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1. Introduction

1.1. Main results

Let G be a connected semisimple algebraic group over Q and X be the symmetric space
of G(R). We write G(R)nc for the product of the noncompact factors of G(R) and dG for

the (real) dimension of X.

For congruence subgroups Γ ⊂ G(Q), we consider the quotients MΓ = Γ\X and their
cohomology groups Hi(MΓ) with complex coefficients. The direct limit

Hi(MG) := colimΓH
i(MΓ)

is a G(Q)-module using pullback by the isomorphisms MgΓg−1 → MΓ induced by

g−1 on X.

For a semisimple subgroup H ⊂ G, let ΓH = Γ∩H(Q) and MH,ΓH
= ΓH\XH . The

totally geodesic embedding XH ⊂X induces a proper map

MH,ΓH
→MΓ.

Pullback in cohomology defines an H(Q)-equivariant map ι∗ : H∗(MG)→ H∗(MH), and

composing with the action of G(Q) gives a map

Res : H∗(MG)−→ IGH H∗(MH).

The target of Res (defined in §2.4) is a certain induced module contained in the product∏
g∈G(Q)H

∗(MH), so that concretely we have that Res(α) �=0 if and only if ι∗
(
g−1 ·α

)
�=0

for some g ∈G(Q) – that is, some Hecke translate of α restricts nontrivially to MH .

Theorem 1.1. Suppose that H ⊂G are semisimple groups of the same Q-rank and that
H(R)nc ⊂G(R)nc is one of the following embeddings:

(1) SO(1,c)⊂ SO(1,d) (the real hyperbolic case), with neither H nor G a triality form;

(2) SU(1,m)⊂ SU(1,n) (the complex hyperbolic or ball quotient case);

(3) SO(2,m)⊂ SO(2,n) (the orthogonal Shimura variety case).

Then the map Res : H∗(MG)−→ IGH H∗(MH) is injective in degrees < dH/2 (and also in

degree i= dH/2 in the case where SO(1,c)⊂ SO(1,d) with c even).

This automorphic Lefschetz property is well known if G is anisotropic (or equivalently,

MΓ is compact): the injectivity in case (1) was proved in [12], and in cases (2) and (3) it

was proved in [47] in degrees i≤ dH/2. In the noncompact situation, case (1) can be proved
by adapting the methods of [7, 12] with some care, and case (2) was proved in [36] (and

[13]), so that the most interesting new case is (3). It includes, for example, the most basic

orthogonal Shimura varieties arising from quadratic forms over Q of signature (2,n) over
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R with n≥ 4. The treatment of the ‘missing’ degree i= dH/2 in the noncompact SU(1,n)

and SO(2,n) cases requires arithmetic information, and we leave it for another occasion.

(Note that restriction in degree 2 from SO(2,3) to SO(2,2), which is not covered by
Theorem 1.1, was treated by Weissauer [51] using a detailed automorphic understanding

of H2 of Siegel threefolds.)

For the inclusion SO(1,n)⊂ SU(1,n) we have the following, which is [12, Theorem 1.7]
in the compact case. For i < n, the group Hi(MΓ) carries a pure Hodge structure of weight

i, and we set Hi,0(MG) := colimΓH
i,0(MΓ).

Theorem 1.2. Suppose that H ⊂ G are of the same Q-rank, H(R)nc ⊂ G(R)nc is
SO(1,n) ⊂ SU(1,n), and H is not a triality form. Then Res : Hi,0(MG) −→ IGHH∗(MH)

is injective in degrees i≤ n/2.

We will discuss the proofs in §1.3.

1.2. Some history

Restriction maps between congruence quotients have been studied by numerous authors

for almost 40 years, starting with the pioneering work of Oda [38]. We refer the reader
to the surveys [10, 48] for a discussion of this work, and restrict ourselves here to a brief

review of the history of immediate relevance to us.

The first result of this type was proved by Oda [38], who introduced the restriction map
Res and proved Theorem 1.1 for SU(1,m)⊂ SU(1,n) in degree i= 1. Weissauer [51] then

proved the Lefschetz property for SO(2,2) ⊂ SO(2,3) in degree i = 2. Motivated by the

general conjecture (of Langlands, Kottwitz, and Arthur) on the Galois representations

appearing in the cohomology of Shimura varieties, Arthur [1, §9] raised the question
of whether the nonprimitive cohomology of Shimura varieties can be related to smaller

Shimura varieties. Harris and Li [28] applied the Burger–Sarnak [18] method to prove

the Lefschetz property in degree i = 2 in the cases of compact complex hyperbolic and
orthogonal Shimura varieties – that is, cases (2) and (3). They also conjectured injectivity

in degrees ≤ dH/2 in these cases and showed that in case (2) it would follow from Arthur’s

conjectures [1] on the discrete spectrum. They also asked (when dG = dH +2 in cases (2)
and (3)) whether a linear combination of Hecke translates of the class of the divisor MH,Γ

is the class of an ample divisor. Venkataramana [47] showed that this is true in cohomology

rather than on the level of cycles – that is, a linear combination of translates of the

cycle class in H2(MΓ) is the hyperplane cohomology class in the Baily–Borel projective
embedding – and used this to prove the conjecture of [28] – that is, Theorem 1.1 in

compact cases (2) and (3).

The automorphic approach of [28] was taken up by Bergeron and Clozel [7, 8, 11, 12],
who made the remarkable discovery that Lefschetz properties hold for congruence

hyperbolic manifolds (i.e., case (1) of Theorem 1.1) even though there is no complex

structure available. This allows for a common approach to Lefschetz properties in different
contexts, by using the Burger–Sarnak method to reduce them to uniform (in the level Γ)

bounds for the nonzero eigenvalues of the Laplacian on forms on the smaller locally

symmetric space. This eigenvalue bound was then deduced in case (1) in [12] from Arthur’s
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endoscopic classification [2] of automorphic forms on orthogonal groups, completing the

proof of Theorems 1.1 and 1.2 in the compact case.

In the noncompact case it is less clear what should be true, although the analogues
for singular varieties of the Lefschetz theorems in [24] are suggestive. Moreover, since the

cohomology of noncompact quotients is influenced by the behavior of L-functions (for

example, through Eisenstein series constructions of cohomology), one expects that the
question is more subtle, and this is reflected by the omission of i= dH/2 in cases (2) and

(3) for now.

The complex hyperbolic case of Theorem 1.1 was proved in [13, 35, 36]; here we will
prove the rest of the theorem, with the case of orthogonal Shimura varieties being the

main new result. In fact, our proof shows that the Lefschetz property for congruence real

hyperbolic groups arises as a sort of local Lefschetz property at infinity for the noncompact

case of orthogonal Shimura varieties. We will comment further on this later.

1.3. On the proofs

We discuss the proofs of the main theorems and some intermediate results proved along

the way.

There are, roughly speaking, three types of arguments involved:

(a) automorphic arguments – mainly the Burger–Sarnak method, as in [7, 12, 28], but

also rank 1 residual Eisenstein cohomology;

(b) geometric arguments – the use of cycle classes, as in [47], and mixed Hodge theory

and compactifications, as in [35, 36]; and

(c) elementary arguments with Lie-algebra cohomology, as in [36].

The proof of Theorem 1.1 in the different cases uses these ingredients differently: Case

(1) uses (a) and (c), case (2) uses (b) and (c), and case (3) uses (b) and (c) explicitly,

but also (a) through the use of case (1). The proof of Theorem 1.2 uses mainly (a) and
(c), with some mild input from (b). The use of results about weights in the topology of

singular varieties in (b), which play a crucial role in our approach, constitutes the main

technical novelty of this paper. This will be clear from the detailed sketch of the proof of
Theorem 1.1, which we now give.

A basic role is played by the minimal compactification MΓ ↪→ M∗
Γ, which is the cusp

compactification of the (real or complex) hyperbolic manifold in cases (1) and (2) and
the Satake–Baily–Borel compactification in cases (2) and (3). This gives the basic exact

sequence

0 �� Hk
! (MG) �� Hk(MG) �� Hk(i∗j∗C), (1.1)

here the interior cohomology Hk
! (MG) is, by definition, the image of Hi

c(MG) :=

colimΓH
i
c(MΓ) in Hk(MG) and the third term is the boundary cohomology. This sequence

is functorial for the inclusions H ⊂ G considered in Theorems 1.1 and 1.2 because
MH,ΓH

→MΓ extends to a morphism M∗
H,ΓH

→M∗
Γ of minimal compactifications. The

obvious approach is to treat the interior cohomology and the contribution from the

boundary separately, and this is what we do.
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The Lefschetz property for interior cohomology is the following:

Theorem 1.3 (Theorem 5.1, Corollary 3.2). The map Res is injective on Hk
! (MG) for

k ≤ dH/2 in cases (1) and (2) and for k < dH/2 in case (3).

The proof of this is different in the various cases. In the real hyperbolic case (1), we
adapt the Burger–Sarnak approach of [7, 12, 28] to the noncompact case. This is a more

or less straightforward matter of combining the method with well-known results about

residual Eisenstein cohomology, but since the literature on this is less than satisfactory, we
treat it in some detail. In cases (2) and (3) when there is a complex structure available, we

adopt a different approach based on some mixed Hodge theory. (The complex hyperbolic

case was treated in [35, 36], but the approach here is slightly different and simpler.)
Theorem 1.3 in cases (2) and (3) is then a corollary of the following:

Theorem 1.4 (Theorem 3.1). The map Res is injective on GrWk Hk (M ∗
G) for k ≤ dH/2.

This result is deduced as a corollary of a general nonvanishing criterion (Theorem 3.11)
for the map on top weight quotients (for the weight filtration)

Res : GrWi Hi (M ∗
G)→ IGHGrWi Hi (M ∗

H)

for a morphism between Shimura varieties, given in terms of the compact dual. This
generalizes the criterion of [47] in the compact case and has other applications (see Remark

3.14). The spirit of the proof of Theorem 3.11 is that given a functorial cohomology group,

some Poincaré duality, and semisimplicity, the averaging argument of [47] can be used

to show that a linear combination of G(Q)-translates of the cycle class of the subvariety
gives the class of the compact dual of H. The necessary ingredients are available thanks to

some results in mixed Hodge theory (consequences of the weights and purity package of

[6, 42], reviewed in §3.1) and the theory of Chern classes of automorphic vector bundles
(results from [25, 32], reviewed in §3.2 and Appendix C). We remark that the purely

automorphic (i.e., Burger–Sarnak) method cannot be made to work easily for interior

cohomology in case (3) (see Remark 5.4 for details).
Having treated the interior cohomology, we deal with the cohomology at infinity. In

cases (1) and (2) this is straightforward: Given sequence (1.1) and the identification of

the boundary cohomology in terms of Lie-algebra cohomology, it reduces to an elementary

computation with Kostant’s theorem (as was already done in case (2) in [36]). The
argument in case (3) of orthogonal Shimura varieties is more delicate: The boundary of

M∗
Γ is more complicated, containing modular curves as well as cusps, and it is no longer

true that the restriction is injective on the entire boundary cohomology. Instead, the
argument is in two steps. First, using an elementary argument using Kostant’s theorem

as in the rank 1 cases, one extends injectivity from the interior cohomology Hi
!(MG) to

an intermediate subspace

Hi
!(MG)⊂GrWi Hi

c

(
M 1

G,j
1
∗C

)
⊂Hi(MG),

which takes into account some contributions from the one-dimensional boundary strata

(see §7.1 for the notation). Next, one extends injectivity to all of Hi(MG) by taking into
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account contributions from the cusps. By arguments in which weights, purity, and the
description of the restriction to strata of the direct image sheaves in M∗

Γ play a crucial

role, this reduces to the Lefschetz property for real hyperbolic manifolds for the pair

SO(1,m−1)⊂ SO(1,n−1) appearing in the Levi subgroups of SO(2,m) and SO(2,n) –
that is, to the result from case (1), although with nontrivial coefficients. This completes

the sketch of the proof of Theorem 1.1.

1.4. Further remarks

Nonvanishing results for cup products in cohomology, which amount to injectivity of Res

for the diagonal embedding G⊂G×G, are known in the compact cases [12, 47] and for
noncompact complex hyperbolic cases [36]. The nonvanishing of cup products in H∗

! (MG)

follows from the criterion of Theorem 3.11. The extension to H∗(MG) should be possible

using the methods used here.
Injectivity in degree i= dH/2 in the complex hyperbolic case and the case of orthogonal

Shimura varieties remain to be resolved. The two cases are slightly different, since in the

first we have injectivity on H
dH/2
! (MG) but not on the boundary cohomology, while in

the second case we do not know injectivity on H
dH/2
! (MG). In both cases, the classes

potentially in the kernel of Res are constructed by residues of Eisenstein series, and

their existence is caused by the nonvanishing of an L-value, whereas their survival under

Res is also related to an L-value. We would also like to consider cases where rankQ(H)<
rankQ(G), to which our arguments do not necessarily apply. (Although note that what we

have treated is the ‘generic’ case, at least over Q – for example, in case (3), if m+2≥ 6,

then we are in the situation treated here.) It appears that these questions are most

naturally considered in the framework of branching laws, and we will consider them in a
sequel.

Finally, the appearance of the Lefschetz property in the real hyperbolic case as a local

Lefschetz property at the cusp singularities for the orthogonal Shimura variety suggests
trying to reverse the logic and deduce the Lefschetz property in the real hyperbolic case

from purely geometric facts. It seems likely that this would follow from showing that a

linear combination of Hecke translates of the image of M∗
H,ΓH

→M∗
Γ is ample – that is,

resolving the question raised in [28]. Perhaps [15] can be used profitably here.

1.5. Contents

We end the introduction with a brief discussion of the contents of the individual sections.

Section 2 introduces the congruence quotients of interest and their minimal compact-

ifications, recalls some well-known results on their local geometry and cohomology at
infinity, and introduces the restriction maps in detail.

Section 3 discusses restriction between (connected) Shimura varieties. We show using

some standard mixed Hodge theory that there is a simple criterion for the injectivity
of Res on the top weight quotient of H∗ (M ∗

G). We apply it to SU(1,m) ⊂ SU(1,n)

and SO(2,m) ⊂ SO(2,n) to prove injectivity on the top weight quotient and on interior

cohomology in these cases.
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Section 4 contains Lie-algebra cohomology computations using Kostant’s theorem which
are necessary to treat boundary contributions in the various cases. These are explicit

elementary calculations with roots and weights.

Section 5 considers the congruence real hyperbolic case and contains the proof of case
(1) of Theorem 1.1.

Section 6 considers the congruence complex hyperbolic case and contains the proof of

case (2) of Theorem 1.1 and the proof of Theorem 1.2.

Section 7 considers the case of orthogonal Shimura varieties. The results of §§3, 4, and
5 are combined to prove the remaining case (3) of Theorem 1.1.

The three appendices contain some facts which are presumably well known but for

which we could not find appropriate references in the literature. Appendix A contains
some facts about the L2 cohomology of arithmetic manifolds used in §§5 and 6. In fact,

we only need a very special case of what is proven (Proposition A.1 in the case SO(1,d)

for d odd), but the facts recorded here will be useful elsewhere. Appendix B records some
well-known facts about the construction of cohomology classes via residual Eisenstein

series, for use in §§5 and 6. And Appendix C discusses Chern classes of automorphic

vector bundles, which are used in §3.

2. Preliminaries

2.1. Congruence arithmetic quotients

The general setup we work in is as follows. Let G be a semisimple algebraic group over

Q, K the maximal compact subgroup of G(R), and X = G(R)/K the symmetric space.
For a congruence subgroup Γ⊂G(Q), the quotient

MΓ = Γ\X

is noncompact when G is Q-isotropic. The following three cases will be the main ones of

interest to us:

(i) G(R)nc = SO(1,d) for d ≥ 2, so that X is a real hyperbolic d -space and MΓ is a
congruence hyperbolic manifold;

(ii) G(R)nc = SU(1,n) for n ≥ 2, so that X is the complex unit n-ball and MΓ is a

congruence ball quotient (or congruence complex hyperbolic manifold);

(iii) G(R)nc = SO(2,n) for n≥ 3, so that

X = SO(2,n)/S(O(2)×O(n)) = SO0(2,n)/SO(2)×SO(n)

and MΓ is a Hermitian locally symmetric space which we will refer to, by an abuse
of terminology, as an orthogonal Shimura variety.

In cases (ii) and (iii) the symmetric space X has an Hermitian structure, so that MΓ is a
smooth complex manifold if Γ is small enough. We will also be interested in the general

case when X has an Hermitian structure; by an abuse of terminology, we will then refer

to MΓ as a Shimura variety.
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Example 2.1. The standard examples of congruence quotients of types (i)–(iii) are given

by quadratic or Hermitian spaces over Q or number fields. For example, if (V ,q) is a

quadratic space over Q and qR has signature (1,d), then G= SO(q) gives an example of
(i), whereas if the signature is (2,n), then it gives an example of (iii). If the number of

variables is at least ≥ 5 and qR is indefinite, then G= SO(q) is necessarily Q-isotropic and

MΓ is noncompact. More generally, if n+2 is odd and ≥ 5, then the only examples of type
(iii) are the obvious ones – that is, they come from quadratic forms. When the number of

variables is even, there are more complicated examples – for example, for d+1 = 8 there

are triality forms of type (i).

Let G(R)c be the compact real form of G(R). The compact symmetric space dual

to X is

Xc =G(R)c/K.

