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Abstract. The cyclicity and Koblitz conjectures ask about the distribution of primes of cyclic and
prime-order reduction, respectively, for elliptic curves over Q. In 1976, Serre gave a conditional proof
of the cyclicity conjecture, but the Koblitz conjecture (refined by Zywina in 2011) remains open.
The conjectures are now known unconditionally “on average” due to work of Banks–Shparlinski and
Balog–Cojocaru–David. Recently, there has been a growing interest in the cyclicity conjecture for
primes in arithmetic progressions (AP), with relevant work by Akbal–Güloğlu and Wong. In this
paper, we adapt Zywina’s method to formulate the Koblitz conjecture for AP and refine a theorem
of Jones to establish results on the moments of the constants in both the cyclicity and Koblitz
conjectures for AP. In doing so, we uncover a somewhat counterintuitive phenomenon: On average,
these two constants are oppositely biased over congruence classes. Finally, in an accompanying
repository, we give Magma code for computing the constants discussed in this paper.

1. Introduction

Let E be an elliptic curve defined over the rationals, and let NE denote the conductor of E. For

a prime p not dividing NE (called a good prime for E), we write Ẽp to denote the reduction of E

modulo p. The curve Ẽp is an elliptic curve over the finite field Fp. Hence, the set of Fp-points,

denoted Ẽp(Fp), forms a finite abelian group. It is well known that

Ẽp(Fp) ≃ Z/dp(E)Z⊕ Z/ep(E)Z and p+ 1− 2
√
p ≤ |Ẽp(Fp)| ≤ p+ 1 + 2

√
p

for some positive integers dp(E) and ep(E) such that dp(E) | ep(E).
There has been considerable interest, dating back to the 1970s, in studying the distribution of

primes p for which Ẽp(Fp) has certain properties. In particular, one defines a good prime p to be

of cyclic reduction for E if Ẽp(Fp) is a cyclic group and of Koblitz reduction for E if |Ẽp(Fp)| is a
prime. It is worth noting that every prime p of Koblitz reduction is also of cyclic reduction, since
every group of prime order is cyclic. Let X be either “cyc” or “prime” and XE(p) be either “p is of
cyclic reduction” or “p is of Koblitz reduction” for E, respectively. Define the counting function

πXE (x) := #{p ≤ x : p ∤ NE and XE(p) holds}.

The problem of determining asymptotics for πXE (x) is called the cyclicity problem or Koblitz problem,
depending on the context. As noted in [4, 33], the Koblitz problem can be viewed as an elliptic
curve analog of the twin prime conjecture.

It is natural to consider finer versions of the cyclicity and Koblitz problems which restrict to
primes lying in arithmetic progressions. To discuss this, fix integers n, k with n ≥ 1 and define

πXE (x;n, k) := #{p ≤ x : p ≡ k (mod n), p ∤ NE , and XE(p) holds}.

Date: June 18, 2025.
2010 Mathematics Subject Classification. Primary 11G05; Secondary 11F80.

1

This is a ``preproof'' accepted article for Canadian Journal of Mathematics
This version may be subject to change during the production process.
DOI: 10.4153/S0008414X25101156

https://doi.org/10.4153/S0008414X25101156 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101156


2 LEE, MAYLE, AND WANG

Note that if n and k are not coprime, then there is at most one prime congruent to k modulo n, so
πXE (x;n, k) is trivially bounded. As such, we will always take the integers n and k to be coprime.
Broadly speaking, the goal of this paper is to examine the constants that appear in the conjectural
asymptotics of πXE (x;n, k) and explore how they are influenced by the choice of k modulo n. Before
introducing our contributions, we outline aspects of the rich history of the cyclicity and Koblitz
problems relevant to our work.

We begin with the cyclicity problem, which has its origin in 1975 when I. Borosh, C. J. Moreno,
and H. Porta [8, pp. 962–963] speculated that the density of primes of cyclic reduction exists and
can be expressed as an Euler product.1 In 1976, J.-P. Serre [52] observed that the cyclicity problem
bears a resemblance to Artin’s primitive root conjecture, which was proven under the Generalized
Riemann Hypothesis (GRH) by C. Hooley [29] a decade prior. With this insight, Serre proposed
the following conjecture, which he proved as a theorem under GRH.

Conjecture 1.1 (Cyclicity Conjecture [52, pp. 465–468]). If E/Q is an elliptic curve, then

(1) πcycE (x) ∼ Ccyc
E · x

log x
,

as x→∞, where Ccyc
E ≥ 0 is the explicit constant defined in (18).

Serre noted that Ccyc
E = 0 if and only if Q(E[2]) = Q, in which case we interpret (1) as stating

that πcycE (x) is bounded as x→∞.
Conjecture 1.1 has been extensively studied by various mathematicians since then. M. Ram

Murty [47] proved that the conjecture holds unconditionally for CM curves. Later, using a lower
bound sieve method, Gupta and Murty [27] showed unconditionally for non-CM curves that

πcycE (x)≫E
x

log2 x
,

as x→∞ unless Q(E[2]) = Q. See, for example, [5, 13–15, 23, 30, 59] for some recent work on the
problem.

In 2022, Y. Akbal and A. M. Güloğlu [1] studied the cyclicity problem for primes lying in an
arithmetic progression. They proved that, under GRH,

(2) πcycE (x;n, k) ∼ Ccyc
E,n,k ·

x

log x
,

as x → ∞, where Ccyc
E,n,k is the explicit constant defined in (21). As before, if Ccyc

E,n,k = 0, then we

interpret (2) as stating that πcycE (x;n, k) is bounded as x → ∞. In 2015, J. Brau [11] obtained a
formula for the constant Ccyc

E,n,k for all Serre curves outside of a small class (see Remark 1.8). N.

Jones and the first author [32] determined all the possible scenarios in which the constant Ccyc
E,n,k

vanishes. Additionally, P.-J. Wong [60] established (2) unconditionally for CM elliptic curves.
While Conjecture 1 remains open without assuming GRH, researchers have found success in

proving the conjecture is true “on average” in various senses. As observed in [7, Remark 7(v)],
there are two broad approaches regarding the average results. One approach is to compute the
density of elliptic curves E over Fp for which E(Fp) is cyclic, and average it over all primes p.
Another approach is to count the number of primes for which an elliptic curve over Q has cyclic
reduction and then average over the family of elliptic curves ordered by height. The former is called
the “local” viewpoint while the latter is called the “global” viewpoint.

1In 1977, S. Lang and H. Trotter [34] considered a related problem on the density of primes p for which the

reduction of a given rational point P on E generates Ẽp(Fp).
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In 1999, S. G. Vlăduţ [57] obtained some statistics related to the cyclicity problem for elliptic
curves over finite fields. In particular, he determined the ratio

(3)
#{E ∈ Fp : E(Fp) is cyclic}

#Fp
,

where Fp denotes the set of isomorphism classes of elliptic curves over Fp. Later, E.-U. Gekeler [25]
built upon this result to obtain the local result for the average cyclicity problem. He computed that
the average of (3) over all primes p is Ccyc, which is defined in (20).

In 2009, building upon Vlăduţ’s work, W. D. Banks and I. E. Shparlinski [5] deduced a global
result for the average cyclicity problem and demonstrated that it aligns with Gekeler’s local result.
To set notation: For positive real numbers A and B, let F := F(A,B) denote the family of elliptic
curves E/Q defined by a short Weierstrass model

(4) E : Y 2 = X3 + aX + b,

for some a, b ∈ Z satisfying |a| ≤ A and |b| ≤ B. Banks and Shparlinski proved the following.

Theorem 1.2 ([5, Theorem 18]). Let x > 0 and ϵ > 0. Let A := A(x) and B := B(x) be parameters
satisfying xϵ ≤ A,B ≤ x1−ϵ, and AB ≥ x1+ϵ. Then, we have

1

|F|
∑
E∈F

πcycE (x) ∼ Ccyc · x

log x
, as x→∞.

Later, the inequality conditions on A and B in the theorem above were significantly relaxed by
A. Akbary and A. T. Felix [2, Corollary 1.5].

Building upon Banks and Shparlinski’s methods, the first author refined the results to consider
primes in arithmetic progressions [37, Theorem 1.3]. To summarize his results, under the same
assumptions of Theorem 1.2, for n ≤ log x and k coprime to n, there exists a positive constant Ccyc

n,k

for which
1

|F|
∑
E∈F

πcycE (x;n, k) ∼ Ccyc
n,k ·

x

log x
, as x→∞.

The average constant Ccyc
n,k is given explicitly in (23).

Related to the cyclicity problem is the Koblitz problem, which seeks to understand the asymp-

totics of πprime
E (x) and has significance for elliptic curve cryptography [48, 55]. In 1988, N. Koblitz

[33] made a conjecture analogous to Conjecture 1.1. In particular, it follows from the conjecture that
a non-CM elliptic curve E/Q has infinitely many primes of Koblitz reduction unless E is rationally
isogenous to an elliptic curve with nontrivial rational torsion. The Koblitz conjecture remained
open for over 20 years until Jones gave a counterexample, which appears in [62, Section 1.1]. The
fundamental issue with the conjecture, which the counterexample exploits, is its failure to account
for the possibility of entanglements of division fields. Properly accounting for this possibility, D.
Zywina [62] refined the Koblitz conjecture as follows.

Conjecture 1.3 (Refined Koblitz Conjecture, [62, Conjecture 1.2]). If E/Q is an elliptic curve,
then

(5) πprime
E (x) ∼ Cprime

E · x

(log x)2
,

as x→∞, where Cprime
E ≥ 0 is the explicit constant defined in (27).

Similar to the cyclicity case, the constant Cprime
E may vanish. In this case, we interpret (5) as

indicating that πprime
E (x) is bounded as x → ∞. Beyond the statement of the conjecture provided
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above, Zywina made the conjecture more generally for elliptic curves over number fields and allowed

for a parameter t to consider primes p for which |Ẽp(Fp)|/t is prime.
Conjecture 1.3 is often referred to as an elliptic curve analogue of the twin prime conjecture.

Assuming that the events “p is prime” and “|Ẽp(Fp)| is prime” are independent, and applying

the Hardy–Littlewood heuristic [28], one would expect that πprime
E (x) should grow like a constant

times x/ log2 x, unless E has an intrinsic obstruction preventing the existence of primes of Koblitz

reduction. Although Conjecture 1.3 remains open even under GRH, upper bounds for πprime
E (x)

have been studied by several authors. A notable result is due to A. C. Cojocaru [17], who proved
that for a non-CM E/Q of conductor NE , we have

(6) πprime
E (x)≪NE

x

log2 x

as x → ∞, under the quasi-GRH. (See [17, p. 268].) For CM curves, she applied Selberg’s sieve
to prove that the upper bound holds unconditionally, independently of the conductor. Later, C.
David and J. Wu [21] improved (6) into an effective upper bound for non-CM curves under the

quasi-GRH. However, a lower bound for πprime
E (x) remains unknown.

A related problem is to understand how many prime factors the group order |Ẽp(Fp)| has as p
varies. One of the first major advances in this direction was made by S. A. Miri and V. K. Murty
[45]. Given a positive integer N , let ν(N) denote the number of prime factors of N , counted with
multiplicity. They demonstrated that, assuming GRH, for any non-CM elliptic curve E/Q,

#{p ≤ x : ν(|Ep(Fp)|) ≤ 16} ≫E
x

log2 x
,

as x → ∞. This line of research was continued by many mathematicians, leading to successive
improvements: the bound of 16 was reduced to 8 for non-CM curves under GRH, and to 5 for CM
curves unconditionally (see, for example, [17, 21, 54]).

In 2011, A. Balog, A. C. Cojocaru, and C. David obtained a local result for the average version
of the Koblitz problem and applied it to deduce the following global results.

Theorem 1.4 ([4, Theorem 1]). Set x > 0 and ϵ > 0. Let A := A(x) and B := B(x) be parameters
satisfying xϵ < A,B and AB > x log10 x. There exists a constant Cprime > 0 for which

1

|F|
∑
E∈F

πprime
E (x) ∼ Cprime · x

log2 x
, as x→∞.

The average constant Cprime is defined in (33). The inequality conditions on A and B can also
be relaxed as in Akbary and Felix [2, Equation (1.8)].

A natural inquiry is whether each of these average results is consistent with the corresponding
conjectured outcomes on average. This question was answered by Jones [30], assuming an affirmative
answer to Serre’s uniformity question (Question 2.3).

Theorem 1.5 ([30, Theorem 6]). Assume an affirmative answer to Serre’s uniformity question.
Let X ∈ {cyc, prime}. There exists an exponent γ > 0 such that for any positive integer t, we have

1

|F|
∑
E∈F

∣∣CX
E − CX ∣∣t ≪t max

{(
logB · log7A

B

)t/t+1

,
logγ(min{A,B})√

min{A,B}

}
,

as min{A,B} → ∞.
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In particular, by taking t = 1, Theorem 1.5 gives a result on the average value of the constants
CX
E . Indeed, suppose that A := A(x) and B := B(x) tend to infinity as x → ∞ and assume an

affirmative answer to Serre’s uniformity question and that (logB log7A)/B → 0 as x → ∞. Then
for X ∈ {cyc, prime}, we have

1

|F|
∑
E∈F

CX
E → CX .

This verifies that the average of the constants CX
E aligns with the average constants CX .

In this paper, we utilize Zywina’s approach to propose the Koblitz constant Cprime
E,n,k for primes in

arithmetic progressions. Unlike the cyclicity problem, the average version of the Koblitz constant

Cprime
E,n,k has not yet been considered. We address this gap in the literature by providing a candidate

for Cprime
n,k , the average version of Cprime

E,n,k , in (42). We illustrate the suitability of these conjectural

constants by proving an analogous version of Theorem 1.5 for them.
We start by formulating the Koblitz conjecture for primes in arithmetic progressions.

Conjecture 1.6. If E/Q is an elliptic curve, then there exists Cprime
E,n,k ≥ 0 for which

πprime
E (x;n, k) ∼ Cprime

E,n,k ·
x

log2 x
,

as x→∞, where Cprime
E,n,k is the explicit constant defined in (35).

As before, if Cprime
E,n,k = 0, we interpret the above as saying that πprime

E (x;n, k) is bounded as

x → ∞. As one piece of evidence to suggest Cprime
n,k is the correct average constant, we compare it

with the constant Cprime
E,n,k for Serre curves which, by Jones [31], make up a density 1 set of elliptic

curves when ordered by naive height.
To state our theorem, we first introduce some notation. Associated to E, we define the constant

(7) L =
∏
ℓ|mE

ℓαℓ , where αℓ =

{
vℓ(n) if ℓ | n,
1 otherwise,

where mE denotes the adelic level of E (defined in Sections 2.1 and 2.3) and vℓ(n) denotes the

ℓ-adic valuation of n. The constants mE and L play a crucial role in computing Ccyc
E,n,k and Cprime

E,n,k .

For a Serre curve E, Proposition 2.4 gives a straightforward formula for mE ,

mE =

{
2|∆′| if ∆′ ≡ 1 (mod 4),

4|∆′| otherwise,

where ∆′ denotes the squarefree part of the discriminant ∆E of any Weierstrass model of E.

Theorem 1.7. Let E/Q be a Serre curve and let mE, ∆
′, and L be as above. If mE ∤ L, then

Ccyc
E,n,k = Ccyc

n,k and Cprime
E,n,k = Cprime

n,k .

Otherwise, if mE | L, then

Ccyc
E,n,k = Ccyc

n,k

1 + τ cyc
1

5

∏
ℓ|L
ℓ∤2n

1

ℓ4 − ℓ3 − ℓ2 + ℓ− 1

 ,
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Cprime
E,n,k = Cprime

n,k

1 + τprime
∏
ℓ|L
ℓ∤2n

1

ℓ3 − 2ℓ2 − ℓ+ 3

 ,

where τ cyc, τprime ∈ {±1} are defined in Definition 5.1.

Remark 1.8. For a Serre curve E, the constant Ccyc
E,n,k was previously obtained by Brau [11,

Proposition 2.5.8] under the assumption that ∆′ ̸∈ {−2,−1, 2}. Our formula for Ccyc
E,n,k does not

require this assumption and it aligns with Brau’s.

As another piece of evidence, we also consider the moments of the constants Ccyc
E,n,k and Cprime

E,n,k

for E ∈ F . Building upon Jones’s methods, we improve Theorem 1.5 unconditionally as follows.

Theorem 1.9. Let n be a positive integer and k be coprime to n. Then there exists an exponent
γ > 0 such that for any positive integer t, we have

1

|F|
∑
E∈F

∣∣∣Ccyc
E,n,k − C

cyc
n,k

∣∣∣t ≪t max

{(
n logB log7A

B

) 3t
3t+1

,
logγ(min{A,B})√

min{A,B}

}
,

1

|F|
∑
E∈F

∣∣∣Cprime
E,n,k − C

prime
n,k

∣∣∣t ≪n,t max

{(
n logB log7A

B

) 2t
2t+1

,
(
log log(max{A3, B2})

)t logγ(min{A,B})√
min{A,B}

}
,

as min{A,B} → ∞.

