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Abstract
Multilayer networks are in the focus of the current complex network study. In such networks, multiple
types of links may exist as well as many attributes for nodes. To fully use multilayer—and other types
of complex networks in applications, the merging of various data with topological information renders a
powerful analysis. First, we suggest a simple way of representing network data in a data matrix where rows
correspond to the nodes and columns correspond to the data items. The number of columns is allowed
to be arbitrary, so that the data matrix can be easily expanded by adding columns. The data matrix can
be chosen according to targets of the analysis and may vary a lot from case to case. Next, we partition the
rows of the data matrix into communities using a method which allows maximal compression of the data
matrix. For compressing a data matrix, we suggest to extend so-called regular decomposition method for
non-square matrices. We illustrate our method for several types of data matrices, in particular, distance
matrices, and matrices obtained by augmenting a distance matrix by a column of node degrees, or by
concatenating several distance matrices corresponding to layers of a multilayer network. We illustrate
our method with synthetic power-law graphs and two real networks: an Internet autonomous systems
graph and a world airline graph. We compare the outputs of different community recovery methods on
these graphs and discuss how incorporating node degrees as a separate column to the data matrix leads
our method to identify community structures well-aligned with tiered hierarchical structures commonly
encountered in complex scale-free networks.
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1. Introduction
Networks annotated with node attributes and link attributes form a rich class of data structures.
For example, multilayer and multiplex networks are obtained when nodes and links sharing a
common attribute are identified as a layer (Kivelä et al., 2014; Interdonato et al., 2019). This arti-
cle presents a simple method for identifying communities in such networks. The first step is to
combine various relevant data sets into a single data matrix, denoted M, in which rows corre-
spond to network nodes and columns to data items. The second step is to arrange the rows of M
into disjoint groups, called communities, using a regular decomposition (RD) method adopted
from (Reittu et al., 2014, 2018, 2019; Norros et al., 2022). RD determines communities by a parti-
tion of nodes which allows a maximal compression ofM. This is similar in spirit to nonparametric
Bayesian methods associated with stochastic block models (SBMs) (Peixoto, 2015). However, in
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our case we suggest to partition only the rows. This can be seen as an extreme case of block model-
ing in which every column is considered as a block. To determine the number of communities, we
suggest using the minimum description length principle (MDL) following the RD method (e.g.,
Reittu et al., 2014; Norros et al., 2022). In this approach, each partition of the node set induces
a certain probability distribution on the space of data matrices. The rounded-up integer part of
minus logarithm of the probability of the observed data matrix M is the length of the Shannon
code for M (e.g., Cover & Thomas, 2006). Such a coding exists, provably, but there is no need
to know how it is constructed. The length of such a code is just used to measure the goodness
of fit of a model. According to the MDL principle, the full coding length of M is the sum of the
Shannon code length and the prefix code lengths of all parameters of the associated probability
distribution. For instance, one of such parameters is the number of communities k; its approxi-
mate code length is log k. By minimizing the full code length, MDL is capable of optimizing all
parameters (see Peixoto, 2012; Grünwald, 2007; Norros et al., 2022). In our sample cases, we use
graph distances as data items associated with nodes. The use of distance matrix as a basis for
spectral community detection was suggested in (Bhattacharyya & Bickel, 2014) and as basis for
RD in (Reittu et al., 2018). One benefit of such a choice is that in a sparse connected network,
every pair of nodes has a nonzero distance entry, whereas most entries of the adjacency matrix
are zero (Reittu et al., 2018). In multiplex networks, one approach of constructing a data matrix
is to concatenate distance matrices associated with distinct layers so thatM = [D1 . . .Dm] where
Ds indicates the distance matrix of layer s= 1, . . . ,m. In the case of directed networks, each dis-
tance matrix Ds may be replaced by [Ds,DT

s ] where the ij-entry of Ds equals the shortest directed
path length from i to j, and the transposed matrix, DT

s , gives the corresponding path lengths in
the reverse direction. In the aforementioned cases, the data matrix is determined by the adjacency
matrix. However, because our method makes no assumptions on the number of columns of the
data matrix, arbitrary type of node attributes can easily be incorporated as auxiliary columns in
the data matrix.

The performance of the proposed method is illustrated by analyzing three cases, one synthetic
network and two real-world networks. First, we consider a synthetic power-law random graph in
which each node possesses a capacity characterizing the propensity of link formation with other
nodes (Norros & Reittu, 2006; van der Hofstad, 2017). These capacities are considered as extra
data items forming one column in the data matrix M. When the capacities follow a power-law
distribution, a nontrivial asymptotic graph structure emerges (Reittu & Norros, 2004; Norros &
Reittu, 2008b) where nodes can be grouped into tiers so that nodes with capacity inside a certain
interval form a tier, and the tiers characterize shortest path lengths in the network (van derHofstad
& Hooghiemstra, 2008). Our aim is to identify network communities that can be related to the
distribution of the shortest path lengths and consequently to the tiers. Along with high-degree
variability, another challenge is that the whole tier structure has a vanishing relative size in the
large graph limit. Usual community detection algorithms are prone to ignore such small-scale
communities.

Second, as an example of a single-layer real network, we consider a snapshot of the Internet
topology in which the nodes are autonomous systems (AS) and the edges are direct-peering rela-
tionships between them (Gastner & Newman, 2006). The data matrixM equals the graph distance
matrix with an extra column of node degrees added.

Third, as an example of a multiplex real-life network, we investigate a world airline graph,
in which nodes are airports, links are airways, and layers correspond to carriers. This graph is
directed and has a skewed degree distribution, with few high-degree nodes acting as hubs. We
consider concatenated two-way distance matrices of the layers as the data matrix. In this example,
we also demonstrate how to deal withmissing data values which correspond to not fully connected
layers.