In our three cases, Xc is (i) the d -sphere, (ii) the complex projective n-space Pn, and

(iii) a quadric in Pn+1. In all three cases there is a natural embedding X ⊂Xc and the
action of G(R) extends to the closure of X in Xc: In cases (ii) and (iii) it is the familiar

G(R)-equivariant Borel embedding of X in the flag variety, and in case (i) it is clear, for

example, from the upper half-space model of hyperbolic space.

2.2. Minimal compactification

In all three of our cases, there is a canonical open immersion

j :MΓ ↪→M∗
Γ

into a compact space, which we will call the minimal compactification. For cases (i) and (ii)

it is the obvious cusp compactification and also coincides with the reductive Borel–Serre
compactification. For cases (ii) and (iii) and more generally, for any arithmetic quotient

of an Hermitian symmetric domain, it is the Satake–Baily–Borel compactification of MΓ

as a projective variety, and we will describe it in some more detail in this generality.
The closure of X in Xc decomposes as a disjoint union of boundary components, which

are (by definition) the maximal connected complex submanifolds of the closure. The

stabilizer of a proper (i.e., �=X) boundary component is a product of maximal parabolic
subgroups of the simple factors of G(R), and the boundary component is called rational

if the stabilizer is defined over Q, in which case it is a maximal Q-parabolic of G. As a

topological space, M∗
Γ = Γ\X∗, where

X∗ =
⊔

F rational
F ⊂Xc (2.1)

is the union of all rational boundary components of X, equipped with the Satake topology.

The action of G(Q) on X extends to a continuous action on X∗; the stabilizer of a rational

boundary component F is a maximal Q-parabolic subgroup (in which case F is proper
– i.e., F ⊂ X∗ −X) or G itself (the case F = X). The Baily–Borel theory [5] puts an

analytic structure on M∗
Γ inducing the given holomorphic structure on each stratum,

and this structure is unique. Moreover, M∗
Γ has a unique structure of projective algebraic
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variety compatible with this analytic structure, and this gives a canonical quasi-projective
structure on MΓ. The decomposition (2.1) induces an algebraic stratification of M∗

Γ.

Example 2.2. If G is isotropic and G(R)nc is isogenous to SU(1,n), the boundary

components are points and M∗
Γ is the cusp compactification of the complex hyperbolic

manifold.

Example 2.3. If G(R)nc is isogenous to SO(2,n), the boundary components have

complex dimension 1 (i.e., they are upper half-planes) or 0 (points). The natural filtration
of X∗ induces a filtration by Zariski open subsets

MΓ ⊂M1
Γ ⊂M∗

Γ,

with Z1
Γ =M1

Γ−MΓ a disjoint union of curves and Z0
Γ =M∗

Γ −M1
Γ a finite set of cusps.

(Either or both of Z0
Γ and Z1

Γ may be empty.)

The local geometry of the stratification of M∗
Γ is closely tied to the structure of

parabolic subgroups, as we now review (see, e.g., [3, Sections III.4.1–III.4.2], [5, Section 3],

[31, Section 6.1], or [25, Sections 7.1–7.3]). We will assume that the adjoint group Gad

is Q-simple. Let P be a maximal rational parabolic subgroup. The unipotent radical W
is an extension 1 → U → W → V → 1, where U is the center of W and V is abelian.

For the Lie algebras w = LieW (R),u = LieU(R),v = LieV (R), we have an extension

0→ u→w→ v→ 0. The action of A on u=LieU(R) is by the square of the positive (with
respect to P) generator χ of X∗(A), and the action on v = LieV (R) is by χ (if v �= 0).

The Levi quotient M = P/W has a decomposition M =M�MhA, where A ∼= Gm is the

maximal Q-split central torus in M, M� and Mh commute, (any lift of) Mh centralizes

U, Mh contains no nontrivial connected Q-anisotropic subgroup, and Mh(R) gives an
Hermitian symmetric space, which is the rational boundary component corresponding

to P. (The relation with the ‘five-factor decomposition’ of [3, §4.1] is the following:

If P is the stabilizer of F and P = Gh(F )G�(F )M(F )V (F )U(F ) as in [3, §4.1], then
W =W (F ),U =U(F ),V ∼=V (F ),M�

∼=G�(F )M(F ), andMhA∼=Gh(F ).) Note that if G is

simply connected, the same is true of the derived group of the Levi, so Mder =Mder
� ×Mh,

and hence Mh is also simply connected.

Example 2.4. Let G = SO(q) for a quadratic form over Q of signature (2,n). Assume
that G has Q-rank 2 (this is automatic for n≥ 6). The maximal proper Q-parabolics of

G are the stabilizers of isotropic subspaces in V, which are of dimension 1 or 2. We have

the following:

1. If P is the stabilizer of an isotropic plane I ⊂ V , the unipotent radical is a nontrivial
extension 1→Ga →W →G

2(n−2)
a → 1 and the Levi M is GL(2)×SO

(
I⊥/I

)
. Here

MhA=GL(2) and M� = SO
(
I⊥/I

)∼= SO(n−2) is anisotropic over R.

2. If P is the stabilizer of an isotropic line I ⊂ V , the unipotent radical is abelian
W ∼=Gn−2

a and the Levi isM ∼=Gm×SO
(
I⊥/I

)
. HereMh is trivial,M�

∼=SO
(
I⊥/I

)
has Q-rank 1 and M�(R) = SO(1,n−1).

The corresponding strata of M∗
Γ are modular curves in case (1) and cusps in case (2).
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Example 2.5. It can happen that Z0
Γ = ∅ –for example, for the Q-rank 1 inner form of

Sp(4,R) =Spin(2,3) associated with an indefinite quaternion algebra D over Q and a rank
2 Hermitian space over D with respect to the involution of D extending the nontrivial

Galois action on the maximal subfield of D (which is real quadratic). (This is the form

denoted C
(2)
2,1 in [46, p. 57].) In this case the stabilizer of a cusp is the inner form D× of

GL(2) and the boundary of M∗
Γ is a disjoint union of Shimura curves.

Example 2.6. An example with Z1
Γ = ∅ is that of Hilbert modular surfaces, which are

forms of Spin(2,2)∼=SL(2)×SL(2) with Q-rank 1. The boundary ofM∗
Γ consists of cusps.

2.3. Direct limits

Let G be a semisimple Q-algebraic group, X =G(R)/K the symmetric space, and MΓ =

Γ\X for congruence Γ. For Γ′ ⊂ Γ the covering map MΓ′ →MΓ gives pullback maps in

cohomology and compactly supported cohomology, so taking colimits over all congruence
subgroups, we define

Hi(MG) := colimΓH
i(MΓ),

Hi
c(MG) := colimΓH

i
c(MΓ),

Hi
!(MG) := colimΓH

i
!(MΓ),

(2.2)

where, as usual, Hi
!(MΓ) = im

(
Hi

c(MΓ)→Hi(MΓ)
)
is the interior cohomology. All these

are smooth G(Q)-modules, in the sense that the stabilizer of a vector is a congruence

subgroup. The action of g ∈ G(Q) on Hi(MΓ) ⊂ Hi(MG) is given by the pullback

Hi(MΓ) → Hi
(
MgΓg−1

)
by the isomorphism MgΓg−1 → MΓ induced by left translation

by g−1 on the universal cover X. The transition maps in the colimits are injective, and

H∗(MΓ) can be recovered as the Γ-invariants in H∗(MG). The same remarks apply to

H∗
c(MG) and H∗

! (MG).
When the symmetric space X is Hermitian or G(R)nc is isogenous to SO(1,d), we also

have the minimal compactification M∗
Γ as in §2.2, and we can define

Hi(M ∗
G) := colimΓH

i (M∗
Γ) . (2.3)

This is a smooth G(Q)-module, and in the Hermitian case it carries a mixed (ind-)Hodge

structure. In particular, it has a weight filtration with weights ≤ i in degree i, and the
graded pieces are

GrWj Hi (M ∗
G) = colimΓGrWj Hi (M∗

Γ)

by strictness of the weight filtration.

The inductive setup requires the use of nontrivial coefficients (at the boundary) to treat
the case of trivial coefficients. A finite-dimensional algebraic representation E of G(C)

gives a local system on MΓ which, for simplicity, we continue to denote E, and we can

consider H∗(MΓ,E), the colimit

H∗(MG,E) = colimΓH
∗(MΓ,E),
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and similarly H∗
c(MG,E) and H∗

! (MG,E). For minimal compactifications jΓ :MΓ ↪→M∗
Γ,

we take the sheaf H0(jΓ∗E) – this is the ordinary, underived push-forward – and define

H∗ (M ∗
G,E) := colimΓH

∗ (M∗
Γ,H

0(jΓ∗E)
)
.

2.4. Restriction maps

Now suppose thatH ⊂G is an injective homomorphism of semisimple Q-groups. Choosing

(as we may) a maximal compactK inG(R) such thatKH =K∩G(R) is maximal compact,
and letting ΓH =Γ∩H(Q) and MH,ΓH

=ΓH\H(R)/KH , we get a map ι :MH,ΓH
−→MΓ

which is well known to be proper. Thus there are induced pullback maps Hi(MΓ) →
Hi (MH,ΓH

) and Hi
c(MΓ) → Hi

c (MH,ΓH
) (the latter because MH,ΓH

→ MΓ is proper).
These are compatible under the natural maps H∗

c(·) → H∗(·), forgetting supports, and

hence induce Hi
!(MΓ)→Hi

! (MH,ΓH
). In the limit over Γ we have H(Q)-equivariant maps

ι∗ : Hi
(c)(MG)→Hi

(c)(MH)

in cohomology and compactly supported cohomology. There are induced homomorphisms
of smooth G(Q)-modules

Res : Hi
(c)(MG)−→ IGH Hi

(c)(MH),

where IGH is an induction functor such that for a smooth H(Q)-module U, IGHU consists of

functions f :G(Q)→U such that f(gh) = h−1 ·f(g) and f is left-invariant by a congruence
subgroup of G(Q), and the action of g ∈G(Q) is by (g ·f)(x) = f

(
g−1x

)
. Then IGH is exact,

takes smooth modules to smooth modules, and is right adjoint to restriction (these facts

are completely elementary, see [35, Section 3.1]). Explicitly, Res is given by

Res(α)(g) = ι∗
(
g−1 ·α

)
= ι∗((g·)∗α).

Note that Res restricts to a map Res : Hi
!(MG)→ IGH Hi

!(MH) on interior cohomology.

When both H and G give Hermitian symmetric spaces and K is chosen (as it may be)

so that the map H(R)/KH → G(R)/K is holomorphic, the map MH,ΓH
→MΓ extends

to a morphism M∗
H,ΓH

→M∗
Γ of varieties of minimal compactifications. This well-known

general fact (compare [44] or [27, Section 3.3]) is easily seen in our primary cases of

interest using the description of M∗
Γ given in §2.2. Pullback induces an H(Q)-equivariant

map Hi (M ∗
G)→Hi (M ∗

H), which gives a homomorphism of mixed Hodge structures

Res : Hi (M ∗
G)−→ IGHHi (M ∗

H)

by adjunction. There is a similar mapping in the real hyperbolic cases where H(R)nc ⊂
G(R)nc is SO(1,c)⊂ SO(1,d) (up to isogeny) and in the ‘mixed’ case SO(1,n)⊂ SU(1,n),
coming from the obvious extension of MH,ΓH

→MΓ to minimal compactifications.

Now assume thatH ⊂G is such that the restriction of finite-dimensional representations

from G to H is multiplicity-free. The situations we will treat are well known to be of
this type, by classical branching laws (e.g. [22, Section 8.1.1]). Choose Borel subgroups

BH ⊂ B and maximal tori TH ⊂ BH and T ⊂ B of H(C) and G(C), and for E with B -

highest weight λ ∈X∗(T ) let EH be the unique summand of E|H(C) with highest weight
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λ|TH
. The composition H∗(MG,E) → H∗(MH,E|H) → H∗(MH,EH) is H(Q)-invariant

and induces a restriction map

Res : H∗(MG,E)−→H∗(MH,EH)

with coefficients. There are similar maps for H∗
c(MG,E), H∗

! (MG,E), and H∗ (M ∗
G,E).

The use of Res for several different maps should cause no confusion, as we will

always specify the domain when discussing injectivity results. We will also frequently write

Hi(M ),Hi(M ∗), and so on, for Hi(MG),H
i (M ∗

G), and so on – dropping the subscript G

when it is clear from context.

2.5. Higher direct images in the minimal compactification

We will use a well-known description of the restriction of j∗QMΓ
to a stratum of M∗

Γ

in the case of Shimura varieties. (Here by j∗ we mean the push-forward on the level of

derived categories – that is, Rj∗ in old-fashioned notation.)

To fix notation, let iS : S ↪→M∗
Γ be a stratum of the minimal compactification. Choose

a rational boundary component F � S and let P =MW be the stabilizer of F and M =

MhM�A as in §2.2. For the congruence subgroup Γ, let ΓW = Γ∩W (Q), ΓP = Γ∩P (Q),

ΓM = ΓP /ΓW , ΓM�
= ΓM ∩M�(Q), and ΓMh

= ΓM/ΓM�
. These are all neat arithmetic

subgroups when Γ is neat.

Proposition 2.7. For a stratum iS : S ↪→M∗
Γ we have the following:

(1) There is a natural isomorphism in the derived category

i∗Sj∗QMΓ
=

⊕
k

Hk (i∗Sj∗QMΓ
) [−k] (2.4)

of sheaves on S = ΓMh
\F . The object Hk (i∗Sj∗QMΓ

) is the local system on S
associated with the representation of Mh on

Hk (i∗Sj∗QMΓ
)s

∼=
⊕

r+s=k

Hr (ΓM�
,Hs(w,Q)) (2.5)

for s ∈ S.

(2) The weight filtration on Hk (i∗Sj∗QMΓ
)s is split by the action of A on H∗(w,Q) –

that is, GrWi Hk (i∗Sj∗QMΓ
)s is identified with the subspace on which A acts by χ−i

(where χ ∈X∗(A) is such that A acts on the center u of w by χ2 and on v= w/u
by χ; compare §2.2).

The description (2.5) of cohomology sheaves can be found, for example, in [31,
Proposition 5.6] or [23, Corollary 22.8]. The weight filtration on Hk (i∗Sj∗QMΓ

)s comes

from the theory of mixed Hodge modules, and the assertion in (2) is due to Looijenga

and Rapoport [31, Proposition 5.6]. (The analogue in the l -adic setting is in [39].) The
existence of the decomposition (2.4) in the derived category can in fact be deduced from

this, but instead one can use [19, Theorem 2.9], which proves the direct sum decomposition

(2.4) in the derived category of mixed Hodge modules and the identification of the graded
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in the context of Shimura varieties. The isomorphisms (2.4) and (2.5) are equivariant for

the actions of (M�AW )(Q) on both sides (which factor through (M�A)(Q)).

Remark 2.8. The real hyperbolic case SO(1,d) fits notationally into this setup by taking

Mh = {e},M� = SO(d−1), and then (1) remains true.

3. Restriction between Shimura varieties

In this section we assume that H and G both give rise to Shimura varieties, and consider
the restriction Res : GrWi Hi (M ∗

G) → IGHGrWi Hi (M ∗
H) on the top weight quotient for

the weight filtration. We prove a criterion (Theorem 3.11) for the nonvanishing of this

restriction involving the compact dual symmetric space, which is the analogue of the

criterion of [47] in this situation. It implies the following:

Theorem 3.1. If H(R)nc ⊂G(R)nc is SU(1,m)⊂ SU(1,n) or SO(2,m)⊂ SO(2,n), then

Res is injective on GrWi Hi (M ∗
G) in degrees ≤m.

The unitary case of this is contained in [35, Theorem 3.17], although the proof here

is slightly different (and more direct). As a corollary, we get the following injectivity
statements for interior cohomology, the first of which was proved earlier in [35] (see

also [13]):

Corollary 3.2. If H(R)nc ⊂ G(R)nc is SU(1,m) ⊂ SU(1,n), then Res is injective on

Hi
!(MG) in degrees ≤m.

If H(R)nc ⊂G(R)nc is SO(2,m)⊂ SO(2,n), then Res is injective on Hi
!(MG) in degrees

≤m if rkQ(H)≤ 1 and in degrees ≤m−1 if rkQ(H) = 2.

3.1. Some cohomological facts

We will use some facts about the cohomology of (possibly) singular varieties, summarized

in Proposition 3.3 and Lemma 3.5.