Observe that as min{A,B} → ∞, we have

logγ(min{A,B})√
min{A,B}

→ 0.

This gives us the following corollary.

Corollary 1.10. Fix n ∈ N. Let k be coprime to n. Let A := A(x) and B := B(x) both tend to
infinity as x → ∞. With the same notation as in Theorem 1.9 and for X ∈ {cyc,prime}, we have
that

1

|F|
∑
E∈F

CX
E,n,k → CX

n,k,

provided that as x→∞, (
n logB log7A

B

)
→ 0

in the cyclicity case and(
n logB log7A

B

)
→ 0,

(
log log(max{A3, B2})

)t
logγ(min{A,B})√

min{A,B}
→ 0

in the Koblitz case.

Based on the above considerations, the constant Cprime
n,k that we propose in this paper appears to

be a plausible candidate for the average counterpart of Cprime
E,n,k .

The average constants Ccyc
n,k and Cprime

n,k are given explicitly and we can compute their values (to

any given precision) using the Magma [9] scripts available in this paper’s GitHub repository [38].
Below are tables with the values of CX

n,k for X ∈ {cyc, prime} and small moduli n.
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n \ k 1 2 3 4 5
2 0.813752 − − − −
3 0.398219 0.415533 − − −
4 0.406876 − 0.406876 − −
5 0.202164 0.203863 0.203863 0.203863 −
6 0.398219 − − − 0.415533

Table 1. The value of Ccyc
n,k to six decimal places.

n \ k 1 2 3 4 5
2 0.505166 − − − −
3 0.280648 0.224518 − − −
4 0.252583 − 0.252583 − −
5 0.131482 0.124562 0.124562 0.124562 −
6 0.280648 − − − 0.224518

Table 2. The value of Cprime
n,k to six decimal places.

From the table, we observe that CX
2,1 = CX . Moreover, in each table, the sum of the values across

any given row yields CX . In Proposition 4.1 and Proposition 4.6, we prove (reassuringly) that these
simple checks hold for all moduli.

Let p be a good prime for E. As noted previously,

|Ẽp(Fp)| is prime =⇒ Ẽp(Fp) is cyclic.

Hence, for an arbitrary elliptic curve E/Q, one might suspect that if primes in a certain congruence
class are more likely to be primes of Koblitz reduction, then they are also more likely to be primes
of cyclic reduction. However, the tables above suggest that the contrary holds on average. Indeed,
it follows from the formulas (23) and (42) for CX

n,k that these two average constants are oppositely
biased for any given modulus n. More specifically, for any k coprime to n, we have

Ccyc
n,1 ≤ C

cyc
n,k ≤ C

cyc
n,−1 while Cprime

n,1 ≥ Cprime
n,k ≥ Cprime

n,−1 .

Furthermore, we have Ccyc
n,1 < Ccyc

n,−1 and Cprime
n,1 > Cprime

n,−1 if and only if n is not a power of two.
The phenomenon of primes being statistically biased over congruence classes is referred to as the
average congruence class bias and was first observed in the cyclicity problem by the first author in
[37].

Lastly, it is notable that in both tables, CX
5,2 = CX

5,3 = CX
5,4. This is because, for a fixed n, the

value of CX
n,k depends solely on whether k is congruent to 1 or not modulo each prime factor of n.

Therefore, for a fixed modulus n that is supported by s distinct odd primes, there are at most 2s

distinct values of CX
n,k. Whether there are exactly 2s distinct values is a question proposed by the

first author in [37].

1.1. Outline of the paper. Sections 2 and 3 provide the essential groundwork for proving the
main results. In Section 2, we introduce the properties of Galois representations of elliptic curves.
In particular, we introduce the definition of the adelic level and characterize the Galois images of
Serre curves and CM curves. In Section 3, we determine the sizes of certain subsets of matrix groups

that will be used in calculating the Euler factors of product expansions of Ccyc
E,n,k and Cprime

E,n,k .
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Sections 4 and 5 are dedicated to the computation of the constants CX
E,n,k for X ∈ {cyc, prime}.

These computations extend Zywina’s approach (a method that originates from Lang and Trotter’s

work [36] on the Lang-Trotter conjecture) to obtain Cprime
E . The general idea is to interpret the

conditions for primes of Koblitz reduction for E in terms of mod m Galois representations, establish
the heuristic constant at each level m, and then take the limit as m → ∞. In Section 4, we apply

this idea to reformulate the constants Ccyc
E and Ccyc

E,n,k and express Cprime
E,n,k in the form of an almost

Euler product. We also propose the average constant Cprime
n,k as a complete Euler product. In

Section 5, we examine the special case where E is a Serre curve, proving Theorem 1.7 which gives

explicit formulas for Ccyc
E,n,k and Cprime

E,n,k in this case. A critical aspect of these computations involves

extracting as many Euler factors as possible from the limits (35) and (45), leading to the crucial
definition of L in (7).

Sections 6 and 7 establish bounds for moments of Ccyc
E,n,k and Cprime

E,n,k for E ∈ F . In Section 6, we

build on the work carried out in Section 5 to bound Cprime
E,n,k for non-Serre, non-CM curves and CM

curves. Using a result due to D. W. Masser and G. Wüstholz [41], we bound Cprime
E,n,k for non-Serre,

non-CM curves in terms of the naive height of E. This approach allows us to avoid assuming an
affirmative answer to Serre’s uniformity question, in contrast to Jones. For CM elliptic curves, we

first derive the conjectural constant Cprime
E,n,k using a similar method to that of Section 4 and Section 5

and bound it directly from its formula. In Section 7, we adapt the method of Jones [30] to complete
the moments computations and prove Theorem 1.9.

Finally, in Section 8, we provide numerical examples that support our results. The numerical
examples are computed using the Magma code available in this paper’s GitHub repository [38]:

https://github.com/maylejacobj/CyclicityKoblitzAPs

We now summarize the main functions of the repository. The functions AvgCyclicityAP and

AvgKoblitzAP allow one to compute Ccyc
n,k and Cprime

n,k for given coprime integers n and k, and were

used to produce the tables above. Next, the functions CyclicityAP and KoblitzAP allow one to

compute the constants Ccyc
E,n,k and Cprime

E,n,k for any given non-CM elliptic curve E. These functions

are based on Proposition 4.10 and Proposition 4.4 and rely crucially on Zywina’s FindOpenImage
function [61] to compute the adelic image of E. The functions SerreCurveCyclicityAP and

SerreCurveKoblitzAP compute Ccyc
E,n,k and Cprime

E,n,k for a given Serre curve E using Theorem 1.7

and do not require Zywina’s FindOpenImage. Lastly, the repository contains code for the examples
in Section 8.

1.2. Notation and conventions. We now give a brief overview of the notation used throughout
the paper.

• For functions f, g : R → R, we write f ≪ g or f = O(g) if there exists C > 0 and x0 ≥ 0
such that |f(x)| ≤ Cg(x) for all x > x0. If C depends on a parameter m, we write f ≪m g
or f = Om(g).
• In the same setting as above, we write f ∼ g to denote that limx→∞ f(x)/g(x) = 1.
• Let A and B be positive real numbers. Let F := F(A,B) denote the family of models
Y 2 = X3 + aX + b of elliptic curves for which |a| ≤ A and |b| ≤ B.
• Given a subfamily G ⊆ F of elliptic curves, let f and g be functions defined from G to R.
We write f ≪ g if there exists an absolute constant M > 0 for which |f(E)| ≤ Mg(E) for
all E ∈ G. When M depends on a parameter m, we write f ≪m g.
• p and ℓ denote rational primes, n a positive integer, and k an integer coprime to n.
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OPPOSING AVERAGE CONGRUENCE CLASS BIASES IN THE CYCLICITY AND KOBLITZ CONJECTURES 9

• We write pa ∥ n if pa | n and pa+1 ∤ n. In this case, a is called the p-adic valuation of n, and
is denoted by vp(n).

• Given a positive integer n, nodd denotes the odd part of n, i.e., nodd = n/2v2(n).
• We sometimes write (m,n) as shorthand for gcd(m,n).

• m∞ denotes an arbitrarily large power of m. Thus, gcd(n,m∞) denotes
∏

p|(n,m) p
vp(n). If

every prime factor of n divides m, then we write n | m∞.
•
( ·
d

)
denotes the Jacobi symbol.

• ϕ denotes the Euler totient function.
• µ denotes the Möbius function.

• G(m) denotes the image of a subgroup G of GL2(Ẑ) under the reduction modulo m map.
• Given that d | m and M ∈ GL2(Z/mZ), Md denotes the reduction of M modulo d.
• If A is the empty set, then we take

∏
a∈A a to be 1.

1.3. Acknowledgments. This paper emerged from some initial conversations at the 2023 LuCaNT
(LMFDB, Computation, and Number Theory) conference held at ICERM (Institute for Computa-
tional and Experimental Research in Mathematics). We are grateful to the conference organizers
and the organizations that provided funding. An earlier version of this manuscript appears in the
first author’s doctoral thesis. We are thankful for the doctoral committee members for their helpful
comments. The third author, who conducted most of the work at the Max Planck Institute for
Mathematics, is grateful for its funding and stimulating atmosphere of research.

2. Preliminaries

2.1. Galois representations and the adelic level. Let E/Q be an elliptic curve. Associated to
E, we consider the adelic Tate module, which is given by the inverse limit

T (E) := lim←−E[n]

where E[n] denotes the n-torsion subgroup of E(Q). Let Ẑ denote the ring of profinite integers. It

is well known that T (E) is a free Ẑ-module of rank 2. The absolute Galois group Gal(Q/Q) acts
naturally on T (E), giving rise to the adelic Galois representation of E,

ρE : Gal(Q/Q) −→ Aut(T (E)).

Upon fixing a Ẑ-basis for T (E), we consider ρE as a map

ρE : Gal(Q/Q) −→ GL2(Ẑ).

Let GE denote the image of ρE , which, because of the above choice of basis, is defined only up

to conjugacy in GL2(Ẑ). With respect to the profinite topology on GL2(Ẑ), the subgroup GE is
necessarily closed since ρE is a continuous map.

We now state a foundational result of Serre, known as Serre’s open image theorem.

Theorem 2.1 (Serre, [49, Théorème 3]). If E/Q is without complex multiplication, then GE is an

open subgroup of GL2(Ẑ). In particular, the index [GL2(Ẑ) : GE ] is finite.

Suppose that E/Q is a non-CM elliptic curve. For each positive integer m, let πm be the natural
reduction map

πm : GL2(Ẑ) −→ GL2(Z/mZ).
Let GE(m) be the image of the mod m Galois representation

ρE,m : Gal(Q/Q)→ GL2(Z/mZ),
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defined by the composition πm ◦ρE . It follows from Theorem 2.1 that there exists a positive integer
m for which

(8) GE = π−1
m (GE(m)).

One may observe that (8) is equivalent to the statement that for every n ∈ N,
(9) GE(n) = π−1(GE(gcd(n,m)))

where π : GL2(Z/nZ)→ GL2(Z/ gcd(n,m)Z) denotes the natural reduction map. The least positive
integer m with this property is called the adelic level of E, and is denoted by mE . The constant
mE accounts for both the nonsurjectivity of the ℓ-adic Galois representations of E as well as the
entanglements between their images.

We now give a fundamental property of mE that we will use several times.

Lemma 2.2. Let E/Q be a non-CM elliptic curve of adelic level mE. For any d1, d2 ∈ N with
d1 | m∞

E and (d2,mE) = 1, we have

GE(d1d2) ≃ GE(d1)×GL2(Z/d2Z)
via the map GL2(Z/d1d2Z)→ GL2(Z/d1Z)×GL2(Z/d2Z).

Proof. By the given conditions, we have (d1, d2) = 1. Set d′ = gcd(d1,mE). Let π : GL2(Z/d1d2Z)→
GL2(Z/d′Z) and π1 : GL2(Z/d1Z) → GL2(Z/d′Z) be the natural reduction maps. By the Chinese
remainder theorem, π can be identified with

π1 × triv : GL2(Z/d1Z)×GL2(Z/d2Z)→ GL2(Z/d′Z)× {1}.
By (9), we have that

GE(d1d2) = π−1(GE(d
′)) ≃ (π1 × triv)−1(GE(d

′)) = GE(d1)×GL2(Z/d2Z). □

We conclude this subsection by recalling Serre’s uniformity question.

Question 2.3. Does there exist an absolute constant c such that for each elliptic curve E/Q,

GE(ℓ) = GL2(Z/ℓZ)
holds for all rational primes ℓ > c?

While Question 2.3 remains open, it is widely conjectured to be true with c = 37 [56, 63] and
considerable partial progress has been made toward its resolution [3, 24, 39, 43, 49, 50].

2.2. Serre curves. In this subsection, we introduce the generic class of elliptic curves E/Q with
maximal adelic Galois image GE , and provide an explicit description of GE for curves in this class.

Serre noted [49] that for an elliptic curve E/Q, the adelic Galois representation ρE cannot be
surjective2, that is, the adelic level mE is never 1. We briefly give the argument here. If E has

complex multiplication, then [GL2(Ẑ) : GE ] is necessarily infinite [49], so we restrict our attention
to the case that E is non-CM. Assume that E is defined by the factored Weierstrass equation

Y 2 = (X − e1)(X − e2)(X − e3)
with e1, e2, e3 ∈ Q. Then, the 2-torsion of E is given by

E[2] = {O, (e1, 0), (e2, 0), (e3, 0)} ∼= Z/2Z⊕ Z/2Z.
Consequently, Aut(E[2]) can be identified with S3. The discriminant ∆E of E is given by

(10) ∆E = [(e1 − e2)(e2 − e3)(e3 − e1)]2 .
2Over some number fields K ̸= Q, there exist elliptic curves E/K for which ρE is surjective [26].
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Let ∆′ denote the squarefree part of ∆E , i.e., the unique squarefree integer such that ∆E/∆
′ ∈

(Q×)2. Note that the discriminant ∆E depends on the Weierstrass model of E, but ∆′ does not.
Let us first assume that ∆E ̸∈ (Q×)2. Let dE be the conductor of Q(

√
∆E), that is, the smallest

positive integer such that Q(
√
∆E) ⊆ Q(ζdE ). It is straightforward to check that

dE =

{
|∆′| if ∆′ ≡ 1 (mod 4),

4|∆′| otherwise.

Let us define the quadratic character associated to Q(
√
∆E) as follows,

χ∆E
: Gal(Q/Q)

rest.−−→ Gal(Q(
√

∆E)/Q)
∼−→ {±1}.

Fix σ ∈ Gal(Q/Q). Viewing ρE,2(σ) ∈ GE(2) ⊆ Aut(E[2]) ≃ S3, by (10), we notice that

χ∆E
(σ)
(√

∆E

)
= ϵ(ρE,2(σ))

(√
∆E

)
,

where ϵ : S3 → {±1} denotes the signature map.3 Hence, χ∆E
(σ) = ϵ(ρE,2(σ)).

On the other hand, we have that Q(
√
∆E) ⊆ Q(ζdE ). Since Gal(Q(ζdE )/Q) ≃ (Z/dEZ)×, there

exists a unique quadratic character α : Gal(Q(ζdE )/Q)→ {±1} for which χ∆E
(σ) = α(det ◦ρE,dE (σ))

for any σ ∈ Gal(Q/Q). Therefore, we have

(11) ϵ(ρE,2(σ)) = α(det ◦ρE,dE (σ))

for any σ ∈ Gal(Q/Q).
Let ME := lcm(2, dE). Consider the subgroup

HE(ME) = {M ∈ GL2(Z/MEZ) : ϵ(M2) = α(detMdE )} ,

where M2 and MdE denote the reductions of M modulo 2 and dE , respectively. Note that the index
of HE(ME) in GL2(Z/MEZ) is 2 and that GE(ME) ⊆ HE(ME) by (11). We define

(12) HE := π−1(HE(ME))

where π : GL2(Ẑ)→ GL2(Z/MEZ) is the natural reduction map. Then HE is an index 2 subgroup

of GL2(Ẑ) that contains GE . We say that E is a Serre curve ifHE = GE , that is, [GL2(Ẑ) : GE ] = 2.
In the above discussion, we supposed that ∆E ̸∈ (Q×)2. We now consider the opposite case

that ∆E ∈ (Q×)2. Let Q(E[2]) = Q(e1, e2, e3) denote the 2-division field of E. Observe that
[Q(E[2]) : Q] divides 3, and hence [GL2(Z/2Z) : GE(2)] is divisible by 2. Thus, by [42, Proposition

2.14], [GL2(Ẑ) : GE ] ≥ 12, which follows by considering the index of the commutator of GE in

SL2(Ẑ). In particular, E cannot be a Serre curve in this case.
Serre curves are useful for us for two key reasons. First, as mentioned in the introduction, Jones

[31] showed that they are “generic” in the sense that the density of the subfamily of Serre curves
among the family of all elliptic curves ordered by naive height is 1. Second, the adelic image GE of
a Serre curve E can be explicitly described, as we will now discuss.