Finally, we compare our method with some other widely used approaches in community
detection and data compression.
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1.1 Related work andmain new contributions
Community detection is by now a well-developed field having a literature covering lots of effi-
cient computational methods and deep theoretical treatments of consistency (Girvan & Newman,
2002; Karrer & Newman, 2011; Fortunato, 2010; Peixoto, 2015; Zhao et al., 2012; Lei & Rinaldo,
2015; Zhang & Zhou, 2016; Xu et al., 2020; Avrachenkov et al., 2022; Bolla, 2013). Theoretically,
for a given statistical generative model, the most accurate community recovery is achieved by a
maximum likelihood estimator (Zhao et al., 2012; Zhang & Zhou, 2016) but implementing this is
usually computationally infeasible for large networks. Although popular adjacency matrix-based
spectral clustering methods seek to cluster nodes by their expansion profiles (Lei & Rinaldo, 2015),
an alternative approach is to cluster nodes by their distance profiles (Reittu et al., 2018). The rele-
vance of distances in identifying network communities has not yet beenmuch studied empirically.
In many cases, expansion and distance profiles lead to similar results, but in certain cases distance
profiles might expose soft hierarchies which are not easy to detect directly from the adjacency
matrix.

In the present article, we propose a general approach where nodes are clustered based on
generic data profiles with an arbitrary number of numerical data associated with every node.
Community recovery in our generalized approach is based on maximizing a Poisson likelihood.
This is similar to the SBM in that both generate random matrices with rows corresponding to
nodes, and the probability distribution of each row is determined by the community of the cor-
responding node. Nevertheless, there is one crucial difference: although SBM generates samples
of the full graph (adjacency matrix), our model captures a user-specified set of features associ-
ated with each node. Choosing adjacency indicator variables as features, we obtain the adjacency
matrix as a special case. When fitted to an adjacency matrix, our method becomes similar to a
classical SBM-based maximum likelihood estimator. SBM-based community recovery methods
are known to suffer from degree bias which can be avoided by employing a degree-corrected SBM
method (Karrer &Newman, 2011; Zhao et al., 2012). Instead of adjacencymatrices, our model can
be fitted into arbitrary node features. Our examples focus on graph distances and node degrees as
data items. When fitted to distance data, our model does not implicitly impose Poisson degree
distributions, and therefore, our method applied to distance matrices provides an alternative way
to avoid degree bias in community detection.

There is no canonical definition of a community in networks. In the present article, we inter-
pret communities from an information-theoretical viewpoint of the MDL principle (Grünwald,
2007). As a result, an objective measure of the success of community detection is the compression
rate of the data at hand. In the current work, we suggest to use this method to generic data matri-
ces describing a network. The novelty of our work comes from suggesting a systematic way on
finding graph communities which reflect a multitude of data items associated to the network by
partitioning the rows of the corresponding data matrix. We demonstrate our method using graph
distances as a relation between the nodes, augmented with node degrees as scalar data items. We
also demonstrate how to deal with a case when relations do not exist between all pairs of nodes, in
the case of a directed multiplex network.

Several complementary methods exist for identifying communities, say, in multilayer net-
works. For instance, extending the concept of modularity (Newman, 2006) to multilayer set-
ting (Wilson et al., 2017) and identifying modularity flows with information-theoretic tools
(De Domenico et al., 2015). There are also many alternatives for extending graph community
detection which takes into account data which is not induced from the topology. (Newman
& Clauset, 2016; Hric et al., 2016) extend SBM in order to take into account node metadata.
Community detection in multilayer networks with node attributes has also been proposed in
(Contisciani et al., 2020), yielding promising results in interpreting the communities and using
node attribute for predicting unknown links, etc. (Fajardo-Fontiveros et al., 2022) develop SBM
formultilayer networks in which node attributes are used for enhancing solving network inference
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problems. Ideas in these publications could be used to enhance our method using more sophis-
ticated treatment of the data items, which we leave as a subject for further study. In an extended
survey, a multitude of methods for community detection is presented and evaluated for various
use cases (Magnani et al., 2021). Development of quantum computers may offer new ways of
solving hard community detection problems in the future. For instance, solving the modularity
maximization problem can be seen as an instance of quadratic binary optimization, which can
be solved on so-called quantum annealer realized by the D-Wave with around 5 thousand quan-
tum bits, (Negre et al., 2020). Another idea is to use Szemerédi’s regularity lemma (Szemerédi,
1978; Tao, 2006) for obtaining a quadratic binary cost function, minimum of which yields graph
communities (Reittu et al., 2020).

2. Regular decomposition
In this section, we describe our method of analyzing a network based on a generic data matrix,
which describes the network. RD was originally developed in (Nepusz et al., 2008; Reittu et al.,
2017b; Pehkonen & Reittu, 2011; Reittu et al., 2014, 2017a, 2018, 2019; Norros et al., 2022). RD
is inspired by Szemerédi’s regularity lemma (Szemerédi, 1978), information theory (Grünwald,
2007), and SBMs (Abbe, 2017). In the publication (Reittu et al., 2018), the RDmethod was used for
community detection with a single graph distance matrix as a data matrix. In (Haryo & Pulungan,
2022), the authors evaluated performance of the RD method for a generic data clustering. In this
work, we extend such methods by exploiting more general, non-rectangular, data matrices as a
basis for community detection. In this way, we get a flexible method that can find communities
that highlight various properties of the network, like degree distribution and distances in multi-
plex networks, and could be used in other cases that can be formulated in a similar way. In the
next subsection, we expose such a method in more details following and adapting some ideas in
the cited works.

2.1 Datamatrix and partitionmatrix
Consider a set of nodes indexed by [n]= {1, . . . , n}, and an n-by-m data matrix M in which row
i represents data associated with node i, and entry Mij represents the value of the jth data item
associated with node i. In a basic setting,M equals the adjacency matrix A (with m= n) of a sin-
gle graph, and the rows correspond to adjacency profiles of the nodes. Alternatively, network data
could be summarized by a distance matrix D (with m= n), in which case the rows of the data
matrix correspond to distance profiles. Indeed, matrices D and A provide equivalent representa-
tions of the network topology.1 In this article, we take a more general approach and allow the
number m of data items associated with a node to be arbitrary. This flexibility allows to model
multilayer networks by concatenating, say, several adjacency or distance matrices side by side into
a single data matrix. Furthermore, any data associated with nodes can easily be concatenated to
the data matrix as extra columns. In this more general case, each row ofM corresponds to a data
profile of a node.

