. The existence of the triangle TE′Ei → T2

E′Ei → E′
i−2[2 −

mi−1 − mi−2] implies that the basis of ⊕l∈ZHomT (E[l], T2
E′Ei) is formed by the mor-

phisms Ei → T2
E′Ei and Ei−2[2 − mi−1 − mi−2] → T2

E′Ei the first of which can be fac-

tored as Ei → TE′Ei → T2
E′Ei. Then the morphism Ei → T2

E′Ei cannot be invertible, and

hence T2
E′Ei ∼= Ei−2[2 − mi−1 − mi−2]. Using the same triangle, one can see that the basis
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of ⊕l∈ZHomT (T2
E′Ei, E[l]) is formed by the morphisms T2

E′Ei → Ei+1[mi] and T2
E′Ei →

Ei−1[2 − mi−1] second of which is annihilated by the morphism TE′Ei → T2
E′Ei. Then we

get also T2
E′Ei ∼= Ei+1[mi]. The condition Ei−2[2 − mi−1 − mi−2] ∼= Ei+1[mi] can be satisfied

only if k | 3 and mi−1 + mi−2 + mi = 2, i.e. only if (m, k) = (2, 3).

Let us now prove that the homomorphism φ : SZ3 → Aut(T ) sending σ1 to TE and σ2 to
TE′ is well defined. Since we already know that TETE′TE = TE′TETE′ , it is enough to show
that T2

E = T2
E′ . Since T2

E′E ∼ E, we have T2
E′TE = TT2

E
′ET2

E′ = TET2
E′ . Multiplying this equality

by TE′ on the left, we get T3
E′TE = TE′TET2

E′ = TETE′TETE′ = T2
ETE′TE, and hence T2

E′ = T2
E.

Since T2
E′E ∼ E and T2

E′E′ ∼ E′, we get an action of the symmetric group S3 on SphE,E′ .
Note that TE′ fixes E′ and interchanges E and TE′E while TE fixes E and interchanges E′ and
TEE′ ∼ T2

ETE′E ∼ TE′E. Then the action of S3 on SphE,E′ is faithful, and hence the kernel of

φ is contained in the subgroup of SZ3 generated by σ 2
2 (note that this subgroup is the center

of SZ3 ). Thus, it remains to show that φ(σ 2t
2 ) = T2t

E′ ∼= IdT for any nonzero integer t. But it

follows from (2·1) that T6t
E′ E′

i = E′
i[2t] ∼= E′

i, and hence the proof of the lemma is finished.
Let us now consider the case � = B.

COROLLARY 4·5. If r = 2 and TEE′ ∼ E′, then the action of BB/ZB on SphE,E′ induced by
γ is faithful.

Proof. From Lemma 4·2, it is enough to prove that TE′ and TETE′T−1
E = TTEE′ generate a

subgroup isomorphic to the free group on two generators in the group of permutations of
SphE,E′ . As a result of Corollary 3·4, it is enough to check that aE′,TEE′ = 2. This follows
from the existence of the triangle

E′
i −→ TEE′

i −→ Ei[1]

which is simply the triangle (3·1) adopted to the case under consideration.

Thus, we have the required faithfulness of the action of BB/ZB if TEE′ ∼ E′. The next
lemma shows that this condition is satisfied except the case m = 1, k = 2 mentioned in the
second item of Theorem 2·7(ii) and that in the exceptional case we have an action of the
group (Z×Z)/(2t, −2t) for some integer t. Moreover, in the next section we will show that
this situation really can occur.

LEMMA 4·6. If r = 2 and TEE′ ∼ E′, then (m, k) = (1, 2) and the group generated by TE

and TE′ is isomorphic to (Z×Z)/(2t, −2t) for some integer t.