Proposition 2.4. Let E/Q be a Serre curve and write ∆′ to denote the squarefree part of the
discriminant of E. Then

(13) mE =

{
2|∆′| if ∆′ ≡ 1 (mod 4),

4|∆′| otherwise.

3Note that the value of ϵ(ρE,2(σ)) is independent of the choice of isomorphism Aut(E[2]) ≃ S3.
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Furthermore, for any positive integer m,

GE(m) =

{
GL2(Z/mZ) if mE ∤ m,
HE(m) if mE | m,

where HE(m) denotes the image of HE, defined in (12), under the reduction modulo m map.

Proof. The proof of (13) can be found in [30, pp. 696–697]. Hence, mE =ME where ME is defined
as above. Now, let m be a positive integer. By [30, Equation (13)] and (9), one may deduce that
GE(m) = GL2(Z/mZ) if mE ∤ m. Suppose mE | m. Then, GE(m) ⊆ HE(m). The containment

must be equal; otherwise, the index of GE in GL2(Ẑ) is greater than [GL2(Z/mZ) : HE(m)] =
[GL2(Z/mEZ) : HE(mE)] = 2, contradicting the assumption that E/Q is a Serre curve.

□

In order to compute CX
E,n,k, we need to know GE (meaning we must know the adelic level mE and

the image of GE modulo mE). For Serre curves, this is particularly tractable, and was exploited in
the work of Jones [30]. We now give the description of GE for Serre curves.

First, we define χ4 : (Z/4Z)× → {±1} and χ8 : (Z/8Z)× → {±1} as follows:

χ4(k) =

{
1 if k ≡ 1 (mod 4)

−1 if k ≡ 3 (mod 4)
, χ8(k) =

{
1 if k ≡ 1, 7 (mod 8)

−1 if k ≡ 3, 5 (mod 8)
.

We define the character ψm : GL2(Z/mZ)→ {±1} associated to E by

ψm =
∏
ℓα∥m

ψℓα ,

where ψℓα : GL2(Z/ℓαZ)→ {±1} is defined for M ∈ GL2(Z/ℓαZ) by

ψℓα(M) =



(
detMℓ

ℓ

)
if ℓ is odd,

ϵ(M2) if ℓ = 2, α ≥ 1, and ∆′ ≡ 1 (mod 4),

χ4(detM4)ϵ(M2) if ℓ = 2, α ≥ 2, and ∆′ ≡ 3 (mod 4),

χ8(detM8)ϵ(M2) if ℓ = 2, α ≥ 3, and ∆′ ≡ 2 (mod 8),

χ8(detM8)χ4(detM4)ϵ(M2) if ℓ = 2, α ≥ 3, and ∆′ ≡ 6 (mod 8),

1 otherwise.

As noted in [30, p. 701], given mE | m, one may see that for M ∈ GL2(Z/mZ), we have

ϵ(M2)

(
∆′

detMmE

)
= ψm(M).

In particular, we have HE(m) = kerψm. Thus GE is the preimage of kerψm in GL2(Ẑ).

2.3. Galois representations in the CM case. Having discussed Galois representations for non-
CM elliptic curves, we now turn to the CM case. Suppose that E has CM by an order O in an
imaginary quadratic field K. In this case, the absolute Galois group Gal(K/K) acts naturally on

T (E), which is a one-dimensional Ô-module, where Ô denotes the profinite completion of O. Hence,
we can construct the adelic Galois representation associated to E,

ρE : Gal(K/K)→ Aut(T (E)) ≃ GL1(Ô) ≃ Ô×.

Let GE denote the image of ρE . We now state Serre’s open image theorem for CM elliptic curves.
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Theorem 2.5 (Serre, [49, p. 302, Corollaire]). If E/Q has CM by O, then GE is an open subgroup

of Ô×. In particular, the index [Ô× : GE ] is finite.

For each positive integer m, consider the natural reduction map

πm : Ô× → (O/mO)×.
Let GE(m) denote the image of the modulo m Galois representation

ρE,m : Gal(K/K)→ (O/mO)×

defined by the composition πm ◦ ρE . It follows from Theorem 2.5 that

(14) GE = π−1
m (GE(m))

for some positive integer m. As in the non-CM case, (14) is equivalent to the statement that for
every n ∈ N,
(15) GE(n) = π−1(GE(gcd(n,m))),

where π : (O/nO)× → (O/ gcd(n,m)O)× is the natural reduction map.
In the CM case, we follow [30, p. 693] to define mE to be the smallest positive integer m such

that (15) holds and for which

(16) 4

( ∏
ℓ ramifies in K

ℓ

)
divides m.

One can prove the following using the same argument sketched in the proof of Lemma 2.2.

Lemma 2.6. Let E/Q be a CM elliptic curve of level mE. For any d1, d2 ∈ N with d1 | m∞
E and

(d2,mE) = 1, we have
GE(d1d2) ≃ GE(d1)× (O/d2O)×.

Lemmas 2.2 and 2.6 are used to express the constants Ccyc
E,n,k and Cprime

E,n,k as almost Euler products.

It is worth noting that both lemmas hold even if mE is replaced by any positive multiple of it.
Thus, the minimality condition in the definition of mE for both non-CM and CM curves is not
required from a theoretical perspective for us. Nonetheless, the minimality of mE is useful for our
computations as it allows us to extract more Euler factors.

Let K/Q be an imaginary quadratic field. We denote its ring of integers by OK . Let O be an
order of K. The index f = [OK : O] is necessarily finite and is called the conductor of O. Let χK

be the Dirichlet character defined by

(17) χK(ℓ) =


0 if ℓ ramifies in K,

1 if ℓ splits in K,

−1 if ℓ is inert in K.

Let dK be the discriminant of K. One can check that

χK(ℓ) =

(
dK
ℓ

)
for each odd prime ℓ. By [46, Theorem 9.13], we see that χK is a primitive quadratic character.

We now state a lemma on the size of the image of mod ℓα Galois representation of E for ℓ ∤ fmE .

Lemma 2.7. Let E/Q be a CM elliptic curve. For ℓ ∤ fmE, we have

|GE(ℓ
α)| = ℓ2(α−1)(ℓ− 1)(ℓ− χK(ℓ)).
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Proof. Since O is an order of class number 1, we have

O/(ℓOK ∩ O) = O/ℓO ≃ OK/ℓOK

for any ℓ ∤ f . (See [20, Proposition 7.20].) By Lemma 2.6, we have GE(ℓ
α) ≃ (OK/ℓ

αOK)×.
Applying [12, Equation (4)], we obtain the desired results. □

Moreover, we have the following uniformity result for CM elliptic curves over Q.

Proposition 2.8. There is an absolute constant C such that

fmE ≤ C
holds for all CM elliptic curves E/Q.

Proof. It suffices to show that the index [Ô× : GE ], the product of ramified primes in (16), and the
conductor f = [OK : O] of the CM-order O are uniformly bounded for E/Q. This follows from the
fact that there are only finitely many endomorphism rings for CM elliptic curves over Q and [10,
Theorem 1.1]. In fact, for CM elliptic curves E/Q, it is known that the conductor of O is at most
3. (See [53, Appendix C, Example 11.3.2].) □

3. Counting matrices

In this section, we will establish counting results that will play pivotal roles in determining the
cyclicity and Koblitz constants for arithmetic progressions. We first outline the general strategy.

Let ℓ be a prime and Pℓ be a property that certain matrices in GL2(Z/ℓZ) satisfy. Let m and n
be positive integers and k be coprime to n. Suppose that we are interested in counting the size of
the set

X(m) := {M ∈ GL2(Z/mZ) :Mℓ satisfies Pℓ for each ℓ | m, detM ≡ k (mod gcd(n,m))},
where Mℓ denotes the reduction of M modulo ℓ. By the Chinese remainder theorem, it suffices to
count the size of X(ℓa) for each ℓa ∥ m. Also, note that the reduction map π : GL2(Z/ℓaZ) →
GL2(Z/ℓZ) induces a surjective map X(ℓa)→ X(ℓ) and further X(ℓa) = π−1(X(ℓ)). Consequently,
the problem of counting the size of X(m) reduces to counting the size of X(ℓ) for each ℓ | m.

The condition that ℓ is a prime of cyclic or Koblitz reduction for E can be interpreted as a
condition on matrices modulo primes. Thus, with the above strategy in mind, we give a lemma and
corollary that will be used to compute the cyclicity constant Ccyc

E,n,k for non-CM curves.

Lemma 3.1. Let ℓ be a prime, a be a positive integer, and k be an integer coprime to ℓ. Fix

M ∈ GL2(Z/ℓZ) with detM ≡ k (mod ℓ). For any integer k̃ with k̃ ≡ k (mod ℓ), we have

#
{
M̃ ∈ GL2(Z/ℓaZ) : M̃ ≡M (mod ℓ), det M̃ ≡ k̃ (mod ℓa)

}
= ℓ3(a−1).

Proof. Let π : GL2(Z/ℓaZ)→ GL2(Z/ℓZ) denote the reduction modulo ℓ map, which is a surjective
group homomorphism. For any M ∈ GL2(Z/ℓZ), we have that

π−1(M) =
{
M̃ ∈ GL2(Z/ℓaZ) : M̃ ≡M (mod ℓ)

}
.

The image of π−1(M) under det : GL2(Z/ℓaZ)→ (Z/ℓaZ)× is

det(π−1(M)) = {k′ ∈ (Z/ℓaZ)× : k′ ≡ k (mod ℓ)}.

Hence, for any integer k̃ with k̃ ≡ k (mod ℓ), we have

#
{
M̃ ∈ GL2(Z/ℓaZ) : M̃ ≡M (mod ℓ), det M̃ ≡ k̃ (mod ℓa)

}
=

|π−1(M)|
| det(π−1(M))|

.
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Finally, we note that |π−1(M)| = | ker(π)| = ℓ4(a−1) and | det(π−1(M))| = ℓa−1. □

Corollary 3.2. Fix a prime ℓ and positive integer a. Let k be an integer coprime to ℓ. Then

#{M ∈ GL2(Z/ℓaZ) :M ̸≡ I (mod ℓ),detM ≡ k (mod ℓa)}

=

{
ℓ3(a−1) · (ℓ3 − ℓ− 1) if k ≡ 1 (mod ℓ),

ℓ3(a−1) · (ℓ3 − ℓ) if k ̸≡ 1 (mod ℓ).

Proof. Let M ∈ GL2(Z/ℓZ). If M ̸≡ I (mod ℓ), then any lifting M̃ of M in GL2(Z/ℓaZ) satisfies

M̃ ̸≡ I (mod ℓ). If k ̸≡ 1 (mod ℓ), then detM ≡ k (mod ℓ) guarantees thatM ̸≡ I (mod ℓ). Since
the determinant map det : GL2(Z/ℓZ) → (Z/ℓZ)× is a surjective group homomorphism, one can
check that there are ℓ3− ℓ matrices M in GL2(Z/ℓZ) with detM ≡ k (mod ℓ). On the other hand,
if k ≡ 1 (mod ℓ), we have one less choice for M . Along with Lemma 3.1, we obtain the desired
results. □

The next lemma gives a corollary that will be useful when computing the Koblitz constant Cprime
E,n,k

for non-CM curves.

Lemma 3.3. Let ℓ be an odd prime, t be an integer, and d be an integer coprime to ℓ. Then we
have

# {M ∈ GL2(Z/ℓZ) : detM ≡ d (mod ℓ), trM ≡ t (mod ℓ)} = ℓ2 + ℓ ·
(
t2 − 4d

ℓ

)
,

where
( ·
ℓ

)
denotes the Legendre symbol. If ℓ = 2, then we have

# {M ∈ GL2(Z/2Z) : detM ≡ 1 (mod 2), trM ≡ t (mod 2)} =

{
4 if t ≡ 0 (mod 2),

2 if t ≡ 1 (mod 2).

Proof. The case when ℓ = 2 follows from a direct calculation. See [18, Lemma 2.7] for the case
when ℓ is odd. □

Corollary 3.4. Fix a prime ℓ and positive integer a. Let k be an integer coprime to ℓ. Then

#{M ∈ GL2(Z/ℓaZ) : det(M − I) ̸≡ 0 (mod ℓ),detM ≡ k (mod ℓa)}

=

{
ℓ3(a−1) · (ℓ3 − ℓ2 − ℓ) if k ≡ 1 (mod ℓ),

ℓ3(a−1) · (ℓ3 − ℓ2 − 2ℓ) if k ̸≡ 1 (mod ℓ).

Proof. Let M ∈ GL2(Z/ℓaZ) be such that detM ≡ k (mod ℓa) and note that

det(M − I) ≡ 0 (mod ℓ) ⇐⇒ trM ≡ k + 1 (mod ℓ).

Thus, if ℓ ̸= 2, we have that(
(k + 1)2 − 4k

ℓ

)
=

(
(k − 1)2

ℓ

)
=

{
0 if k ≡ 1 (mod ℓ),

1 if k ̸≡ 1 (mod ℓ).

By Lemma 3.3, this completes the proof when ℓ ̸= 2. When ℓ = 2 and a = 1, it is straightforward
to check that the lemma holds. □

Now, we turn our attention to the CM case. Let K be an imaginary quadratic field and write
OK to denote the ring of integers of K. Then OK is a free Z-module of rank 2. Fixing a Z-
basis, we can identify GL1(OK) = O×

K as a subgroup of GL2(Z). In the following discussion

(and henceforth) the determinant of g for g ∈ O×
K means the determinant of g considered as
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a matrix in GL2(Z). Moreover, we note that for any odd rational prime ℓ and integer a ≥ 1,
the determinant of any element in ℓaOK lies in ℓaZ, so we obtain the induced determinant map
det : (OK/ℓ

aOK)× → (Z/ℓaZ)×, which does not depend on the choice of the basis.

Lemma 3.5. Let K be an imaginary quadratic field and OK be the ring of integers of K. Let ℓ
be an odd rational prime unramified in K and a be a positive integer. Let k be an integer that is
coprime to ℓ and fix g ∈ (OK/ℓOK)× with det g ≡ k (mod ℓ). Then

#
{
g̃ ∈ (OK/ℓ

aOK)× : g̃ ≡ g (mod ℓOK),det g̃ ≡ k (mod ℓa)
}
= ℓa−1.

Proof. The reduction map π : (OK/ℓ
aOK)× → (OK/ℓOK)× is a surjective group homomorphism.

Regardless of whether ℓ splits or is inert in K, we have | kerπ| = ℓ2(a−1) by Lemma 2.7. Therefore,

#
{
g̃ ∈ (OK/ℓ

aOK)× : g̃ ≡ g (mod ℓOK)
}
= |π−1(g)| = | kerπ| = ℓ2(a−1).

The image of π−1(g) under det : (OK/ℓ
aOK)× → (Z/ℓaZ)× is

det(π−1(g)) =
{
k′ ∈ (Z/ℓaZ)× : k′ ≡ k (mod ℓ)

}
.

Thus, we have
∣∣det(π−1(g))

∣∣ = ℓa−1. Finally, note that

#
{
g̃ ∈ (O/ℓaO)× : g̃ ≡ g (mod ℓOK), det g ≡ k (mod ℓa)

}
=

|π−1(g)|
|det(π−1(g))|

= ℓa−1.

□

We now prove a corollary that will be used for the computation of the Koblitz constant Cprime
E,n,k

for CM curves.

Corollary 3.6. Let K be an imaginary quadratic field. Fix an odd rational prime ℓ that is unram-
ified in K. Let k be an integer that is coprime to ℓ. If ℓ splits in K, then

#{g ∈ (OK/ℓ
aOK)× : det(g − 1) ̸≡ 0 (mod ℓ),det g ≡ k (mod ℓa)}

=

{
ℓa−1(ℓ− 2) if k ≡ 1 (mod ℓ),

ℓa−1(ℓ− 3) if k ̸≡ 1 (mod ℓ).

If ℓ is inert in K, then

#{g ∈ (OK/ℓ
aOK)× : det(g − 1) ̸≡ 0 (mod ℓ),det g ≡ k (mod ℓa)}

=

{
ℓa if k ≡ 1 (mod ℓ),

ℓa−1(ℓ+ 1) if k ̸≡ 1 (mod ℓ).

Proof. By Lemma 3.5, it suffices to consider the case where a = 1. Suppose ℓ splits in K. Then we
have that OK/ℓOK ≃ Fℓ × Fℓ and the determinant map det : F×

ℓ × F×
ℓ → F×

ℓ is identified with the
multiplication map (a, b) 7→ ab. Thus, the set in question can be expressed as{

(g1, g2) ∈ F×
ℓ × F×

ℓ : g1 − 1, g2 − 1 ∈ F×
ℓ , g1g2 ≡ k (mod ℓ)

}
.