Using the data matrix, we partition the node set into k disjoint sets called communities. Such a
partition can be represented as an n-by-k partition matrix R with entries

Riu =
{
1 if node i is in community u,
0 else.

In applications, some entries of the data matrixM may be undefined or unobserved. These situa-
tions are handled by equipping M with an n-by-m indicator matrix C in which Cij = 1 indicated
a valid entry, and Cij = 0 indicates an undefined or unobserved entry. The corresponding matrix
elements of M, which are not defined or are missing, are replaced by dummy values, which is
chosen to be 0 in all our sample cases. We demonstrate how this works in Section 5.
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Our aim is to group nodes into few communities in such a way that description length of
M is minimized based on a probabilistic model for the matrix elements of M. In other words,
we try to find an optimal number of communities k and corresponding optimal partitioning
Uk = {U1,U2, . . . ,Uk} of [n] to achieve this. In case of non-negative integer-valued M, rows in
a community s ∈ [k] are modeled by a sequence of m independent Poisson-distributed random
variables denoted as (Xs

1, X
s
2, · · · , Xs

m). As a result, the probabilistic model constitutes of n×m
independent Poisson random variables with k×m parameters, the expectations of the corre-
sponding variables. Such a choice is adopted from (Reittu et al., 2014). Communities are selected
in order to minimize the magnitude

L(Uk) := −
∑
s∈[k]

∑
d∈Us

∑
j∈[m]

log2(P(X
s
j =Mdj).

According to classical information theory (e.g., Cover & Thomas, 2006), there exists a binary code,
the Shannon code, for encoding M with code length = �L�. We use L as a cost function of the
partition Uk. The quality of the found communities is the compression ratio

r(Uk)= L(M)
L(Uk)

,

in which L(M)= ∑
i,j:Mij>0 logMij is the number of bits needed to represent data matrix M as a

string of integers.

2.2 Likelihood function
We employ a statistical latent-variable model in which all observable entries (those withCji = 1) of
the data matrixM are conditionally independent and Poisson-distributed random variables given
the community structure. Furthermore, all rows ofM corresponding to the same community are
identically distributed. This statistical model is parameterized by an n-by-k partition matrix R and
anm-by-k expectation matrix � of Poisson variables and corresponds to likelihood function

f (M|�, R) =
n∏
j=1

m∏
i=1

k∏
u=1

Poi (Mji|�iu)CjiRju , (1)

where Poi (x|λ)= e−λ λx

x! is the probability mass function of a Poisson distribution with mean λ.
The corresponding log-likelihood can be written as

log f (M|�, R) =
m∑
i=1

n∑
j=1

k∑
u=1

RjuCji
(
Mji log�iu − �iu

)
− const(M),

where const(M)= ∑n
j=1

∑m
i=1 Cji log(Mji!) does not depend on the model parameters and can be

ignored. The above model is structurally similar to the SBM in which the data matrix has m= n
columns and corresponds to the adjacency matrix, and the Poisson distributions are replaced by
Bernoulli distributions (Holland et al., 1983; Zhang & Zhou, 2016). In contrast to SBMs, the above
model allows more flexibility in choosing data matrices with an arbitrary number of columns m.
Note also that only the rows are grouped in blocks, all columns are treated as separate. In this
sense, the model has maximal number of variables with respect to the number of columns.

2.3 Maximum likelihood estimation
Having observed a data matrixM, maximum likelihood estimation searches for a partition matrix
R of [n] for which the function in Equation (2.2) is maximized. For any fixed R, the �-parameters
are set equal to
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�̂iv(R) =
∑n

j=1 MjiRjvCji∑n
j=1 RjvCji

, (2)

which is the observed average of the ith data item in community v. As a consequence, a maximum
likelihood estimate of R is obtained by maximizing the profile log-likelihood f (M | �̂(R), R), or
equivalently minimizing

L(R) =
m∑
i=1

n∑
j=1

k∑
v=1

RjvCji
(
�̂iv(R)−Mji log �̂iv(R)

)
(3)

subject to n-by-k partition matrices R, in which �̂iv(R) is given by (2). We note that the above
function can be written as L(R)= ∑n

j=1 �jZj(R), in which

�jv(R) =
m∑
i=1

Cji
(
�̂iv(R)−Mji log �̂iv(R)

)
(4)

is a normalized minus log-likelihood of the data vector of node j, given that j is placed in commu-
nity v and the rate parameters are equal to �̂(R). We note that L(R), up to an additive constant,
equals to the description length of the data matrixM in the sense of Shannon coding.

The same algorithm can be used also in case of data matrix with positive real values, which was
already shown in (Reittu et al., 2014). In this case, eachmatrix elementMij is treated as a parameter
(the expectation) of a Poisson distribution. The �-matrix is computed according to Equation (2)
for each partition R. Equation (3) also remains intact, and L equals to Kullback–Leibler divergence
between the corresponding Poisson distributions, the original with parameters from data matrix
M, and those with parameters from Equation (2). The task is to minimize L which can be done
with the same algorithm as in the integer case.

2.4 Regular decomposition algorithm
Minimizing the cost function in Equation (3) with respect to R is a hard nonlinear discrete
optimization problem with an exponentially large input space of the order of �(kn), making
exhaustive search computationally infeasible. This is why we suggest solving the problem using
a greedy Algorithm 1 which is an expectation maximization type algorithm which alternates
between updating � according to Equation (2) for a fixed R (E-step) and updating the partition R
by greedily updating the community of each node, one by one, to minimize �jv(R) in Equation (4)
for a fixed �̂ (M-step). Starting from a uniformly random initial assignment R0, the algorithm
finds a local optimum as a limit of the greedy algorithm. Running the greedy algorithm for
several initial random states R0, and selecting the community assignment with smallest cost in
Equation (3) as the final output.