Recall that by [20] the rational cohomology H∗(X) = H∗(X,Q) and homology H∗(X) =
H∗(X,Q) of a complex algebraic variety X carry rational mixed Hodge structures; in

particular, they have weight filtrations. The theory of mixed Hodge modules ([42],

especially §4) gives a relative version of mixed Hodge structures and allows for sheaf-

theoretic arguments, mirroring the situation in l -adic cohomology over finite fields [6].
Let X be an irreducible complex variety of dimension d. LetQH

X be the canonical lift ofQX

to an object in the derived category of mixed Hodge modules on X – that is, QH
X = a∗XQH ,

where aX :X → Spec(C) and QH is the trivial Hodge structure. The rational cohomology,
compactly supported cohomology, homology, and Borel–Moore homology groups of X

acquire mixed Hodge structures via

Hi(X) =Hi
(
X,QH

X

)
, Hi

c(X) =Hi
c

(
X,QH

X

)
, (3.1)

Hi(X) =H−i
c

(
X,DQH

X

)
, HBM

i (X) =H−i
(
X,DQH

X

)
, (3.2)

where D is the Verdier duality functor, normalized so that DQH
X = QH

X [2d](d) if X is

smooth. The weights are determined by the fact that QH
X has weights ≤ 0, so, for example,
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Hi
c(X) has weights ≤ i and HBM

i (X) has weights ≥−i. When X is proper, which is the

main case of interest to us, we have Hi(X) =Hi
c(X) and Hi(X) =HBM

i (X), so that Hi(X)

has weights ≤ i and Hi(X) has weights ≥−i.
We will also use the intersection complex ICH

X =
(
j!∗Q

H
U [d]

)
[−d], where j :U ↪→X is the

inclusion of an open dense smooth subset; this lifts the topological intersection complex

ICX = (j!∗QU [d]) [−d] of X, and it is pure of weight 0. (Our notation is slightly different
from [42], where ICX

(
QH

)
is used for j!∗QU [d].) Replacing QH

X by ICH
X in equation (3.2)

defines rational mixed Hodge structures

IHi(X), IHi
c(X), IHi(X), IHBM

i (X)

on the intersection cohomology, intersection cohomology with compact support, intersec-

tion homology, and Borel–Moore intersection homology, respectively. When X is proper,
these are all pure, IH∗(X) = IH∗

c(X) and IH∗(X) = IHBM
∗ (X), and the isomorphism

DICH
X = ICH

X [2d](d) extending DQH
U = QH

U [2d](d) on any smooth open subset U ⊂ X

induces duality isomorphisms IHi(X)∼= IH2d−i(X)(−d) for all i.

Proposition 3.3. If f :X → Y is a morphism of varieties, there are maps

f∗ : GrWi Hi(Y )→GrWi Hi(X),

f∗ :W−iHi(X)→W−iHi(Y ) (3.3)

for each i satisfying

f∗(f
∗(α)∩β) = α∩f∗(β) for α ∈GrWi Hi(Y ), β ∈W−jHj(X). (3.4)

If X is an irreducible proper variety of dimension d, then the following are true:

(1) Hi(X) has weights ≤ i, Hi(X) has weights ≥ −i, and the extreme weights are

given by

GrWi Hi(X) = im
(
Hi(X)→ IHi(X)

)
,

W−jHj(X) = im(IHj(X)→Hj(X))
(3.5)

for all i,j.

(2) If [X] ∈H2d(X)(−d) is the fundamental class of X, then

∩[X] : GrWi Hi(X)−→W−(2d−i)H2d−i(X)(−d) (3.6)

is an isomorphism for all i.

(3) If i : Z ↪→ X is an irreducible closed subvariety of codimension c, then the cycle
class

ξX,Z := (∩[X])−1(i∗[Z]) ∈GrW2cH
2c(X)(c)

has the property that if α ∈H2dimZ(X) with i∗(α) = ξZ,pt, then α · ξX,Z = ξX,pt.

Proof. The statements about f∗ and f∗ are simply the functoriality of the weight

filtration and the fact that when homology is considered as a module over the cohomology

ring using the cap product, push-forward in homology is a module over pullback in
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cohomology. Statements (1) and (2) are contained in [42, §4.5], but for the reader’s

convenience we outline the arguments.

For the standard cohomology functor H0 on mixed Hodge modules (which corre-
sponds to the perverse cohomology functor pH0 on sheaves), we have dual natural

isomorphisms

GrWd Hd
(
QH

X

)
= ICH

X [d],

W−dH
−d

(
DQH

X

)
= ICH

X [d](d)
(3.7)

(see [42, §4.5] for details). If X is proper, then these dual statements and the

hypercohomology spectral sequence imply that

GrWi Hi(X) = im
(
Hi(X)→ IHi(X)

)
,

W−jHj(X) = im(IHj(X)→Hj(X)),
(3.8)

as claimed in (1).

An irreducible variety X has a fundamental class in Borel-Moore homology,

[X] ∈HBM
2d (X)(−d) =H0

(
X,

(
DQH

X

)
[−2d](−d)

)
=Hom

(
QH

X,
(
DQH

X

)
[−2d](−d)

)
,

giving the fundamental class homomorphism QH
X →

(
DQH

X

)
[−2d](−d), which is an

isomorphism if X is smooth. By the identities (3.7) and standard facts about the t-

structure and weights, it factors as

QH
X −→ ICH

X −→
(
DICH

X

)
[−2d](−d)−→

(
DQH

X

)
[−2d](−d), (3.9)

where the first arrow is the unique extension of the identity morphism QU →QU on U and

the third arrow is its dual (up to a twist). The second is the Verdier duality isomorphism

extending QH
U =

(
DQH

U

)
[−2d](−d), and induces Poincaré duality isomorphisms

IHi
c(X) =Hi

c

(
X,ICH

X

)∼=Hi−2d
c

(
X,DICH

X

)
(−d) = IH2d−i(X)(−d) = IH2d−i(X)∗(−d)

and

IHi(X) =Hi
(
X,ICH

X

)∼=Hi−2d
(
X,DICH

X

)
(−d) = IHBM

2d−i(X)(−d),

and hence a nondegenerate pairing IHi(X)× IH2d−i
c (X)→Q(−d). The fundamental class

homomorphism induces the identity isomorphism GrWd Hd
(
QH

X

)
= W−dH

−d
(
DQH

X)(−d
)

from equation (3.7) (as indeed it must, since it is the unique extension of QH
U [d] =

DQH
U [d](d) on any smooth open U ⊂X).

Now assume that X is proper. Then the duality of the first and third arrows in
expression (3.9) implies that the cap product with the fundamental class [X] induces

an isomorphism

∩[X] : GrWi Hi(X)
�−→W2d−iH2d−i(X)(−d). (3.10)
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This proves (2). For (3), note that if i∗(α) = ξZ,pt, then [Z]∩ i∗(α) = 1, so that

1 = i∗(i
∗(α)∩ [Z])

= α∩ i∗[Z]

= [X]∩
(
α · (∩[X])−1(i∗[Z])

)
= [X]∩α · ξX,Z,

(3.11)

and thus α · ξX,Z = (∩[X])−1(1) = ξX,pt.

Remark 3.4. The assertion in (2) is related to some facts in classical mixed Hodge
theory which we will also use. If X is irreducible and proper and Y →X is a resolution

of singularities, then

GrWi Hi(X) = im
(
Hi(X)→Hi(Y )

)
for all i by [20, Prop. 8.2.5]. This is equivalent to equation (3.5), because the pullback

factors as Hi(X)→ IHi(X) ↪→Hi(Y ) for any inclusion IH∗(X)⊂H∗(Y ) coming from the

decomposition theorem [6, 42]. Since one also has

GrWi Hi
c(U) = im

(
Hi

c(U)→ IHi(X)
)
= im

(
Hi

c(U)→Hi(Y )
)
,

where U is smooth dense open over which Y → X is an isomorphism, one sees that

GrWi Hi
c(U)⊂GrWi Hi(X) for all i.

The following purity lemma will be used later in §7:

Lemma 3.5. Let X be a normal complex variety of dimension d with U ⊂ X1 ⊂ X a

filtration by open subsets such that U is smooth and open dense in X1, Z1 = X1−U is

smooth of dimension 1, and Z0 =X−X1 is smooth of dimension 0. Let j : U ↪→X and
i : Z0 ↪→X be the inclusions. Then Hi

(
i0∗j∗Q

H
U

)
has weights ≤ i for i≤ d−2. If Z1 = ∅,

then Hi
(
i0∗j∗Q

H
U

)
has weights ≤ i for i≤ d−1.

Proof. Write j = j0 ◦j1 for j1 :U ↪→X1 and j0 :X1 ↪→X. Since ICX = τ<dj
0
∗τ<d−1j

1
∗CU ,

it follows easily that ICX → j∗CU induces an isomorphism on cohomology sheaves in
degrees ≤ d−2. The same then holds for ICH

X → j∗Q
H
U . On the other hand, by pointwise

purity of the intersection complex, Hi
(
ICH

X

)
x
has weights ≤ i in all degrees [6, 42]. This

proves the first assertion of the lemma. If Z1 = ∅, we have that ICX → j∗CU induces
isomorphisms on cohomology sheaves in degrees ≤ d− 1, and purity proves the second

assertion.

3.2. Invariants and the compact dual

We will assume from now on that G is semisimple and X = G(R)/K is an Hermitian

symmetric domain. In addition, we assume in this subsection that G is simply connected.
We return to the use of cohomology with complex coefficients and ignore Tate twists.

We will consider the G(Q)-module IHi(M ∗) := colimΓIH
i (M∗

Γ), which is smooth and

admissible. Note that equation (3.5) gives an inclusion

GrW∗ H∗(M ∗) :=
⊕

i
GrWi Hi(M ∗)⊂ IH∗(M ∗)

of G(Q)-modules.
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Proposition 3.6. The G(Q)-modules GrW∗ H∗(M ∗) and IH∗(M ∗) are semisimple, and

the summand of invariants is given by

GrW∗ H∗(M ∗)G(Q) = IH∗(M ∗)G(Q) =H∗(Xc).

The embedding of H∗(Xc) in GrW∗ H∗(M ∗) is functorial: If H ⊂ G gives a complex

subdomain XH ⊂X, then the obvious diagram coming from Xc
H ⊂Xc and M∗

H,ΓH
→M∗

Γ

commutes.

Proof. There is a natural isomorphism

IH∗(M ∗) = H∗ (g,K,L2
dis (G(Q)\G(A))

)
(3.12)

thanks to [30, 43] and [16]. Here L2
dis is the L

2 discrete spectrum; see [35, Proposition 3.8]

for a detailed discussion of equation (3.12). This proves the semisimplicity statements. The
inclusion of the constants in L2 functions induces an embedding of H∗(Xc) = H∗(g,K,C)

in IH∗(M ∗). It follows from equation (3.12) using strong approximation and the density

of G(Q) in G(R) (weak approximation) – see, for example, the proof [35, Proposition 3.8],
which works verbatim here – that these are all the invariants.

To show that the invariants are actually in GrW∗ H∗(M ∗), we will use Chern classes of

automorphic vector bundles [25, 32]. A finite-dimensional representation V of K gives a

homogenous bundle V c on Xc =G(R)c/K. Restricting by the Borel embedding X ⊂Xc

(see §2.1) and dividing by Γ gives a bundle VΓ on MΓ = Γ\X for any Γ. The bundle VΓ

does not, in general, extend to a vector bundle on M∗
Γ (although see Example 3.7 for an

important exception), but Goresky and Pardon [25] defined classes c∗k(VΓ) ∈ H2k (M∗
Γ)

which behave like the Chern classes of a putative extension V ∗
Γ to M∗

Γ. The main

property is that for π :MΣ
Γ →M∗

Γ a smooth toroidal desingularization [3], the pullback

π∗ (c∗k(VΓ)) = ck
(
V Σ
Γ

)
is the Chern class of Mumford’s canonical extension V Σ

Γ [27, 32]. It
is a well-known consequence of Mumford’s generalization of Hirzebruch proportionality

that the classes ck
(
V Σ
Γ

)
generate a copy of H∗(Xc) in H∗ (MΣ

Γ

)
. More precisely, there is an

injective homomorphism θ : H∗(Xc)→H∗ (MΣ
Γ

)
such that θ(ck(V c)) = (−1)kck

(
V Σ
Γ

)
for

all k,V (see Lemma C.1 for a proof, following [34, Lemma 3.7.2]). They are contained in
GrW∗ H∗ (M∗

Γ) = im
(
H∗ (M∗

Γ)→H∗ (MΣ
Γ

))
, since π∗ (c∗k(VΓ)) = ck

(
V Σ
Γ

)
by [25]. Moreover,

the compatibility of the construction for different Σ (see, e.g., [27, Section 4.3.1]) shows

that we have a well-defined embedding θ : H∗(Xc)→GrW∗ H∗ (M∗
Γ).

It remains to show that the classes are G(Q)-invariant and the embedding is functorial.

The direct limit colimΣ,ΓH
∗ (MΣ

Γ

)
over all pairs (Σ,Γ) where Σ is admissible for Γ is a

G(Q)-module, and contains GrW∗ H∗(M ∗) as a G(Q)-submodule. Standard properties of

the canonical extensions listed in [27, Section 4.3] show that the Chern classes are G(Q)-

invariants in colimΣ,ΓH
∗ (MΣ

Γ

)
and hence in GrW∗ H∗(M ∗). Finally, functoriality follows

from [27, Section 4.3.4] and the definition of the map θ given in Lemma C.1.

Example 3.7. The representation of K on the top exterior power of p, where g= k+p

is the Cartan decomposition given by K, gives a special automorphic bundle called the

Baily–Borel bundle. This extends as a line bundle L bb over M∗
Γ, and some power of L bb

is the O(1) in the Baily–Borel projective embedding (see [32, Prop. 3.4(b)]). So L bb is
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ample and the Chern class cbb1 := c∗1(L ) = c1
(
L bb

)
fixes a generator(

cbb1
)n ∈GrW2nH

2n(M ∗) = IH2n(M ∗) (3.13)

in top degree.

Example 3.8. If G(R)nc = SU(1,n), then Xc = SU(1+n)/S(U(1)×U(n))∼= Pn. So the

invariant part of GrW∗ H∗(M ∗) is C
[
cbb1

]
/
((

cbb1
)n+1

)
. (See, e.g., [35, Section 1.2] for an

intrinsic description of L bb.)

Example 3.9. If G(R)nc = Spin(2,n), the compact symmetric space dual to X is

Xc = Spin(2+n)/Spin(2)×{±I} Spin(n) = SO(2+n)/SO(2)×SO(n),

which is a quadric in Pn+1. The complex cohomology ring of quadrics is well known. Let

E2 and En be the vector bundles on Xc corresponding to the natural representations
of SO(2)× SO(n) of dimension 2 and n, respectively. When n is odd, the complex

cohomology is generated by the Euler class (or first Chern class) c1 = c1(E2) ∈H2(Xc) –

that is, H∗(Xc) = C[c1]/
(
cn+1
1

)
. When n= 2d is even, the complex cohomology of Xc is

generated as a ring by c1 and the Euler class cd = cd(En)∈Hn=2d(Xc), with the relations

cn+1
1 = 0,c2d = (−1)dc2d1 , and c1cd = 0.

For later use, we remark that if n = 2d ≥ 4 and Xc
a ⊂ Xc is the inclusion of quadrics

coming from SO(2,a) ⊂ SO(2,n) for a < n, then cd|Xc
a
= 0. Indeed, 0 = (c1cd)|Xc

n−1
=

c1|Xc
n−1

· cd|Xc
n−1

= c1 ·
(
cd|Xc

n−1

)
. Since c1· is injective on H∗ (Xc

n−1

)
= C[c1]/(c

n
1 ) in

degrees < 2(n−1), we must have cd|Xc
n−1

= 0 if d≥ 2.

3.3. Cycle classes and an injectivity criterion

We will prove a criterion for the nonvanishing of Res between Shimura varieties and apply

it to prove Theorem 3.1 and Corollary 3.2. Since we are only interested in cohomology
with complex coefficients, we will ignore Tate twists henceforth and write H∗(X) for

H∗(X,C).

Suppose now that ι :M∗
H,ΓH

→M∗
Γ is the extension to minimal compactifications of a

morphism of Shimura varieties (compare §2.4), and let n= dimMΓ,m= dimMH,ΓH
. Let

ξΓ := (∩ [M∗
Γ])

−1 (
ι∗
[
M∗

H,ΓH

])
∈GrW2(n−m)H

2(n−m) (M∗
Γ)

be the cycle class defined earlier in Proposition 3.3, ignoring Tate twists and simplifying

the notation
(
in the notation of that proposition, this would be ξM∗

Γ,M
∗
H,ΓH

)
. It is

easily checked that if Γ′ ⊂ Γ is normal, then ξΓ = |Γ/Γ′|−1
∑

γ∈Γ/Γ′ γ · ξΓ′ , where ξΓ′ =

(∩ [M∗
Γ])

−1
(
ι′∗

([
M∗

H,Γ′
H

]))
for ι′ :M∗

H,Γ′
H
→M∗

Γ′ at level Γ′.

We will also consider the closed immersion ιc :Xc
H →Xc, which gives the cycle class

ξXc
H
:= (∩[Xc])−1 (ιc∗ [X

c
H ]),

which is nonzero since Xc
H is a subvariety of the algebraic variety Xc.
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Proposition 3.10. The G(Q)-submodule of IH∗(M ∗) generated by ξΓ contains the cycle

class ξXc
H
∈H2(n−m)(Xc) of Xc

H in Xc.

Proof. The G(Q)-submodule V ⊂GrW2(n−m)H
2(n−m)(M ∗)⊂ IH2(n−m)(M ∗) generated by

ξΓ admits a decomposition V = V 0⊕V 1, where V 1 has no invariants or coinvariants and

V 0 is contained in the summand of invariants H2(n−m)(Xc) ⊂ GrW2mH2m (M∗
Γ). (This is

because of semisimplicity in Proposition 3.6.) Write ξΓ = ξ0Γ+ ξ1Γ, with ξiΓ ∈ V i. Since V 1

has no coinvariants, ξ0Γ ·α= ξΓ ·α for any α ∈H2m(Xc), so that

[M∗
Γ]∩

(
ξ0Γ ·α

)
= [M∗

Γ]∩ (ξΓ ·α)
= [M∗

Γ]∩ ξΓ∩α

= ι∗
[
M∗

H,ΓH

]
∩α

= ι∗
([
M∗

H,ΓH

]
∩ ι∗(α)

)
.