Proof. Suppose that TEE′ ∼ E′. The existence of the triangle E′
i → TEE′

i → Ei[1] implies
that the basis of ⊕l∈ZHomT (E′[l], TEE′

i) is formed by the morphisms E′
i → TEE′

i and
E′

i+k−1[1 − mi−1] → TEE′
i the first of which is annihilated by the nonzero morphism TEE′

i →
Ei[1], and hence cannot be an isomorphism. Then TEE′

i ∼= E′
i+k−1[1 − mi−1]. Using the same

triangle, one can see that the basis of ⊕l∈ZHomT (TEE′
i, E′[l]) is formed by the morphisms

TEE′
i → E′

i+1[mi] and TEE′
i → E′

i[1] the second of which is annihilated by the morphism
E′

i → TEE′
i, and hence cannot be an isomorphism. Then we get also TEE′

i ∼= E′
i+1[mi]. The

condition E′
i+k−1[1 − mi−1] ∼= Ei+1[mi] can be satisfied only if 2k | k − 2 and mi−1 + mi = 1,

i.e. only if (m, k) = (1, 2).
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Since TETE′ ∼= TTEE′TE ∼= TE′TE, the group generated by TE and TE′ is isomorphic to a
factor group of Z×Z. By (2·1) we have TE′E′

i = E′
i−1[1 − mi−1] for any i ∈Z/4Z. On the

other hand, we have shown that TEE′
i ∼= E′

i+1[1 − mi−1]. Suppose that the element (a, b) ∈
Z×Z lies in the kernel of the homomorphism from Z×Z to Aut(T ) sending (1,0) to TE and
(0,1) to TE′ . We may assume for convenience that a + b � 0. Then we have E′

i ∼= Ta
ETb

E′E′
i =

E′
i+a−b[a + b −

a+b∑
s=1

mi−s], and hence 4 | a − b and a + b = (a + b)/2, i.e. b = −a and 2 |
a. Thus, the group generated by TE and TE′ is isomorphic to (Z×Z)/(2t, −2t) for some
integer t.

It remains to prove the faithfulness for � = G.

COROLLARY 4·7. If r = 3, then the action of BG/ZG on SphE,E′ induced by γ is faithful.

Proof. As a result of Lemma 4·2, it is enough to prove that TE, TE′TET−1
E′ = TT

E
′E and

(TE′TETE′)TE(TE′TETE′)−1 = TT
E
′TET

E
′E generate a subgroup isomorphic to the free group on

three generators in the group of permutations of SphE,E′ . From Corollary 3·5, it is enough
to check that aE,T

E
′E = aE,(T

E
′TET

E
′ )E = aT

E
′E,(T

E
′TET

E
′ )E = 3 and there exists a triangle of the

form E → F → TE′E with F ∼ TE′TETE′E. Direct calculations using the octahedral axiom
show that

TE′Ei ∼= cone

(
(E′

i−1 ⊕ E′
i+k−1 ⊕ E′

i+2k−1)[ − mi−1]
(gi gi+k gi+2k)−−−−−−→ Ei

)
,

TETE′Ei[mi−1 − 1]

∼= cone

⎛⎜⎜⎝E2
i−1

(
hi−1 0

−hi+k−1 hi+k−1

0 −hi+2k−1

)
−−−−−−−−−→ (E′

i−1 ⊕ E′
i+k−1 ⊕ E′

i+2k−1)

⎞⎟⎟⎠
and

TE′TETE′Ei[mi−1 − 2]

∼= cone

⎛⎝(E′
i−2 ⊕ E′

i+k−2 ⊕ E′
i+2k−2)[ − mi−2]

(
0 gi+k−1 gi+2k−1

gi−1 gi+k−1 0

)
−−−−−−−−−→ E2

i−1

⎞⎠ .