The runtime of Algorithm 1 is O(smaxtmaxk(n+m)), where smax is the number of random ini-
tializations and tmax is the number of iterations per optimization round. Especially, the runtime is
linear in n andm for bounded k, smax, tmax and is hence scalable for large data sets.

2.5 Boosted regular decomposition
Setting up the data matrix for Algorithm 1 may require costly preprocessing, for example com-
puting distances between node pairs (see Section 2.7). The matrixM may also be simply too large
to be treated as a whole, a situation frequently encountered in the realm of so-called big data. In
such cases, the algorithm can be boosted by replacing the data matrixM by a submatrixMVW with
a row set V ⊂ [n] of size n0 and a column setW ⊂ [m] of size m0, and running Algorithm 1 with
the submatrixMVW as input. This results in a partition matrix R∗ of the node set V . A community
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Figure 1. Pseudocode for the regular decomposition algorithm according to Reittu et al. (2018).

assignment of the remaining node set is then computed in a subsequent classification phase where
the community index of each node j ∈ [n] \V is chosen to be v(j) ∈ [k]:

v(j)= arg minv′∈[k]�jv′(R
∗), �jv′(R

∗) =
∑
i∈W

Cji
(
�̂iv′(R

∗)−Mji log �̂iv′(R
∗)

)
, (5)

where

�̂iv(R∗) =
∑

j∈V MjiR∗
jvCji∑

j∈V R∗
jvCji

is the observed average value of data item i ∈W among the nodes of V classified into community
v ∈ [k] according to R∗.

The runtime of Algorithm 1 applied to the submatrixMVW is O(smaxtmaxk(n0 +m0)), and the
runtime of the subsequent classification phase is O(km0n). Hence, the boosted RD algorithm has
complexityO(smaxtmaxk(n0 +m0)+ km0n). The feasibility of this boosting approach requires that
the row set V is large enough to contain nodes from all communities, and the column set W is a
sufficiently informative collection of data items. A simple way of selecting V andW is by random
sampling. This approach was developed in (Reittu et al., 2018, 2019) in which sufficient sample
sizes were estimated and convergence proved in some model cases.
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2.6 Estimating the number of communities
Algorithm 1 requires the number of communities k as an input parameter. However, in most sit-
uations this parameter is not a priori known and needs to be estimated from the observed data.
The problem of estimating the number of communities can be approached by recasting the maxi-
mum likelihood problem in terms of the MDL principle (Rissanen, 1983; Grünwald, 2007) where
the goal is to select a model which allows a minimum coding length for both the data and the
model. MDL adheres to the principle of Occam’s razor in which the best hypothesis follows the
best compression of data, hence justifying the selection of MDL for this task.

When restricting to themodel described in Section 2.2, then theR-dependent part of the coding
length equals L(R) given by (3), and anMDL-optimal partition R∗ for a given k corresponds to the
minimal coding length

R∗ = arg minRL(R).

It is not hard to see that L(R∗) is monotonously decreasing as a function of k, and a balancing
term, the model complexity, is added to select the model that best explains the observed data.
The model complexity is the length of a code that uniquely describes the mode itself. In all of our
experiments, L(R∗) (the negative log-likelihood) as a function of k becomes essentially a constant
above some value k∗. Such an elbow point k∗ is used as an estimate of k in the experiments in
this article, see also (Ketchen & Shook, 1996). In general, it might be necessary to have a more
sophisticated method using a model complexity term (Reittu et al., 2017a; Norros et al., 2022;
Peixoto, 2012). However, in examples we are using it suffices to use a simplified version of the
MDL principle based on the elbow point.

2.7 Using distances as data items in multiplex networks
In a multiplex network consisting of s directed graphs with a common node set, each graph repre-
sents one layer. The distance matrices of the layers are denoted by D1, . . . ,Ds. If layer r contains
no path from node i to node j, we declare the corresponding entry as missing by setting (Cr)ij = 0,
and we may define (Dr)ij = 0 without loss of generality. As a result, we obtain s indicator matrices
C1, . . . , Cs. When layers are undirected, data about path lengths are encoded in a concatenated
data matrix

M = [D1,D2, . . . ,Ds], (6)

and the corresponding indicator matrix is C = [C1, C2, . . . , Cs]. In case of directed layers, data
about directed path lengths are encoded in matrix

M =
[
D1,DT

1 ,D2,DT
2 , . . . ,Ds,DT

s

]
, (7)

where row i of matrix Dr (resp. DT
r ) contains the shortest directed path lengths from i to

other nodes (resp. from other nodes to i). The corresponding indicator matrix is denoted C =[
C1, CT

1 , C2, CT
2 , . . . , Cs, CT

s
]
. The data matrix M and the indicator matrix C are then given as

input to Algorithm 1, and the optimal number of communities is determined as in Section 2.6.
Computing the distance matrix in an unweighted directed graph with n nodes and e links

has complexity O(n(n+ e)) using breadth-first search (Bang-Jensen & Gutin, 2009). The RD
algorithm based on distances can be boosted by computing distances only for a restricted set
of reference nodes W ⊂ [n] of size m0, resulting in an n-by-m0 distance matrix D in which Dij
equals the distance from node i ∈ [n] to node j ∈W, and D can be computed using breadth-first
search in O(m0(n+ e)) time. The same complexity bound is valid for concatenated data matrices
of form (6)–(7) in multilayer networks with a bounded number of layers. Then, we may apply
the boosted RD algorithm (Section 2.5) with V = [n] and W as above. The total complexity of
the preprocessing step (restricted distance matrix computations) and boosted RD algorithm then

https://doi.org/10.1017/nws.2023.2 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2023.2


382 H. Reittu et al.

equals O(smaxtmaxk(n+m0)+ km0n+m0(n+ e)). For bounded number of communities k and
bounded iteration parameters smax, tmax, this bound is O(m0(n+ e)). Especially, by selecting m0
constant, we obtain a scalable algorithm for sparse massive networks with e=O(n), capable of
identifying communities in linear time with respect to the number of nodes n.