(3.14)

On the other hand,

[Xc]∩
(
ξXc

H
·α

)
= [Xc]∩ ξXc

H
∩α

= ιc∗ [X
c
H ]∩α

= ιc∗ ([X
c
H ]∩ ιc∗(α)) .

(3.15)

Now the pullbacks ιc∗ and ι∗ are compatible, while under the isomorphism H2n(Xc) ∼=
GrW2nH

2n (M∗
Γ) the two nonzero linear forms [M∗

Γ]∩ : GrW2nH
2n (M∗

Γ)→ H0 (M
∗
Γ) = C and

[Xc]∩ : H2n(Xc) → H0(X
c) = C are necessarily proportional; and the same holds for

M∗
H,ΓH

and Xc
H . It follows from equations (3.14) and (3.15) that for α ∈ H2m(Xc), we

have

[Xc]∩
(
ξ0Γ ·α

)
∼ [Xc]∩

(
ξXc

H
·α

)
,

where ∼ means up to a fixed nonzero constant independent of α. Thus ξ0Γ ·α∼ ξXc
H
·α for

any α, and so ξ0Γ ∼ ξXc
H

by Poincaré duality for Xc.

Theorem 3.11. If α ∈GrWi Hi(M ∗) and Res(α) = 0, then α · ξXc
H
= 0.

Proof. Suppose that α ∈ GrWi Hi (M∗
Γ) ⊂ GrWi Hi(M ∗) is such that Res(α) = 0. Set g ∈

G(Q) and choose Γ′ normal in Γ with Γ′ ⊂ Γ∩g−1Γg. Let γ1, . . . ,γr be the representatives
for cosets of Γ′ in Γ, let p :M∗

Γ′ →M∗
Γ, and let ι′ :M∗

H,Γ′
H
→M∗

Γ′ be the natural map at

level Γ′. Then we have

p−1
(
ι
(
M∗

H,ΓH

))
=

⋃
i

γi · ι′
(
M∗

H,Γ′
H

)
.

If Res(α) = 0 for α ∈ GrWi Hi (M∗
Γ), then

(
gγ−1

i

)∗
α =

(
γ−1
i

)∗
g∗α restricts to zero on

ι′
(
M∗

H,Γ′
H

)
for each i – that is, ι′∗

((
γ−1
i

)∗
g∗(α)

)
= 0 for each i. Using equation (3.4),

we have
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0 = ι′∗

(
ι′∗

((
γ−1
i

)∗
g∗α

)
∩
[
M∗

H,Γ′
H

])
=

(
γ−1
i

)∗
g∗α∩ ι′∗

([
M∗

H,Γ′
H

])
= [M∗

Γ′ ]∩
((

γ−1
i

)∗
g∗α · ξΓ′

)
= [M∗

Γ′ ]∩ (g∗α ·γ∗
i ξΓ′) .

(3.16)

By Proposition 3.3(2), we have that g∗α ·γ∗
i ξΓ′ = 0. Summing over Γ/Γ′ gives

0 = g∗α · ξΓ = α ·
(
g−1

)∗
ξΓ.

Since this holds for all g ∈G(Q), Proposition 3.10 implies that α · ξXc
H
= 0.

Proof of Theorem 3.1. In the case SU(1,m) ⊂ SU(1,n), we have Xc = Pn, so that

ξXc
H
∼

(
cbb1

)n−m
, where cbb1 is the first Chern class of the ample Baily–Borel line bundle in

formula (3.13). So ·cbb1 is injective in degrees < n on
⊕

iGrWi Hi(M∗
Γ)⊂ IH∗ (M∗

Γ) because

of the hard Lefschetz property for intersection cohomology [6, 42], and hence ·ξXc
H

is
injective in degrees i≤m. Theorem 3.11 implies the injectivity of Res in degrees ≤m.

In the case SO(2,m) ⊂ SO(2,n), the previous argument can be applied to the simply

connected covers H̃ ⊂ G̃. Now we claim ξXc
H
∼

(
cbb1

)n−m
. If n �= 2m this is clear, since

GrW2(n−m)H
2(n−m) (M∗

Γ) =C
(
cbb1

)n−m
, whereas if n=2m, then it holds because cm|Xc

H
=0

(see Example 3.9). It follows that ·ξXc
H

is injective on
⊕

iGrWi Hi (M∗
Γ) in degrees ≤ m

because of the hard Lefschetz property of cbb1 · on IH∗ (M∗
Γ). Theorem 3.11 implies the

injectivity of Res in degrees ≤m. �

Proof of Corollary 3.2. The complex hyperbolic case follows easily from the observation

that

Hk
! (MΓ) = GrWk Hk

c (MΓ) fork ≤ n

(see the proof of [36, Proposition 1.6]) and the fact that GrWk Hk
c (MΓ)⊂GrWk Hk (M∗

Γ) for
all k (Remark 3.4).

Now consider the orthogonal case. First note that

Hi
!(MΓ) = im

(
Hi

c(MΓ)→ IHi (M∗
Γ)

)
=GrWi Hi

c(MΓ) fori≤ n−1. (3.17)

The first equality holds because IHi (M∗
Γ) → Hi(MΓ) is injective for i ≤ n− 1 (and an

isomorphism for i≤ n−2), because the boundary has dimension 1, and the second holds
because GrWi Hi

c(MΓ) ↪→ IHi (M∗
Γ) for all i (see Remark 3.4). On the other hand,

GrWi Hi
c(MΓ)⊂GrWi Hi (M∗

Γ)

for all i (by Remark 3.4 again). Thus Hi
!(M )⊂GrWi Hi(M ∗) for i≤n−1, and similarly for

MH . So the corollary follows from Theorem 3.1 in degrees ≤m−1 in the case rkQ(G) = 2.
If rkQ(H) = 1, then this can be improved slightly, because the singularities of M∗

H,ΓH
are

isolated and so Hi
!(M )⊂GrWi Hi(M ∗) holds for i=m also. �
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Remark 3.12. The use of the embedding H∗(Xc) ⊂ GrW∗ H∗(M ∗) (of Proposition 3.6)

in the proof of Theorem 3.1 can be avoided in the unitary case and in the orthogonal

case (except possibly when n = 2m). As noted in Example 3.7, the first Chern class
of the Baily–Borel bundle can be made sense of in GrW∗ H∗(M ∗), and the invariants in

IH2(n−m) (M∗
Γ) are reduced to C

(
cbb1

)n−m
. So the argument can be run with H∗(Xc)

replaced by the subring
⊕

0≤i≤nC
(
cbb1

)i
.

Remark 3.13. The foregoing arguments can be modified to treat nontrivial coefficients,

using the fact that the local system E on MΓ underlies a pure polarizable variation of

Hodge structure (see [31, §4] or, for a more canonical approach in the context of Shimura
varieties, see [19]). This allows us to use mixed Hodge modules and arguments with

weights.

Remark 3.14. The criterion of [47] in the compact case has been used in [9] to prove a

number of other results about restriction using computations in the compact dual. The

analogues for the top weight quotient of H∗(M ∗) in general then follow immediately
using the criterion of Theorem 3.11 instead. It seems likely that (suitably formulated)

they should extend to H∗(M ) using the methods of later sections.

The following example shows that these bounds can sometimes be improved on:

Example 3.15. Consider the case of SO(2,2)⊂SO(2,n) for n≥ 3, and assume rkQ(H) =
2, so that H = SL(2)× SL(2). Theorem 3.1 gives the injectivity of GrW2 H2(M ∗) →
IGHGrW2 H2 (M ∗

H). Since H2
! (MΓ) = IH2 (M∗

Γ) = GrW2 H2
c(MΓ), the map GrW2 H2 (M∗

Γ) →
GrW2

(
M∗

H,ΓH

)
factors as

GrW2 H2
c(MΓ)→GrW2 H2

c (MH,ΓH
)→GrW2 H2

(
M∗

H,ΓH

)
.

Now MH,ΓH
= X1 ×X2 is a product of two modular curves, so GrW2 H2

c(X1 ×X2) =

GrW1 H1
c(X1)⊗GrW1 H1

c(X2) injects into GrW2 H2 (X∗
1 ×X∗

2 ), and so the second map is

injective. It follows that Res is always injective on H2
! (M ), improving Corollary 3.2

slightly.

Remark 3.16. In fact, when m = 2 and n = 3, Res is injective on all of H2(M ) by a
result of Weissauer [51]. This is not covered by our results, since H2

! (M ) is a proper

subspace of H2(M ).

Remark 3.17. The basic idea of this section is that in the presence of some functoriality,

semisimplicity, and duality, one can use the averaging argument for the cycle class. This

can also be applied to the reductive Borel–Serre (RBS) compactification, to get a slight
generalization of Theorems 3.11 and 3.1.

The RBS compactification is a (nonalgebraic) compactification of MΓ dominating M∗
Γ –

that is, the identity of MΓ extends to Mrbs
Γ → M∗

Γ. The cohomology Hi
(
Mrbs

Γ

)
carries

a mixed Hodge structure like that of a proper variety – that is, with weights ≤ i in

degree i – and the top weight quotient GrWi Hi
(
Mrbs

Γ

)
is the image of a natural map

Hi
(
Mrbs

Γ

)
→ IHi (M∗

Γ). For ι :MH,ΓH
→MΓ there is no continuous map Mrbs

H,ΓH
→Mrbs

Γ
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extending MH,ΓH
→MΓ, but nevertheless there is a natural pullback map H∗ (Mrbs

Γ

)
→

H∗ (Mrbs
H,ΓH

)
, which is a homomorphism of mixed Hodge structures. (See, e.g., the survey

[37], where these results are discussed.) Theorem 3.1 can be improved to injectivity of the

induced map Res on GrWi Hi
(
M rbs

)
=colimΓGrWi Hi

(
Mrbs

Γ

)
for i≤m. Since the canonical

mapping Hi (M∗
Γ)→ IH∗ (M∗

Γ) factors through H∗ (Mrbs
Γ

)
, it follows that GrWi Hi(M ∗)⊂

GrWi Hi
(
M rbs

)
. (However, in general Hi(M ∗) → H∗ (M rbs

)
is not injective.) It can be

shown using methods of Eisenstein series that in the case at hand, this inclusion is proper,

so we would have an improvement of Theorem 3.1.

4. Lie-algebra cohomology computations

4.1. Kostant’s theorem

We recall results of [29]. Fix a complex semisimple Lie group G, a maximal torus T ⊂G,
and a Borel subgroup B ⊃ T , and let Φ = Φ(T,G) be the root system, Φ+ the positive

roots determined by B, Φ− = −Φ+ the negative roots, ρ = 1
2

∑
α∈Φ+ α the half-sum of

positive roots, andW =W (T,G) the Weyl group of T in G. Let P be a standard parabolic
subgroup of G, N its unipotent radical, and n its Lie algebra. The Weyl group of the Levi

L = P/N is a subgroup WL ⊂ W , and we let WP be the set of minimal length coset

representatives of WL\W . For each w ∈WP , the associated set of positive roots

Φ(w) =
{
α ∈ Φ(T,G) : α > 0,w−1α < 0

}
=Φ+∩wΦ−,

which has cardinality �(w). For a dominant λ ∈ X∗(T ), the weights w(λ+ ρ)− ρ for
w ∈ WP are dominant for L and distinct. The mapping w �→ Φ(w) sets up a bijection

between WP and the subsets S of Φ(n) = {α ∈ Φ(T,G) : gα ⊂ n} for which both S and

Φ+−S are closed under +̇ [29, 5.10] (recall that α+̇β is α+β when this is a root and

empty otherwise).
Let Eλ be the irreducible finite-dimensional G-representation with highest weight λ ∈

X∗(T ) with respect to B. The Lie-algebra cohomology H∗(n,Eλ) is the cohomology of

∧∗n∗⊗Eλ with the Lie-algebra differential. The natural P -module structure on ∧∗n∗⊗Eλ

descends to an L= P/N -module structure in cohomology. For an L-dominant weight μ ∈
X∗(T ), let EL

μ denote the irreducible finite-dimensional algebraic representation of L with

highest weight μ. Then by [29, Theorem 5.14] there is a multiplicity-free decomposition
of L-modules

Hk(n,Eλ) =
⊕

w∈WP ,�(w)=k

EL
w(λ+ρ)−ρ. (4.1)

Kostant also identified a highest weight vector in each summand. Let n− be the nilradical

of the Lie algebra of the parabolic subgroup opposite to P. The Killing form gives

isomorphisms n− ∼= n∗ and ∧in− ∼= ∧in∗. Choose a nonzero vector eα in the root space gα

for each α∈Φ(T,GC), and for w ∈WP define ew :=
∧

α∈Φ(w) e−α ∈∧�(w)n−. Let vwλ ∈Eλ

be a weight vector for the extremal weight wλ. Then under the identification of n∗ with

n−, the element

ew⊗vwλ ∈ ∧�(w)n−⊗Eλ (4.2)
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is closed in ∧∗n∗⊗Eλ and its cohomology class is a highest weight vector for the summand
EL

w(λ+ρ)−ρ in equation (4.1) [29, Theorem 5.14]; it is a harmonic representative for a

natural Laplacian. A lowest weight vector is given by ∧α∈Φ(w)e−wL
0 (α) ⊗ vwL

0 wλ, where

wL
0 is the longest element of WL ⊂ W [29, Remark 8.2]. In fact, taking the sum of

the L-submodules of ∧∗n− ⊗Eλ generated by the ew ⊗ vwλ as w runs over WP gives

(using the identification ∧∗n∗ ∼= ∧∗n−) a canonical L-equivariant inclusion H∗(n,Eλ) ⊂
∧∗n∗ ⊗Eλ inducing the identity in cohomology and compatible with products (see

[29, Theorem 5.7]).

4.2. Restriction maps in n-cohomology

Now consider the situation where ι :H →G is a homomorphism of real semisimple groups

with finite kernel. Then for a parabolic P of G with Levi L= P/N , we have the parabolic
PH = ι−1(P ) of H with unipotent radical NH = ι−1(N) and Levi LH = PH/NH . Let

n = LieN(R) and nH = LieNH(R). For a finite-dimensional G(C)-representation E and

EH a summand of E|H(C), the restriction map

H∗(nC,E)−→H∗ (nH,C,E)−→H∗ (nH,C,EH)

is LH(C)-equivariant. Consider the map

Resn : H
∗(nC,E)−→

∏
m∈L(C)

H∗ (nH,C,EH),

with coordinate indexed by m ∈ L(C) given by precomposing the previous map with the

adjoint action of m. Note that the kernel of Resn is an L(C)-module; in particular, for each

irreducible summand EL
w(λ+ρ)−ρ, we have that Resn is injective on EL

w(λ+ρ)−ρ ⇐⇒ Resn

is nonzero on EL
w(λ+ρ)−ρ ⇐⇒ Resn(ew⊗vwλ) �= 0.

Let us assume that the restriction of finite-dimensional irreducible representations by
H(C) ⊂ G(C) is multiplicity-free. Choose maximal tori TH ⊂ T and Borel subgroups

BH ⊂ B (of HC) ⊂ G(C)), and for an irreducible representation E with highest weight

λ ∈ X∗(T ), let EH be the summand of E|H(C) with highest weight λ|TH
∈ X∗(TH).

The following propositions are proved by explicit elementary calculations with roots and

weights using Kostant’s theorem and take up the rest of this section. In each case, the

restriction from G(C) to H(C) is multiplicity-free by classical results ([22, Section 8.1.1]).

Proposition 4.1. Let G = SO(d,1) and H = SO(c,1) for 2 ≤ c < d embedded in the

standard way in G. Let P =LN be a proper parabolic subgroup of G. Then Resn is injective

in degrees i≤ c/2 except in the case (d,c,i) = (2k+1,2k,k). In this case, Hk(n,E) has two

L-irreducible summands and Resn is injective on either one.

Proposition 4.2. Let G = SU(n,1) and H = SU(m,1) for 2 ≤ m < n embedded in the

standard way in G. Let P = MW be a proper parabolic subgroup of G. Then Resw is

injective on Hi(w,E) in degrees i < m.

Proposition 4.3. Let G = SO(2,n) and H = SO(2,m), embedded in G in the standard

way for 2 ≤m< n, and E = C. If P =MW is the stabilizer of an isotropic plane, then

Resw is injective on Hi(w,C) for i≤m−2.
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To treat SO(1,n)⊂ SU(1,n), we will need the following:

Proposition 4.4. Let G= SU(n,1) and H = SO(n,1), embedded in the standard way in
G with n≥ 2. Let P =MW be a proper parabolic subgroup of G. Then Resw is injective

on Hi,0(w,C) in degrees i < n.

The bigrading in Proposition 4.4 refers to the Hodge structure coming from the

identification of Hi(w,C) with the link cohomology Hi
(
i∗{x}j∗C

)
, where j : MΓ ↪→ M∗

Γ

and i{x} : {x} ↪→M∗
Γ is the inclusion of the cusp corresponding to P (see Proposition 2.7

or [36, Lemma 1.2].) It can also seen from the decomposition (4.1) [36, Remark 1.11].

The rest of this section will be taken up with the proofs of these propositions.

