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Abstract

Given a positive integer m, let Zm be the set of residue classes mod m. For A ⊆ Zm and n ∈ Zm, let σA(n)
be the number of solutions to the equation n = x + y with x, y ∈ A. Let Hm be the set of subsets A ⊆ Zm

such that σA(n) ≥ 1 for all n ∈ Zm. Let

�m = min
A∈Hm

{
m−1
∑
n∈Zm

σA(n)
}
.

Ding and Zhao [‘A new upper bound on Ruzsa’s numbers on the Erdős–Turán conjecture’, Int. J. Number
Theory 20 (2024), 1515–1523] showed that lim supm→∞ �m ≤ 192. We prove

lim sup
m→∞

�m ≤ 144

and investigate parallel results on subtractive bases of Zm.
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1. Introduction

Let N be the set of natural numbers and A a subset of N. A remarkable conjecture of
Erdős and Turán [6] states that if all sufficiently large numbers n can be written as the
sum of two elements of A, then the number of representations of n as the sum of two
elements of A cannot be bounded. Progress on this conjecture was made by Grekos
et al. [8], who proved that the number of representations cannot be bounded by 5, later
improved to 7 by Borwein et al. [1]. For more on the Erdős–Turán conjecture, see the
books of Halberstam and Roth [10] and Tao and Vu [17].

A set A is called an asymptotic basis of natural numbers if all sufficiently large
numbers n can be written as the sum of two elements of A. Motivated by Erdős’
question, Ruzsa [12] constructed an asymptotic basis A of natural numbers which has
a bounded square mean value. Ruzsa also considered a variant on the Erdős–Turán
conjecture. Let Zm be the set of residue classes mod m and A a subset of Zm. For any
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n ∈ Zm, let

σA(n) = #{(x, y) : n = x + y, x, y ∈ Zm}.
The Ruzsa number Rm is defined to be the least positive integer r so that there exists
a set A ⊆ Zm with 1 ≤ σA(n) ≤ r for all n ∈ Zm. In his argument, Ruzsa proved that
there is an absolute constant C such that Rm ≤ C for all positive integers m. Employing
Ruzsa’s ideas, Tang and Chen [15] proved that Rm ≤ 768 for all sufficiently large m.
Later, in [16], they obtained Rm ≤ 5120 for all positive integers m. In [2], Chen proved
that Rm ≤ 288 for all positive integers m, and this was recently improved to Rm ≤ 192
by Ding and Zhao [5]. However, Sándor and Yang [13] showed that Rm ≥ 6 for all
m ≥ 36.

Ding and Zhao [5] provided an average version of Ruzsa’s number. Precisely, let
Hm be the set of subsets A ⊆ Zm such that σA(n) ≥ 1 for all n ∈ Zm. Ding and Zhao
defined the minimal mean value as

�m = min
A∈Hm

{
m−1
∑
n∈Zm

σA(n)
}
.

As they pointed out, their result on Rm ≤ 192 clearly implies

lim sup
m→∞

�m ≤ 192. (1.1)

Ding and Zhao [5, Section 3] thought that ‘any improvement of the bound (1.1) would
be of interest’. In this note, we shall make some progress on this problem.

THEOREM 1.1. We have

lim sup
m→∞

�m ≤ 144.

Parallel to the additive bases of Zm, one naturally considers the corresponding
results on subtractive bases of Zm. Let A be a subset of Zm. For any n ∈ Zm, let

δA(n) = #{(x, y) : n = x − y, x, y ∈ Zm}.
In [3], Chen and Sun proved that for any positive integer m, there exists a subset A of
Zm so that δA(n) ≥ 1 for any n ∈ Zm and δA(n) ≤ 7 for all n ∈ Zm with three exceptions.
Their result was recently improved by Zhang [18] who showed that δA(n) ≤ 7 could be
refined to δA(n) ≤ 5, again with three exceptions. The exceptions cannot be removed
by their method. Motivated by the minimal mean value defined by Ding and Zhao, we
consider a parallel quantity

gm := min
A∈Km

{
m−1
∑
n∈Zm

δA(n)
}
,

where Km is the set of subsets A ⊆ Zm such that δA(n) ≥ 1 for all n ∈ Zm. Obviously,
Zhang’s bound implies that

lim sup
m→∞

gm ≤ 5
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since the total sums of δA(n) for the three exceptions contribute only O(
√

m). Our
second main result gives a small improvement on this bound.

THEOREM 1.2. We have

lim sup
m→∞

gm ≤ 2.