Hence, any element in the set is of the form (g, kg−1) where both g and kg−1 are not congruent to
1 modulo ℓ. Thus, the size of the set is ℓ− 2 if k ≡ 1 (mod ℓ) and ℓ− 3 otherwise.

Now, suppose ℓ is inert in K. Then we have OK/ℓOK ≃ Fℓ2 and the determinant map det : Fℓ2 →
Fℓ is identified with the norm map NFℓ2/Fℓ

: x 7→ xℓ+1. Thus, the set in question can be expressed
as {

g ∈ F×
ℓ2

: (g − 1)ℓ+1 ∈ F×
ℓ , g

ℓ+1 ≡ k (mod ℓ)
}
.
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For each k coprime to ℓ, there are exactly ℓ+ 1 choices of g ∈ F×
ℓ2

with gℓ+1 ≡ k (mod ℓ). In case

k ≡ 1 (mod ℓ), we have one less choice due to the constraint (g − 1)ℓ+1 ∈ F×
ℓ . □

4. Definitions of the constants

4.1. On the cyclicity constant. We keep the notation from Section 2.1. In this subsection, we
introduce the definition of the cyclicity constant Ccyc

E , given by Serre, and its average counterpart
Ccyc. For coprime integers n and k, we introduce the cyclicity constant for primes in arithmetic
progression Ccyc

E,n,k, given by Akbal and Güloğlu, and its average counterpart Ccyc
n,k .

First of all, Serre [52, pp. 465–468] defined the cyclicity constant Ccyc
E to be

(18) Ccyc
E :=

∑
n≥1

µ(n)

[Q(E[n]) : Q]
,

where µ(·) denotes the Möbius function and Q(E[n]) is the n-th division field of E. He proved that,
under GRH, Ccyc

E is the density of primes of cyclic reduction for E; see Conjecture 1.1.
For a non-CM elliptic curve E/Q, Jones [30, p. 692] observed that (18) can be expressed as an

almost Euler product involving the adelic level of E. Specifically, he showed that

(19) Ccyc
E =

∑
d|mE

µ(d)

[Q(E[d]) : Q]

 ∏
ℓ∤mE

(
1− 1

|GL2(Z/ℓZ)|

)
.

The average counterpart of Ccyc
E is

(20) Ccyc :=
∏
ℓ

(
1− 1

|GL2(Z/ℓZ)|

)
≈ 0.813752.

As mentioned in the introduction, Gekeler [25] demonstrated that Ccyc represents the average
cyclicity constant from the local viewpoint. Later, Banks and Shparlinski [5] verified that the
constant also describes the density of primes of cyclic reduction on average in the global sense.
Furthermore, Jones [30] verified that the average of Ccyc

E coincides with Ccyc.

Let ζn denote a primitive n-th root of unity, and let σk ∈ Gal(Q(ζn)/Q) map ζn 7→ ζkn. Define

γn,k(Q(E[d])) :=

{
1 if σk fixes Q(E[d]) ∩Q(ζn) pointwise,

0 otherwise.

Akbal and Güloğlu [1] defined the constant Ccyc
E,n,k as follows,

(21) Ccyc
E,n,k :=

∑
d≥1

µ(d)γn,k(Q(E[d]))

[Q(E[d])Q(ζn) : Q]
.

They proved that this constant represents the density of primes p ≡ k (mod n) of cyclic reduction
for E, under GRH. Recently, Jones and the first author [32] demonstrated that for a non-CM elliptic
curve E/Q, this density can be expressed as an almost Euler product as follows,
(22)

Ccyc
E,n,k =

∑
d|mE

µ(d)γn,k(Q(E[d]))

[Q(E[d])Q(ζn) : Q]

 ∏
ℓ∤mE

ℓ|(n,k−1)

(
1− ϕ(ℓ)

|GL2(Z/ℓZ)|

) ∏
ℓ∤nmE

(
1− 1

|GL2(Z/ℓZ)|

)
.
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18 LEE, MAYLE, AND WANG

Finally, the average counterpart of Ccyc
E,n,k is given by

(23) Ccyc
n,k :=

1

ϕ(n)

∏
ℓ|(n,k−1)

(
1− ϕ(ℓ)

|GL2(Z/ℓZ)|

)∏
ℓ∤n

(
1− 1

|GL2(Z/ℓZ)|

)
.

Observe that (23) coincides with (22) if mE is taken to be 1. While mE = 1 is impossible for
any given elliptic curve over Q, it is plausible to think that the role of mE is inconsequential when
considered over the family of all elliptic curves ordered by height. Indeed, as mentioned in the
introduction, the first author [37] demonstrated that Ccyc

n,k represents the average density of primes

p ≡ k (mod n) of cyclic reduction for the family of elliptic curves ordered by height.
We now prove a proposition that serves as a reasonableness check for Ccyc

n,k . While it can be

derived from the main theorem of [37], we opt to include a self-contained proof to draw a parallel
with the upcoming Proposition 4.6.

Proposition 4.1. For any positive integer n, we have∑
1≤k≤n
(n,k)=1

Ccyc
n,k = Ccyc,

where Ccyc and Ccyc
n,k are defined in (20) and (23), respectively.

Proof. For notational convenience, we define

f(ℓ) = 1− ϕ(ℓ)

|GL2(Z/ℓZ)|
.

It suffices to verify that

(24) F (n) :=
1

ϕ(n)

∑
1≤k≤n
(k,n)=1

∏
ℓ|n

k≡1(ℓ)

f(ℓ) =
∏
ℓ|n

(
1− 1

|GL2(Z/ℓZ)|

)
.

First, we prove that (24) holds for n = pa, a prime power. Observe that

F (pa) =
1

ϕ(pa)

∑
1≤k≤pa

(k,pa)=1

∏
ℓ|pa

k≡1(ℓ)

f(ℓ)

=
1

ϕ(pa)

(
pa−1f(p) + pa−1(p− 2)

)
= 1− 1

|GL2(Z/pZ)|
.

Now, we prove that F is multiplicative. Let pa be a prime power and n be a positive integer coprime
to p. Then

F (pan) =
1

ϕ(pan)

∑
1≤k≤pan
(k,pan)=1

∏
ℓ|pan
k≡1(ℓ)

f(ℓ)

=
1

ϕ(pa)
· 1

ϕ(n)


∑

1≤k≤pan
(k,pn)=1
k≡1(p)

f(p)
∏
ℓ|n

k≡1(ℓ)

f(ℓ) +
∑

1≤k≤pan
(k,pn)=1
k ̸≡1(p)

∏
ℓ|n

k≡1(ℓ)

f(ℓ)
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=

(
pa−1 + pa−1(p− 2)

)
ϕ(pa)

· 1

ϕ(n)

 ∑
1≤k≤n
(k,n)=1

∏
ℓ|n

k≡1(ℓ)

f(ℓ)

 = F (pa) · F (n).

This completes the proof. □

4.2. On the Koblitz constant. We keep the notation from Section 2.1. Now we give the definition

of the Koblitz constant Cprime
E defined by Zywina and its average counterpart Cprime given by Balog,

Cojocaru, and David. Based on Zywina’s method, for coprime integers n and k, we propose the

Koblitz constant Cprime
E,n,k for primes in arithmetic progression and its average counterpart Cprime

n,k .

Let E/Q be a non-CM elliptic curve of conductor NE and m be a positive integer. For p ∤ mNE ,
let Frobp be a Frobenius element at p in Gal(Q/Q) (see [51, 2.1, I-6] for the definition of Frobp).
We have that

|Ẽp(Fp)| ≡ det(I − ρE,m(Frobp)) (mod m).(25)

by [53, Chapter V. Theorem 2.3.1]. Thus, we see that an odd prime p is of Koblitz reduction if

and only if the right-hand side of (25) is invertible modulo m, for every m < |Ẽp(Fp)| such that
gcd(p,m) = 1.4 For such an integer m, we set

(26) Ψprime(m) :=
{
M ∈ GL2(Z/mZ) : det(I −M) ∈ (Z/mZ)×

}
.

Define the ratio

δprime
E (m) :=

|GE(m) ∩Ψprime(m)|
|GE(m)|

.

The Koblitz constant, proposed by Zywina [62], is defined by

(27) Cprime
E := lim

m→∞

δprime
E (m)∏

ℓ|m (1− 1/ℓ)
,

where the limit is taken over all positive integers ordered by divisibility.

We start by proving some properties of δprime
E (·), which were originally remarked in [62].

Proposition 4.2. Let E/Q be a non-CM elliptic curve of adelic level mE. Then δprime
E (·), as an

arithmetic function, satisfies the following properties:

(1) for any positive integer m, δprime
E (m) = δprime

E (rad(m));

(2) for any prime ℓ ∤ mE and integer d coprime to ℓ, δprime
E (dℓ) = δprime

E (d) · δprime
E (ℓ).

Therefore, (27) can be expressed as follows,

(28) Cprime
E =

δprime
E (rad(mE))∏
ℓ|mE

(1− 1/ℓ)
·
∏
ℓ∤mE

δprime
E (ℓ)

1− 1/ℓ
.

Proof. We first prove item (1). Let r = rad(m) and ϖ : GE(m) → GE(r) be the usual reduction
map. In particular, ϖ is a surjective group homomorphism. We will show that

(29) ϖ−1
(
GE(r) ∩Ψprime(r)

)
= GE(m) ∩Ψprime(m).

4This biconditional statement fails if |Ẽp(Fp)| = pr for some integer r ≥ 2. However, this can only happen if p = 2
due to the Hasse bound.
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Let M ∈ GE(r) ∩Ψprime(r) and M̃ ∈ ϖ−1(M). Recall that det(M − I) is invertible modulo r and

that m is only supported by the prime factors of r. Thus, det(M̃ − I) is invertible modulo m and

M̃ ∈ GE(m) ∩Ψprime(m). The other inclusion is obvious, and hence (29) is obtained. Therefore,

δprime
E (m) =

∣∣GE(m) ∩Ψprime(m)
∣∣

|GE(m)|
=

∣∣ϖ−1
(
GE(r) ∩Ψprime(r)

)∣∣
|ϖ−1 (GE(r))|

= δprime
E (r).

We now prove item (2). By Lemma 2.2, we have an isomorphism,

(30) GE(dℓ) ≃ GE(d)×GL2(Z/ℓZ).
It suffices to show that the isomorphism induces a bijection between the two sets

(31) GE(dℓ) ∩Ψprime(dℓ) and
(
GE(d) ∩Ψprime(d)

)
×
(
GL2(Z/ℓZ) ∩Ψprime(ℓ)

)
.

Take M ∈ GE(dℓ) ∩ Ψprime(dℓ). By a similar argument to the proof of (1), we have that Md ∈
GE(d) ∩ Ψprime(d) and Mℓ ∈ GL2(Z/ℓZ) ∩ Ψprime(ℓ). Now, let M ′ ∈ GE(d) ∩ Ψprime(d) and M ′′ ∈
GL2(Z/ℓZ) ∩ Ψprime(ℓ). Viewing (M ′,M ′′) ∈ GE(d) × GL2(Z/ℓZ), there exists a unique element
M ∈ GE(dℓ) withMd =M ′ andMℓ =M ′′ by (30). Since det(M ′−I) ∈ (Z/dZ)× and det(M ′′−I) ∈
(Z/ℓZ)×, we have det(M − I) ∈ (Z/dℓZ)×; in particular, M ∈ Ψprime(dℓ). Therefore, (31) is
established.

Along with (30), we obtain

δprime
E (dℓ) =

∣∣GE(dℓ) ∩Ψprime(dℓ)
∣∣

|GE(dℓ)|

=
|GE(d) ∩Ψprime(d)|

|GE(d)|
· |GL2(Z/ℓZ) ∩Ψprime(ℓ)|

|GL2(Z/ℓZ)|
= δprime

E (d) · δprime
E (ℓ).

This completes the proof. □

Remark 4.3. Suppose that ℓ ∤ mE and M ∈ GL2(Z/ℓZ). Note that det(M − I) ∈ (Z/ℓZ)× if and
only if 1 is not an eigenvalue of M . One can check from Table 12.4 in [35, XVIII] that

# {M ∈ GL2(Z/ℓZ) :M has eigenvalues 1 and k} =

{
ℓ2 + ℓ if k ̸≡ 1 (mod ℓ),

ℓ2 if k ≡ 1 (mod ℓ).

Thus, we see that

(32)
δprime
E (ℓ)

1− 1/ℓ
=

ℓ

ℓ− 1
·
(
1− (ℓ− 2)(ℓ2 + ℓ) + ℓ2

(ℓ2 − 1)(ℓ2 − ℓ)

)
= 1− ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)
∼ 1− 1

ℓ2
as ℓ→∞,

and hence the infinite product in (28) converges absolutely.

The average counterpart of Cprime
E is given by

(33) Cprime :=
∏
ℓ

(
1− ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)

)
≈ 0.505166.

As mentioned earlier, Balog, Cojocaru, and David [4] demonstrated that Cprime represents the av-

erage Koblitz constant, while Jones [30] verified that the average of Cprime
E coincides with Cprime.

Unlike for the cyclicity problem, the Koblitz problem has not yet been studied for primes in arith-

metic progressions. We construct Cprime
E,n,k in a parallel way to Zywina’s method and propose a

candidate for the average constant Cprime
n,k .
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Let E/Q be a non-CM elliptic curve of conductor NE and m be a positive integer. For a prime
p ∤ nNE , let Frobp be a Frobenius element lying above p in Gal(Q/Q). We have that

det(ρE,n(Frobp)) ≡ p (mod n).

Along with (25), let us consider the set

(34) Ψprime
n,k (m) :=

{
M ∈ GL2(Z/mZ) : det(I −M) ∈ (Z/mZ)×,detM ≡ k (mod gcd(m,n))

}
.

One may note that ρE,m(Frobp) ∈ GE(m) ∩ Ψprime
n,k (m) if and only if p ≡ k (mod gcd(n,m)) and

|Ẽp(Fp)| is invertible Z/mZ. For this reason, we consider the ratio

δprime
E,n,k(m) :=

∣∣∣GE(m) ∩Ψprime
n,k (m)

∣∣∣
|GE(m)|

.

Building upon Zywina’s approach, we are led to define

(35) Cprime
E,n,k := lim

m→∞

δprime
E,n,k(m)∏

ℓ|m (1− 1/ℓ)
,

where the limit is taken over all positive integers, ordered by divisibility.

Proposition 4.4. Let E/Q be a non-CM elliptic curve of adelic level mE and n be a positive

integer. Let L be defined as in (7). Then, δprime
E,n,k(·), as an arithmetic function, satisfies the following

properties:

(1) Let L | L′ | L∞. Then, δprime
E,n,k(L) = δprime

E,n,k(L
′);

(2) Let ℓα be a prime power and d be a positive integer with (ℓ, Ld) = 1. Then, δprime
E,n,k(dℓ

a) =

δprime
E,n,k(d) · δ

prime
E,n,k(ℓ

α).

(3) Let ℓα ∥ n and (ℓ, L) = 1. Then, for any β > α, δprime
E,n,k(ℓ

β) = δprime
E,n,k(ℓ

α). Further, if ℓ ∤ nL,
we have δprime

E,n,k(ℓ
β) = δprime

E (ℓ).

Therefore, (35) can be expressed as follows,

(36) Cprime
E,n,k =

δprime
E,n,k(L)∏

ℓ|L(1− 1/ℓ)
·
∏
ℓ∤mE

ℓα∥n

δprime
E,n,k(ℓ

α)

1− 1/ℓ
·
∏

ℓ∤nmE

δprime
E (ℓ)

1− 1/ℓ
.

and the infinite product converges absolutely.

Proof. Let us prove item (1). Consider the natural reduction map ϖ : GE(L
′)→ GE(L), which is a

surjective group homomorphism. We will show that

(37) ϖ−1
(
GE(L) ∩Ψprime

n,k (L)
)
= GE(L

′) ∩Ψprime
n,k (L′)

LetM ∈ GE(L)∩Ψprime
n,k (L) and M̃ ∈ ϖ−1(M). Recall that det(M−I) is invertible modulo L and

that L′ is only supported by the prime factors of L. Thus, det(M̃−I) is invertible modulo L′. Since

gcd(n,L) = gcd(n,L′), we also have det M̃ ≡ k (mod gcd(n,L′)). Thus, M̃ ∈ GE(L
′)∩Ψprime

n,k (L′).

The other inclusion is obvious, and hence (37) is obtained. Therefore, we have

δprime
E,n,k(L

′) =

∣∣∣GE(L
′) ∩Ψprime

n,k (L′)
∣∣∣

|GE(L′)|
=

∣∣∣ϖ−1
(
GE(L) ∩Ψprime

n,k (L)
)∣∣∣

|ϖ−1(GE(L))|
= δprime

E,n,k(L).
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Let us prove item (2). By Lemma 2.2, we have an isomorphism,

(38) GE(dℓ
α) ≃ GE(d)×GL2(Z/ℓαZ).