4.3. Proof of Proposition 4.3

To make computations we will fix some notation for roots. We may assume g= so(2,n) =

so(J), where

J =

⎛
⎜⎜⎜⎜⎝

1

1
In−2

1

1

⎞
⎟⎟⎟⎟⎠ .

Fix a Cartan subalgebra s of so(n− 2)C and let t ⊂ gC be the Cartan subalgebra

defined by

t := {diag(a,d,C,−d,−a) : a,d ∈ C,C ∈ s}.

Then t is defined and maximally split over R, and the subspace aC ⊂ t given by C = 0
is the complexification of the Lie algebra a ⊂ g of a maximal R-split Cartan in g. Let

α1,α2 ∈ t∗ be defined by

α1(diag(a,d,C,−d,−a)) = a,

α2(diag(a,d,C,−d,−a)) = d.
(4.3)

The relative roots are Φ(aC,gC) = {±α1,±α2,± (α1−α2),± (α1+α2)}.
Now choose for s the Cartan subalgebra of block-diagonal matrices

s=
{
diag

((
0 b1

−b1 0

)
, . . . ,

(
0 bk

−bk 0

))
: b1, . . . ,bk ∈ C

}
(4.4)

when n−2 = 2k is even and

s=
{
diag

((
0 b1

−b1 0

)
, . . . ,

(
0 bk

−bk 0

)
,0
)
: b1, . . . ,bk ∈ C

}
(4.5)

when n−2 = 2k+1 is odd. Let η1, . . . ,ηk ∈ s∗ be defined by

ηi

(
diag

((
0 b1

−b1 0

)
, . . . ,

(
0 bk

−bk 0

))
,(0)

)
=
√
−1bi, (4.6)

where (0) means the entry is omitted when n−2 is even and the entry is zero when n−2

is odd. Fix the positive system Φ+(s,so(n−2)C) with simple roots {ηi−ηi+1 : 1≤ i < k}�
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{ηk} for n−2 = 2k+1 odd and {ηi−ηi+1 : 1 ≤ i < k}�{ηk +ηk−1} for n−2 = 2k even,

and take the positive system in Φ(t,gC) containing it and compatible with Φ+(aC,gC) =

{α1,α2,α1−α2,α1+α2}. An explicit computation shows that the positive roots are

Φ+(t,gC) = Φ+(s,so(n−2)C)�{α1±ηi,α2±ηi : 1≤ i≤ k}�{α1−α2,α1+α2}

for n−2 = 2k even and

Φ+(t,gC) = Φ+(s,so(n−2)C)�{α1±η1,α2±ηi : 1≤ i≤ k}�{α1,α2,α1+α2,α1−α2}

for n−2 = 2k+1 odd.

The parabolic P =MW in the proposition is the stabilizer of an isotropic plane, which
may be assumed to be the obvious plane Re1+Re2 in Rn+2. We will need the set Φ(w) =

{α ∈ Φ(t,gC) : g
α
C ⊂wC}. Using the foregoing description and explicit matrix descriptions,

we have

Φ(w) = {α1±ηi}1≤i≤k �{α2±ηi}1≤i≤k �{α1+α2}

if n−2 = 2k is even and

Φ(w) = {α1±ηi}1≤i≤k �{α2±ηi}1≤i≤k �{α1,α2,α1+α2}

if n−2 = 2k+1 is odd.

Now let us prove the proposition. We may assume that h⊂ g is given by the subspace

Rm+2 = (Rem+1+ · · ·+Ren)
⊥ ⊂ Rn+2 – that is, that h = so(2,m) is embedded in g =

so(2,n) in a way that the m+1,m+2, . . . ,n rows and columns are zero. We will consider

the cases n even and n odd separately.

First assume n−2 = 2k is even. Then we have

Φ(w) = {α1±ηi}1≤i≤k �{α2±ηi}1≤i≤k �{α1+α2}.

For w ∈WP of length ≤m−2= 2k−(n−m), the set of roots Φ(w)⊂Φ(w) has cardinality
≤ 2k− (n−m), so that Φ+ −Φ(w) contains at least n−m elements which belong to

{α2±ηi}1≤i≤k, which has cardinality 2k. Since Φ+−Φ(w) is closed under +̇ and α1−α2 ∈
Φ+−Φ(w), we may choose sets I+ and I− in {1, . . . ,k} such that the following are true:

1. I+ and I− are disjoint and |I+� I−|= n−m.

2. For i ∈ I+, we have {α1+ηi,α2+ηi} ⊂ Φ+−Φ(w).

3. For i ∈ I−, we have {α1−ηi,α2−ηi} ⊂ Φ+−Φ(w).

(These sets are not unique, but any choice suffices for our purposes.) Let h′ be the copy

of so(2,m) given by the embedding of the subspace⎛
⎝⊕

i∈I+

Re2i+2⊕
⊕
i∈I−

Re2i+1

⎞
⎠

⊥

⊂ Rn+2;

that is, row and column 2i+2 are zero for i∈ I+ and row and column 2i+1 are zero for i∈
I−. Then the restriction of the harmonic representative ew =∧α∈Φ(w)e−α in formula (4.2)

to nH′ is nonzero, and equals (up to a nonzero scalar) the harmonic representative of a

similar class in nH′ . Since the subspace is conjugate to the subspace (Rem+1+ · · ·+Ren)
⊥
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by an element m ∈M(C) = Spin(n−2,C), we see that h′ is conjugate to h by m ∈M(C),

and the highest weight vector ew restricts nontrivially to Ad
(
m−1

)
(h). This proves the

proposition in this case.
Next assume n−2 = 2k+1 is odd. Then

Φ(w) = {α1±ηi}1≤i≤k �{α2±ηi}1≤i≤k �{α1,α2,α1+α2}.

For w ∈ WP of length ≤ m− 2 = 2k+1− (n−m), the set of roots Φ(w) ⊂ Φ(w) has
cardinality ≤ 2k+1− (n−m), so that Φ+−Φ(w) contains at least n−m elements from

the set {α2±ηi : 1≤ i≤ k}�{α2} of cardinality 2k+1. As in the previous case, α1−α2 ∈
Φ+−Φ(w), and Φ(w) is closed under +̇, so we may choose (not necessarily unique) sets
of indices I+ and I− such that the following are true:

1. I+ and I− are disjoint, |I+�I−|= n−m−1 if α2 ∈Φ+−Φ(w), and |I+�I−|= n−m

if α2 /∈ Φ+−Φ(w).

2. For i ∈ I+, we have {α1+ηi,α2+ηi} ⊂ Φ+−Φ(w).

3. For i ∈ I−, we have {α1−ηi,α2−ηi} ⊂ Φ+−Φ(w).

As before, if α2 /∈ Φ+−Φ(w) we can define the subspace⎛
⎝⊕

i∈I+

Re2i+2⊕
⊕
i∈I−

Re2i+1

⎞
⎠

⊥

⊂ Rn+2

of dimension m, and the harmonic representative ew restricts nontrivially to the

corresponding h′ = so(2,m) in g. If α2 ∈Φ+−Φ(w), then one adds on Ren to the subspace

and e2 restricts nontrivially to the corresponding h′ = so(2,m). In either case, since h′ is
conjugate to h by m ∈M(C), we have proved the proposition. �

4.4. Proof of Proposition 4.1

For E = C, the injectivity in degrees i≤ c/2 except in the exceptional case is immediate

from the fact that n∗ is the natural representation of the factor SO(d− 1) of L, and so

Hi(n,C) = ∧in∗ are irreducible. This can be easily generalized to the case of general E,
but we give a computational proof using Kostant’s theorem, as we will have to verify

slightly more.

We may assume g= so(1,d) = so(J), where

J =

⎛
⎝ 1

Id−1

1

⎞
⎠ .

Fix a Cartan subalgebra s of so(d− 2)C and let t ⊂ gC be the Cartan subalgebra

defined by

t := {diag(a,C,−a) : a,d ∈ C,C ∈ s}.

Then t is defined and maximally split over R, and the subspace aC ⊂ t given by C = 0

is the complexification of the Lie algebra a ⊂ g of a maximal R-split subspace in g. Let
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α ∈ t∗ be defined by

α(diag(a,C,−a)) = a. (4.7)

We choose for s the same Cartan subalgebra of block-diagonal matrices in so(d− 1)C
specified earlier in equations (4.4) and (4.5) and use the same roots ηi and the same

positive system used there. An explicit computation shows that the positive roots are

Φ+(t,gC) = Φ+(s,so(d−1)C)�{α±ηi : 1≤ i≤ k}

for d−1 = 2k even and

Φ+(t,gC) = Φ+(s,so(d−1)C)�{α±ηi : 1≤ i≤ k}�{α}

for d−1 = 2k+1 odd. We also have

Φ(n) = {α±ηi : 1≤ i≤ k}

in the case d−1 = 2k even and

Φ(n) = {α±ηi : 1≤ i≤ k}�{α}

in the case d−1 = 2k+1 odd.

We will list the relevant w ∈WP and the sets Φ(w). We will consider the even and odd

cases separately.

First assume d−1= 2k is even. Let α1,α2, . . . ,αk+1 be the set of simple roots of so(1,d)C
determined by the positive system already fixed – that is, α1 := α−η1, αi = ηi−1−ηi for

2 ≤ i ≤ k, and αk+1 = ηk−1 + ηk. The minimal length representatives in WP of length

≤ k are

{s0,s1, . . . ,sk,tk},

where s0 := 1, sj := sα1
· · ·sαj

for 1 ≤ j ≤ k has length j, and tk = sk−1sαk+1
has

length k (compare [17, Section VI.3.1]; as usual, sαi
denotes the reflection in αi).

The set Φ(w) is easily computed for these representatives: Φ(1) = ∅ and Φ(sj) =
{α1,α1+α2, . . . ,α1+ · · ·+αj} = {α−η1,α1−η2, . . . ,α−ηj} for j ≤ k, whereas Φ(tk) =

{α1, . . . ,α1+ · · ·+αk−1,α1+ · · ·+αk−1+αk+1}= {α−η1,α1−η2, . . . ,α−ηk−1,α+ηk}.
Now suppose d−1 = 2k+1 is odd. Let α1,α2, . . . ,αk+1 be the simple roots of so(1,d)C

determined by the positive system – that is, α1 := α−η1, αi = ηi−1−ηi for 2≤ i≤ k, and
αk+1 = ηk. The minimal length representatives in WP of length ≤ k are

{s0,s1, . . . ,sk},

where s0 := 1, and sj := sα1
· · ·sαj

for 1≤ j ≤ k has length j (compare [17, Section VI.4.4],

where this set is denoted PW ). The set Φ(sj) has the same description for j ≤ k as before.
Now consider the setup of the proposition. We have h= so(1,c) for c≤ d−1, embedded in

the standard way – that is, using the subspace Rc+1 ⊂Rd+1 spanned by e1,e2, . . . ,ec,ed+1.

To show that Resn is injective in a given degree i, it will suffice to show that the
harmonic representative (i.e., L-highest weight vector) ew ⊗ vwλ restricts nontrivially in

Hi(nH,EH) for each w ∈ WP of length i. In the case at hand, for j < c/2 there is a

unique element in WP of length j, namely sj . The L-highest weight vector esj ⊗ vsjλ =
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∧
1≤i≤j e−(α−ηi) ⊗ vsjλ maps in ∧jn∗H ⊗EH to (a nonzero multiple of) the harmonic

representative
∧

1≤i≤j e
H
−(α−ηi)

⊗vH
sHj λH

, where vH
sHj λH

is the sHj (λH)-weight vector of EH ,

and hence is nonvanishing in cohomology. This proves that Resn(ew⊗vwλ) �=0, and hence
that Resn is injective for j < c/2. The same proof works if j ≤ c/2, as long as we are not

in the exceptional case (d,c,i) = (2k+1,2k,k).

In the remaining case we are considering Resn on Hk(n,E) for d= 2k+1,c= 2k,i= k.
In this case there are two L-irreducible summands, with highest weight vectors esk ⊗vskλ
and etk ⊗vtkλ, respectively. In the embedding so(2k+1,C)⊂ so(2k+2,C) the weight space

h−αk is embedded diagonally in the weight spaces g−αk and g−αk+1 . Under the restriction
from T to TH we have αk|TH

= αk+1|TH
= ηHk−1 = αH

k . Thus the vector esk ⊗ vskλ =∧
1≤i≤k e−(α−ηi) ⊗ vskλ goes to (a nonzero multiple of) the vector

∧
1≤i≤k−1 e

H
−(α−ηi)

∧
eH−ηk−1

⊗ vHskλ, which is nonzero since ηk−1 is not one of α− ηi, i ≤ k− 1. A similar

argument applies to etk ⊗vtkλ. �

4.5. Proof of Proposition 4.2

This was proved for E = C in [36, §1.6], and the elements of WP are explicitly listed
there. The proof extends to general coefficients exactly as in the previous proof. �

4.6. Proof of Proposition 4.4

A tedious computational proof is possible, but we will argue differently. Recall the

notation P =MW for the parabolic in SU(1,n) and PH = P ∩H = LN for the parabolic
in SO(1,n). For k < n we have a diagram

0 �� u∗C⊗∧k−2v∗C
�� ∧kv∗C

��

��

Hk(wC,C)

��

�� 0

∧kn∗C Hk(nC,C).

(4.8)

Here, as in §2.2, w,v,u are the Lie algebras of the real points of W (R),V (R),U(R).
The second vertical map is induced by n ⊂ w. The first vertical map is induced by

the identification of v with the χ-eigenspace for A in w; since A ⊂ PH and it acts by

χ on u, we have n ⊂ v (compare §2.2 for notation). The top row comes from the long

exact sequence for the boundary divisor in the toroidal compactification, and is exact
in degrees k < n and is a sequence of Hodge structures (see [36, Lemma 1.3]). The

bigrading on ∧kv∗C comes from v∗C = (v∗C)
1,0

+ (v∗C)
0,1

, given by the complex structure

on v=w/u (itself given by the central U(1)⊂M(R)), and the (k,0)-subspace ∧k (v∗C)
1,0

maps isomorphically onto Hk,0(w,C). This is because the first term in the sequence has

Hodge types (k−1,1), . . . ,(1,k−1), because u∗ amounts to a Tate twist (see the proof of

[36, Lemma 1.3]). Now the composition (v∗C)
1,0

↪→ v∗C → n∗C is an isomorphism, since the
kernel of v∗C → n∗C is the complexification of a real subspace, and hence does not meet

(v∗C)
1,0

. Thus ∧k (v∗C)
1,0 → ∧kn∗C is nonzero, and since Hk,0(w,C) is M -irreducible (see

[36, Remark 1.11]), Resw is injective on Hk,0(wC,C) for k < n. �
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5. Congruence real hyperbolic manifolds

We restate the main result (Theorem 1.1) for congruence hyperbolic manifolds:

Theorem 5.1. Suppose that H ⊂G are semisimple groups of the same Q-rank such that

H(R)nc ⊂G(R)nc is SO(1,c)⊂ SO(1,d) for 2≤ c < d, and that neither H nor G is triality.

Then Res : Hi(MG,E)→ IGHHi(MH,EH) is injective for i≤ c/2.

In the compact case (and E = C), this is [12, Theorem 1.5] of Bergeron and Clozel,
who, using the Burger–Sarnak method [18] following Harris and Li [28], deduced it

from Arthur’s endoscopic classification [2] of automorphic representations for orthogonal

groups. Their arguments can be adapted to the noncompact case to prove injectivity on
the interior cohomology Hi

!(M ,E) for i ≤ c/2. Since the state of the literature on this

adaptation to the noncompact case is less than satisfactory, we will sketch the argument in

some detail, although the ingredients are all well known. Combined with an elementary

argument at infinity using Proposition 4.1, this proves the theorem in general. Before
starting the proofs, we will need to recall some general facts.

Recall the classification of unitarizable (g,K)-modules with cohomology with coeffi-

cients in E for G(R) = SO(d,1) from [17, Section VI.4] or [41, Section 1.3]. (We refer to
[17] for more details; this reference deals with SO0(d,1) and E =C, but it is easy to extend

to the general case using, for example, translation functors as in [17, Section VI.0].) Let

0 ≤ iE ≤ �d/2� be the minimal degree for which there exists a unitary representation
V with H∗(g,K,V ⊗E) �= {0} (so iC = 0 and iE = �d/2� if λ is regular). For each degree

iE ≤ i≤�d/2�, there is a unique unitary cohomological representation πi with cohomology

in degree i with respect to E, and it has cohomology in exactly degrees i and d− i if d

is odd or i < d/2, and if d = 2k it has cohomology in degree k. In the case d = 2k,
the representation πk of SO(1,d) is a discrete series representation and its restriction

to SO0(1,d) is a sum of two discrete series representations. If d = 2k+1 is odd, the

representation πk is tempered. This completes the list of unitarizable (g,K)-modules
with cohomology with coefficients in E. (All these depend on E, but to keep the notation

simple we do not indicate this.) When we use these objects for H(R), we will write πH
i .

We recall some well-known facts about noncompact arithmetic quotients, for which
we refer to Appendix A. There is a decomposition L2 (Γ\G(R)) = L2

dis (Γ\G(R))⊕
L2
cts (Γ\G(R)) into discrete and continuous spectra and a further decomposition

L2
dis (Γ\G(R)) = L2

cusp (Γ\G(R)) ⊕ L2
res (Γ\G(R)) into cuspidal and residual spectra.