There is an old conjecture known as the prime power conjecture (see, for example,
[7, 9, 11]) which states that if A is a subset of Zm with δA(n) = 1 for any nonzero
n ∈ Zm, then m = p2α + pα + 1, where pα is a prime power. The reverse direction was
proved by Singer [14] as early as 1938.

As mentioned by Ding and Zhao [5], it is clear that lim infm→∞ �m ≥ 2 from [13,
Lemma 2.2]. They conjectured that lim infm→∞ �m ≥ 3 [5, Conjecture 3.3]. Based on
the results of Singer and Theorem 1.2, it seems reasonable to conjecture that

lim
m→∞

gm = 1.

If true, these conjectures reflect rather different features between additive bases and
subtractive bases.

2. Proof of Theorem 1.1

For any integer k, let

Qk = {(u, ku2) : u ∈ Zp} ⊂ Z2
p.

We will make use of the following lemmas.

LEMMA 2.1 (Chen [2, Lemma 2]). Let p be an odd prime and m a quadratic
nonresidue of p with m + 1 � 0 (mod p), 3m + 1 � 0 (mod p) and m + 3 � 0 (mod p).
Put

B = Qm+1 ∪ Qm(m+1) ∪ Q2m.

Then, for any (c, d) ∈ Z2
p, we have 1 ≤ σB(c, d) ≤ 16, where σB(c, d) is the number of

solutions of the equation (c, d) = x + y, x, y ∈ B.

LEMMA 2.2 (Prime number theorem; see, for example, [4]). Let π(x) be the number of
primes p not exceeding x. Then,

π(x) ∼ x/log x as x→ ∞.

LEMMA 2.3. Let m be a positive integer and A a subset of Zm. Then,∑
n∈Zm

σA(n) = |A|2,

where |A| denotes the number of elements of A.
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PROOF. Clearly,∑
n∈Zm

σA(n) =
∑
n∈Zm

∑
a1+a2=n
a1,a2∈A

1 =
∑

a1,a2∈A
a1+a2∈Zm

1 =
∑

a1,a2∈A
1 = |A|2.

This completes the proof of Lemma 2.3. �

LEMMA 2.4. Let p be a prime greater than 11. Then there is a subset A ⊂ Z2p2 with
|A| ≤ 12p so that σA(n) ≥ 1 for any n ∈ Z2p2 .

PROOF. Let p be a prime greater than 11. Then there are at least (p − 1)/2 > 5
quadratic nonresidues mod p, which means that there is some quadratic nonresidue
m so that

m + 1 � 0 (mod p), 3m + 1 � 0 (mod p) and m + 3 � 0 (mod p).

Let B = Qm+1 ∪ Qm(m+1) ∪ Q2m, A1 = {u + 2pv : (u, v) ∈ B} and A = A1 ∪ (A1 + p),
where A1 + p := {a1 + p : a1 ∈ A1}. Obviously, A can be viewed as a subset of Z2p2 .

We first show that σA(n) ≥ 1 for any n ∈ Z2p2 , that is, A ∈ H2p2 (by the definition
of Hm). We follow the proof of Chen [2, Theorem 1]. For any (u, v) ∈ B, we have
0 ≤ u, v ≤ p − 1. Let n be an element of Z2p2 with 0 ≤ n ≤ 2p2 − 1. Then, we can
assume that

n = c + 2pd

with p ≤ c ≤ 3p − 1 and −1 ≤ d ≤ p − 1. By Lemma 2.1, there are (u1, v1), (u2, v2) ∈ B
so that

(c, d) = (u1, v1) + (u2, v2) (mod p),

or in other words,

c ≡ u1 + u2 (mod p) and d ≡ v1 + v2 (mod p).

Suppose that

c = u1 + u2 + ps and d = v1 + v2 + ph,

with s, h ∈ Z. Then, s = 0 or 1 or 2 since 0 ≤ u1 + u2 ≤ 2p − 2 and p ≤ c ≤ 3p − 1.
Hence,

n = c + 2pd

= u1 + 2pv1 + u2 + 2pv2 + ps + 2p2h

≡ u1 + 2pv1 + u2 + 2pv2 + ps (mod 2p2).

If s = 0, then in Z2p2 ,

n = (u1 + 2pv1) + (u2 + 2pv2) ∈ A1 + A1 ⊂ A + A.

If s = 1, then in Z2p2 ,

n = (u1 + 2pv1 + p) + (u2 + 2pv2) ∈ (A1 + p) + A1 ⊂ A + A.
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If s = 2, then in Z2p2 ,

n = (u1 + 2pv1 + p) + (u2 + 2pv2 + p) ∈ (A1 + p) + (A1 + p) ⊂ A + A.