Now the equalities aE,T
E
′E = aE,(T

E
′TET

E
′ )E = 3 and aT

E
′E,(T

E
′TET

E
′ )E = aE,(TET

E
′ )E = 3 can be

easily verified. Let us choose some α, β ∈ k∗ such that α + β = 0. Applying the octahedral
axiom to the composition

(
αIdEi βIdEi

) ◦
(

0 gi+k gi+2k

gi gi+k 0

)
= (

βgi (α + β)gi+k αgi+2k
)

and noting that cone
(
βgi (α + β)gi+k αgi+2k

) ∼= cone
(
gi gi+k gi+2k

)
, we get the triangles

Ei −→ TE′TETE′Ei+1[mi − 2] −→ TE′Ei
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for all i ∈Z/kZ. Taking the direct sum of these triangles, we get the required triangle E →
F → TE′E with F ∼ TE′TETE′E.

Let us now deduce Theorem 2·7 from our results.

Proof of Theorem 2·7. Since (iv) is already proved, we may assume that we are in the
settings of one of (i), (ii) and (iii). From Corollaries 4·3, 4·5, 4·7 and Lemmas 4·4 and 4·6, if
the action of B�/Z� on SphE,E′ is not faithful, then either r = 1, (m, k) = (2, 3) and the group

generated by TE and TE′ is isomorphic to SZ3 or r = 2, (m, k) = (1, 2) and the group generated
by TE and TE′ is isomorphic to (Z×Z)/(2t, −2t) for some integer t, i.e. some condition of
Theorem 2·7 is satisfied.

If the action of B�/Z� on SphE,E′ is faithful, then the group generated by TE and TE′
is isomorphic to B�/〈�t

�〉 for some nonnegative integer t. Let us consider all values of �

separately.

(i) Suppose that � = A. Then t has to satisfy the condition (TETE′)3t ∼= IdT . Then we have

E′
i ∼= (TETE′)3tE′

i = E′
i−3t

[
4t −

3t∑
s=1

mi−s

]
and k | 3t, i.e. k/gcd(k, 3) | t. Now we have

(TETE′)3a k
gcd(k,3) E′

i = Ei′
[
(4k − 3m)a/gcd(k, 3)

]
, i.e. t can be nonzero only if 3m = 4k.

(ii) Suppose that � = B. Then t has to satisfy the condition (TETE′)2t ∼= IdT .

Then we have E′
i ∼= (TETE′)2tE′

i = E′
i+(k−2)t

[
3t −

2t∑
s=1

mi−s

]
. Then we have

2k | (k − 2)t, i.e. 2k/gcd(k − 2, 4) | t. Now we have (TETE′)2a 2k
gcd(k−2,4) E′

i =
Ei′

[
(3k − 2m)2a/gcd(k − 2, 4)

]
, i.e. t can be nonzero only if 2m = 3k.

(iii) Suppose that � = G. Then t has to satisfy the condition (TETE′)3t ∼= IdT . Then

we have E′
i ∼= (TETE′)3tE′

i = E′
i−3t

[
5t −

3t∑
s=1

mi−s

]
, and hence k | t. Now we have

(TETE′)3akE′
i = Ei′[(5k − 3m)a], i.e. t can be nonzero only if 3m = 5k.

5. Derived categories of hereditary algebras and non faithful actions of braid groups

In this section we will consider spherical sequences in the bounded derived categories of
hereditary algebras of types A3 and D4. Note that from [8] these categories are equivalent
to the stable categories of associated repetitive algebras. In fact there are several hereditary
algebras and corresponding to them repetitive algebras of types A3 and D4, but the bounded
derived categories of hereditary algebras of the same type are equivalent.

The bounded derived category of a hereditary algebra of type D4 that we will denote by
Db(D4) can be described in the following way (see [8]). Let us consider the quiver ZD4

with the vertex set {0, 1, 2, 3} ×Z and the arrows (0, s)
αr,s−−→ (r, s) and (r, s)