It suffices to show that the isomorphism induces a map between the sets

(39) GE(dℓ
α) ∩Ψprime

n,k (dℓα) and
(
GE(d) ∩Ψprime

n,k (d)
)
×
(
GL2(Z/ℓαZ) ∩Ψprime

n,k (ℓα)
)
.

Say M ∈ GE(dℓ
α) ∩ Ψprime

n,k (dℓα). By a similar argument to the proof of (1), one may see that

Md ∈ GE(d) ∩ Ψprime
n,k (d) and Mℓα ∈ GL2(Z/ℓαZ) ∩ Ψprime

n,k (ℓα). Now, let M ′ ∈ GE(d) ∩ Ψprime(d)

and M ′′ ∈ GL2(Z/ℓαZ) ∩ Ψprime(ℓα). Viewing (M ′,M ′′) ∈ GE(d) × GL2(Z/ℓαZ), there exists a
unique element M ∈ GE(dℓ

α) with Md = M ′ and Mℓα = M ′′ by (38). Note that since det(M ′ −
I) ∈ (Z/dZ)× and det(M ′′ − I) ∈ (Z/ℓαZ)×, we have det(M − I) ∈ (Z/dℓαZ)×; in particular,

M ∈ Ψprime
n,k (dℓα). Therefore, (39) is established.

Along with (38), we obtain

δprime
E,n,k(dℓ

α) =

∣∣∣GE(dℓ
α) ∩Ψprime

n,k (dℓα)
∣∣∣

|GE(dℓα)|

=
|GE(d) ∩Ψprime(d)|

|GE(d)|
· |GL2(Z/ℓαZ) ∩Ψprime(ℓα)|

|GL2(Z/ℓαZ)|
= δprime

E,n,k(d) · δ
prime
E,n,k(ℓ

α).

Finally, let us prove item (3). Since ℓ ∤ mE , by Lemma 2.2, GE(ℓ
α) and GE(ℓ

β) are the full groups,
GL2(Z/ℓαZ) and GL2(Z/ℓβZ). Let ϖ : GL2(Z/ℓβZ)→ GL2(Z/ℓαZ) be the natural reduction map
which is a surjective group homomorphism. By a similar argument as in the proof of item (1), it
suffices to check that

(40) ϖ−1
(
Ψprime

n,k (ℓα)
)
= Ψprime

n,k (ℓβ).

Take M ∈ Ψprime
n,k (ℓα) and let M̃ ∈ ϖ−1(M). By the same reasoning in the proof of item (1),

det(M̃ − I) is invertible modulo ℓβ. Since gcd(n, ℓα) = gcd(n, ℓβ) = ℓα, we also have det M̃ ≡ k
(mod ℓα). The other inclusion is obvious, and hence (40) is obtained. Thus, we have

δprime
E,n,k(ℓ

β) =

∣∣∣Ψprime
n,k (ℓβ)

∣∣∣
|GL2(Z/ℓβZ)|

=

∣∣∣ϖ−1
(
Ψprime

n,k (ℓα)
)∣∣∣

|ϖ−1 (GL2(Z/ℓαZ))|
= δprime

E,n,k(ℓ
α).

In case ℓ ∤ nL, let ϖ : GL2(Z/ℓβZ)→ GL2(Z/ℓZ). It suffices to check

(41) ϖ−1
(
Ψprime(ℓ)

)
= Ψprime

n,k (ℓβ).

Note that the condition detM ≡ k (mod gcd(n, ℓ)) is trivial, and hence Ψprime
E,n,k(ℓ) = Ψprime

E (ℓ). Let

M ∈ Ψprime
E (ℓ). Note that every lifting M̃ ∈ ϖ−1(M) belongs to Ψprime

E,n,k(ℓ
β). The other inclusion is

obvious, and hence (41) is obtained. Thus, we have

δprime
E,n,k(ℓ

β) =

∣∣∣Ψprime
n,k (ℓβ)

∣∣∣
|GL2(Z/ℓβZ)|

=

∣∣ϖ−1
(
Ψprime(ℓ)

)∣∣
|ϖ−1(GL2(Z/ℓZ))|

= δprime
E (ℓ).

By grouping the prime factors of M in (35) according to whether they divide L or not, we obtain
(36). The absolute convergence of (36) follows from Remark 4.3. □

The following lemma allows us to express Cprime
E,n,k more explicitly.
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Lemma 4.5. Suppose ℓα ∥ n and ℓ ∤ mE. Then

δprime
E,n,k(ℓ

α)

1− 1/ℓ
=


1

ϕ(ℓα)

(
1− ℓ

|GL2(Z/ℓZ)|

)
if k ≡ 1 (mod ℓ),

1
ϕ(ℓα)

(
1− ℓ2+ℓ

|GL2(Z/ℓZ)|

)
if k ̸≡ 1 (mod ℓ).

Proof. By the assumption, we have GE(ℓ
α) ≃ GL2(Z/ℓαZ). Recall that

Ψprime
n,k (ℓα) =

{
M ∈ GL2(Z/ℓαZ) : det(M − I) ∈ (Z/ℓαZ)×, detM ≡ k (mod gcd(n, ℓα))

}
.

whose cardinality was determined in Corollary 3.4. A brief calculation reveals the desired result.
□

Let E/Q be a non-CM elliptic curve of adelic level mE . Let n = n1n2 where n1 = gcd(n,m∞
E )

and (n2,mE) = 1. By (32), (36), and Lemma 4.5, we have

Cprime
E,n,k =

δprime
E,n,k(L)∏

ℓ|L(1− 1/ℓ)
· 1

ϕ(n2)

∏
ℓ∤mE

ℓ|n
ℓ∤k−1

(
1− ℓ2 + ℓ

|GL2(Z/ℓZ)|

) ∏
ℓ∤mE

ℓ|(n,k−1)

(
1− ℓ

|GL2(Z/ℓZ)|

)

·
∏

ℓ∤nmE

(
1− ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)

)
.

We now propose the average counterpart of Cprime
E,n,k ,

(42)

Cprime
n,k :=

1

ϕ(n)

∏
ℓ|n

ℓ∤k−1

(
1− ℓ2 + ℓ

|GL2(Z/ℓZ)|

) ∏
ℓ|(n,k−1)

(
1− ℓ

|GL2(Z/ℓZ)|

)∏
ℓ∤n

(
1− ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)

)
.

The formula for Cprime
n,k coincides with Cprime

E,n,k if one takes mE = 1, similar to the case for Ccyc
n,k in

(23). Parallel to Proposition 4.1, we show that Cprime
n,k behaves as expected when we sum over k.

Proposition 4.6. For any positive integer n, we have∑
1≤k≤n
(n,k)=1

Cprime
n,k = Cprime,

where Cprime and Cprime
n,k are defined in (33) and (42), respectively.

Proof. For notational convenience, we define

f1(ℓ) = 1− ℓ2 + ℓ

|GL2(Z/ℓZ)|
, f2(ℓ) = 1− ℓ

|GL2(Z/ℓZ)|
To show the desired equation, we need to verify that

(43) F (n) :=
1

ϕ(n)

∑
1≤k≤n
(k,n)=1

∏
ℓ|n

k ̸≡1(ℓ)

f1(ℓ)
∏
ℓ|n

k≡1(ℓ)

f2(ℓ) =
∏
ℓ|n

(
1− ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)

)
.

First, we prove that (43) is true for n = pa, a prime power. Observe that

F (pa) =
1

ϕ(pa)

(
pa−1(f1(p)(p− 2) + f2(p))

)
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=
pa−1

ϕ(pa)

[
(p− 2)

(
1− p2 + p

|GL2(Z/pZ)|

)
+

(
1− p

|GL2(Z/pZ)|

)]
= 1− p2 − p− 1

(p− 1)3(p+ 1)
.

Let us prove that F is multiplicative. Let n be coprime to pa, a prime power. We see that

F (pan) =
1

ϕ(pan)

∑
1≤k≤pan
(k,pn)=1

∏
ℓ|pn

k ̸≡1(ℓ)

f1(ℓ)
∏
ℓ|pn

k≡1(ℓ)

f2(ℓ)

=
1

ϕ(pa)

1

ϕ(n)


∑

1≤k≤pan
(k,pn)=1
k ̸≡1(p)

f1(p)
∏
ℓ|n

k ̸≡1(ℓ)

f1(ℓ)
∏
ℓ|n

k≡1(ℓ)

f2(ℓ) +
∑

1≤k≤pan
(k,pn)=1
k≡1(p)

f2(p)
∏
ℓ|n

k ̸≡1(ℓ)

f1(ℓ)
∏
ℓ|n

k≡1(ℓ)

f2(ℓ)


=
f1(p)(p− 2)pa−1

ϕ(pa)

1

ϕ(n)

∑
1≤k≤n
(k,n)=1

∏
ℓ|n

k ̸≡1(ℓ)

f1(ℓ)
∏
ℓ|n

k≡1(ℓ)

f2(ℓ)

+
f2(p)p

a−1

ϕ(pa)

1

ϕ(n)

∑
1≤k≤n
(k,n)=1

∏
ℓ|n

k ̸≡1(ℓ)

f1(ℓ)
∏
ℓ|n

k≡1(ℓ)

f2(ℓ)

=
1

ϕ(pa)

(
pa−1(f1(p)(p− 2) + f2(p))

)
· F (n) = F (pa)F (n).

This completes the proof. □

4.3. Applying Zywina’s approach for the cyclicity problem. Zywina [62] refined the Koblitz

conjecture by improving the heuristic explanation for the constant Cprime
E . In essence, he interprets

the desired property of a prime of Koblitz reduction in terms of Galois representations, examines
the ratio of elements with the desired property in each finite level GE(m), and considers the limit
of that ratio as m approaches infinity. In this subsection, we apply Zywina’s approach to determine
the heuristic densities of primes of cyclic reduction for E and verify their concurrence with the
densities proposed by Serre and Akbal–Güloğlu.

Let E/Q be a non-CM elliptic curve and fix a good prime p ̸= 2. We now give a criterion for p
to be a prime of cyclic reduction for E.5 Let Frobp denote a Frobenius element in Gal(Q/Q) at p.
By [19, Lemma 2.1], we have that

Ẽp(Fp) is cyclic ⇐⇒ ∀ primes ℓ ̸= p, Ẽp(Fp) does not contain a subgroup isomorphic to Z/ℓZ⊕ Z/ℓZ
⇐⇒ ∀ primes ℓ ̸= p, ρE,ℓ(Frobp) ̸≡ I (mod ℓ)

⇐⇒ ∀m ∈ N with p ∤ m and ∀ prime ℓ | m, ρE,ℓ(Frobp) ̸≡ I (mod ℓ).

Drawing a parallel to (26), we consider the set

Ψcyc(m) := {M ∈ GL2(Z/mZ) :M ̸≡ I (mod ℓ) for all ℓ | m} ,

5Note that if p = 2 is a prime of good reduction for E, then Ẽ2(F2) is necessarily cyclic.
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and the ratio

δcycE (m) :=
|GE(m) ∩Ψcyc(m)|

|GE(m)|
.

Taking the limit of δcycE (m) over all positive integers, ordered by divisibility, we expect to obtain
the heuristic density of primes of cyclic reduction.

Proposition 4.7. Let E/Q be a non-CM elliptic curve of adelic level mE. Then δcycE (·), as an
arithmetic function, satisfies the following properties:

(1) for any positive integer m, δcycE (m) = δcycE (rad(m));
(2) for any prime ℓ ∤ mE and integer d coprime to ℓ, δcycE (dℓ) = δcycE (d) · δcycE (ℓ).

Therefore, the heuristic density of primes of cyclic reduction can be expressed as follows,

lim
m→∞

δcycE (m) = δcycE (rad(mE)) ·
∏
ℓ∤mE

δcycE (ℓ).

Proof. Follows similarly to the proof of Proposition 4.2. □

Remark 4.8. One can easily check that for ℓ ∤ mE ,

(44) δcycE (ℓ) = 1− 1

|GL2(Z/ℓZ)|
∼ 1− 1

ℓ4
, as ℓ→∞

and hence the infinite product converges absolutely.

We now verify that the limit limm→∞ δcycE (m) appearing in Proposition 4.7 coincides with the
cyclicity constant Ccyc

E originally defined by Serre [52, pp. 465–468].

Proposition 4.9. Let E/Q be a non-CM elliptic curve. Then we have

Ccyc
E = δcycE (rad(mE)) ·

∏
ℓ∤mE

(
1− 1

|GL2(Z/ℓZ)|

)
.

Proof. Let R = rad(mE). By (19) and (44), it suffices to check∑
d|mE

µ(d)

[Q(E[d]) : Q]
= δcycE (R).

Let m be a positive integer and d | m. We define

S′
E(m) := {M ∈ GE(m) :M ̸≡ I (mod ℓ) for all ℓ | m}

S
(d)
E (m) := {M ∈ GE(m) :M ≡ I (mod d)}.

From the definition, one may observe that GE(R) ∩Ψcyc(R) = S′
E(R). Thus, we have

δcycE (R) =
|S′

E(R)|
|GE(R)|

.

Also, note that S
(d)
E (d) = {I}. Let ϖ : GE(m)→ GE(d) be the natural reduction map. Then,

|S(d)
E (m)|
|GE(m)|

=

∣∣∣ϖ−1(S
(d)
E (d))

∣∣∣
|ϖ−1(GE(d))|

=

∣∣∣S(d)
E (d)

∣∣∣
|GE(d)|

=
1

|GE(d)|
.
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Observe that S′
E(R) = GE(R)−

⋃
ℓ|R S

(ℓ)
E (R). By the principle of inclusion-exclusion, we obtain

δcycE (R) =
|S′

E(R)|
|GE(R)|

=
∑
d|R

µ(d)

|GE(d)|
=
∑
d|mE

µ(d)

[Q(E[d]) : Q]
.

This completes the proof. □

Now, we construct a heuristic density of primes of cyclic reduction that lie in an arithmetic
progression. Consider

Ψcyc
n,k(m) := {M ∈ GL2(Z/mZ) :M ̸≡ I (mod ℓ) for all ℓ | m,detM ≡ k (mod gcd(m,n))} .

We define

δcycE,n,k(m) :=

∣∣∣GE(m) ∩Ψcyc
n,k(m)

∣∣∣
|GE(m)|

.

Drawing parallels from Zywina’s approach, we consider the limit

(45) lim
m→∞

δcycE,n,k(m),

where the limit is taken over all positive integers, ordered by divisibility. We’ll prove in Proposition
4.12 that (45) coincides with Ccyc

E,n,k as defined in [1]. To do so, we’ll first give some properties of

δcycE,n,k(·).

Proposition 4.10. Let E/Q be a non-CM elliptic curve of adelic level mE. Fix a positive integer
n. Set L as in (7). Then, δcycE,n,k(·), as an arithmetic function, satisfies the following properties:

(1) Let L | L′ | L∞. Then, δcycE,n,k(L) = δcycE,n,k(L
′);

(2) Let ℓα be a prime power and d be a positive integer with (ℓ, Ld) = 1. Then, δcycE,n,k(dℓ
a) =

δcycE,n,k(d) · δ
cyc
E,n,k(ℓ

α).

(3) Let ℓα ∥ n and (ℓ, L) = 1. Then, for any β > α, δcycE,n,k(ℓ
β) = δcycE,n,k(ℓ

α). Further, if ℓ ∤ nL,
we have δcycE,n,k(ℓ

β) = δcycE (ℓ).

Therefore, (45) can be expressed as follows,

(46) lim
m→∞

δcycE,n,k(m) = δcycE,n,k(L) ·
∏
ℓ∤mE

ℓα∥n

δcycE,n,k(ℓ
α) ·

∏
ℓ∤nmE

δcycE (ℓ).

and the product converges absolutely.

Proof. One can argue similarly to the proof of Proposition 4.4 to obtain the desired results. The
absolute convergence of (46) follows from Remark 4.8. □

The next lemma allows us to describe (46) explicitly.

Lemma 4.11. Let E/Q be a non-CM elliptic curve of adelic level mE. Suppose ℓa ∥ n and ℓ ∤ mE.
For any k coprime to n, we have

δcycE,n,k(ℓ
a) =


1

ϕ(ℓa) if ℓ | n and ℓ ∤ (k − 1)

1
ϕ(ℓa)

(
1− ϕ(ℓ)

|GL2(Z/ℓZ)|

)
if ℓ | (n, k − 1).