3. Power-law graphs
Most real networks are inhomogeneous. In particular, this is true for graphs where nodes posses
features that correlate with graph topology. Furthermore, sparsity is commonplace, because links
are expensive to maintain. Many real networks have highly varying degrees, with most nodes
having a small number of neighbors, and very few nodes having a huge number of neighbors as
was pointed out in (Barabási & Albert, 1999). The high-degree nodes usually play an important
role as hubs in the network. Already two decades ago, a highly influential study by (Faloutsos
et al., 1999) revealed that the Internet has this kind of topology.

In this section, we summarize a simple generative model for sparse random graphs with a
power-law degree distribution (Section 3.1), and apply the RD algorithm to a synthetic graph
sampled from the model, first using distances (Section 3.2) and then using distances and degrees
(Section 3.3). Our aim is to show that the used datamatrix has a profound effect on the community
structure.

3.1 Poissonian power-law graph
A simple random graphmodel can be induced from a random graph process described in (Norros
& Reittu, 2006; van der Hofstad, 2017) which we call a Poissonian power-law graph. We first
sample node attributes λ1, . . . , λn independently at random from a probability distribution on the
non-negative reals and thereafter connect each unordered node pair ij by a link with probability
1− exp{−λiλj/λ}, independently of other node pairs, where λ = ∑

i λi. When the node attributes
are distributed according to a power-law with density exponent τ ∈ (2, 3), we obtain a generator
of a sparse random graph where the degree distribution has a finite mean and infinite variance.

In such power-law graphs, quite a rich topological structure spontaneously arises in the limit of
large graph size and with probability tending to one. The nodes are categorized into sets called
tiers according to their degree, such groping we call “soft hierarchy” (Norros & Reittu, 2006;
Reittu & Norros, 2004; Norros & Reittu, 2008b,a). The top tier V0 is formed, asymptotically as
n→ ∞, by nodes with degrees in the range (n1/2,∞), and the other tiers Vk are formed by nodes
with degrees in range (nβk , nβk−1 ], in which β0 = 1/2 and βk = (τ − 2)k/(τ − 1)+ o(1) for k≥ 1.
For large values of n, it is known that with high probability, the top tier V0 is fully connected,
and further, every node in Vk has a link to Vk−1 for all k up to order log log n (Norros & Reittu,
2006; van der Hofstad & Hooghiemstra, 2008; Reittu & Norros, 2002). The subgraph induced by
the union of the tiers Vk for 0≤ k≤ log log n is called the core network. Most of the nodes have
small degrees and, as a result, are outside the core. However, any node is at a very short distance,
compared to log log n, from the bottom tier. This explains ultra-short distances in the graph.

Our aim is to show, through experiments on synthetic and real data, that our version of the RD
algorithm can identify soft hierarchical structures by using network distances and node degrees
together as a data matrix. The soft hierarchy is a compact description of the organization of short-
est paths between most of the nodes in power-law graphs of the type we are interested in. RD
compresses the distance matrix, and that is why it is likely that a soft hierarchy shows up in the
resulting short description of thematrix. Degrees are also essential in describing the soft hierarchy,
and that is why their inclusion in data matrix should help. This is why we argue that a degree-
augmented and distance-based community structure matches qualitatively with a kind of rough
soft hierarchy in synthetic and real power-law graphs. Notably, in expectation E|∪kVk|/n→ 0,
see (Norros & Reittu, 2006; Reittu & Norros, 2002) as n→ ∞, which means that communities
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Figure 2. The adjacency matrix of a synthetic power-law graph (n= 7775) with rows and columns organized according to
(a) random order of nodes, (b) communities identified by distancematrix, (c) communities identified by distancematrix and
degrees (right).

associated with the layers are very small and whichmeans that such communities are undetectable
for typical community detection algorithms assuming comparable community sizes.

This illustrates how our method should be used. At first, there should be an intuitive under-
standing of which data are essential for the problem to be solved. In the current example, the
problem is to find the soft hierarchy as a community structure. In other problems, the data matrix
could be completely different.

3.2 Regular decomposition using distances
We generated a power-law graph with ten thousand nodes using the model in Section 3.1 with
node attributes drawn from a power-law distribution with density exponent τ = 2.5, and we
extracted its largest connected component as input for subsequent analysis. As a result, we have
a graph with n= 7775 nodes and adjacency matrix shown in Figure 2(a). Next, we computed the
distance matrix of this graph. We identified communities of the graph by applying Algorithm 1
using the distance matrix as data matrix. By experimenting with different values of the number
of communities k, we found that the cost function in Section 2.6 saturates at k= 5. This value is
identified as the most informative number of communities.

The block structure of the adjacency matrix induced by the identified communities is shown in
Figure 2(b). A clear block structure is revealed with one large block with relatively high density.
All five identified communities are rather large. Hence, the identified community structure differs
remarkably from the theoretical tier structure (Section 3.1) where the top layers are dense and
small. This is a natural consequence of partitioning the graph using distance profiles because the
small-degree neighbors of high-degree nodes are likely to have similar distance profiles with each
other.

The degrees of the graph are plotted in Figure 3(a). The linear shape in the log-log plot on
the left is typical for power-law graphs. The degrees of nodes in the five identified communi-
ties are shown in Figure 3(b). We see that all high-degree nodes are in the same community,
but this community also contains nodes of smaller degree and is quite large. Furthermore,
Figure 4(a) displays the graph with the five identified communities, plotted using Mathematica’s
CommunityGraphPlot tool. We see that nodes in the red community are central for connecting
nodes in the graph. The ring-like communities around the center appear to roughly play a role
similar to tiers in a soft hierarchy, in that most shortest paths between peripheral nodes use the
rings to reach the red center.
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Figure 3. Degrees of nodes in a synthetic power-law graph (n= 7775) sorted from largest to smallest within each community
(indicated by color). (a) Full graph viewed as one community. (b) Nodes organized into communities identified by distance
matrix. (c) Nodes organized into communities identified by distance matrix and degrees.