For ? ∈ {cusp,dis,cts}, let

H∗
?(Γ,E) = H∗ (g,K,L2

? (Γ\G(R))⊗E
)
,

where the (g,K)-cohomology of a unitary G(R)-representation (π,V ) is understood to be
that of the space V ∞ of smooth vectors. The natural map

H∗ (g,K,L2 (Γ\G(R))⊗E
)
−→H∗(Γ,E)

induced by L2 (Γ\G(R))
∞ ⊂ C∞ (Γ\G(R)) is injective on H∗

cusp(Γ,E) and zero on

H∗
cts(Γ,E) (see Appendix A for a proof of this well-known fact).
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Lemma 5.2. For Γ arithmetic in SO(1,d), we have the following:

(1) H∗
cusp(Γ,E) = H∗

! (Γ,E).

(2) Hi
dis(Γ,E) → Hi(Γ,E) is injective in degrees i ≤ d/2 and an isomorphism for i ≤

�d/2�−1.

Proof. This follows from methods of Harder [26] recalled in Appendix B and also Rohlfs

and Speh [41]. According to [41, Theorem 1.5.1], the cohomology in degrees i < k= �d/2�
is all square-integrable, and by the results in [41, Section 1.4], the noncuspidal square-
integrable classes are generated using residues of Eisenstein series. These classes restrict

nontrivially to the boundary (see the proof of [41, Proposition 1.4.4] or Lemma B.1),

so they do not belong to interior cohomology. This proves (1) of the lemma in degrees
i < k= �d/2�. Moreover, the restriction to the boundary is injective on the residual classes,

proving (2) in degrees i < k = �d/2�. Statement (1) follows in degrees i > d−�d/2� by

duality. This leaves degree k when d= 2k is even and degrees k,k+1 when d= 2k+1 is
odd. In both cases, the only contributions to H∗

! (Γ,E) (or to Hi
dis(Γ,E)) in these degrees

are from tempered representations (namely the discrete series when d=2k is even and the

tempered representation πk when d= 2k+1 is odd), so they are cuspidal by a well-known

observation of Wallach [50], and then (1) and (2) are clear for these contributions.

Proposition 5.3. Assume that neither G nor H is triality. Then Res is injective on
Hi

!(M ,E) for i≤ c/2.

Proof. We sketch how to adapt the argument of [7, 8, 12, 28] to the noncompact case.

The main points are as follows:

(1) For i≤ c/2, the abstract restriction of πi to (h,KH) contains πH
i as a direct summand

and multiplicity 1 holds – that is, dimHom(h,KH)

(
πi|H,πH

i

)
= 1. Moreover, the induced

map

Hi(g,K,πi⊗E)→Hi
(
h,KH,π

H
i ⊗EH

)
(5.1)

is an isomorphism of one-dimensional spaces. This is proved in [7, Theorem 3.4] (see also
[28, §1,§6] and [8, Théorème 5.3]). The references treat the case E = C but the proof

works in general; alternatively, one can use translation functors as in [17, Section VI.0]

to reduce the general case to this one.

(2) Let R : C∞ (Γ\G(R)) → C∞ (ΓH\H(R)) denote restriction of functions and R∗ :
H∗(Γ,E)→H∗(ΓH,EH) the induced map in cohomology. Given an irreducible summand

π of L2
cusp (Γ\G(R)) with smooth vectors π∞ = πi, the image R(πi) consists of bounded

functions, so we may consider its closure R(π) in L2 (ΓH\H(R)). Suppose that an
irreducible summand σ of L2 (ΓH\H(R)) with σ∞ = πH

i appears as a direct summand of

R(π). We claim that R∗ : Hi(Γ,E)→Hi(ΓH,EH) is injective on the summand Hi(g,K,π⊗
E). To see this, note that R(π) =R(π)dis⊕R(π)cts, where R(π)? =R(π)∩L2

? (Γ\G(R)),
for ? = dis,cts, and the map R∗ on Hi(g,K,π⊗E) is induced by the composition

π∞ →R(π)∞ →R(π)∞dis → C∞ (ΓH\H(R)) .

(We use the fact that H∗(h,KH,R(π)cts⊗EH) → H∗(ΓH,EH) is zero since R(π)cts is a

summand of L2
cts (ΓH\H(R)); see Appendix A for a proof of this fact.) The last map
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induces an injection in degree i ≤ c/2 (by Lemma 5.2(2)). The map π∞ → R(π)∞dis
is nonzero in cohomology because the composition π∞ → R(π)∞dis → σ∞ is a nonzero

multiple of the map πi|H → πH
i in (1) (by multiplicity 1), and hence induces the nontrivial

map (5.1) in cohomology. This proves that R∗ is nonzero on H∗(g,K,π⊗E), and hence

injective.

(3) The Burger–Sarnak argument shows that given π as in (2), and assuming a
certain isolation hypothesis on πH

i (recalled later), we can arrange for a summand

σ as in (2), perhaps after replacing H by a conjugate – that is, replacing the map

R by Rg : C∞ (Γ\G(R)) → C∞ (
gΓg−1∩H\H(R)

)
for some g ∈ G(Q). This is [28,

Proposition 3.1] and the refinement [7, Proposition 3.2]. The observation of [18] is that

matrix coefficients of the cuspidal representation on Γ\G(R) are, when restricted toH(R),

the limits, uniform on compacta, of finite sums of matrix coefficients of H(R) appearing

in the spaces L2
(
g−1Γg∩H\H(R)

)
for g ∈G(Q). A key point explained in [28] (see the

remarks at the bottom of their p. 93) is that this applies to cuspidal cohomology on a

noncompact quotient, because cuspidal functions are of rapid decrease, hence uniformly

continuous on Γ\G(R), and this suffices for the argument in [18]. Thus under the isolation
hypothesis, if πH

i is weakly contained in R(π), then there is a direct summand σ of Rg(π)

as in (2), and so by (2), R∗
g is injective on Hi(g,K,π⊗E).

(4) The isolation hypothesis required in (3) is that πH
i is isolated in

{
πH
i

}
∪{

(ρ,Vρ) ∈ ĤAut : d≡ 0 on Ci (g,K,Vρ⊗E)
}
. (We refer to [7, 28] for the precise definitions

of ĤAut and the relevance of this condition.) This was shown in [7] to follow from a

uniform (in Γ) lower bound for the first nonzero eigenvalue of the Laplacian on i -forms

on MΓ [7]. This eigenvalue bound was later proved in [12, Theorem 1.3] using Arthur’s

endoscopic classification [2] of representations. (At this point triality forms must be
excluded, although they do not occur if the Q-rank is 1; see Remark 5.5.)

(5) Putting (1)–(4) together, we conclude that Res is injective on the cuspidal

cohomology for i≤ c/2, and hence, by Lemma 5.2, on Hi
!(M ,E) for i≤ c/2.

We will make some remarks as to the necessity of the contortions in the previous proof

after finishing the proof of the theorem.

Proof of Theorem 5.1. We will use the standard commutative diagram

0 �� Hi
!(M ,E) ��

Res

��

Hi(M ,E) ��

Res

��

IGP Hi(n,E)

Res∞
��

0 �� IGHHi
!(MH,E) �� IGHHi(MH,E) �� IGHIHPH

Hi(nH,EH).

(5.2)

This diagram comes from the properness of MH,ΓH
→ MΓ, or can be seen using

the fact that the cusp (i.e., reductive Borel–Serre) compactification is functorial for

H ⊂ G in this case. The identification of the boundary cohomology with IGP Hi(n,E) is
standard. It suffices to prove the injectivity of Res∞ for i ≤ c/2. By the transitivity

of induction, IGHIHPH
= IGP IPPH

, so it suffices to prove the injectivity of Hi(n,E) →
IPPH

Hi(nH,EH). Now the action of N(Q) on Hi(n,E) is trivial, so this factors through
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(
IPPH

Hi(nH,EH)
)N(Q)

= ILLH
Hi(nH,EH), and it is enough to prove the injectivity of

Hi(n,E)→ ILLH
Hi(nH,E). This follows from the injectivity of Resn in degrees i≤ c proved

in Proposition 4.1, except possibly in the case (d,c,i) = (2k+1,2k,k).
The remaining case is restriction from SO(1,2k+1) to SO(1,2k) in degree i = k. It

suffices to prove that Res∞ is injective on the image of Hk(M ,E) → IGP Hk(n,E). This

map is induced by the P (Q)-map Hk(M ,E)→Hk(n,E) given by restriction to a deleted

neighborhood of the cusp given by P = LN , and the image of Hk(M ,E)→ IGP Hk(n,E) is
IGP U , where U is the image of of Hk(M )→ Hk(n,E). There is a nondegenerate duality

pairing on Hk(n,E) given by the cup product and the self-duality of E. Now U is a

maximal isotropic subspace for the duality pairing on Hk(n,E) – that is, U⊥ = U –
and it is also L(C) = C∗×SO(2k,C)-stable. Since Hk(n,E) = U+⊕U− is a sum of two

inequivalent SO(2k,C)-modules of the same dimension (they form a single O(2k,C)-

module), either U = U+ or U = U−, and the image IGP U of Hk(M ) → IGP Hk(n,E) is
either IGP U+ or IGP U−. In the notation of §4.4, U+ and U− are the SO(2k,C)-modules

with highest weight vectors esk ⊗ vskλ and etk ⊗ vtkλ, respectively. Now the restriction

Resn : Hk(n,E) →
∏

mHk(nH,EH) induced by nH ⊂ n is nonzero on either summand,

because it is nonzero on these highest weight vectors, as was proved in Proposition 4.1.
It follows that IGP Hk(n,E)→ IGP IPPH

Hk(nH,EH) is injective on each of IGP U± individually,

and hence on the image of Hk(M ,E) → IGP Hk(n,E), whichever of these modules it is.

This completes the proof of the theorem.

Remark 5.4 (on the Burger–Sarnak method for noncompact quotients). In general,
it is not clear to us that the argument of [7, 8, 12, 28] can be adapted to treat

noncuspidal interior cohomology classes on a general arithmetic quotient without a better

understanding of the latter, for example, using Eisenstein series. Since the argument for

injectivity in cohomology treats one summand π of L2 at a time, one needs to know that
π∞, or at least π, contains some uniformly continuous functions, the diagonal matrix

coefficients of which can then be used in the Burger–Sarnak argument. If π is cuspidal,

then the functions in π∞ are of rapid decrease, hence uniformly continuous, and this
suffices. It is not clear to us that the automorphic representatives of noncuspidal interior

cohomology classes are uniformly continuous on Γ\G(R) – they are not of rapid decrease,

as they would then be cuspidal – or, indeed, that the summand π∞ contributing to such
cohomology contains any uniformly continuous functions.

In the case at hand, Lemma 5.2 shows that there is no noncuspidal interior cohomology,

and so this problem does not occur. For the congruence ball quotients discussed in [36],

[13, §3], and the next section one, can show that the noncuspidal interior cohomology
consists of nonprimitive classes (see the discussion in the next section), and the analogue

of Proposition 5.3 for SU(1,m)⊂ SU(1,n) can be proved similarly. However, for SO(2,n)

the situation is more complicated, and something more is required. In any case, we will
not use automorphic arguments to treat interior cohomology in the cases SU(1,n) and

SO(2,n), since the geometric arguments of §3 are available.

Remark 5.5. A triality form over a totally real field F which becomes SO(1,7) over R

for some real embedding of F is necessarily anisotropic over Q. This follows by looking
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at Tits indices (see the table on [46]; for details, see [14, p. 337f]). So in the Q-rank 1

case of the theorem, we may ignore triality altogether.

6. Congruence complex hyperbolic manifolds

The first main result for congruence complex hyperbolic manifolds is the following:

Theorem 6.1. Suppose that H ⊂G are groups of the same Q-rank and H(R)nc ⊂G(R)nc

is the inclusion SU(1,m) ⊂ SU(1,n) with 2 ≤m< n. Then Res is injective on Hi
!(MG)

for i≤m and on Hi(MG) for i < m.

This follows immediately from Corollary 3.2 and Proposition 4.2. This is simpler than
the proof in [36].

The rest of this section consists of the proof of the following, which is Theorem 1.2:

Theorem 6.2. Suppose that H ⊂G are groups of the same Q-rank and H(R)nc ⊂G(R)nc

is the inclusion SO(1,n) ⊂ SU(1,n) with n > 2. Then Res is injective on Hi,0(MG) for

i≤ n/2.

Proof. The proof is broadly the same as that of Theorem 5.1: Given the injectivity on

Hi,0
! (M ) for i≤ n/2, the analogue for this situation of diagram (5.2), the strictness of the

Hodge filtration, and Proposition 4.4 combine to prove the theorem.

The proof of injectivity on Hi,0
! (M ) for i ≤ n/2 follows the outline of the proof of

Proposition 5.3, with step (1) there replaced by the following:

(1′) For each i < n, there is a unique cohomological (g,K)-module Ji,0 with cohomology

in bidegree (i,0). This is immediate from the classification of (g,K)-modules with
cohomology for SU(1,n) [17, Sections VI.4.7–VI.4.12]. For i≤n/2, the abstract restriction

of Ji,0 to (h,KH) contains πH
i (the unique cohomological representation for SO(1,n)

with Hi
(
h,KH,π

H
i

)
�= 0; see §5) as a direct summand with multiplicity 1 – that is,

dimHom(h,KH)

(
Ji,0|H,πH

i

)
= 1 – and the induced map

Hi (g,K,Ji,0)−→Hi
(
h,KH,π

H
i

)
is an isomorphism of one-dimensional spaces. This is [8, Théorème 5.6].
Given (1′), steps (2)–(5) in the proof of Proposition 5.3 work verbatim to prove that

Res is injective on Hi,0
cusp(M ) for i ≤ n/2. We are using here the agreement of the two

possible Hodge structures on Hi
!(M ), the first coming from geometry (hence having good

properties for the boundary exact sequence and in diagram (5.2)) and the second from the

inclusion Hi
!(MΓ)⊂ IHi (M∗

Γ) and the L2 Hodge theory on the latter coming from equation

(3.12) (hence agreeing with the Hodge types in (g,K)-cohomology). This agreement is

known by [52] because M∗
Γ has isolated singularities.

Lemma 6.3 completes the proof of the theorem.

It remains to prove the following:

Lemma 6.3. For Γ arithmetic in SU(1,n), we have H∗,0
! (MΓ) = H∗,0

cusp(MΓ).
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Proof. The proof is similar to that of Lemma 5.2 for SO(1,n). Suppose first that i < n.

Since IHi (M∗
Γ) = Hi(MΓ) for i < n, we are actually dealing with the cohomology

Hi
(
g,K,L2

dis (Γ\G(R))
)
=

⊕
π⊂L2

dis

Hi(g,K,π),

where the sum is over irreducible closed summands, only finitely many of which make a

nonzero contribution to the sum. For π to contribute to the (i,0) summand of cohomology,
we must have π∞ = Ji,0. For such a summand π, the theory of Eisenstein series gives a

mapping Ii,0 → L2
dis onto π∞ = Ji,0. Here Ii,0 denotes the standard module of which Ji,0

is the Langlands quotient [17, Section VI.4.8]. Now the minimal degree in which Ji,0 has
cohomology is i, so we are in the situation of Appendix B, and applying Lemma B.1 gives

Lemma 6.3 for i < n. (Note that the assumption (∗) required in Lemma B.1 holds, since

Ii,0 has cohomology in degrees 2n− i,2n− i−1, and Ii,0 → Ji,0 induces an isomorphism
in degree 2n− i; see [17, p. 133].)

The statement in degrees i > n follows by duality. Finally, the equality in degree n holds

because the component at infinity of a class in Hn,0
! (MΓ) is of discrete series type, and

hence is already cuspidal by [50].

Remark 6.4. The proof of the lemma shows more generally that for i+ j ≤ n, we have

Hi,j
! (MΓ)

prim =Hi,j
cusp(MΓ)

prim,

where the primitive is taken with respect to an invariant Lefschetz class. Thus the Burger–
Sarnak method can be applied to prove injectivity on Hi,j

! (MΓ)
prim for the restriction by

SU(1,m)⊂ SU(1,n). Using the action of the Lefschetz operator, this can be used to give

another proof of Theorem 6.1 for complex hyperbolic manifolds.

7. Orthogonal Shimura varieties

The main theorem in this case is the following:

Theorem 7.1. Suppose that H ⊂G are of the same Q-rank and that H(R)nc ⊂G(R)nc

is the inclusion SO(2,m)⊂ SO(2,n) with n>m≥ 2. Then Res is injective on Hi(MG,E)
for i≤m−1.

We will argue as if the Q-ranks of both G and H are 2 and indicate how the argument

simplifies in the Q-rank 1 case. The proof is by a kind of induction on the stratification
of the minimal compactification, going from injectivity on interior cohomology Hi

!(MG)

(proved earlier as Corollary 3.2) to injectivity on a larger subspace GrWi Hi
c

(
M 1

G,j
1
∗C

)
of Hi(MG) (defined later), which takes into account some contributions from the one-
dimensional boundary strata, and then to the injectivity on all of Hi(MG) by taking

into account some contributions from the cusps (using the Lefschetz property for real

hyperbolic manifolds from §5). A similar, but simpler, argument was used in [36] for ball
quotients.