βr,s−−→ (0, s + 1)
for r ∈ {1, 2, 3}, s ∈Z. Let us consider the ideal ID4 of kZD4 generated by linear combina-
tions of paths αr,sβr,s−1 and β1,sα1,s + β2,sα2,s + β3,sα3,s for r ∈ {1, 2, 3}, s ∈Z. The ideal
ID4 is called the mesh ideal. The category whose objects are the vertices of ZD4, morphisms
from e1 to e2 are elements of e2(kZD4/ID4)e1 and the composition is induced by the mul-
tiplication in kZD4/ID4 , is called the mesh category of D4. It is denoted by k(D4). The
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subcategory of Db(D4) formed by indecomposable objects is equivalent to k(D4). The cate-
gory Db(D4) has a Serre functor S and the shift functor [1]. On indecomposable objects these
functors are defined by the equalities S(r, s) = (r, s + 2) and (r, s)[1] = (r, s + 3). Let us
define Ei = (1, −i) and E′

i = (2, 1 − i) for i ∈ {0, 1, 2}. Then E and E′ are sherical sequences
of length 3 and sphericity 2 with m0 = m1 = m′

0 = m′
1 = 1 and m2 = m′

2 = 0. Moreover, they
are adjusted in such a way that HomDb(D4)(Ei, Ej

′[l]) is one dimensional if i = j and l = 0 and
equals zero otherwise.

Now, applying the octahedral axiom and using the AR triangles E0
β1,0−−→ (0, 1)

α1,1−−→ E2[1]

and E1
′ β2,0−−→ (0, 1)

α2,1−−→ E′
0 we get the commutative diagram

whose rows and columns are triangles. The right vertical and lower horizontal triangles give
the isomorphisms TEE′

0 ∼= X ∼= TE′E2[1]. Thus, TE′E ∼ TEE′, and hence T2
E′E ∼ TE′TEE′ ∼ E.

In fact, one can show that TEE′
0 ∼= (3, 2) and that the action of TE and TE′ on the vertices of

ZD4 is defined by the equalities

TE(0, i) = TE′(0, i) = (0, i + 1), TE(1, i) = (1, i + 1), TE′(1, i) = (3, i + 1),

TE(2, i) = (3, i + 1), TE′(2, i) = (2, i + 1), TE(3, i) = (2, i + 1), TE′(3, i) = (1, i + 1).

Since we get the condition T2
E′E ∼ E, the subgroup of Aut

(
Db(D4)

)
generated by TE and TE′

is isomorphic to SZ3 by Lemma 4·4.
In an analogous way we describe the bounded derived category Db(A3) of a hereditary

algebra of type A3. The quiver ZA3 has the vertex set {−1, 0, 1} ×Z and the arrows (0, s)
αr,s−−→

(r, s) and (r, s)
βr,s−−→ (0, s + 1) for r = ±1 and s ∈Z. The mesh ideal IA3 of kZA3 is gen-

erated by linear combinations of paths αr,sβr,s−1 and β−1,sα−1,s + β1,sα1,s for r = ±1 and
s ∈Z. Then we get the corresponding mesh category k(A3) equivalent to the subcategory of
Db(A3) formed by indecomposable objects. The category Db(A3) has the Serre functor S and
the shift functor [1] that are defined on indecomposable objects by the equalities S(r, s) =
(− r, s + 1) and (r, s)[1] = (− r, s + 2). Let us define Ei = (0, −i), E′

i = (1, −i) and E′
i+2 =

(− 1, −i) for i ∈ {0, 1}. Then E is a spherical sequence of length 2 and sphericity 1 and E′ is a
spherical sequence of length 4 and sphericity 2 with m0 = m′

0 = m′
2 = 1 and m1 = m′

1 = m′
3 =

0. Moreover, they are adjusted in such a way that HomDb(A3)(Ei, Ej
′[l]) is one dimensional
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if 2 | j − i and l = 0 and equals zero otherwise. Since E1
′ β1,−1−−−→ E0

α1,0−−→ E′
0 is an AR triangle,

we have TEE′
0 ∼= E1

′[1], and hence TEE′ ∼ E′. Then the subgroup of Aut
(
Db(A3)

)
generated

by TE and TE′ is isomorphic to (Z×Z)/(2t, −2t) for some integer t, by Lemma 4·6. In fact,
one can show that T2

E
∼= T2

E′ in this case, and hence the subgroup of Aut
(
Db(A3)

)
generated

by TE and TE′ , is isomorphic to (Z×Z)/(2, −2) ∼=Z×Z/2Z.