Hence, in all cases, σA(n) ≥ 1 for n ∈ Z2p2 .
It can be easily seen that |A1| ≤ 2|B| from the construction. Therefore, for the set A

constructed above,

|A| ≤ |A1| + |A1 + p| = 2|A1| ≤ 2 × 2|B| = 4|B|
and

|B| � |Qm+1| + |Qm(m+1)| + |Q2m| = 3p,

from which it follows that

|A| ≤ 12p.

This completes the proof of Lemma 2.4. �

The final lemma gives a relation between the bases of Zm1 and Zm2 with certain
constraints.

LEMMA 2.5. Let ε > 0 be an arbitrarily small number. Let m1 and m2 be two positive
integers with (2 − ε)m1 < m2 < 2m1. If A is a subset of Zm1 with σA(n) ≥ 1 for any
n ∈ Zm1 , then there is a subset B of Zm2 with |B| ≤ 2|A| such that σB(n) ≥ 1 for any
n ∈ Zm2 .

PROOF. Suppose that m2 = m1 + r, so that (1 − ε)m1 < r < m1. Let

B = A ∪ {a + r : a ∈ A}.
Then, |B| ≤ 2|A|. It remains to prove σB(n) ≥ 1 for any n ∈ Zm2 .

Without loss of generality, we may assume 0 ≤ a ≤ m1 − 1 for any a ∈ A. For
0 ≤ n ≤ m1 − 1, there are two integers a1, a2 ∈ A so that n ≡ a1 + a2 (mod m1). Since
0 ≤ a1 + a2 ≤ 2m1 − 2, it follows that

n = a1 + a2 or n = a1 + a2 − m1.

If n = a1 + a2, then clearly n ≡ a1 + a2 (mod m2). If n = a1 + a2 − m1, then

n + m2 = n + m1 + r = a1 + (a2 + r),

which means that n ≡ a1 + (a2 + r) (mod m2). In both cases, σB(n) ≥ 1 for any n with
0 ≤ n ≤ m1 − 1. We are left to consider the case m1 ≤ n ≤ m2 − 1. In this range,

0 < n − r ≤ m2 − 1 − r = m1 − 1.

Thus, there are two elements ã1, ã2 of A so that

n − r ≡ ã1 + ã2 (mod m1).

Again, by the constraint 0 ≤ ã1 + ã2 ≤ 2m1 − 2,

n − r = ã1 + ã2 or n − r = ã1 + ã2 − m1.
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If n − r = ã1 + ã2, then we clearly have n − r ≡ ã1 + ã2 (mod m2). Otherwise, we have
n − r = ã1 + ã2 − m1. So, it can now be deduced that

n + m2 = ã1 + r + ã2 + r,

which is equivalent to n ≡ (ã1 + r) + (ã2 + r) (mod m2). �

PROOF OF THEOREM 1.1. Let ε > 0 be an arbitrarily small given number. Then, by
Lemma 2.2, there is some prime p so that√

m
4
< p <

√
m

2(2 − ε) , (2.1)

provided that m is sufficiently large (in terms of ε). By Lemma 2.4, there is a subset
A ⊂ Z2p2 with |A| ≤ 12p so that σA(n) ≥ 1 for any n ∈ Z2p2 . From (2.1),

(2 − ε)2p2 < m < 2 × 2p2. (2.2)

Thus, by Lemma 2.5, there is a subset B of Zm with

|B| ≤ 2|A| ≤ 24p (2.3)

such that σB(n) ≥ 1 for any n ∈ Zm. Hence, by Lemma 2.3,

�m = min
Ã∈Hm

{
m−1
∑
n∈Zm

σÃ(n)
}
≤ m−1

∑
n∈Zm

σB(n) =
|B|2
m

.

Employing (2.2) and (2.3),

|B|2
m
≤ (24p)2

(2 − ε)2p2 = 144 × 2
2 − ε .

Hence, it follows that

lim sup
m→∞

�m ≤ 144 × 2
2 − ε

for any ε > 0, which clearly means that

lim sup
m→∞

�m ≤ 144.

This completes the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

The proof of Theorem 1.2 is based on the following remarkable result of Singer.

LEMMA 3.1 (Singer [14]). Let p be a prime. Then, there exists a subset A of Zp2+p+1

so that δA(n) = 1 for any n ∈ Zp2+p+1 with n � 0.

The next lemma is a variant of Lemma 2.3.
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LEMMA 3.2. Let m be a positive integer and A a subset of Zm. Then,∑
n∈Zm

δA(n) = |A|2,

where |A| denotes the number of elements of A.