To simplify the notation somewhat, we will write M for MG. (We continue to write

MH for the Shimura variety associated to H, of course.)
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7.1. Some exact sequences related to the boundary

We will introduce some notation which will be useful. Recall the stratification of M∗
Γ

discussed in §2, and denote the inclusions by

MΓ
� � j1Γ �� M1

Γ
� � j0Γ �� M∗

Γ,

with j0Γ ◦ j1Γ = jΓ. This gives two cohomology long exact sequences:

1. The distinguished triangle associated with j1
Γ∗C on M1

Γ and the open-closed

decomposition MΓ
� � j1Γ �� M1

Γ Z1
Γ

� �
i1Γ�� is

j1Γ!C−→ j1Γ∗C−→ i1Γ∗i
1∗
Γ j1Γ∗C

+1−→

and gives

· · · −→Hi
c(MΓ)−→Hi

c

(
M1

Γ,j
1
Γ∗C

)
−→Hi

c

(
Z1
Γ,i

1∗
Γ j1Γ∗C

)
−→ ·· · .

2. The distinguished triangle associated with jΓ∗C and M1
Γ
� � j0Γ �� M∗

Γ Z0
Γ

� �
i0Γ�� is

j0Γ!j
1
Γ∗C−→ jΓ∗C−→ i0Γ∗i

0∗
Γ j1Γ∗C

+1−→

and gives

· · · −→Hi
c

(
M1

Γ,j
1
Γ∗C

)
−→Hi(MΓ)−→Hi

(
Z0
Γ,i

0∗
Γ jΓ∗C

)
−→ ·· · .

Both are long exact sequences of mixed Hodge structures by [42].
These exact sequences are natural with respect to passing to subgroups of Γ of finite

index, and this leads us to introduce the following suggestive notation:

Hi
c

(
M 1,j1∗C

)
:= colimΓH

i
c

(
M1

Γ,j
1
Γ∗C

)
,

Hi
c

(
Z 1,i1∗j1∗C

)
:= colimΓH

i
c

(
Z1
Γ,i

1∗
Γ j1Γ∗C

)
,

Hi
(
Z 0,i0∗j∗C

)
:= colimΓH

i
(
Z0
Γ,i

0∗
Γ jΓ∗C

)
,

(7.1)

where all colimits are over congruence subgroups. These are smooth G(Q)-modules,

and the map H∗
c(M ) → H∗(M ) factors through Hi

c

(
M 1,j1∗C

)
−→ Hi(M ). The exact

sequences give exact sequences

· · · −→Hi
c(M )−→Hi

c

(
M 1,j1∗C

)
−→Hi

c

(
Z 1,i1∗j1∗C

)
−→ ·· · (7.2)

and

· · · −→Hi
c

(
M 1,j1∗C

)
−→Hi(M )−→Hi

(
Z 0,i0∗j∗C

)
−→ ·· · , (7.3)

which are exact sequences of (colimits of) mixed Hodge structures.
We also note the following useful consequence of the purity lemma (Lemma 3.5):

Hi
!(M ) = im

(
GrWi Hi

c(M )→GrWi Hi
c

(
M 1,j1∗C

))
fori≤ n−1. (7.4)
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Indeed, Lemma 3.5 implies that Hi
!(MΓ) = im

(
GrWi Hi

c(MΓ)→GrWi Hi
c

(
M1

Γ,j
1
∗C

))
for i≤

n− 1, because GrWi Hi
c

(
M1

Γ,j
1
Γ∗C

)
⊂ GrWi Hi(MΓ) by the second exact sequence given.

Since GrWi commutes with the colimits, we get equation (7.4).

7.2. Proof of Theorem 7.1

Now consider the situation of H ⊂G and the morphism M∗
H,ΓH

→M∗
Γ. The stratifications

are compatible, in the sense that the stratification of M∗
H,ΓH

is the pullback of that of
M∗

Γ – that is, the relevant diagrams relating strata are Cartesian. It follows that both the

exact sequences are functorial – that is, there are H(Q)-module maps from each exact

sequence for G to the corresponding one for H. Frobenius reciprocity gives commutative

diagrams of G(Q)-modules with exact rows:

�� Hi
c(M ) ��

��

Hi
c

(
M 1,j1∗C

)
��

��

Hi
c

(
Z 1,i1∗j1∗C

)

��

��

�� IGHHi
c(MH) �� IGHHi

c

(
M 1

H,j
1
H∗C

)
�� IGHHi

c

(
Z 1

H,i
1∗
H j1H∗C

)
��

from the first sequence and the similar diagram with exact rows

�� Hi
c

(
M 1,j1∗C

)
��

��

��

��

Hi(M ) ��

��

Hi
(
Z 0,i0∗j∗C

)

��

��

�� IGHHi
c

(
M 1

H,j
1
H∗C

)
�� IGHHi(MH) �� IGHHi

(
Z 0

H,i
0∗
H jH∗C

)
��

from the second. Taking GrWi and using equation (7.4) in the first diagram gives a

commutative diagram

0 �� Hi
!(M ) ��

Res!

��

GrWi Hi
c

(
M 1,j1∗C

)
��

Res1

��

GrWi Hi
c

(
Z 1,i1∗j1∗C

)
Res1∞
��

0 �� IGHHi
!(MH) �� IGHGrWi Hi

c

(
M 1

H,j
1
H∗C

)
�� IGHGrWi Hi

c

(
Z 1

H,i
1∗
H j1H∗C

)
,

(7.5)

in which the upper row is exact for i ≤ n− 1 and the lower row is exact for i ≤ m− 1.

(We have used the purity of Hi
!(M ).) Similarly, taking GrWi and using equation (7.4) in

the second diagram gives a commutative diagram with exact rows for i≤m−1:
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0 �� GrWi Hi
c

(
M 1,j1∗C

)
��

Res1

��

��

Res1

��

Hi(M ) ��

Res

��

GrWi Hi
(
Z 0,i0∗j∗C

)
Res0∞
��

0 �� IGHGrWi Hi
c

(
M 1

H,j
1
H∗C

)
�� IGHGrWi Hi(MH) �� IGHGrWi Hi

(
Z 0

H,i
0∗
H jH∗C

)
.

(7.6)

We have used the purity of Hi(M ) in degrees ≤m−1, which follows from the fact that

IHi (M∗
Γ) = Hi(MΓ) in degrees i≤ n−2.

We see from these diagrams that Theorem 7.1, namely the injectivity of Res on Hi(M )

in degrees ≤m−1, follows from the conjunction of Corollary 3.2 (injectivity on interior

cohomology in degrees ≤m−1) and the following two statements:

Proposition 7.2. The map Res1∞ in diagram (7.5) is injective in degrees i≤m−1.

Proposition 7.3. The map Res0∞ in diagram (7.6) is injective in degrees i≤m−1.

The rest of this subsection will be taken up with the proofs of these two propositions.
The first will use Proposition 4.3, and the second will use the Lefschetz property for real

hyperbolic manifolds in Theorem 5.1.

Proof of Proposition 7.2. Recall that Proposition 7.2 asserts the injectivity of

Res1∞ : GrWi Hi
c

(
Z 1,i1∗j1∗C

)
−→ IGHGrWi Hi

c

(
Z 1

H,i
1∗
H j1H∗C

)
in degrees i≤m−1. We will deduce from Proposition 4.3 the a priori stronger assertion
that the map

Hi
c

(
Z 1,i1∗j1∗C

)
−→ IGHHi

c

(
Z 1

H,i
1∗
H j1H∗C

)
(7.7)

is injective in this range; since this is a morphism of mixed Hodge structures, the statement

about the ith graded follows. By definition,

Hi
c

(
Z 1,i1∗j1∗C

)
= colimΓH

i
c

(
Z1
Γ,i

1∗
Γ j1Γ∗C

)
.

Choose a rational boundary component F of dimension 1 and let P = MW be its

stabilizer, which is the maximal parabolic stabilizing an isotropic plane in V. The stratum

of M∗
Γ given by F is SΓ := ΓMh

\F , and it is a component of Z1
Γ; let iSΓ

: SΓ ↪→M1
Γ be the

inclusion. Then we have natural identifications

Hi
c

(
Z 1,i1∗j1∗C

)
= IGP

(
colimΓH

i
c(SΓ,i

∗
SΓ

jΓ∗CMΓ
)
)

=
⊕
k

IGP (colimΓH
i−k
c (SΓ,H

k(i∗SΓ
jΓ∗CMΓ

)))

=
⊕
k

IGP (colimΓH
i−k
c (SΓ,H

k(w,C)))

=
⊕
k

IGP Hi−k
c (MM,Hk(w,C)).

(7.8)
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Here the first equality is an elementary argument keeping track of the cusps (see [35,

Lemma 3.3] for a similar argument for ball quotients) and the second is given by

Proposition 2.7. We have also used the fact that M�(R) is compact, so that ΓM�A = {e} for
neat Γ. There is a similar expression for the H(Q)-module Hi

c

(
Z 1

H,i
1∗
H j1H∗C

)
and hence

for the target of expression (7.7), namely

IGHHi
c

(
Z 1

H,i
1∗
H j1H∗C

)
=

⊕
k

IGHIHPH

(
colimΓH

Hi−k
c

(
SΓH

,Hk(wH,C)
))

.

By the transitivity of induction IGHIHPH
= IGP IPPH

we are reduced to showing that

colimΓH
i−k
c

(
SΓ,H

k(n,C)
)
−→ IPPH

colimΓH
Hi−k

c

(
SΓH

,Hk(nH,C)
)

is injective for i≤m−1. Now the action of W (Q) on the left-hand side is trivial, and(
IPPH

Hi−k
c

(
SΓ,H

k(nH,C)
))W (Q)

= IMMH
Hi−k

c

(
SΓH

,Hk(nH,C)
)
,

so we must show that

colimΓH
i−k
c

(
SΓ,H

k(n,C)
)
−→ IMMH

colimΓH
Hi−k

c

(
SΓH

,Hk(nH,C)
)

is injective for i≤m−1. But now note that SΓ = SΓH
for neat Γ (M and MH differ only

in the compact factor), and the case i= k does not occur (because H0
c(SΓ,V ) = 0 for any

V ), so this follows from Proposition 4.3. �

Proof of Proposition 7.3. Recall that the proposition asserts the injectivity of

Res0∞ : GrWi Hi
(
Z 0,i0∗j∗C

)
−→ IGHGrWi Hi

(
Z 0

H,i
0∗
H jH∗C

)
in degrees i ≤ m− 1. We will reduce this to the Lefschetz property for congruence

hyperbolic manifolds – that is, Theorem 5.1.
Let P = MW be the stabilizer of an isotropic line I in V, and F be the associated

rational boundary component. Let isΓ : {sΓ} ↪→ M1
Γ be the stratum given by F in M∗

Γ.

Then by Proposition 2.7 there is an isomorphism in the derived category

i∗SΓ
jΓ∗C=

⊕
k

Hk
(
i∗SΓ

jΓ∗C
)
[−k],

and moreover,

Hi
(
i∗sΓjΓ∗C

)
=

⊕
k

Hi−k
(
ΓM, ∧k u∗C

)
,

where we have used the facts that ΓM = ΓM�
(assuming Γ is neat) is in SO(1,n−1) and

w= u is abelian, so that H∗(w,C) = ∧∗u∗. By Proposition 2.7, the k -summand is pure of

weight 2k, so that

GrWi Hi
(
i∗sΓjΓ∗C

)
=Hi/2

(
ΓM, ∧i/2 u∗C

)
if i is even and zero if i is odd.
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We then have

GrWi Hi
(
Z 0,i0∗j∗C

)
= IGP colimHi/2

(
ΓM, ∧i/2 u∗C

)
= IGP Hi/2

(
MM, ∧i/2 u∗C

)
for i even and zero for i odd. This discussion applies also to GrWi Hi

(
Z 0

H,i
0∗
H jH∗C

)
, giving

GrWi Hi
(
Z 0,i0∗j∗C

)
= IHPH

colimHi/2
(
ΓMH

, ∧i/2 u∗H,C

)
= IGP Hi/2

(
MMH

, ∧i/2 u∗H,C

)
for i even and zero for i odd. By the transitivity of induction, the injectivity of Res0∞ in

degree i is reduced to that of

Hi/2
(
MM, ∧i/2 u∗C

)
−→ IPPH

Hi/2
(
MMH

, ∧i/2 u∗H,C

)
.

The action of W (Q) = U(Q) on the source is trivial, so this factors through the U(Q)-

invariants of the target – that is,(
IPPH

colimHi/2
(
ΓMH

, ∧i/2 u∗H,C

))U(Q)

= IMMH
colimHi/2

(
ΓMH

, ∧i/2 u∗H,C

)
.

We are thus reduced to the injectivity of

colimHi/2
(
ΓM, ∧i/2 u∗C

)
−→ IMMH

colimHi/2
(
ΓMH

, ∧i/2 u∗H,C

)
.

Suppose i ≤ m− 1. Then ∧i/2u∗C is irreducible and ∧i/2u∗H,C is the MH -summand

containing the M -highest weight vector, so the injectivity of the previous map follows

from the Lefschetz property in Theorem 5.1. (The subgroup MH is never triality.) This
concludes the proof. �
This concludes the proof of Theorem 7.1.

Appendix A. Some facts about the L2 cohomology of arithmetic manifolds

Let G be a semisimple algebraic group over Q, K a maximal compact subgroup of G(R),

X =G(R)/K, and Γ⊂G(Q) a congruence subgroup. (Everything in this appendix should
apply to any arithmetic subgroup, but we will use results from [21], which is written in

an adelic context, so we make this assumption at the outset.)

The L2 cohomology of Γ with coefficients in a finite-dimensional algebraic representation

E of G(C) is

H∗
(2)(Γ,E) = H∗ (g,K,L2 (Γ\G(R))⊗E

)
.

(The (g,K)-cohomology of a G(R)-representation (π,V ) is, by definition, that of the space

V ∞ of smooth vectors.) This is not the usual definition, which requires looking at the
complex of L2 differential forms with L2 weak differential (or smooth L2 forms with L2

differential), but they are known to agree [16, Prop. 5.4]. The decompositions

L2 (Γ\G(R)) = L2
dis (Γ\G(R))⊕L2

cts (Γ\G(R))

= L2
cusp (Γ\G(R))⊕L2

res (Γ\G(R))⊕L2
cts (Γ\G(R))
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of the L2 spectrum into cuspidal, residual, and continuous parts (given by Langlands’

theory of Eisenstein series) induce decompositions

H∗
(2)(Γ,E) = H∗

dis(Γ,E)⊕H∗
cts(Γ,E)

= H∗
cusp(Γ,E)⊕H∗

res(Γ,E)⊕H∗
cts(Γ,E),

where H∗
?(Γ,E) = H∗ (g,K,L2

? (Γ\G(R))⊗E
)
. The summand H∗

dis(Γ,E) is identified with
the (finite-dimensional) space of E -valued L2 harmonic forms for the invariant metric (a

result due to Borel and Garland; see [16, Prop. 4.4(i)]), whereas the summand H∗
cts(Γ,E)

either vanishes (e.g., when G is equal-rank) or is infinite-dimensional [16]. The inclusion

L2 (Γ\G(R))
∞ ⊂ C∞ (Γ\G(R)) induces a natural map

H∗
(2)(Γ,E)−→H∗(Γ,E)

which is injective on cuspidal cohomology. Proposition A.1 is well known to experts, but

for lack of a suitable reference we give a proof, which is a simple matter of applying results

of [21] and [16]. It goes beyond the existing literature [16] only in the cases where G(R)
does not have a discrete series – for example, GL(n) – and we need to use it in the main

body of the paper for the case SO(1,d), d odd.

Proposition A.1. The map H∗
(2)(Γ,E)→H∗(Γ,E) is zero on H∗

cts(Γ,E).

Proof. Following Franke [21], let S1 (Γ\G(R))⊂L2 (Γ\G(R)) be the submodule of smooth
functions which are uniformly in L2 – that is, smooth functions f such that Df ∈L2 for all

D ∈ U(g). The inclusion S1 ⊂ L2 induces isomorphisms in cohomology (by [21, Theorem

3]), so S1 ⊂ C∞ induces the map in question. It factors as

S1 (Γ\G(R))⊂ Slog (Γ\G(R))⊂ C∞ (Γ\G(R)),

where Slog = Slog (Γ\G(R)) is the space of functions which are uniformly L2 up to

logarithmic terms (see [21, §5] or [49, Section 6.1]). It suffices to show that H∗
cts(Γ,E), as

a summand of H∗(g,K,S1⊗E), goes to zero in H∗ (g,K,Slog⊗E). We will do this using

further reductions to the bounded spectra S1,b ⊂ S1 and Slog,b ⊂ Slog with respect to the
Casimir operator, a notion introduced in [21, Section 5.1] (compare [49, Section 6.3]). We

will show the following:

1. S1,b ⊂ L2 induces an isomorphism H∗ (g,K,S1,b⊗E) = H∗
(2)(Γ,E).

2. Slog,b ⊂ Slog induces an isomorphism in cohomology.

3. S1,b ⊂ Slog,b induces zero on H∗
cts(Γ,E).

This will prove the proposition.

(1) To show that S1,b ⊂ L2 induces an isomorphism in cohomology, we use Langlands
spectral decomposition of L2. There are compatible direct sum decompositions

S1,b =
⊕
{R}

S1,b,{R} ⊂ L2 =
⊕
{R}

L2
{R}

indexed by associate classes of parabolic subgroups. The R=G summands are L2,∞
dis and

L2
dis. (In the usual statement of {R}-decompositions, the R=G summand is the cuspidal
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part; we are using the obvious rearrangement.) The inclusion L2,∞
dis ⊂ L2

dis induces an

isomorphism by definition, so we must show the same for S1,b,{P} ⊂ L2
{P} for proper P.