6. Application to derived Picard groups

All modules in this paper are right modules. All algebras considered in this section are
finite dimensional. A complex X is by definition a Z-graded module with a differential d

of degree 1, i.e. a sequence · · · → Xi
di+1−−→ Xi+1

di+2−−→ Xi+2 → · · · such that di+1di = 0 for
any integer i. The complex X is concentrated in degrees from l to r if Xi = 0 for i < l and
i > r. If at the same time Xl, Xr = 0, then we say that X has length r − l + 1. For an algebra
�, we denote by Cb

�, Kb,p
� and Db

� the category of bounded complexes of finitely generated
�-modules, the bounded homotopy category of finitely generated projective �-modules and
the bounded derived category of finitely generated �-modules respectively. We denote by
J� the Jacobson radical of �. Let us recall also that any object of Kb,p

� can be represented
by a unique modulo isomorphism in the category Cb

� complex (X, d) such that Im d ⊂ XJ�.
Such a complex X is called a radical complex. If the complexes X and Y represent the same
element of Kb,p

� and X is radical, then X is called the radical representative of Y . We denote
by L(Y) the length of the radical representative of Y .

Let us recall that X ∈ Kb,p
� is called a pretilting complex if Hom

Kb,p
�

(X, X[i]) = 0 for any

nonzero integer i. If X is pretilting and additionally the smallest full triangulated subcategory
of Kb,p

� which contains X and is closed under direct summands coincides with Kb,p
� , then X

is called tilting.
It was proved in [4] that the algebras � and � are derived equivalent if and only if there

exists a tilting complex X ∈ Kb,p
� such that End

Kb,p
�

(X) is isomorphic to � as a k-algebra. In

the same paper it is explained how to construct an equivalence from Db
� to Db

� sending �

to X using the tilting complex X and an algebra isomorphism � ∼= End
Kb,p

�

(X). One can also

look in [22, 23] for how to construct an equivalence from Kb,p
� to Kb,p

� using the same data.

In this paper we will use the fact that if U = (Ui → · · · → Uj) is an object of Kb,p
� , then the

corresponding equivalence sends U to a totalisation of a bicomplex whose kth column is
the images of Uk under this equivalence, while the image of Uk can be calculated using the
fact that Uk is a direct sum of direct summands of �. Equivalences that can be constructed
using the afore mentioned algorithm are called standard equivalences. Standard equivalences
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from Kb,p
� to itself, considered modulo natural isomorphisms, constitute a group under com-

position which is called the derived Picard group of � and is denoted by TrPic(�) (see
[22]). This group was first introduced in [16] and [25] as a group of tilting complexes of
�-bimodules under the operation of derived tensor product.

Let us recall that, for a finite dimensional algebra �, the Picard group Pic(�) is the
group of autoequivalences of the category of �-modules modulo natural isomorphisms. If
� is basic, then this group is isomorphic to the group of outer automorphisms Out(�) =
Aut(�)/Inn(�). Here Aut(�) is the group of automorphisms of � and Inn(�) is the group
of inner automorphisms of �. This isomorphism is induced by the map Aut(�) → Pic(�)
that sends an automorphism θ :� → � to the autoequivalence − ⊗� �θ−1 . Here �θ−1 is
the bimodule coinciding with � as a left module and having the right multiplication ∗, by
elements of �, defined by the equality x ∗ a = xθ−1(a), where the multiplication on the right-
hand side is the original multiplication of �. The group Pic(�) is a subgroup of TrPic(�) in
a natural way. Moreover, an element of TrPic(�) belongs to Pic(�) if and only if the radical
representative of the corresponding tilting complex is concentrated in degree zero. In fact,
the autoequivalence − ⊗� �θ−1 can be defined by the tilting complex � and the isomor-
phism from � to End�(�) that sends x ∈ � to the left multiplication by θ(x). Let us recall
also that Pic0(�) is the subgroup of Pic(�) fixing all �-modules. Unlike Pic(�), the group
Pic0(�) is preserved by standard derived equivalences.