Figure 4. Topology of a synthetic power-law graph (n= 7775) colored according to the community structure identified by
the regular decomposition algorithmwith (a) distance matrix, (b) distance matrix and degrees.

3.3 Regular decomposition using distances and degrees
We continue experimenting with partitioning the same graph sample as in the previous sec-
tion. Instead of using the distance matrix with 7775 columns as in Section 3.2, we will now use
a data matrix with only 101 columns, consisting of 100 randomly sampled columns of the dis-
tance matrix and 1 additional column containing the node degrees. The aim of this experiment is
twofold. First, we wish to investigate how adding the degrees to the data matrix affects the inferred
community structure. Second, we will demonstrate that computing distances to a relatively small
set of reference nodes suffices to well characterize the distance profiles of most nodes.

The adjacency matrix organized according to five identified communities using the modified
data matrix is shown in Figure 2(c). Themain difference from the previous case shown in themid-
dle of the same plot is a small central community with high-degree nodes only. This can be seen
in Figure 3(c) which presents the node degrees grouped by communities. The blue community
contains all high-degree nodes, and its degree sequence does not overlap with other communities.
Nodes in the blue community may hence be thought as tier 1 nodes. As a result, the community
structure is qualitatively closer to the theoretical tiers of the power-law graph. According to the
theory, there are only �(log log n) tiers, we may expect only a couple of layers in our sample with
log log n= 2.19.

Figure 4(b) visualizes the identified communities from a topological point of view. The small
and dense red community in the center corresponds qualitatively to the top tier of the theoretical
power-law graph structure in Section 3.1. The second and third largest communities can be seen as
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Figure 5. The adjacency matrix of the AS graph (n= 22963) with rows and columns organized according to (a) raw data,
(b) communities identified by distance matrix, (c) communities identified by distance matrix and degrees.

Figure 6. Degrees of nodes in the AS graph (n= 22963) sorted from largest to smallest within each community (indicated
by color). (a) Full graph viewed as one community. (b) Nodes organized into communities identified by distance matrix.
(c) Nodes organized into communities identified by distance matrix and degrees.

tier 2 and tier 3 communities, and the remaining communities form the periphery of low-degree
nodes. Incorporating degrees in the data matrix can hence substantially change the community
structure and in our case align the communities better with a soft hierarchy of nodes.

4. Internet autonomous systems graph
We analyze the topology of the Internet by investigating a snapshot of the AS graph in 2006, recon-
structed by Mark Newman from data collected by University of Oregon’s Route Views Project.2
The graph has 22963 nodes (AS) and 48436 edges (neighboring AS pairs). The adjacency matrix
and the degrees are plotted in Figures 5(a) and 6(a), respectively. The latter demonstrates an
approximate power-law structure: six nodes have degree larger than 1000, whereas most nodes
have degree less than 10. The graph has a soft hierarchical structure3 with the most important
nodes contained in tier 1, the second most important nodes in tier 2, and so on.

4.1 Regular decomposition using distances
We partition the AS graph into communities by Algorithm 1 using 100 randomly sampled
columns of the distance matrix as data matrix. This appears sufficient for this type of network
where we expect that the distances from a typical reference node depend heavily on the position
of the node in the network hierarchy. Using the method in Section 2.6, we found that the most
informative number of communities is k= 10. Figure 5(b) displays the adjacency matrix of the
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AS graph organized by the identified community structure, showing that the communities are all
rather large and of comparable size. The link densities inside and between communities are all low
and comparable to the overall link density. The degrees of nodes grouped into communities are
displayed in Figure 6(b).

The results for the AS graph have similarities with the synthetic power-law graph in Section 3.2.
For instance, although all high-degree nodes are in the same community, this community also
contains many low-degree nodes and thus has a low internal density. This can be seen in
Figure 6(b) where the degree sequences of different communities overlap. As a result, using only
graph distances as the data matrix, we were not able to identify the tiers of the AS graph. For
instance, the smallest community has much more nodes than there are tier 1 nodes3.

4.2 Regular decomposition using distances and degrees
We repeat the community identification experiment of the AS graph by augmenting the 100-
column data matrix used in Section 4.1 with 1 column containing the node degrees. Again, k= 10
is identified as the most informative number of communities. Figure 5(c) displays the adjacency
matrix of the graph organized according to the identified communities. The resulting community
structure substantially differs from the one in the previous section. The smallest two communities
in Figure 5(c) are dense and approximately correspond to tier 1 and tier 2 subnetworks of the AS
graph. The degree sequences of the communities are shown in Figure 6(c). There are three rather
small and dense communities which contain all high-degree nodes, but no low-degree nodes.

To assess the quality of the identified communities, we determined the AS identities in the three
smallest and densest communities using a list of AS networks3 and an AS lookup tool.4 Our aim
is to verify that the three identified communities are close to tier 1–3 subnetworks and contain
the most important AS. The smallest identified community (Figure 7) contains 36 nodes, out of
which 23 are tier 1 and the rest are tier 2. Themembers of tier 2 are important telecom carriers. For
example, “Hurricane Electric”3 has a very high degree (7061), which explains why it is included
in the smallest community by the RD algorithm. The discrepancy between tier 1 and the smallest
identified community may be due to the fact that the AS graph topology deviates from a simple
power-law graph (e.g., Chen et al., 2002). The second smallest identified community is shown
in Figure 8(a). The largest degrees are around 200. In this community, the ten nodes of highest
overall degree do not belong to tier 1, but nevertheless correspond to networks operated by major
companies such as British Telecom (UK) and Microsoft (US). The third smallest community, dis-
played in Figure 8(b), is much sparser, and its highest degrees are around 20. Top-degree members
are Telefonica Data S.A. (BR), Orano (US), and Harvard University (US).