Proof. Since ℓ ∤ mE , we have GE(ℓ
a) ≃ GL2(Z/ℓaZ), and hence |GE(ℓ

a)| = (ℓ2 − 1)(ℓ2 − ℓ)ℓ4(a−1).
Applying Corollary 3.2, we obtain the desired results. □
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Let E/Q be a non-CM elliptic curve of adelic level mE . Let n = n1n2 where n1 = gcd(n,m∞
E )

and (n2,mE) = 1. By (44), (46), and Lemma 4.11, we obtain

(47) lim
m→∞

δcycE,n,k(m) =
δcycE,n,k(L)

ϕ(n2)

∏
ℓ∤mE

ℓ|(n,k−1)

(
1− ϕ(ℓ)

|GL2(Z/ℓZ)|

) ∏
ℓ∤nmE

(
1− 1

|GL2(Z/ℓZ)|

)
.

We now prove that (47) equals the cyclicity constant proposed by Akbal and Gülğlu.

Proposition 4.12. Let E/Q be a non-CM elliptic curve of adelic level mE and n be a positive
integer. Let n = n1n2 where n1 = gcd(n,m∞

E ) and (n2,mE) = 1. Then we have

Ccyc
E,n,k =

δcycE,n,k(L)

ϕ(n2)

∏
ℓ∤mE

ℓ|(n,k−1)

(
1− ϕ(ℓ)

|GL2(Z/ℓZ)|

) ∏
ℓ∤nmE

(
1− 1

|GL2(Z/ℓZ)|

)
.

Proof. Define

S′
E,n,k(m) := {σ ∈ Gal(Q(E[m])Q(ζn)/Q) : σ|Q(ζn) = σk, σ|Q(E[ℓ]) ̸≡ 1 for all ℓ | m}.

Let R = rad(mE). By [32, p. 13], (22) can be expressed as follows,

(48)
|S′

E,n,k(R)|
|Gal(Q(E[R])Q(ζn)/Q)|

∏
ℓ∤mE

ℓ(n,k−1)

(
1− ϕ(ℓ)

|GL2(Z/ℓZ)|

) ∏
ℓ∤nmE

(
1− 1

|GL2(Z/ℓZ)|

)
.

Thus, it suffices to verify that

|S′
E,n,k(R)|

|Gal(Q(E[R])Q(ζn))/Q|
=
δcycE,n,k(L)

ϕ(n2)
.

By the Weil pairing, we have Q(ζn2) ⊆ Q(E[n2]). Thus, we see that Q(E[R])Q(ζn1) and Q(ζn2)
must be linearly disjoint by Lemma 2.2, and hence

Gal(Q(E[R])Q(ζn)/Q) ≃ Gal(Q(E[R]Q(ζn1))/Q)×Gal(Q(ζn2)/Q).

Under the isomorphism, the set S′
E,n,k(R) can be identified as S′

E,n1,k
(R) × {σk}, and hence

|S′
E,n,k(R)| = |S′

E,n1,k
(R)|. Thus, we have

|S′
E,n,k(R)|

|Gal(Q(E[R])Q(ζn)/Q)|
=

1

ϕ(n2)
·

|S′
E,n1,k

(R)|
|Gal(Q(E[R])Q(ζn1)/Q)|

.

Remark that Q(E[R]) ⊆ Q(E[L]) and Q(ζn1) ⊆ Q(E[L]) by the definition of L. Thus, the usual
restriction ϖ : GE(L)→ Gal(Q(E[R])Q(ζn1)/Q) gives a surjective group homomorphism.

Viewing GE(L) as a subgroup of GL2(Z/LZ), we may observe that

ϖ−1(S′
E,n1,k(R)) =

{
σ̃ ∈ GE(L) : σ̃|Q(ζn1 )

= σk, σ̃|Q(E[ℓ]) ̸≡ 1 (mod ℓ) for all ℓ | L
}

= GE(L) ∩ {M ∈ GL2(Z/LZ) : detM ≡ k (mod n1),M ̸≡ I (mod ℓ) for all ℓ | L}
= GE(L) ∩Ψcyc

n,k(L).

Therefore,

|S′
E,n1,k

(R)|
|Gal(Q(E[R])Q(ζn1)/Q)|

=

∣∣∣ϖ−1
(
S′
E,n1,k

(R)
)∣∣∣

|ϖ−1(Gal(Q(E[R])Q(ζn1)/Q))|
=

∣∣∣GE(L) ∩Ψcyc
n,k(L)

∣∣∣
|GE(L)|

= δcycE,n,k(L).

This completes the proof. □
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Remark 4.13. As one may have observed from Conjecture 1.1 and Conjecture 1.3, the conjectural

growth rates of πcycE (x) and πprime
E (x) are different. Thus, there is an intrinsic difference between

Ccyc
E and Cprime

E . In particular, Ccyc
E can be interpreted as the (conjectural) density of primes of

cyclic reduction for E whereas Cprime
E should not be interpreted analogously. A similar remark holds

for πcycE (x;n, k) and πprime
E (x;n, k) and their respective constants.

5. On the cyclicity and Koblitz constants for Serre curves

We begin by fixing some notation that will hold throughout the section. Let E/Q be a Serre
curve of discriminant ∆E , n be a positive integer, and k be an integer coprime to n. Let ∆′ be the
squarefree part of ∆E . By Proposition 2.4, we have

mE =

{
2|∆′| if ∆′ ≡ 1 (mod 4),

4|∆′| otherwise.

Let L be defined as in (7). The goal of this section is to develop formulas for Ccyc
E,n,k and Cprime

E,n,k

with our assumption that E is a Serre curve. By Proposition 4.4 and Proposition 4.10, it suffices

to compute δcycE,n,k(L) and δ
prime
E,n,k(L).

For an integer n, we set n = n1n2 where n1 = (n,m∞
E ) and (n2,mE) = 1. There are two cases to

consider: mE ∤ L and mE | L. The former occurs if and only if one of the following holds:

• ∆′ ≡ 3 (mod 4) and 2 ∤ n;
• ∆′ ≡ 2 (mod 4) and 4 ∤ n.

We write L = 2α ·Lodd where Lodd is an odd integer; observe that |∆′| divides Lodd. We now define
two sign functions that depend on ∆′, k and appear in Theorem 1.7.

Definition 5.1. Let E/Q be a Serre curve of discriminant ∆E . Let ∆′ and k defined as above.
Assume mE | L. We define τ = τ(∆′, k) as follows.

• If ∆′ ≡ 1 (mod 4), we define τ = −1.
• If ∆′ ≡ 3 (mod 4), then 4 | n. We define

τ =

{
−1 if k ≡ 1 (mod 4),

1 if k ≡ 3 (mod 4).

• If ∆′ ≡ 2 (mod 8), then 8 | n. We define

τ =

{
−1 if k ≡ 1, 7 (mod 8),

1 if k ≡ 3, 5 (mod 8).

• If ∆′ ≡ 6 (mod 8), then 8 | n. We define

τ =

{
−1 if k ≡ 1, 3 (mod 8),

1 if k ≡ 5, 7 (mod 8).

Finally, we define τX := τX (∆′, n, k) ∈ {±1} as follows,

τ cyc := τ
∏

ℓ|Lodd

ℓ∤n

(−1)
∏

ℓ|(n,Lodd)
ℓ∤k−1

(
k

ℓ

)
,
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τprime := −τ
∏

ℓ|(n,Lodd)
ℓ∤k−1

(
k

ℓ

)
.

Having defined τ cyc and τprime, the rest of the section is devoted to proving Theorem 1.7. First,
suppose mE ∤ L. Then, by Proposition 2.4, we have GE(L) ≃ GL2(Z/LZ) ≃

∏
ℓα∥LGL2(Z/ℓαZ).

One can check that the isomorphism induces bijections between the sets,

ΨX
n,k(L) and

∏
ℓα∥L

ΨX
n,k(ℓ

α),(49)

for X ∈ {cyc,prime}. Let ℓ be a prime factor of L. If ℓ ∤ n, then we have α = 1 by (7). The
condition detM ≡ k (mod gcd(n, ℓ)) becomes trivial, and hence we have

ΨX
n,k(ℓ

α) = ΨX (ℓ)

for X ∈ {cyc, prime}.
On the other hand, suppose ℓα ∥ n. We have already determined the size of ΨX

n,k(ℓ
α) in Corol-

lary 3.2 and Corollary 3.4. Based on those counts, we obtain the following.

Lemma 5.2. We have

(1) Ψcyc
n,k(L) =

∏
ℓ|L
ℓ∤n

(
(ℓ2 − 1)(ℓ2 − ℓ)− 1

) ∏
ℓα∥(L,n)
ℓ|k−1

(
ℓ3(α−1)(ℓ3 − ℓ− 1)

) ∏
ℓα∥(L,n)
ℓ∤k−1

(
ℓ3(α−1)(ℓ3 − ℓ)

)
.

(2) Ψprime
n,k (L) =

∏
ℓ|L
ℓ∤n

(
ℓ(ℓ3 − 2ℓ2 − ℓ+ 3)

) ∏
ℓα∥(L,n)
ℓ|k−1

(
ℓ3(α−1)(ℓ3 − ℓ2 − ℓ)

) ∏
ℓα∥(L,n)
ℓ∤k−1

(
ℓ3(α−1)(ℓ3 − ℓ2 − 2ℓ)

)
.

Based on Lemma 5.2.(1), we obtain

δcycE,n,k(L) =
∏

ℓα∥(n,L)
ℓ|k−1

ℓ3(α−1)(ℓ3 − ℓ− 1)

|GL2(Z/ℓαZ)|
∏

ℓα∥(n,L)
ℓ∤k−1

ℓ3(α−1)(ℓ3 − ℓ)
|GL2(Z/ℓαZ)|

∏
ℓ|L
ℓ∤n

(
1− 1

|GL2(Z/ℓZ)|

)

=
∏

ℓα∥(n,L)

1

ℓα−1

∏
ℓ|(n,L)
ℓ|k−1

(
1

ℓ− 1
− 1

|GL2(Z/ℓZ)|

) ∏
ℓ|(n,L)
ℓ∤k−1

(
1

ℓ− 1

)∏
ℓ|L
ℓ∤n

(
1− 1

|GL2(Z/ℓZ)|

)

=
1

ϕ(n1)

∏
ℓ|(n,L)
ℓ|k−1

(
1− ϕ(ℓ)

|GL2(Z/ℓZ)|

)∏
ℓ|L
ℓ∤n

(
1− 1

|GL2(Z/ℓZ)|

)
.

(50)

Thus, (47) and (50) give

Ccyc
E,n,k =

1

ϕ(n1)

∏
ℓ|L

k≡1(ℓ)

(
1− ϕ(ℓ)

|GL2(Z/ℓZ)|

)∏
ℓ|L
ℓ∤n

(
1− 1

|GL2(Z/ℓZ)|

)

· 1

ϕ(n2)

∏
ℓ∤mE

ℓ|(n,k−1)

(
1− ϕ(ℓ)

|GL2(Z/ℓZ)|

) ∏
ℓ∤nmE

(
1− 1

|GL2(Z/ℓZ)|

)
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=
1

ϕ(n)

∏
ℓ|(n,k−1)

(
1− ϕ(ℓ)

|GL2(Z/ℓZ)|

)∏
ℓ∤n

(
1− 1

|GL2(Z/ℓZ)|

)
= Ccyc

n,k .

Hence, we obtain that Ccyc
E,n,k = Ccyc

n,k if mE ∤ L.
Similarly, for the Koblitz case, applying Lemma 5.2.(2), we see

δprime
E,n,k(L)∏

ℓ|L(1− 1/ℓ)
=

∏
ℓα∥(n,L)
ℓ∤k−1

ℓ · ℓ3(α−1) · (ℓ3 − ℓ2 − 2ℓ)

(ℓ− 1)|GL2(Z/ℓαZ)|
∏

ℓα∥(n,L)
ℓ|k−1

ℓ · ℓ3(α−1) · (ℓ3 − ℓ2 − ℓ)
(ℓ− 1)|GL2(Z/ℓαZ)|

∏
ℓ|L
ℓ∤n

(
1− ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)

)

=
1

ϕ(n1)

∏
ℓ|(n,L)
ℓ∤k−1

(
1− ℓ2 + ℓ

|GL2(Z/ℓZ)|

) ∏
ℓ|(n,L)
ℓ|k−1

(
1− ℓ

|GL2(Z/ℓZ)|

)∏
ℓ|L
ℓ∤n

(
1− ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)

)
.

(51)

Thus, Proposition 4.4, Lemma 4.5, and (51) give

Cprime
E,n,k =

1

ϕ(n1)

∏
ℓ|(n,L)
ℓ|k−1

(
1− ℓ

|GL2(Z/ℓZ)|

) ∏
ℓ|(n,L)
ℓ∤k−1

(
1− ℓ2 + ℓ

|GL2(Z/ℓZ)|

)∏
ℓ|L
ℓ∤n

(
1− ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)

)

· 1

ϕ(n2)

∏
ℓ∤mE

ℓ|n
ℓ|k−1

(
1− ℓ

|GL2(Z/ℓZ)|

) ∏
ℓ∤mE

ℓ|n
ℓ∤k−1

(
1− ℓ2 + ℓ

|GL2(Z/ℓZ)|

) ∏
ℓ∤nmE

(
1− ℓ2 − ℓ− 1

(ℓ− 1)3(ℓ+ 1)

)

=Cprime
n,k .

This completes the proof of the theorem for the case where mE ∤ L.
Now, suppose that mE | L. This case is a bit more involved. First, we recall from Section 2.2

the definition of ψℓα and the fact that GE(L) = kerψL. By [30, Lemma 16] and (49) we have

(52)
∣∣GE(L) ∩ΨX

n,k(L)
∣∣ = 1

2

∣∣ΨX
n,k(L)

∣∣+ ∏
ℓα∥L

(∣∣Y X
ℓα,+

∣∣− ∣∣Y X
ℓα,−

∣∣) ,

for X ∈ {cyc, prime}, where

Y cyc
ℓα,± := {M ∈ GL2(Z/ℓαZ) : ψℓα(M) = ±1,M ̸≡ I (mod ℓ), detM ≡ k (mod gcd(ℓα, n))} ,

Y prime
ℓα,± := {M ∈ GL2(Z/ℓαZ) : ψℓα(M) = ±1, det(M − I) ̸≡ 0 (mod ℓ),detM ≡ k (mod gcd(ℓα, n))} .

The sets Y cyc
ℓα,+, Y

cyc
ℓα,−, Y

prime
ℓα,+ , and Y prime

ℓα,− all depend on n and k, though we do not include this

dependence in the notation for brevity. We first focus on the size of |Y X
ℓα,+| − |Y X

ℓα,−| for primes ℓ

dividing Lodd.

Lemma 5.3. We have

(1)∏
ℓα∥Lodd

(
|Y cyc

ℓα,+| − |Y
cyc
ℓα,−|

)
=
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ℓ|Lodd

ℓ∤n

(−1)
∏

ℓα∥(n,Lodd)
ℓ|k−1

ℓ3(α−1)(ℓ3 − ℓ− 1)
∏

ℓα∥(n,Lodd)
ℓ∤k−1

(
k

ℓ

)
ℓ3(α−1)(ℓ3 − ℓ).

(2)∏
ℓα∥Lodd

(
|Y prime

ℓα,+ | − |Y
prime
ℓα,− |

)
=

∏
ℓ|Lodd

ℓ∤n

ℓ
∏

ℓα∥(n,Lodd)
ℓ|k−1

ℓ3(α−1)(ℓ3 − ℓ2 − ℓ)
∏

ℓα∥(n,Lodd)
ℓ∤k−1

(
k

ℓ

)
ℓ3(α−1)(ℓ3 − ℓ2 − 2ℓ).

Proof. From the definition of ψℓα for an odd prime ℓ | L, we have∣∣∣Y cyc
ℓα,±

∣∣∣ = #

{
M ∈ GL2(Z/ℓαZ) :

(
detM

ℓ

)
= ±1,M ̸≡ I (mod ℓ),detM ≡ k (mod ℓα)

}
,∣∣∣Y prime

ℓα,±

∣∣∣ = #

{
M ∈ GL2(Z/ℓαZ) :

(
detM

ℓ

)
= ±1,det(M − I) ̸≡ 0 (mod ℓ),detM ≡ k (mod ℓα)

}
.