PROOF. It is clear that∑
n∈Zm

δA(n) =
∑
n∈Zm

∑
a1−a2=n
a1,a2∈A

1 =
∑

a1,a2∈A
a1−a2∈Zm

1 =
∑

a1,a2∈A
1 = |A|2.

This completes the proof of Lemma 3.2. �

We need another auxiliary lemma.

LEMMA 3.3. Let ε > 0 be an arbitrarily small number. Let m be a positive integer and
p a prime number with

(2 − ε)(p2 + p + 1) < m < 2(p2 + p + 1).

If A is a subset of Zp2+p+1 with δA(n) ≥ 1 for any n ∈ Zp2+p+1, then there is a subset B
of Zm with |B| ≤ 2|A| such that δB(n) ≥ 1 for any n ∈ Zm.

PROOF. Suppose that m= (p2+ p+1)+ r. Then, (1 − ε)(p2+ p+1)< r < (p2+ p+1).
Let

B = A ∪ {a + r : a ∈ A}.

Then, |B| ≤ 2|A|. It remains to prove δB(n) ≥ 1 for any n ∈ Zm.
Without loss of generality, we can assume 0 ≤ a ≤ p2 + p for any a ∈ A. For

0 ≤ n ≤ p2 + p, there are two integers a1, a2 ∈ A so that

n ≡ a1 − a2 (mod p2 + p + 1),

which means that

n = a1 − a2 or n = a1 − a2 + (p2 + p + 1)

since −p2 − p ≤ a1 − a2 ≤ p2 + p. If n = a1 − a2, then we clearly have n ≡ a1 − a2
(mod m). If n = a1 − a2 + (p2 + p + 1), then

n − m = n − (p2 + p + 1) − r = a1 − (a2 + r),

from which it can be deduced that n ≡ a1 − (a2 + r) (mod m). In both cases, we have
δB(n) ≥ 1 for any n with 0 ≤ n ≤ p2 + p. We are left to consider the case p2 + p + 1 ≤
n ≤ m − 1. In this case,

0 < n − r ≤ m − 1 − r = p2 + p.

Thus, there are two elements ã1, ã2 of A so that

n − r ≡ ã1 − ã2 (mod m).
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Again, by the constraint −p2 − p ≤ ã1 − ã2 ≤ p2 + p, we have

n − r = ã1 − ã2 or n − r = ã1 − ã2 + (p2 + p + 1).

If n − r = ã1 − ã2, then we clearly have n − r ≡ ã1 − ã2 (mod m). Otherwise, we have
n − r = ã1 − ã2 + (p2 + p + 1), from which it clearly follows that

n − m = ã1 − ã2.

So we also deduce n ≡ ã1 − ã2 (mod m). �

We now turn to the proof of Theorem 1.2.

PROOF OF THEOREM 1.2. Let ε > 0 be an arbitrarily small given number. By
Lemma 2.2, there is some prime p so that

√
2m − 3 − 1

2
< p <

√
4

2−εm − 3 − 1

2

providing that m is sufficiently large (in terms of ε). Equivalently,

(2 − ε)(p2 + p + 1) < m < 2(p2 + p + 1). (3.1)

By Lemma 3.1, there is a subset A of Zp2+p+1 so that δA(n) = 1 for any n ∈ Zp2+p+1 with
n � 0. Employing Lemma 3.2,

|A|2 =
∑

n∈Zp2+p+1

δA(n) =
∑

n∈Zp2+p+1, n�0

δA(n) + δA(0) = p2 + p + |A|,

from which it follows clearly that

|A| = p + 1.

By Lemma 3.3 and (3.1), there is a subset B of Zm with

|B| ≤ 2|A| ≤ 2(p + 1) (3.2)

such that δB(n) ≥ 1 for any n ∈ Zm. Thus, by the definition of gm and Lemma 3.2 again,

gm = min
Ã∈Km

{
m−1
∑
n∈Zm

δÃ(n)
}
≤ m−1

∑
n∈Zm

δB(n) =
|B|2
m

.

From (3.1) and (3.2),

|B|2
m
≤ 4(p + 1)2

(2 − ε)(p2 + p + 1)
≤ 4

2 − ε/2 ,
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provided that m (hence p) is sufficiently large (in terms of ε). Hence, we conclude that

lim sup
m→∞

gm ≤
4

2 − ε/2
for any ε > 0, which clearly means that

lim sup
m→∞

gm ≤ 2.

This completes the proof of Theorem 1.2. �
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