We conclude that augmenting the graph distance matrix by a column containing the node
degrees allows to identify much more meaningful communities, compared to only using the dis-
tance matrix. The RD method was able to identify central carriers in the top tiers with good
accuracy from a large data set. In particular, we discovered a dense tier 1-rich subnetwork. The
suggested method could be used even for extremely large graphs encountered in areas such as
biology and social networks, where it might be impossible to acquire the entire graph for analysis.
Our methods need only a limited sample of shortest paths between a set of sampled nodes and
node degrees. Community detection on such a sample results in a model which can be used to
classify any other node outside the sample. It has the potential to rapidly detect soft hierarchies in
massive networks.

5. World airline graph
We demonstrate how the RD method can be applied to a directed multilayer graph defined as
a collection of s graphs with a common set of n nodes, each graph representing one layer. As
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Figure 7. Subgraph of the AS graph induced by the smallest community identified by regular decomposition using distances
and degrees.

Figure 8. Subgraphs of the AS graph induced by the second (a) and third (b) smallest communities identified by regular
decomposition using distances and degrees. Ten nodes of highest overall degree in the second smallest community are
highlighted in red: 1. Net Access Corporation, 2. Microsoft, 3. London Interconnection Point, 4. BT, 5. Internet Initiative Japan,
6. Frontier Communications of America, 7. MCI Communications Services, 8. INAP, 9. TransTeleCom, and 10. Telstra.

a concrete example, we used a world airline graph5 consisting of 3321 nodes (airports), 67663
links (flights), and 548 layers (airlines) displayed in Figure 9. We extracted the three largest
airlines (American Airlines, United Airlines, Air France) in June 2014, resulting in a directed
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Figure 9. Geographic projection of the world airline graph.

Figure 10. Top: Gray-scale visualization of the data matrix of the world airline graph. The white elements correspond to
undefined distances. The matrix has 691 rows (airports) and 4146 columns (directed graph distances in three layers). Each
layer occupies a band of columns of equal width and is roughly visible in the picture. Bottom: The same data matrix with
rows reorganized into six communities identified by regular decomposition using layerwise distances.

multilayer graph with n= 691 nodes and s= 3 layers. Figure 10 displays the data matrix cor-
responding to the concatenation of three directed graph distance matrices and their transposes
(see Equation 7).

5.1 Regular decomposition using layerwise distances
Using Algorithm 1 and the method in Section 2.6, we discovered k= 6 as the most informa-
tive number of communities and identified the corresponding communities. The resulting data
matrix, organized by the identified communities, is shown at the bottom of Figure 10. The small-
est community has 9 nodes consisting of airports in the Middle East (4), Europe (2), East Asia (1),
and South America (1). The second smallest community has 13 nodes consisting of airports in
East Asia (5), Africa (3), South-East Asia (2), Pacific (2), and North America (1). The remaining
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Figure 11. Communities of the world airline graph identified by (a) regular decomposition using layerwise distances,
(b) SBM fitting with a layer-aggregated adjacency matrix.

four communities are of comparable size: One of them has 27 airports in France and 85 in USA,
and the other three have most airports located in the USA.

6. Comparison with other community detection and data compression methods
In this section, we make a quantitative assessment of communities found by RD with respect to
some other community detection and data analysis methods. As the test cases, we use the real-life
networks analyzed in the previous Sections.

6.1 Community detection
6.1.1 Internet autonomous systems graph
As stated in the introduction, our aim is to have a community detection method which identifies
communities which reflect various aspects of data associated with the network and their role in
the graph topology. There are of course many existing powerful community detection methods
which can do this in some particular cases. We illustrate this point by finding communities in the
AS graph (Section 4) using two popular methods: modularity maximization and SBM fitting.

Modularity maximization (Newman, 2006) aims to find densely connected communities which
have as little as possible links between the communities. Figure 12(a) displays the adjacencymatrix
organized according to the 25 identified communities, and Figure 13 illustrates the subgraphs
induced by the communities. As expected, the community structure determined by modular-
ity maximization is substantially different from the community structures identified by RD in
Figure 5(b–c). The subgraphs in Figure 13 do not respect the tiered structure found with RD. For
instance, the high-degree nodes forming tier 1 are embedded in very large communities, which
can be inferred from Figure 13.

SBM fitting (Zhao et al., 2012) uses the adjacency matrix to find communities in which
relations inside and between the communities are like those in classical random graphs.
Information-theoretic model fitting can be used to find the communities. We used the RD
method for this. For computational tractability, instead of the full adjacency matrix we restricted
to the largest connected component of the subgraph induced by a uniform random sample of
10,000 nodes. After identifying the communities of the restricted graph, the parameters of the
model were used to classify all nodes of the graph. A smaller sample is not feasible, because
the resulting induced subgraph would hardly have any links. This is in stark contrast to RD
using graph distances, where a sample of 100 nodes suffices. Figure 12(b) shows the resulting
community structure, where a dense tier 1-like community appears, but a deeper tier hierarchy
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Figure 12. Adjacency matrix of the AS graph organized according to (a) 25 communities identified by modularity maximiza-
tion, (b) 10 communities identified by SBM fitting.

Figure 13. Subgraphs of the AS graph induced by the 25 communities identified by modularity maximization.
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Figure 14. A subgraph of the AS graph induced by two distinct communities (red, blue) identified by SBM fitting. The nodes
of the blue community are almost entirely low-degree neighbors of the nodes in the red community.

seems quite weakly represented, as manifested by a large unstructured block of low-degree nodes.
In contrast, a much finer community structure is identified by RD based on distances and degrees
in Figure 5(c). A typical subgraph induced by a pair of communities identified by SBM fitting
is a well-connected graph in which one part is like a neighborhood of the other community, see
Figure 14. On the other hand, in a community structure identified by distance profiles, such pairs
are typically not connected—this is simply because many distances are larger than one.

For a more quantitative comparison, we computed the PageRank centrality of the network
nodes (with damping factor 0.8) and plotted in Figure 15 the PageRank distributions within com-
munities identified by three methods: modularity maximization, RD using distances, and RD
using distances and degrees. We see that the latter is the only method able to separate nodes of
high PageRank into a common community. This illustrates the ability of ourmethod in identifying
community structures associated with the topological roles of nodes in the network.