For P =MAN , we have (compare [21, Theorem 11])

S1,b,{P} =
(
IndGPL

2
c(ia

∗)⊗AM
2

)WM

,

where AM
2 is the space of L2 automorphic forms on ΓM\M(R), and the Weyl groupWM of

M acts by intertwining operators. The {P}-summand of L2 has the following description

(see, e.g., [16, Section 4.3]). For each irreducible summand V of L2
dis (ΓM\M(R)), we

have the direct integral

EP,V =

∫ ⊕

a∗
IndGPCρ+iμ⊗V.

Then L2
{P} is the invariants under the action of WM by intertwining operators on the

(countable) Hilbert-space direct sum of EP,V as V varies over all irreducible summands.

One could, equivalently, restrict to a subset of V modulo WM -equivalence and take the

sum of direct integrals like this one over the positive Weyl chamber a∗+, which is the
formulation in [16, Section 4.3].

Now H∗ (g,K,EP,V ⊗E) = {0} unless EP,V shares K -types with ∧∗(g/k)⊗E∗ and the

Casimir acts by the correct scalar, so it follows that there is a finite set {Vi}i∈I of V such
that the cohomology becomes a finite sum

H∗
(
g,K,L2

{P}⊗E
)
=

(⊕
i∈I

H∗ (g,K,EP,Vi
⊗E)

)WM

(see [16, Prop. 4.4(ii)]). The same applies to S1,b,{P} – that is, we may replace AM
2 by⊕

i∈I A
M
2 ∩V ∞

i and get the same cohomology. The computation of a single summand
H∗ (g,K,EP,Vi

⊗E) is contained in [16, Theorem 3.4], and the answer is similar to the

usual computation for induced representations in [17, Theorem III.3.3]: There is a unique

s ∈WP such that

H∗ (g,K,EP,Vi
⊗E) = H∗−�(s)

(
m,KM,Vi⊗EM

s(λ+ρ)−ρ

)
⊗H∗

(
a,

∫ ⊕

a∗
Ciμdμ

)
,

where EM
s(λ+ρ)−ρ is the restriction to M of EMA

s(λ+ρ)−ρ (notation as in Kostant’s theorem

in §4.1). The parallel computation for IndGPL
2
c(ia

∗)⊗Vi (by the same arguments as in
the proof of [16, Theorem 3.4]) gives the same expression, with

∫ ⊕
a∗ Ciμdμ replaced by

L2
c(ia

∗). The assertion that S1,b,{P} ⊂ L2
{P} induces an isomorphism now boils down

to the assertion that (for each P) the inclusion of L2
c(ia

∗) = colimΩ⊂a∗
∫ ⊕
Ω
Ciμdμ (the

colimit taken over compact Ω) into the direct integral
∫ ⊕
a∗ Ciμdμ is an isomorphism in

a-cohomology. This elementary fact follows, for example, from [16], which shows that this

is already true of
∫ ⊕
Ω
Ciμdμ⊂

∫ ⊕
a∗ Ciμdμ if 0 ∈ Ω.

(2) To show that the inclusion Slog,b ⊂ Slog induces an isomorphism in cohomology, we
simply combine [21, Theorem 10] and the spectral sequence in [21, Theorem 7]. (This

may not be the simplest or most natural proof, but it is certainly the shortest to write

down here!)
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(3) We are reduced to considering the inclusion S1,b ⊂ Slog,b. Now Slog,b has a spectral

decomposition analogous to that of S1,b, in which the {P}-summand for P =MAN is(
IndGPD

′
c(ia

∗)⊗AM
2

)WM

,

where D′
c(ia

∗) is the space of compactly supported distributions (compare [21, Theo-

rem 12]). The P =G summand is still L2,∞. So the fact that S1,b,{P} ⊂ Slog,b,{P} induces
zero for P proper boils down to the fact that the inclusion of a-modules L2

c(ia
∗)⊂D′

c(ia
∗)

induces zero in a-cohomology. This is immediate: The first has cohomology in degrees

in [1, dima] (by [16, Prop. 3.2], as already remarked), and the latter has cohomology
only in degree 0 (e.g., by [21, Lemma 1]; this reduces to the fact that the complex

D′
c(R)

x·−→ D′
c(R) has cohomology only in degree 0). This concludes the proof of the

proposition.

The preceding proof used three results [21, Theorems 10, 12, and 13]) whose proofs

constitute the technical heart of Franke’s work. It is possible that they can be avoided,

but the method of proof gives rather more, as we now show. The results which follow
are not used in the body of the paper, but will be useful elsewhere. The following is a

corollary of the proof of the proposition:

Corollary A.2. If E is rationally defined (i.e., has a rational structure preserved by

G(Q)) then the square-integrable cohomology, which is (by definition) the image of
H∗

(2)(Γ,E)→H∗(Γ,E), is a rational subspace.

Proof. By [33, Theorem A], the cohomology of Slog is isomorphic to the lower middle

weighted cohomology of [23], and this has a rational structure ([23, Chapter IV])
compatible with the map to H∗(Γ,E).

In fact, we can refine this statement somewhat using the same methods. Recall that

there is a subspace S− log (Γ\G(R))⊂ Slog (Γ\G(R)) defined by using a condition dual to
the one defining Slog (see [21, §5] or [49, Section 6.1]).

Proposition A.3. The image of H∗ (g,K,S− log⊗E) → H∗ (g,K,Slog⊗E) is identified

with H∗
dis(Γ,E) or, equivalently, with the space of E-valued L2 harmonic forms.

Proof. This was proved in [33, Theorem B] under the assumption that G is equal-rank,
in which case the map in the proposition is an isomorphism and both groups compute

the L2 cohomology. In general, we argue as follows. By [21, Theorem 10] and the spectral

sequence of [21, Theorem 7], we know that S± log,b ⊂ S± log induce isomorphisms in (g,K)-
cohomology, so it is enough to consider the inclusion S− log,b ⊂ Slog,b. For these spaces

there are compatible decompositions

S− log,b =
⊕
{P}

S− log,b,{P} ⊂ Slog,b =
⊕
{P}

Slog,b,{P}

indexed by associate classes of parabolic subgroups. The {P}-summand for S− log,P is(
IndGPC

∞
c (ia∗)⊗AM

2

)WM

.
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The {P}-summand for Slog,b was recalled in the proof of the previous proposition and

amounts to replacing C∞
c (ia∗) by D′

c(ia
∗) in this expression; the map S− log,b,{P} ⊂

Slog,b,{P} is induced by C∞
c (ia∗) ⊂ D′

c(ia
∗). The map in a-cohomology induced by this

inclusion is zero, since H∗(a,C∞
c (ia∗)) is concentrated in degree dima while H∗ (a,D′

c(ia
∗))

is concentrated in degree 0. By the standard computations of cohomology for induced

representations (recalled earlier in the proof of the previous proposition), we see that
S− log,b,{P} ⊂ Slog,b,{P} is zero in cohomology for P �=G. Since the P =G summands are

both identified with L2,∞
dis , the first statement follows.

The previous corollary is refined by the following:

Corollary A.4. If E is rationally defined, then the space of square-integrable E-valued

harmonic forms on Γ\X has a canonical (Betti) rational structure.

Proof. By [33, Theorem A], the groups in the proposition are the upper and lower middle
weighted cohomology groups, which have natural Q-structures ([23, Chapter IV]).

Remark A.5. In contrast to the corollary, the space of cuspidal harmonic forms, which
is simply the cuspidal cohomology, should not be expected to be Betti rational in general,

for example, for Sp(4). Of course, it is well known to be Betti rational in the case of GL(n)

[21, 7.6] and some related cases – for example, for SO(1,d) it follows from Lemma 5.2.

Remark A.6. WhenX =G(R)/K has an Hermitian structure, something much stronger

than the corollary is true thanks to equation (3.12), namely that the space of L2 harmonic
forms is part of a mixed realization over the number field of definition of Γ\X (the reflex

field, if we work in the context of Shimura varieties). In particular, it has both Betti and

de Rham rational structures.

Appendix B. Residual Eisenstein cohomology in corank 1

We summarize here some very well-known facts (essentially going back to [26]) on the

construction of cohomology via residual Eisenstein series from cuspidal data on maximal

parabolic subgroups. In the body of the paper these are applied to the rank 1 groups

SO(1,n) and SU(1,n).
For a G(R)-representation V, the smooth vectors are denoted V ∞ and H∗(g,K,V ) is

the (g,K)-cohomology of V ∞. For a (g,K)-module or G(R)-representation V, let

dmin(V ) = min
{
i : Hi(g,K,V ) �= 0

}
, dmax(V ) = max

{
i : Hi(g,K,V ) �= 0

}
,

assuming these make sense and are finite.
Let P =LN ⊂G be a maximal parabolic subgroup and A the Q-split part of the center

of L. Let σ ⊂ L2
cusp

(
ΓLA(R)

0\L(R)
)
be a cuspidal automorphic form on L. For λ ∈ a∗C,

let Iλ = IndGPσ⊗Cλ be the (normalized) induced representation. The theory of Eisenstein
series produces a (g,K)-homomorphism to the space of automorphic forms,

E : I∞λ → A (Γ\G(R)),

which is meromorphic in λ ∈ a∗C. If λ is a pole of E, meaning that the Eisenstein series

E(φ,λ) has a pole for generic φ in the space of σ, then P is self-associate and the pole
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is real and simple if Re(λ) ∈ (a∗)+. Taking the residue at such a λ defines a residual

Eisenstein operator

E∗ : I∞λ → A (Γ\G(R)) .

By [21], the (g,K)-cohomology of A (Γ\G(R))⊗E is H∗(Γ,E).

Lemma B.1. Suppose that P,σ are as discussed and that E has a pole at λ with Re(λ)∈
(a∗)+, so that λ is real. Suppose that the Langlands quotient Jλ of Iλ is cohomological
with respect to a coefficient representation E, and further that

(∗) dmax(Iλ ⊗ E) = dmax(Jλ ⊗ E) and Hdmax(Iλ⊗E)(g,K,Iλ ⊗ E) → Hdmax(Jλ⊗E)

(g,K,Jλ⊗E) is an isomorphism

(see Remark B.2). Then the map in cohomology induced by E∗ (I∞λ ) ⊂ A in degree

dmin(Jλ⊗E) is injective and the nonzero classes in the subspace

Hdmin(Jλ⊗E) (g,K,E∗ (I∞λ )⊗E)⊂Hdmin(Jλ⊗E)(Γ,E)

restrict nontrivially to the boundary – that is, do not belong to H∗
! (Γ,E).

Proof. We write I,J for Iλ,Jλ and ignore the coefficients E, as they are not relevant. The

residue of a cuspidal Eisenstein series at a point of the positive Weyl chamber is well known
to be square-integrable, so that E∗(I∞) ⊂ A ∩L2

dis, and as an abstract representation,

E∗(I∞) is the Langlands quotient J∞. Taking the constant term of automorphic forms

along P defines a mapping

I∞
E∗
−→ A −→ I∗,∞,

where I∗ = IndGPσ
∗⊗C−λ is the contragredient of I. (The usual expression for the constant

term defines maps Iλ → A → Iλ ⊕ I∗λ for generic λ, but for the residual operator at a

pole only the second term is nonvanishing.) The composite is a nonzero multiple of the
standard interwining operator I → I∗, the image of which is the Langlands quotient J,

and the factoring is exactly I∞ → J∞ ⊂ I∗,∞.

Now by assumption dmax(I) = dmax(J), and so by duality ([17, Proposition I.7.6] for
the irreducible unitary module J and [17, Theorem III.3.3 and Proposition I.7.6] for I )

we have

dmin(J) = dimX−dmax(J) = dimG(R)/K−dmax(I) = dmin(I
∗)

and Hdmin(J)(g,K,J)∼=Hdmin(J)(g,K,I∗). Moreover, for a class in Hdmin(J)(g,K,E∗(I)) in
H∗(Γ,C), the induced mapping

C∗(g,K,E∗(I∞))→ C∗(g,K,I∗,∞)

gives, via the identification of H∗(g,K,I∗,∞) with a summand of the cohomology of

the P -boundary, the restriction of the class to the P -boundary. (This is contained in

[26] in a differential-geometric language and in [45] in representation-theoretic terms.)
The restriction is therefore nonzero, because Hdmin(J)(g,K,J) ∼= Hdmin(J)(g,K,I∗), and

so Hdmin(J)(g,K,E∗(I)) → H∗(Γ,C) is injective. The classes in this subspace survive on

restriction to the boundary, so they are not in interior cohomology.
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Remark B.2. In fact, (∗) always holds for a unitary cohomological Langlands quotient,

but rather than prove this general fact, we just check it in the cases of interest where the

lemma is applied.

Appendix C. Chern classes of automorphic vector bundles

We are in the situation of §3.2: G is semisimple and simply connected, X = G(R)/K is

Hermitian, and MΓ = Γ\X. Fix a smooth toroidal compactification MΓ ↪→MΣ
Γ in which

the boundary is a simple normal crossings divisor [3]. Let Rep(H) denote the category of
finite-dimensional representations of a compact group H. With E in Rep(K) are associated

the homogeneous bundle E c on Xc, the automorphic vector bundle EΓ on MΓ = Γ\X,

and the canonical extension E Σ
Γ of EΓ to MΣ

Γ . The following statement is well known to
experts; we borrow the proof from [34, Lemma 3.7.2]):

Lemma C.1. There is an injective ring homomorphism θ : H∗(Xc,Q)→H∗ (MΣ
Γ ,Q

)
with

θ(ck(E c)) = (−1)kck
(
E Σ
Γ

)
for all E ∈ Rep(K).

Proof. Following a suggestion of N. Fakhruddin we will use K -theory to prove this. Let
K0(−) denote the topological K -theory of a space and ch :K0(−)→H∗(−,Q) the Chern

character homomorphism. We write R(H) for the representation ring of a compact group

H – that is, the Grothendieck group of the category Rep(H).
We first show that the ring homomorphism R(K) → H∗ (MΣ

Γ ,Q
)
defined by V �→

ch
(
V Σ
Γ

)
and extended Q-linearly defines a ring homomorphism

κ :K0(Xc)⊗Q→H∗ (MΣ
Γ ,Q

)
. (C.1)

Since Xc = G(R)c/K with G(R)c simply connected (it is the maximal compact of the

simply connected group G(C)) and K ⊂ G(R)c is a subgroup of maximal rank, the
construction V �→ V c gives an isomorphism

R(K)⊗R(G(R)c)Z→K0(Xc),

where Z is an R(G(R)c)-module via the dimension homomorphism (by [40, Theorem 3]).

Since the left-hand side is the quotient of R(K) by the ideal generated by ker(dim :
R(G(R)c)→ Z) and ch is a ring homomorphism, to show that κ is well defined it suffices

to show that ch
(
E Σ

)
= dimE if E ∈ Rep(G(R)c). The degree 0 term of the Chern

character of a bundle is its rank, so it suffices to check that ck
(
E Σ
Γ

)
= 0 for k > 0 for

such E. Now Mumford showed that the kth Chern form of the invariant or Nomizu
connection defines a current on MΣ

Γ which represents
(
up to a factor of

(
2π

√
−1

)k)
the Chern class ck

(
E Σ
Γ

)
([32, Theorem 3.1 and Theorem 1.4]). But if E is a G(R)c-

representation, the curvature 2-form of the Nomizu connection vanishes identically (see,

e.g., [25, Proposition 5.3]), hence so do its Chern forms for k > 0. Thus ck
(
E Σ
Γ

)
= 0 for

k > 0 and ch
(
E Σ
Γ

)
=dimE, and we have κ as in formula (C.1). It is a ring homomorphism

because canonical extension is compatible with the tensor product [27, Section 4.2] and

the Chern character is multiplicative.
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Since Xc is a flag variety, it has only even-degree cohomology, so the Chern character
gives an isomorphism ch :K0(Xc)⊗Q→H∗(Xc,Q) (compare [4, 2.4]). Now define

θ := κ◦ ch−1 ◦σ,

where σ : H∗(Xc,Q)→ H∗(Xc,Q) is defined by σ(α) = (−1)deg(α)/2α. Since H∗(Xc,Q) is

concentrated in even degrees, this makes sense, and σ is a ring homomorphism. Note
that θ(σ(ch(E c)) = ch

(
E Σ
Γ

)
, from which it follows that θ(ck(E c)) = (−1)kck

(
E Σ
Γ

)
. This

implies that θ is injective (i.e., nonzero) in top degree 2n= 2dimCX: Choose a nonzero

monomial ck1
(E c

1 ) · · ·ckr
(E c

r ) with
∑

i ki = n; it spans H2n(Xc,Q). By Mumford’s version
of proportionality [32, Theorem 3.2],[

MΣ
Γ

]
∩θ (ck1

(E c
1 ) · · ·ckr

(E c
r )) = (−1)n ·C · [Xc]∩ ck1

(E c
1 ) · · ·ckr

(E c
r ) �= 0,

where C is a nonzero constant independent of ki,Ei. It follows that θ is injective: For

nonzero α ∈Hi(Xc), choose β ∈H2n−i(Xc) such that α ·β �= 0. Then 0 �= θ(α ·β) = θ(α) ·
θ(β), so that θ(α) �= 0.
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(2004), 363–413.
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