By Corollaries 3.2 and 3.4, it is easy to check that

∣∣∣Y cyc
ℓα,+

∣∣∣ =

ℓ3(α−1)

(
ℓ3 − ℓ− 1

)
if ℓ | n and k ≡ 1 (mod ℓ),

ℓ3(α−1)(ℓ3 − ℓ) if ℓ | n, k ̸≡ 1 (mod ℓ), and
(
k
ℓ

)
= 1,

0 if ℓ | n,
(
k
ℓ

)
= −1,

(ℓ2−ℓ)(ℓ2−1)
2 − 1 if ℓ ∤ n,

∣∣∣Y cyc
ℓα,−

∣∣∣ =

0 if ℓ | n and

(
k
ℓ

)
= 1,

ℓ3(α−1)(ℓ3 − ℓ) if ℓ | n and
(
k
ℓ

)
= −1,

(ℓ2−ℓ)(ℓ2−1)
2 if ℓ ∤ n,

∣∣∣Y prime
ℓα,+

∣∣∣ =

ℓ3(α−1)(ℓ3 − ℓ2 − ℓ) if ℓ | n and k ≡ 1 (mod ℓ)

ℓ3(α−1)(ℓ3 − ℓ2 − 2ℓ) if ℓ | n and k ̸≡ 1 (mod ℓ), and
(
k
ℓ

)
= 1,

0 if ℓ | n and
(
k
ℓ

)
= −1,

(ℓ−1)(ℓ3−ℓ2−2ℓ)
2 + ℓ if ℓ ∤ n,

∣∣∣Y prime
ℓα,−

∣∣∣ =

0 if ℓ | n and

(
k
ℓ

)
= 1,

ℓ3(α−1)(ℓ3 − ℓ2 − 2ℓ) if ℓ | n and
(
k
ℓ

)
= −1,

(ℓ−1)(ℓ3−ℓ2−2ℓ)
2 if ℓ ∤ n.

The result now follows from some simple computations. □

Finally, we evaluate |Y X
ℓα,+| − |Y X

ℓα,−| when ℓ = 2.

Lemma 5.4. For fixed ∆′ and k, let τ be defined as in Definition 5.1. Then

(1) |Y cyc
2α,+| − |Y

cyc
2α,−| = τ · 23(α−1)

(2) |Y prime
2α,+ | − |Y

prime
2α,− | = −(2τ) · 23(α−1).

Proof. First, we assume ∆′ ≡ 1 (mod 4). Then, by the definition of ψ2α(·),
Y cyc
2α,± = {M ∈ GL2(Z/2αZ) : ϵ(M2) = ±1,M ̸≡ I (mod 2), detM ≡ k (mod 2α)} ,
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Y prime
2α,± = {M ∈ GL2(Z/2αZ) : ϵ(M2) = ±1,det(M − I) ̸≡ 0 (mod 2), detM ≡ k (mod 2α)} .

Let hcyc± = |Y cyc
2,± |. In the case where α = 1, it is clear that hcyc+ = 2 and hcyc− = 3. For α ≥ 2, by

Lemma 3.1, we obtain ∣∣∣Y cyc
2α,±

∣∣∣ = hcyc± · 23(α−1)

and hence |Y cyc
2α,+| − |Y

cyc
2α,−| = −23(α−1).

Let us check the size of Y prime
2α,± . In the case where α = 1, we have that

Y prime
2,+ =

{(
1 1
1 0

)
,

(
0 1
1 1

)}
and Y prime

2,− = ∅.

Setting hprime
± := |Y prime

2,± |, we see that hprime
+ = 2 and hprime

− = 0. By Lemma 3.1, we obtain∣∣∣Y prime
2α,±

∣∣∣ = hprime
± · 23(α−1)

and hence |Y prime
2α,+ | − |Y

prime
2α,− | = 2 · 23(α−1).

Next, we assume ∆′ ≡ 3 (mod 4). Then, by the definition of ψ2α(·), we have

Y cyc
2α,± = {M ∈ GL2(Z/2αZ) : ϵ(M2)χ4(k) = ±1,M ̸≡ I (mod 2),detM ≡ k (mod 2α)} ,

Y prime
2α,± = {M ∈ GL2(Z/2αZ) : ϵ(M2)χ4(k) = ±1,det(M − I) ̸≡ 0 (mod 2), detM ≡ k (mod 2α)} .

Then

|Y cyc
2α,+| − |Y

cyc
2α,−| =

{
−23(α−1) if k ≡ 1 (mod 4),

23(α−1) if k ≡ 3 (mod 4).

|Y prime
2α,+ | − |Y

prime
2α,− | =

{
23α−2 if k ≡ 1 (mod 4),

−23α−2 if k ≡ 3 (mod 4).

Similar arguments can be applied to deduce the results for ∆′ ≡ 2 (mod 8) and ∆′ ≡ 6 (mod 8). □

With the results of the above lemmas in hand, we now determine |GE(L) ∩ ΨX
n,k|. Let us treat

the cyclicity case first. By Lemma 5.4 and (52), we find that

|GE(L) ∩Ψcyc
n,k| =

1

2

|Ψcyc
n,k(L)|+

∏
ℓα∥L

(|Y cyc
ℓα,+| − |Y

cyc
ℓα,−|)



=
1

2

 ∏
ℓα∥(L,n)
ℓ|k−1

ℓ3(α−1)(ℓ3 − ℓ− 1)
∏

ℓα∥(L,n)
ℓ∤k−1

ℓ3(α−1)(ℓ3 − ℓ)
∏
ℓ|L
ℓ∤n

(|GL2(Z/ℓZ)| − 1)

+ 23(α−1)τ
∏

ℓα∥(n,Lodd)
ℓ|k−1

ℓ3(α−1)(ℓ3 − ℓ− 1)
∏

ℓα∥(n,Lodd)
ℓ∤k−1

(
k

ℓ

)
ℓ3(α−1)(ℓ3 − ℓ)

∏
ℓ|Lodd

ℓ∤n

(−1)
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=
1

2

∏
ℓα∥(L,n)

ℓ3(α−1)
∏

ℓ|(Lodd,n)
ℓ|k−1

(ℓ3 − ℓ− 1)
∏

ℓ|(Lodd,n)
ℓ∤k−1

(ℓ3 − ℓ)

5
∏

ℓ|Lodd

ℓ∤n

(|GL2(Z/ℓZ)| − 1) + τ cyc

 .

Since we are assuming that mE | L, GE(L) must be an index 2 subgroup of GL2(Z/LZ). Thus,
we have

(53) |GE(L)| =
1

2
·
∏
ℓα∥L

|GL2(Z/ℓαZ)| =
1

2
·
∏
ℓα∥L

ℓ4(α−1)|GL2(Z/ℓZ)|.

Along with Proposition 4.10 and Lemma 4.11, a short computation reveals that

Ccyc
E,n,k =

|GE(L) ∩Ψcyc
n,k(L)|

|GE(L)|
∏
ℓ∤mE

ℓα∥n

δcycE,n,k(ℓ
α)

∏
ℓ∤nmE

δcycE (ℓ)

= Ccyc
n,k

1 + τ cyc
1

5
∏

ℓ|Lodd

ℓ∤n

(|GL2(Z/ℓZ)| − 1)

 .

Now we move on to the Koblitz case. By Lemma 5.4, we have |Y prime
2α,+ | − |Y

prime
2α,− | = −τ23α−2.

Hence, by (52), a simple calculation reveals that |GE(L) ∩Ψprime
n,k (L)| equals

1

2

|Ψprime
n,k (L)|+

∏
ℓα∥L

(|Y prime
ℓα,+ | − |Y

prime
ℓα,− |)



=
1

2

 ∏
ℓα∥(L,n)
ℓ|k−1

ℓ3(α−1)(ℓ3 − ℓ2 − ℓ)
∏

ℓα∥(L,n)
ℓ∤k−1

ℓ3(α−1)(ℓ3 − ℓ2 − 2ℓ)
∏
ℓ|L
ℓ∤n

ℓ(ℓ3 − 2ℓ2 − ℓ+ 3)

−23α−2τ
∏

ℓα|(n,Lodd)
ℓ|k−1

ℓ3(α−1)(ℓ3 − ℓ2 − ℓ)
∏

ℓα|(n,Lodd)
ℓ∤k−1

(
k

ℓ

)
ℓ3(α−1)(ℓ3 − ℓ2 − 2ℓ)

∏
ℓ|Lodd

ℓ∤n

ℓ



=
1

2

∏
ℓα∥L

ℓ3(α−1)
∏

ℓ|(L,n)
ℓ|k−1

(ℓ3 − ℓ2 − ℓ)
∏

ℓ|(L,n)
ℓ∤k−1

(ℓ3 − ℓ2 − 2ℓ)

∏
ℓ|L
ℓ∤n

ℓ(ℓ3 − 2ℓ2 − ℓ+ 3) + τprime
∏
ℓ|L
ℓ∤n

ℓ

 .

Finally, by Proposition 4.4, Lemma 4.5, (51), and (53), we get

Cprime
E,n,k =

|GE(L) ∩Ψprime
n,k (L)|

|GE(L)| ·
∏

ℓ|L(1− 1/ℓ)

∏
ℓ∤mE

ℓα∥n

δprime
E,n,k(ℓ

α)

1− 1/ℓ

∏
ℓ∤nmE

δprime
E (ℓ)

1− 1/ℓ

https://doi.org/10.4153/S0008414X25101156 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101156


34 LEE, MAYLE, AND WANG

= Cprime
n,k

1 +

τprime ·
∏
ℓ|L
ℓ∤n

ℓ

∏
ℓ|L
ℓ∤n

ℓ(ℓ3 − 2ℓ2 − ℓ+ 3)

 = Cprime
n,k

1 +
τprime∏

ℓ|L
ℓ∤n

(ℓ3 − 2ℓ2 − ℓ+ 3)

 .

This completes the proof of Theorem 1.7.

6. On the Koblitz constant for non-Serre curves

6.1. Bounding the Koblitz constant for non-CM, non-Serre curves. In this subsection, we

will determine an upper bound for Cprime
E,n,k in the case of non-CM, non-Serre curves.

Let E/Q be a non-CM, non-Serre curve, defined by the model (4), of adelic level mE . Let L be
defined as in (7). Then we write L = L1L2 such that L2 is the product of prime powers ℓα ∥ L with
ℓ ̸∈ {2, 3, 5} and GE(ℓ) ≃ GL2(Z/ℓZ). By [16, Appendix, Theorem 1], GE(L2) ≃ GL2(Z/L2Z). Let
ϖ : GL2(Z/LZ)→ GL2(Z/L2Z) be the natural reduction map. Note that

ϖ
(
GE(L) ∩Ψprime

n,k (L)
)
⊆ GE(L2) ∩Ψprime

n,k (L2).

Since ϖ is a surjective group homomorphism, we have

δprime
E,n,k(L) =

∣∣∣GE(L) ∩Ψprime
n,k (L)

∣∣∣
|GE(L)|

≤

∣∣∣ϖ−1
(
GE(L2) ∩Ψprime

n,k (L2)
)∣∣∣

|ϖ−1(GE(L2))|
=

∣∣∣GE(L2) ∩Ψprime
n,k (L2)

∣∣∣
|GE(L2)|

= δprime
E,n,k(L2).

(54)

Since ρE,L2 is surjective, we apply the same argument as in the proof of Lemma 4.5 and obtain

δprime
E,n,k(L2)∏

ℓ|L2
(1− 1/ℓ)

≤ 1.

Before proceeding to bound the constant Cprime
E,n,k , we first state a standard analytic result.

Lemma 6.1. For any positive integer M , we have∏
ℓ|M

(
1− 1

ℓ

)−1

≪ max{1, log logM}.

Proof. Follows from Mertens’ theorem [44, p. 53, (15)]. See [62, p. 767] for the argument. □

From Lemma 4.5, Lemma 6.1, (32), (36), and (54), we obtain

Cprime
E,n,k =

δprime
E,n,k(L)∏

ℓ|L(1− 1/ℓ)

∏
ℓα∥n
ℓ∤mE

δprime
E,n,k(ℓ

α)

1− 1/ℓ

∏
ℓ∤nmE

δprime
E,n,k(ℓ)

1− 1/ℓ

≤ 1∏
ℓ|L1

(1− 1/ℓ)
·

δprime
E,n,k(L2)∏

ℓ|L2
(1− 1/ℓ)

≤
∏
ℓ|L1

1

1− 1/ℓ
≪ max{1, log log rad(L1)}.

(55)

Our next task is to bound rad(L1) in terms of a and b appearing in the short Weierstrass model
(4) of E. Write jE ∈ Q to denote the j-invariant of E and h := h(jE) for the Weil height of jE . If
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ℓ | L1, then either ℓ ≤ 5 or ρE,ℓ is not surjective. By the main theorem of [41], there exist absolute

constant κ and λ for which ρE,ℓ is surjective for all ℓ > κ(max{1, h})λ. Since rad(L1) is squarefree,
we have

rad(L1) ≤ 30
∏

ℓ≤κ(max{1,h})λ
ℓ

=⇒ log rad(L1)≪
∑

ℓ≤κ(max{1,h})λ
log ℓ≪ (max{1, h})λ logmax{1, h}.(56)

Since E is given by the model (4), we have that

(57) h = h(jE)≪ logmax{|a|3, |b|2}.
Combining (55), (56), and (57), we obtain the following result.

Proposition 6.2. Let E/Q be a non-CM, non-Serre curve given by (4). Then we have

Cprime
E,n,k ≪ log logmax{|a|3, |b|2}.

6.2. Bounding the Koblitz constant for CM curves. In this subsection, we focus on CM

elliptic curves E/Q. The goal is to show that the constant Cprime
E,n,k is bounded independent of the

choice of the CM curve (Proposition 6.7). We keep the notation from Section 2.3.
Let E/Q be an elliptic curve with CM by an order O in an imaginary quadratic field K =

Q(
√
−D). Let p be a prime of Koblitz reduction for E/Q. Since [K : Q] = 2, the prime p either

splits completely, stays inert, or ramifies over K/Q.
If p does not split over K/Q, then by Deuring’s criterion [22], p is a supersingular prime for E

and we have ap(E) = 0. Therefore,

|Ẽp(Fp)| = p+ 1,

which is an even number if p > 2. Thus, an odd supersingular prime cannot be a prime of Koblitz
reduction for E.

Now suppose p splits completely in K and let p be a prime lying above p. We consider two cases
depending on the value of D modulo 4. Following the notation of [58, Chapter 2.2], when D ≡ 1, 2
(mod 4), let M,N ∈ Z be such that p is generated by M + N

√
−D for some M,N ∈ Z. In this

case, the Frobenius trace satisfies ap(E) = 2M , so |Ẽp(Fp)| = p+ 1− ap(E) is always even for odd

primes p. Therefore, πprime
E (x) is uniformly bounded.

On the other hand, if D ≡ 3 (mod 4), then we can letM,N ∈ Z be such thatM+N(1+
√
−D)/2

generates p. Let us define a binary quadratic form

fD(x, y) = x2 + xy +

(
1 +D

4

)
y2 ∈ Z[x, y].

Then, one can check

p = NK/Q(p) = fD(M,N) and |Ẽp(Fp)| = fD(M − 1, N).

Thus, we see that this is related to studying integer pairs (M,N) ∈ Z2 for which both fD(M,N) and
fD(M −1, N) are primes. This setup is a special case of the multivariate Bateman–Horn conjecture
[6], which generalizes the Hardy–Littlewood conjecture to the setting of several variables [28].

This idea can be used to note additional CM curves for which πprime
E (x) is bounded. Suppose

D ≡ 7 (mod 8). (In fact, K = Q(
√
−7) is the only CM field satisfying the property.) A direct

calculation shows that there are no integer pairs (M,N) for which both fD(M,N) and fD(M−1, N)

are odd, and thus prime. Consequently, for this curve πprime
E (x) is uniformly bounded. An alternative
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way to see this is to observe that every elliptic curve E with CM field Q(
√
−7) has torsion subgroup

Z/2Z.
We now turn to our original formulation of the prime-counting function. Note that Fp ≃ Fp and

the Ẽp is isomorphic to Ẽp as an elliptic curve over the base field. In particular,

|Ẽp(Fp)| = |Ẽp(Fp)|.
Thus, we obtain

πprime
E (x;n, k) := #{p ≤ x : p ∤ NE , |Ẽp(Fp)| is prime, p ≡ k (mod n)}

= #{p ≤ x : p ∤ NE , |Ẽp(Fp)| is prime, p splits over K/Q, p ≡ k (mod n)}+O(1)

=
1

2
#{p : NK/Q(p) ≤ x,NK/Q(p) ∤ NE , |Ẽp(Fp)| is prime,

NK/Q(p) is a rational prime, NK/Q(p) ≡ k (mod n)}+O(1).

The Koblitz conjecture in arithmetic progressions for CM elliptic curves can be formulated as
follows:

Conjecture 6.3. Let E/Q be an elliptic curve with CM by an order O in an imaginary quadratic
field K. Let mE be as in Lemma 2.6, n be a positive integer, and k be an integer coprime to n.

Then there exists a constant Cprime
E/K,n,k defined in (62) such that

(58) πprime
E (x;n, k) ∼

Cprime
E/K,n,k

2
· x

log2 x
as x→∞.

If the constant vanishes, we interpret (58) as stating that there are only finitely many primes p ≡ k
(mod n) of Koblitz reduction for E.

Comparing with Conjecture 1.6, we have

(59) Cprime
E,n,k =

Cprime
E/K,n,k

2
,

where Cprime
E/K,n,k is defined in (60).