Let us now introduce the series of algebras �k (k � 1). We define the quiver Qk. Its vertex
set is Z/kZ∪Z/3kZ. For an integer i we will denote by i its class in Z/3kZ and by i its class
in Z/kZ. The arrows of Qk are αi:i → i and βi:i → i + 1 (i ∈Z/3kZ).

Let Ik be the ideal of kQk generated by the elements αi+k+1βi, αi+2k+1βi, βiαi − βi+kαi+k

and βiαi − βi+2kαi+2k for all i ∈Z/3kZ. We set �k = kQk/Ik. This algebra is a selfinjec-
tive algebra of finite representation type with tree type D4, frequency k and torsion order
3. In fact, �k is a unique modulo isomorphism basic algebra with such tree type, fre-
quency and torsion order. We denote by ex the idempotent of �k corresponding to the vertex
x ∈Z/kZ∪Z/3kZ. We also set Px = ex�k and Px,y = �kex ⊗ ey�k. Thus, Px is the projec-
tive �k-module corresponding to the idempotent ex and Px,y is the projective �k-bimodule
corresponding to the idempotent ex ⊗ ey.

The algebra �k has Nakayama automorphism ν of order 3k defined by the equalities
ν(ei) = ei−1, ν(ei) = ei−1, ν(αi) = αi−1 and ν(βi) = βi−1. Note that, from [15] the functor
− ⊗�k (�k)ν commutes with any standard derived equivalence. This means, in particular,
that Xν

∼= X in Cb
�k

for any radical tilting complex X.
It is not difficult to see that Pi (i ∈Z/kZ) form a 0-spherical sequence E of length k

while Pi (i ∈Z/3kZ) form a 0-spherical sequence E′ of length 3k. Moreover, we have
Hom

Kb,p
�k

(E, E′) = 3k and Hom
Kb,p

�k

(E, E′[l]) = 0 for any nonzero integer l. Thus, we can apply

Theorem 2·7(iii) to conclude that TE and TE′ generate a subgroup of TrPic(�k) isomorphic
to BG2 . In fact, TE and TE′ are the functors of the tensor multiplication by the complexes of
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�k-bimodules

CE =
⊕

i∈Z/kZ

Pi,i
μE−→ �k and CE′ =

⊕
i∈Z/3kZ

Pi,i

μ
E
′−−→ �k

respectively. In both cases �k is placed in the zero degree. The maps μE and μE′ are defined
by the equalities μE(u ⊗ v) = uv for u, v ∈ Pi,i and μE′(u ⊗ v) = uv for u, v ∈ Pi,i. We will
show that in fact TE and TE′ generate almost the whole group TrPic(�k). But first we will
prove some technical lemmas. In fact all details of our proof, except Lemma 6·3, below
will be taken from the proof of the second part of [23, Theorem 1]. We give them here for
the convenience of the reader but, since the difference with the afore mentioned proof is
minor, not in much detail.

LEMMA 6·1. One has Out(�k) ∼=Z/3kZ× k∗, where the generator of Z/3kZ is the
Nakayama automorphism ν and the elements ε ∈ k∗ correspond to the class of the auto-
morphism that is identical on ei, ei, αi and βj for all integers i and j not divisible by k and
sends βj to εβj if k | j. In particular, Pic0(�k) ∼= k∗.

