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Abstract

Given a positive integer m, let Z,, be the set of residue classes mod m. For A C Z,, and n € Z,,, let o4(n)
be the number of solutions to the equation n = x +y with x,y € A. Let H,, be the set of subsets A C Z,,
such that o4(n) > 1 for all n € Z,,. Let

o -1
b = /{2}}1 {m Z o-A(n)}.
NEZy,
Ding and Zhao [‘A new upper bound on Ruzsa’s numbers on the Erdés—Turan conjecture’, Int. J. Number

Theory 20 (2024), 1515-1523] showed that lim sup,,_, ., £, < 192. We prove
limsup £, < 144

—

and investigate parallel results on subtractive bases of Z,,.
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1. Introduction

Let N be the set of natural numbers and A a subset of N. A remarkable conjecture of
Erdds and Turan [6] states that if all sufficiently large numbers # can be written as the
sum of two elements of A, then the number of representations of n as the sum of two
elements of A cannot be bounded. Progress on this conjecture was made by Grekos
et al. [8], who proved that the number of representations cannot be bounded by 5, later
improved to 7 by Borwein et al. [1]. For more on the Erd6s—Turdn conjecture, see the
books of Halberstam and Roth [10] and Tao and Vu [17].

A set A is called an asymptotic basis of natural numbers if all sufficiently large
numbers n can be written as the sum of two elements of A. Motivated by Erd6s’
question, Ruzsa [12] constructed an asymptotic basis A of natural numbers which has
a bounded square mean value. Ruzsa also considered a variant on the Erd6s—Turdn
conjecture. Let Z,, be the set of residue classes mod m and A a subset of Z,,. For any
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ne Zy, let
oan) =#(x,y) :n=x+y, x,y € Z,).

The Ruzsa number R,, is defined to be the least positive integer r so that there exists
aset ACZ, with 1 <os(n) <rforalln e Z,. In his argument, Ruzsa proved that
there is an absolute constant C such that R,, < C for all positive integers m. Employing
Ruzsa’s ideas, Tang and Chen [15] proved that R,, < 768 for all sufficiently large m.
Later, in [16], they obtained R,, < 5120 for all positive integers m. In [2], Chen proved
that R,, < 288 for all positive integers m, and this was recently improved to R, < 192
by Ding and Zhao [5]. However, Sdndor and Yang [13] showed that R,, > 6 for all
m > 36.

Ding and Zhao [5] provided an average version of Ruzsa’s number. Precisely, let
H,, be the set of subsets A C Z,, such that o4(n) > 1 for all n € Z,,. Ding and Zhao
defined the minimal mean value as

£, = min {m‘l E o-A(n)}.
AeH,
neZy,

As they pointed out, their result on R, < 192 clearly implies
lim sup €,, < 192. (L.1)

m—oo

Ding and Zhao [5, Section 3] thought that ‘any improvement of the bound (1.1) would
be of interest’. In this note, we shall make some progress on this problem.

THEOREM 1.1. We have

limsup ¢, < 144.
m—o0
Parallel to the additive bases of Z,, one naturally considers the corresponding
results on subtractive bases of Z,,. Let A be a subset of Z,,. For any n € Z,,, let

oaln) = #{(x,y) N=X-Y, X,V € Zy).

In [3], Chen and Sun proved that for any positive integer m, there exists a subset A of
Zy so that 64(n) > 1 for any n € Z,, and d4(n) < 7 for all n € Z,, with three exceptions.
Their result was recently improved by Zhang [18] who showed that d4(n) < 7 could be
refined to d4(n) < 5, again with three exceptions. The exceptions cannot be removed
by their method. Motivated by the minimal mean value defined by Ding and Zhao, we
consider a parallel quantity

i -1
8m = g{nm {m Z 6A(n)},
nEZy,
where K, is the set of subsets A C Z,, such that §4(n) > 1 for all n € Z,,. Obviously,
Zhang’s bound implies that

limsupg,, <5

m— oo
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since the total sums of §4(n) for the three exceptions contribute only O(y/m). Our
second main result gives a small improvement on this bound.