6.1.2 World airline graph
We compare the community structure of the world airline graph determined in Section 5.1 with
a more customary SBM fitting applied to the adjacency matrix of the undirected graph obtained
by collapsing the layers and ignoring link directions. We impose the same number k= 6 of com-
munities as previously. The resulting community structure, visualized in Figure 11(b), bears some
similarity with the one in Figure 11(a), but mostly in the periphery of the network which forms
the largest community in both cases. The peripheral communities are highlighted in Figure 16.
Furthermore, Figure 17 displays the overlap matrix of communities. The overlap is weak, and the
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Figure 15. PageRank centrality of AS graph nodes in communities identified using three alternative methods and sorted
from smallest to largest within each community (indicated by color). (a) Modularity maximization, (b) RD using distances,
(c) RD using distances and degrees. Only the last method can group the most central nodes into separate communities,
indicated by blue and orange circles in (c).

Figure 16. Largest community (highlighted in red) of theworld airline graph identified using (a) regular decomposition using
layerwise distances, (b) SBM fitting with a layer-aggregated adjacency matrix.

community structures are quite different. If the community structures were similar, there should
be at each row exactly one strong element in this matrix and those strong elements would be all in
different columns.

6.2 Data compression
A natural measure of our method is the compression rate of the data matrix used in community
detection. This experiment is done on the distance matrix for the AS graph. As the uncompressed
description length, we used Mathematica’s internal memory requirement for storing a distance
matrix (ByteCount), which for the AS graph equals L0 ≈ 1.7× 1010 bits. First, as a standard com-
pression, we applied Mathematica’s built-in implementation of the zlib6 algorithm. Second, we
computed the description length L for the distance matrix by applying RD. This consists of the
Shannon code length, which is minus base-2 logarithm of the probability of the distance matrix in
the probabilistic model induced by the community structure, and the code lengths of the param-
eters. We used the leading part of the prefix code lengths of integers (Grünwald, 2007). For a
positive integerm, the code length of the integer is �log2 m� + �log2 log2 m� + · · · , in which log2
is iterated as long as the result remains positive, after which the sum is truncated. The param-
eters we need to encode are the expectations of k× n Poisson variables, k= 10, and n= 22963,
and the partition into communities which can be represented as an n-vector with coordinates
in {1, . . . , 10}. Third, we computed similar code length for community structure found using
node degrees along with the distance matrix. The compression ratio L/L0 is displayed in Table 1.
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Table 1. Compression ratio for the AS graph and the world airline graph using three
methods: zlib compression algorithm, RD using distances, and RD using distances and
degrees

AS graph Airline graph

zlib 9.2 80.4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RD using distances 12.3 235.6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RD using distances and degrees 12.6 –

Figure 17. Overlap of communities determined by SBM fitting using layer-aggregated graph (row index) and by regular
decomposition using layerwise distances (column index). The (i, j)-entry is computed as the number of common nodes in
community pair (i, j) divided by the number of nodes in the larger community in the pair. Only the pair (3, 6) indicates a
substantial value around 0.5. This pair corresponds to the peripheral communities highlighted in Figure 16.

We see that zlib compresses the original data by around 9 times while RD using distances does a
better job with around 12 times compression. Augmenting the RD by also using degrees leads to
a slight further improvement.

We also repeated this experiment for the world airline graph for which the uncompressed lay-
erwise distance matrix requires L0 ≈ 5.5× 108 bits. The zlib algorithm compresses this data by
around 80 times, while RD on the layerwise distance matrix is able to compress 235 times, almost
three times more than zlib, see Table 1.

7. Conclusion
We demonstrated a unified approach of finding network communities in large and sparse mul-
tilayer graphs, based on extending the RD method to handle data matrices with an arbitrary
number of columns representing various types of data associated with nodes. We demonstrated
our method by analyzing graph distance matrices augmented with a column of node degrees. Our
method has a low computational complexity allowing to handle massive input graphs, and it also
tolerates missing data entries. We illustrated the method with a synthetic power-law graph and
two real graphs: a snapshot of the Internet topology and a directed multilayer graph describing
the world airline topology. In the latter case, as data matrix we used a concatenation of graph
distance matrices from different layers, which allowed to find meaningful communities despite
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massive amounts of missing data. In contrast to popular community detection methods, such
as modularity maximization and SBM fitting, our method appears better suited for identifying
community structures aligned with tiered hierarchies often encountered in scale-free complex
networks. When applied to distance matrices, our method implicitly assumes that graph distances
are Poisson-distributed and mutually independent. This assumption was motivated by compu-
tational tractability instead of a good fit to data. However, because graph distances in scale-free
networks are known to be highly concentrated around their mean even for heavy-tailed degree
distributions (van der Hofstad et al., 2007; van der Hoorn & Olvera-Cravioto, 2018), the Poisson
assumption may not be overly unrealistic. For carrying out a theoretical analysis of consistency
of our method applied to distance matrices, an important future problem is to first analyze joint
distributions of distances in degree-corrected SBMs, extending state-of-the-art result obtained
for random graphs without communities (Bhamidi et al., 2017; Jorritsma & Komjáthy, 2020).
Although the experiments carried out in this work were restricted to topological data matrices
that can be deduced from the graph adjacency matrix, the RD method allows to incorporate an
arbitrary number of auxiliary columns to the data matrix. This opens up ways to analyze and
model network problems in which nontopological node-associated data play an important role in
forming graph communities and remains an important problem of further study.
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Notes
1 The shortest path distance matrix D for a graph can be computed from the adjacency matrix A using a standard algorithm,
for example, breadth-first search. Conversely, the adjacency matrix Amay be recovered from the distance matrixD by noting
that Aij = 1 if and only if Dij = 1.
2 https://github.com/gephi/gephi/wiki/Datasets
3 https://en.wikipedia.org/wiki/Tier_1_network
4 https://www.bigdatacloud.com/asn-lookup
5 https://openflights.org/data.html
6 https://zlib.net
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