Proof. It follows from [13] and [9] that Out(�k) ∼= AutS(�k)/
(
Inn(�k) ∩ AutS(�k)

)
,

where AutS(�k) denotes the set of automorphisms of �k that stabilise the subalgebra gen-
erated by ex (x ∈Z/kZ∪Z/3kZ). It is clear that the idempotent e0 can be sent only to an
idempotent ei for some i ∈Z/3kZ and that its image determines the images of all other
idempotents. Thus, modulo the Nakayama automorphism ν that generate a central subgroup
Z/3kZ in Out(�k), any element of Out(�k) can be represented by an automorphism fixing
ex for any x ∈Z/kZ∪Z/3kZ. Such an automorphism simply sends αi to κiαi and βi to εiβi

for some κi, εi ∈ k∗ (i ∈Z/3kZ) such that κiεi = κi+kεi+k for any i ∈Z/3kZ. It is also not
difficult to see that, modulo a central element, any invertible element x such that the conju-
gation by x belongs to AutS(�k) can be represented in the form x = ∑

x∈Z/kZ∪Z/3kZ
λxex for

some λx ∈ k∗. Applying a conjugation by such x, we can change the parameters κi and εi in
such a way that κi = 1 for any i ∈Z/3kZ and εi = 1 for any i ∈Z/3kZ such that k � i. Thus,
we get a surjective homomorphism from Z/3kZ× k∗ to Out(�k) described in the assertion
of the lemma. Moreover, one can show that conjugation by x described above cannot turn
the image of α ∈ k∗ to identical automorphism, because such a conjugation preserves the
value of

∏k−1
i=0 εi/κi. Thus, we get the required isomorphisms.

We will denote by ε̂ ∈ Pic0 the image of ε ∈ k∗ under the isomorphism from Lemma 6·1.

LEMMA 6·2. (TETE′)3 ∼= − ⊗ (�k)(−̂1)kν−3 [5].

Proof. It follows from the formula for (TETE′)3, from the previous section that
(TETE′)3

(
P ⊗ (�k)ν3 [ − 5]

) ∼= P for any projective �k-module P, and hence (TETE′)3 ◦( − ⊗(�k)ν3 [5]
) ∈ Pic0. There is a canonical map from TrPic(�k) to the group of isomor-

phism classes of �k-bimodules inducing stable autoequivalences of �k (see [16, section 3·4]
for details). This map is injective on Pic0(�k). At the same time it sends TE and TE′ to �k

and [ − 5] to �5
�

op
k ⊗k�k

(�k). So it is enough to prove that �5
�

op
k ⊗k�k

(�k) ∼= (�k)(−̂1)kν−3 , but

it follows from [20, section 3].
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LEMMA 6·3. Let X ∈ Kb,p
�k

be a tilting complex. Then there is some autoequivalnce 	

belonging to the group generated by TE and T ′
E such that the radical representative of 	X

is concentrated in one degree.

Proof. It is enough to prove that for any tilting complex X with L(X) > 1 there is some
	 in the group generated by TE and T ′

E such that L(	X) < L(X). We may assume that X is
radical and is concentrated in degrees from 0 to L − 1, where L = L(X) > 1. Then either Pi

or Pi is a direct summand of XL−1 for some i ∈Z/3kZ. We will consider the case where Pi

is a direct summand of XL−1, the second case is analogous. It follows from the condition
Xν

∼= X that Pi is a direct summand of XL−1 for any i ∈Z/3kZ. If Pi is a direct summand
of X0 for some i ∈Z/3kZ, then the map αiβi−1:Pi−1 → Pi induces a map from XL−1 to X0

that is annihilated by d1 and dL−1, because X is radical and J�kαiβi−1 = αiβi−1J�k = 0.