THEOREM 1.2. We have

limsup g, < 2.

m—00

There is an old conjecture known as the prime power conjecture (see, for example,
[7, 9, 11]) which states that if A is a subset of Z, with d4(n) = 1 for any nonzero
n € Z,, then m = p** + p® + 1, where p? is a prime power. The reverse direction was
proved by Singer [14] as early as 1938.

As mentioned by Ding and Zhao [5], it is clear that liminf,,_ £,, > 2 from [13,
Lemma 2.2]. They conjectured that lim inf,,—,. £, > 3 [5, Conjecture 3.3]. Based on
the results of Singer and Theorem 1.2, it seems reasonable to conjecture that

lim g, = 1.
m—oo
If true, these conjectures reflect rather different features between additive bases and

subtractive bases.

2. Proof of Theorem 1.1

For any integer k, let
O = {(wki*) 1 u e Zy) CZ.
We will make use of the following lemmas.

LEMMA 2.1 (Chen [2, Lemma 2]). Let p be an odd prime and m a quadratic
nonresidue of p withm + 1 # 0 (mod p),3m + 1 # 0 (mod p) and m + 3 # 0 (mod p).
Put

B= Qm+l U Qm(m+l) U Q2m-

Then, for any (c,d) € le,, we have 1 < og(c,d) < 16, where og(c,d) is the number of
solutions of the equation (c,d) =x+y, x,y € B.

LEMMA 2.2 (Prime number theorem; see, for example, [4]). Let n(x) be the number of
primes p not exceeding x. Then,

m(x) ~ x/logx asx — oo.
LEMMA 2.3. Let m be a positive integer and A a subset of Z,,. Then,

D oatm) = AP,

nezy,

where |A| denotes the number of elements of A.
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PrROOF. Clearly,

ZO’A(H)ZZ Z 1= Z 1= Z 1= AR~

NEZy, nez,, artax=n ap,ax€A aj,ar€A
ar,a€A ay+ar€Zy,
This completes the proof of Lemma 2.3. o

LEMMA 2.4. Let p be a prime greater than 11. Then there is a subset A C Z,,> with
|A| < 12p so that o a(n) 2 1 for any n € Zy .

PROOF. Let p be a prime greater than 11. Then there are at least (p —1)/2 >5
quadratic nonresidues mod p, which means that there is some quadratic nonresidue
m so that

m+1#0(@modp), 3m+1#0(modp) and m+3 %0 (mod p).

Let B=Qp41 U Qm(m+1) U Qom, A1 ={u+2pv:(u,v)eB} and A=A, U(A; +p),
where Ay + p :={a; + p : a; € A1}. Obviously, A can be viewed as a subset of Z; ..

We first show that o4(n) > 1 for any n € Z, ., that is, A € H,, (by the definition
of H,,). We follow the proof of Chen [2, Theorem 1]. For any (u,v) € B, we have
O0<u,v<p-1. Let n be an element of Z,,, with 0 <n < 2p* — 1. Then, we can
assume that

n=c+2pd

withp<c<3p-land-1<d < p—-1.ByLemma?2.1, there are (u, v;), (up,v2) € B
so that

(c,d) = (u1,v1) + (u2,v2) (mod p),
or in other words,
c=uy+uy (mod p) and d=v;+ v, (mod p).
Suppose that
c=uy+upy+ps and d=v|+v,+ ph,

with s,h € Z. Then, s=0or 1 or 2 since 0 <u;j+up <2p—-2and p<c<3p-1.
Hence,

n=c+2pd
= uy +2pvi + Uy + 2pva + ps + 2p°h
= u; +2pvi + uy + 2pvs + ps (mod 2p?).
If s = 0, thenin Z; .,
n=(u +2pv))+ Uy +2pn) A +A; CA+A.
If s = 1, then in Z; .,

n=u +2pvi+p)+(uy+2pv) €A +p)+A; CA+A.
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If s = 2, then in Z, .,
n=(u +2pvi+p)+u+2pvy+p) e +p)+A +p) CA+A.

Hence, in all cases, o4(n) > 1 forn € Z,..
It can be easily seen that |A;| < 2|B| from the construction. Therefore, for the set A
constructed above,

Al < |Ai] + A1 + pl = 21A1] < 2 X 2|B| = 4(B|
and
Bl < |Qm+1l + 1Qmem+ )| + 1Q2ml = 3p,
from which it follows that
Al < 12p.
This completes the proof of Lemma 2.4. ]

The final lemma gives a relation between the bases of Z,,, and Z,, with certain
constraints.

LEMMA 2.5. Let € > 0 be an arbitrarily small number. Let m; and my be two positive
integers with (2 — &)my < my <2my. If A is a subset of Z,,, with oa(n) > 1 for any
n € Zy,, then there is a subset B of Z,,, with |B| < 2|A| such that og(n) > 1 for any
n € Zy,.

PROOF. Suppose that my = m; + r, so that (1 — &)m; < r <m;. Let
B=AU{a+r:acA}.

Then, |B| < 2|A|. It remains to prove op(n) > 1 forany n € Z,,,,.

Without loss of generality, we may assume 0 <a <m; — 1 for any a € A. For
0 < n <m; — 1, there are two integers a;,a; € A so that n = a; + a; (mod m,). Since
0 <aj; +a <2my -2, it follows that

n=a +a; Or n=a;+a—m.
If n = a; + ay, then clearly n = a; + a; (mod my). If n = a; + a, — my, then
n+m=n+m +r=a+(a+r),

which means that n = a; + (a + r) (mod m;). In both cases, og(n) > 1 for any n with
0 <n <m; — 1. We are left to consider the case m; < n < my — 1. In this range,

O<n—r<m-1-r=m;—1.
Thus, there are two elements a;, a; of A so that
n—r=a +a, (modm).
Again, by the constraint 0 < a; + a; < 2m; — 2,

n—-r=a,+a O n—r=a,+d,—m.
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If n — r = a1 + az, then we clearly have n — r = a; + a; (mod my). Otherwise, we have
n—r=a +a— mi. So, it can now be deduced that

n+my=ay+r+da,+r,
which is equivalent to n = (a; + r) + (az + r) (mod m,). m|

PROOF OF THEOREM 1.1. Let € > 0 be an arbitrarily small given number. Then, by
Lemma 2.2, there is some prime p so that

m m
\/;<p<\/2(2—g)’ @D

provided that m is sufficiently large (in terms of £). By Lemma 2.4, there is a subset
A C Z,,» with |A| < 12p so that o4(n) > 1 for any n € Z,,>. From (2.1),

Q-e)2p* <m<2x2p* (2.2)
Thus, by Lemma 2.5, there is a subset B of Z,, with
|B| < 2|A] < 24p (2.3)
such that og(n) > 1 for any n € Z,,. Hence, by Lemma 2.3,

{,, = min {m_l Z o-;(n)} <m’! Z og(n) = g

XEﬂ”’ Nne€Zy, neZ,y,
Employing (2.2) and (2.3),

2 2
BE @47 s 2
m ~ (2-¢g)2p? 2-¢

Hence, it follows that

2
limsup £, < 144 x e

m—oo -

for any & > 0, which clearly means that

limsup ¢, < 144.

m—oo

This completes the proof of Theorem 1.1. |

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on the following remarkable result of Singer.

LEMMA 3.1 (Singer [14]). Let p be a prime. Then, there exists a subset A of Z 41
so that 64(n) = 1 foranyn € Zy> . withn # 0.