Thus, we obtain a nonzero morphism from X to X[1 − L] in Kb,p
�k

that is impossible. Then
Pi is a direct summand of X0 for some i ∈Z/kZ, and one can show that in fact Pi is a
direct summand of X0 and is not a direct summand of XL−1 for any i ∈Z/kZ. Let us apply
TE′ to X. Without loss of generality, we may assume that TE′X is radical. It follows from
X ∼= − ⊗�k CE′ that TE′X is concentrated in degrees from −1 to L − 1, all direct summands
of (TE′X)−1 are isomorphic to Pi for some i ∈Z/3kZ and all direct summands of (TE′X)L−1

are isomorphic to direct summands of XL−1, i.e. to Pi for some i ∈Z/3kZ. On the other
hand, Hom

Kb,p
�k

(TE′X[L − 1], Pi) = Hom
Kb,p

�k

(X[L − 1], Pi[ − 1]) = 0, and hence Pi cannot be

a direct summand of (TE′X)L−1. Thus, TE′X is concentrated in degrees from −1 to L − 2. If
(TE′X)−1 = 0, then the required assertion is proved. In the opposite case Pi cannot be a direct
summand of XL−2 for i ∈Z/3kZ, and hence all direct summands of XL−2 are isomorphic to
Pi for i ∈Z/kZ. Let us apply TE to TE′X assuming that the resulting complex is radical. The
same argument as above shows that TETE′X is concentrated in degrees from −2 to L − 3
and if (TETE′X)−2 = 0, then all direct summands of (TETE′X)L−3 are isomorphic to Pi with
i ∈Z/3kZ. Continuing this process, we get that if L(	X) � L(X) for any 	 from the group
generated by TE and T ′

E, then we may assume that (TETE′)3X is concentrated in degrees
from −6 to L − 7. On the other hand, (TETE′)3 ∼= − ⊗ (�k)(−̂1)kν−3 [5] by Lemma 6·2, and

hence (TETE′)3X ∼= X(−̂1)k [5] is concentrated in degrees from −5 to L − 6. The obtained
contradiction completes the proof of the lemma.

THEOREM 6·4. TrPic(�k) ∼= (BG ×Z×Z/3kZ× k∗)/
(
�−1

G , 5, 3, (−̂1)k
)
. Under this

isomorphism the standard generators σ1 and σ2 of BG correspond to TE and TE′ , the gener-
ator 1 ∈Z corresponds to the shift functor [1], the generator 1 ∈Z/3kZ corresponds to the
Nakayama automorphism ν and ε ∈ k∗ corresponds to the automorphism ε̂ ∈ Pic0(�k).

Proof. One can directly construct an isomorphism between C ⊗�k (�k)ε−1 and
(�k)ε−1 ⊗�k C for C = CE, CE′ (see the proof of [23, proposition 3]). Since the shift functor
and the Nakayama functor commute with any standard derived equivalence we get a homo-
morphism φ:BG ×Z×Z/3kZ× k∗ → TrPic(�k) described in the theorem. Let us prove
that the kernel of this homomorphism is generated by the element (�−1

G , 5, 3, (−̂1)k) that
belongs to the kernel by Lemma 6·2. Suppose that the element (w, a, b, ε̂) belongs to Kerφ.
Then φ(w) commutes with φ(w′) for any w′ ∈BG. Since φ|BG is injective by item (iii) of
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Theorem 2·7, we have w ∈ ZG, i.e. w = �t
G for some integer t. Then

(w, a, b, ε̂)
(
�−t

G , 5t, 3t, (−̂1)kt
)

=
(

1, a + 5t, b + 3t, (−̂1)kt̂ε
)

∈ Kerφ.

But since the intersection of Pic(�k) with the subgroup of TrPic(�k) generated by the shift
is trivial, we have a = −5t, 3k | b − 3t and ( − 1)ktε = 1 by Lemma 6·1, i.e. (w, a, b, ε̂) =(
�−1

G , 5, 3, (−̂1)k
)−t

.

It remains to prove that φ is surjective. But it follows from Lemma 6·3 that for any
	 ∈ TrPic(�k) there is some w ∈BG such that φ(w)	 belongs to the direct product of
Pic(�k) and the subgroup of TrPic(�k) generated by the shift functor. Since the Im φ

contains Pic(�k) and the shift functor, we have 	 ∈ Im φ and the theorem is proved.
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