The next lemma is a variant of Lemma 2.3.
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LEMMA 3.2. Let m be a positive integer and A a subset of Z,,. Then,

> oatm) = AP,

ne€Zy

where |A| denotes the number of elements of A.

PROOF. It is clear that

ZéA(n)zz Z 1= Z 1= Z 1= AP

neZy, nez,, ai—ax=n ay,a,€A ay,ar€A
ay,a€A a\—ar€Z,,
This completes the proof of Lemma 3.2. o

We need another auxiliary lemma.

LEMMA 3.3. Let € > 0 be an arbitrarily small number. Let m be a positive integer and
p a prime number with

Q-e)pP’+p+ D) <m<2(p*+p+1).

If A is a subset of Z>, 1 With 64(n) > 1 for any n € Z,; .\, then there is a subset B
of Z,,, with |B| < 2|A| such that 6g(n) > 1 for any n € Z,,.

PROOF. Suppose that m = (p?>+p+1)+r. Then, (1 —&)(p*+p+ 1) <r<(pP>+p+1).
Let

B=AU{a+r:acA}.

Then, |B| < 2|A|. It remains to prove 6gz(n) > 1 for any n € Z,,.
Without loss of generality, we can assume 0 < a < p*> + p for any a € A. For
0 < n < p? + p, there are two integers a;,a, € A so that

nsal—az(modp2+p+1),
which means that
n=a —a; oOr n=a1—02+(P2+P+1)

since —p2 -p<a —a< p2 + p. If n=a; —ay, then we clearly have n = a; — a,
(mod m). Ifn = a; —a, + (p> + p + 1), then

n—-m=n—(p*+p+1)—r=a; —(a+r),

from which it can be deduced that n = a; — (a; + r) (mod m). In both cases, we have
5g(n) > 1 for any n with 0 < n < p* + p. We are left to consider the case p> + p + 1 <
n < m— 1. In this case,

O<n—-r<m—1-r=p*+p.
Thus, there are two elements ay, a; of A so that

n—r=a —a; (modm).
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Again, by the constraint —p? — p < a; — a, < p* + p, we have
n-r=a,—-a or n—-r=a—a+ P +p+1).

If n — r = a; — a3, then we clearly have n — r = a; — a; (mod m). Otherwise, we have
n—r=a, —a+(p*+ p+ 1), from which it clearly follows that

n—m=a —a.
So we also deduce n = a; — a; (mod m). ]

We now turn to the proof of Theorem 1.2.

PROOF OF THEOREM 1.2. Let £ >0 be an arbitrarily small given number. By
Lemma 2.2, there is some prime p so that

4
2m—3—1 Viem—3-1

2 PT 2
providing that m is sufficiently large (in terms of &). Equivalently,
Q-e)(p*+p+ 1) <m<2(p*+p+1). 3.1

By Lemma 3.1, there is a subset A of Z,2, .1 so that 64(n) = 1 forany n € Z,, ,,; with
n#0. Employing Lemma 3.2,

AP = > = D, 6am+8(0) = pP+p+ AL

N€Z2 i n€Zy, .0 nE0
from which it follows clearly that
Al =p+ 1.
By Lemma 3.3 and (3.1), there is a subset B of Z,, with
Bl <2/Al <2(p+1) (3.2)
such that 65(n) > 1 for any n € Z,,. Thus, by the definition of g,, and Lemma 3.2 again,

g = min {m™! ) sxm <m Y utn) = BE,

AEKon Nne€Zy, Ne€Zy, m
From (3.1) and (3.2),

2 2
|B| < 4p+1) < 4

m - 2-&)(pP*+p+1)~ 2-¢g/2’
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provided that m (hence p) is sufficiently large (in terms of €). Hence, we conclude that

ISP e < 5 on

for any £ > 0, which clearly means that

limsup g, < 2.

m—00

This completes the proof of Theorem 1.2. o
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