We now introduce some notation used to determine the constant Cprime
E/K,n,k. For a positive integer

m, let us fix a Z/mZ-basis of O/mO. This allows us to view GL1(O/mO) = (O/mO)× a subgroup
of GL2(Z/mZ). Let det : (O/mO)× → (Z/mZ)× be the determinant map, defined in the natural
way. Fixing a standard orthogonal basis of O/mO, N is identified with the determinant map. Thus,
drawing a parallel from (34), we are led to define

Ψprime
K,n,k(m) =

{
g ∈ (O/mO)× : det(g − 1) ∈ (Z/mZ)×,det g ≡ k (mod gcd(m,n))

}
.

Observe that ρE,m(Frobp) ∈ GE(m) ∩Ψprime
K,n,k(m) if and only if |Ẽp(Fp)| is invertible in Z/mZ and

det(ρE,m(Frobp)) ≡ k (mod gcd(m,n)). Hence, we are led to define

δprime
E/K,n,k(m) :=

∣∣∣GE(m) ∩Ψprime
K,n,k(m)

∣∣∣
|GE(m)|

.

Drawing a parallel from (35), we set

(60) Cprime
E/K,n,k

:= lim
m→∞

δprime
E/K,n,k(m)∏
ℓ|m(1− 1/ℓ)

,
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where the limit is taken over all positive integers ordered by divisibility.

Lemma 6.4. Let E/Q be an elliptic curve with CM by an order O of conductor f in an imaginary
quadratic field K. Let mE be as in Lemma 2.6. and χ := χK be given as in (17). For each rational
prime ℓ ∤ fmE and ℓ ∤ n, we have

δprime
E/K,n,k(ℓ)

1− 1/ℓ
= 1− χ(ℓ) ℓ2 − ℓ− 1

(ℓ− χ(ℓ))(ℓ− 1)2
.

For each prime ℓ ∤ fmE and ℓα ∥ n, we have

δprime
E/K,n,k(ℓ

α)

1− 1/ℓ
=


1

ϕ(ℓα)

(
1− χ(ℓ) 1

(ℓ− χ(ℓ))(ℓ− 1)

)
if ℓα ∥ n and k ≡ 1 (mod ℓ),

1

ϕ(ℓα)

(
1− χ(ℓ) ℓ+ 1

(ℓ− χ(ℓ))(ℓ− 1)

)
if ℓα ∥ n and k ̸≡ 1 (mod ℓ).

Proof. First, we consider the case where ℓ ∤ nfmE . By Lemma 2.6, we have GE(ℓ) ≃ (OK/ℓOK)×

and the condition det g ≡ k (mod gcd(ℓ, n)) trivially holds. Hence

GE(ℓ) ∩Ψprime
K,n,k(ℓ) = {g ∈ (OK/ℓOK)× : det(g − 1) ̸≡ 0 (mod ℓ)}.

Therefore, by Corollary 3.6, we get

|Ψprime
K,n,k(ℓ)| = (ℓ− 2)2 or |Ψprime

K,n,k(ℓ)| = ℓ2 − 2

depending on whether ℓ splits or is inert in K.
Now we assume ℓα ∥ n. Similarly, we have GE(ℓ

α) ≃ (OK/ℓ
αOK)× and hence

GE(ℓ
α) ∩Ψprime

K,n,k(ℓ
α) = Ψprime

K,n,k(ℓ
α).

Then the condition det g ≡ k (mod gcd(ℓα, n)) becomes det g ≡ k (mod ℓα). So we get

Ψprime
K,n,k(ℓ

α) =
{
g ∈ (OK/ℓ

αOK)× : det(g − 1) ̸≡ 0 (mod ℓ), det g ≡ k (mod ℓα)
}
.

If k ≡ 1 (mod ℓ), then by Corollary 3.6,

|Ψprime
K,n,k(ℓ

α)| = ℓα−1(ℓ− 2) or |Ψprime
K,n,k(ℓ

α)| = ℓα

depending on whether ℓ splits or is inert in K. If k ̸≡ 1 (mod ℓ), then

|Ψprime
K,n,k(ℓ

α)| = ℓα−1(ℓ− 3) or |Ψprime
K,n,k(ℓ

α)| = ℓα−1(ℓ+ 1),

depending on whether ℓ splits or is inert in K. □

For a CM elliptic curve E/Q with CM by an order O of conductor f , we set

(61) L :=
∏

ℓ|fmE

ℓαℓ , where αℓ =

{
vℓ(n) if ℓ | n,
1 otherwise.

To save notation, we will write ℓα instead of ℓαℓ .

Proposition 6.5. Let E/Q have a CM by an order O of conductor f in an imaginary quadratic
field K. Let χ := χK be as given in (17). Let mE be as in Lemma 2.6. Let L be defined as in

(61). Fix a positive integer n. Then, δprime
E/K,n,k(·), as an arithmetic function, satisfies the following

properties:

(1) Let L | L′ | L∞. Then, δprime
E/K,n,k(L) = δprime

E/K,n,k(L
′);
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(2) Let ℓα be a prime power and d be a positive integer with (ℓ, Ld) = 1. Then, δprime
E/K,n,k(dℓ

α) =

δprime
E/K,n,k(d) · δ

prime
E/K,n,k(ℓ

α).

(3) Let ℓα ∥ n and (ℓ, L) = 1. Then, for any β > α, δprime
E/K,n,k(ℓ

β) = δprime
E/K,n,k(ℓ

α). Further, if

ℓ ∤ nL, we have δprime
E/K,n,k(ℓ

β) = δprime
E/K,n,k(ℓ).

Therefore, (60) can be expressed as

(62) Cprime
E/K,n,k =

δprime
E/K,n,k(L)∏
ℓ|L(1− 1/ℓ)

·
∏

ℓ∤fmE

ℓα∥n

δprime
E/K,n,k(ℓ

α)

1− 1/ℓ
·
∏

ℓ∤nfmE

(
1− χ(ℓ) ℓ2 − ℓ− 1

(ℓ− χ(ℓ))(ℓ− 1)2

)
.

Proof. One can prove (1)-(3) following the same strategy as in the proof of Proposition 4.4. One
only needs to replace mE by fmE and GL2(Z/ℓαZ) by (O/ℓαO)×. Therefore, from these results,
we get

Cprime
E/K,n,k =

δprime
E/K,n,k(L)∏
ℓ|L(1− 1/ℓ)

·
∏

ℓ∤fmE

ℓα∥n

δprime
E/K,n,k(ℓ

α)

1− 1/ℓ
·
∏

ℓ∤nfmE

δprime
E/K,n,k(ℓ)

1− 1/ℓ
.

Now, we see that (62) follows from Lemma 6.4. □

Remark 6.6. Given that ℓ ∤ nfmE , we observe that

δprime
E/K,n,k(ℓ)

1− 1/ℓ
= 1− χK(ℓ)

ℓ2 − ℓ− 1

(ℓ− χK(ℓ))(ℓ− 1)2

=

(
1− χK(ℓ)

ℓ
+O

(
1

ℓ2

))
=

(
1− χK(ℓ)

ℓ

)(
1 +O

(
1

ℓ2

))
.

Thus, we have

∏
ℓ∤fmEn

(
1− χK(ℓ)

ℓ2 − ℓ− 1

(ℓ− χK(ℓ))(ℓ− 1)2

)
=

∏
ℓ∤fmEn

(
1− χK(ℓ)

ℓ

)(
1 +O

(
1

ℓ2

))
.

Note that this is a product of an Euler factorization of L(s, χK)−1 at s = 1 (with some correction
factor) and an absolutely convergent product. Since L(1, χK) ̸= 0 for a non-trivial character χK ,
the infinite product in (62) is conditionally convergent.

By (58), (59), Lemma 6.4, and Proposition 6.5, we can explicitly formulate the conjectural
Koblitz constant for CM elliptic curves. Let n = n1n2 where n1 | (fmE)

∞ and (n2, fmE) = 1. (In
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particular, n2 is the product of ℓα for which ℓα ∥ n with ℓ ∤ L.) We have

Cprime
E,n,k =

1

2
· 1

ϕ(n2)
·
δprime
E/K,n,k(L)∏
ℓ|L(1− 1/ℓ)

·
∏
ℓα∥n
ℓ∤L

ℓ|k−1

(
1− χK(ℓ)

ℓ

(ℓ− χK(ℓ))(ℓ− 1)

)

·
∏
ℓα∥n
ℓ∤L

ℓ∤k−1

(
1− χK(ℓ)

ℓ+ 1

(ℓ− χK(ℓ))(ℓ− 1)

)

·
∏

ℓ∤nfmE

(
1− χK(ℓ)

ℓ2 − ℓ− 1

(ℓ− χK(ℓ))(ℓ− 1)2

)
.

(63)

Proposition 6.7. For any CM elliptic curve E/Q, we have

Cprime
E,n,k ≪n 1.

Proof. Note that the finite product terms in (63) are all bounded by 1. By definition, we have

δprime
E/K,n,k(L) ≤ 1,

and hence,

δprime
E/K,n,k(L)∏
ℓ|L(1− 1/ℓ)

≪ max{1, log log rad(fmE)} ≪ 1,

by Proposition 2.8 and Lemma 6.1. Finally, the infinite product, up to a correction factor depending
on n, is universally bounded, since there are only finitely many possibilities for K. □

7. Moments

The goal of this section is to complete the proof of Theorem 1.9. We begin by setting forth the
general strategy. Let x > 0 and A = A(x) and B = B(x) be positive real-valued functions such
that A(x)→∞ and B(x)→∞ as x→∞. Let Ea,b be an elliptic curve given by the model

Ea,b : Y 2 = X3 + aX + b,

for some a, b ∈ Z and 4a3 + 27b2 ̸= 0. Define

F := F(x) =
{
Ea,b : |a| ≤ A, |b| ≤ B

}
.

Our objective is to compute, for any positive integer t, the t-th moment

(64)
1

|F|
∑
E∈F

∣∣CX
E,n,k − CX

n,k

∣∣t ,
where X denotes either “cyc” or “prime”. We know that (64) can be expressed as

1

|F|

 ∑
E∈F

E is Serre

∣∣CX
E,n,k − CX

n,k

∣∣t + ∑
E∈F

E is non-CM
E is non-Serre

∣∣CX
E,n,k − CX

n,k

∣∣t + ∑
E∈F

E is CM

∣∣CX
E,n,k − CX

n,k

∣∣t
 ,

where “E is Serre” indicates that “E is a Serre curve”, etc. In order to bound (64), we are going
to bound each of the three sums separately.
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For the first sum, recall that we proved explicit formulas for the constants CX
E,n,k for Serre curves

in Section 5 and found that these constants closely align with their average counterparts CX
n,k. For

the second and third sums, we will use the fact due to Jones [31] that non-Serre curves are rare. For
the cyclicity case, we will use the fact that Ccyc

E,n,k is bounded above by 1/ϕ(n), which follows from

(48) (and is sensible, since under GRH, Ccyc
E,n,k describes the density of some subset of the primes

congruent to k modulo n). However, for the Koblitz case it is not clear that Cprime
E,n,k should be

bounded by a constant independent of E, so we will instead employ the bounds of Proposition 6.2
and Proposition 6.7.

We first deal with the moments computation for Serre curves. Let Ea,b/Q be a Serre curve defined
by the model

Ea,b : Y 2 = X3 + aX + b,

of adelic level mEa,b . Let ∆′
a,b denote the squarefree part of the discriminant of Ea,b. Recall that

mEa,b is only supported by 2 and the prime factors of ∆′
a,b (see Proposition (2.4)). Set

LEa,b =
|∆′

a,b|
gcd(|∆′

a,b|, n)
.

By Theorem 1.7, we have∣∣∣Ccyc
Ea,b,n,k

− Ccyc
n,k

∣∣∣ ≤ 1

5
Ccyc
n,k

∏
ℓ|mEa,b
ℓ∤2n

1

ℓ4 − ℓ3 − ℓ2 + ℓ− 1
≪ 1

rad(mEa,b)3
≪ 1

L3
Ea,b

,

∣∣∣Cprime
Ea,b,n,k

− Cprime
n,k

∣∣∣ ≤ Cprime
n,k

∏
ℓ|mEa,b
ℓ∤2n

1

ℓ3 − 2ℓ2 − ℓ+ 3
≪ 1

rad(mEa,b)2
≪ 1

L2
Ea,b

.

Let us set rcyc = 3 and rprime = 2. Then, we obtain∣∣∣CX
Ea,b,n,k − C

X
n,k

∣∣∣≪ 1

LrX
Ea,b

=

gcd
(
|∆′

a,b|, n
)

|∆′
a,b|

rX

,

given that Ea,b/Q is a Serre curve.
Observing that |F| ∼ 4AB as x→∞, we have for any A,B,Z ≥ 2 and t ≥ 1,

1

|F|
∑
E∈F

E is Serre

∣∣CX
E,n,k − CX

n,k

∣∣t ≪ 1

AB

∑
|a|≤A
|b|≤B
∆′

a,b ̸=0

|∆′
a,b|

(|∆′
a,b|,n)

<Z

1 +
1

AB

∑
|a|≤A
|b|≤B
∆′

a,b ̸=0

|∆′
a,b|

(|∆′
a,b|,n)

≥Z

1

ZrX t
.(65)

Lemma 7.1. With the notation above, we have∑
|a|≤A
|b|≤B
∆′

a,b ̸=0

|∆′
a,b|

(|∆′
a,b|,n)

<Z

1≪ n logB ·A · log7A · Z +B.

Proof. It follows similarly to the argument given in [30, Section 4.2]. □
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Let Z =
(
B/n logB log7A

)1/(rX t+1)
. By (65) and Lemma 7.1, we see that

1

|F|
∑
E∈F

E is Serre

∣∣CX
E,n,k − CX

n,k

∣∣t ≪ (
1

A
+
nZ logB log7A

B

)
+

1

ZrX t
≪
(
n logB log7A

B

) rX t

rX t+1

.(66)

By [30, Theorem 25] and (66), there exists γ > 0 such that for any positive integer t,

1

|F|
∑
E∈F

∣∣∣Ccyc
E,n,k − C

cyc
n,k

∣∣∣t ≪t max

{(
n logB log7A

B

) 3t
3t+1

,
logγ(min{A,B})√

min{A,B}

}
.

This completes the proof for the cyclicity case.
For primes of Koblitz reduction, by Proposition 6.2, Proposition 6.7, and [30, Theorem 25], there

exists γ > 0 such that for any positive integer t,

1

|F|
∑
E∈F

E is non-CM
E is non-Serre

∣∣∣Cprime
E,n,k − C

prime
n,k

∣∣∣t ≪t log log(max{A3, B2})t log
γ(min{A,B})√
min{A,B}

,

1

|F|
∑
E∈F

E is CM

∣∣∣Cprime
E,n,k − C

prime
n,k

∣∣∣t ≪t,n
logγ(min{A,B})√

min{A,B}
.

Therefore, we obtain the inequality claimed in the statement of Theorem 1.9.

8. Numerical examples

8.1. Example 1. Let E be the elliptic curve with LMFDB [40] label 1728.w1, which is given by

E : y2 = x3 + 6x− 2.

From the curve’s LMFDB page, we note that it is a Serre curve with adelic level mE = 6. Zywina
[62, Section 5] computed the Koblitz constant of E,

Cprime
E ≈ 0.561296.

Running either our Magma functions KoblitzAP or SerreCurveKoblitzAP [38] on E with modulus
n = 6, we find that

Cprime
E,6,1 = Cprime

E and Cprime
E,6,5 = 0.

This result can be verified “manually” by studying the mod 6 Galois image of E, as we now discuss.
The mod 6 Galois image GE(6) is an index 2 subgroup of GL2(Z/6Z) generated by

GE(6) =

〈(
1 1
0 5

)
,

(
1 0
5 5

)
,

(
5 0
5 1

)〉
.

From this description, we compute that

{trM (mod 6) :M ∈ GE(6) and detM ≡ 5 (mod 6)} = {0, 2, 4} .
Thus, if p is a good prime for E that is congruent to 5 modulo 6, then

|Ẽp(Fp)| ≡ p+ 1− tr ρE,6(Frobp) ≡ 1 + 1− 0 ≡ 0 (mod 2).

Hence |Ẽp(Fp)| is even for all good primes p congruent to 5 modulo 6. By Hasse’s bound and

computing a few values of |Ẽp(Fp)|, we find that |Ẽp(Fp)| is never 2 for such primes p. Thus, the

only good primes p for which |Ẽp(Fp)| is prime are congruent to 1 modulo 6.
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8.2. Example 2. Let E be the elliptic curve with LMFDB label 200.e1, which is given by

E : y2 = x3 + 5x− 10.

From this curve’s LMFDB page, we learn that E is a Serre curve with adelic level mE = 8. Running
our Magma function SerreCurveKoblitzAP on E with n = 8, we find that

Cprime
E,8,1 = Cprime

E,8,3 = 1
2C

prime
E and Cprime

E,8,5 = Cprime
E,8,7 = 0

where

Cprime
E ≈ 0.505166.

Running our Magma function SerreCurveCyclicityAP on E with n = 8, we find that

Ccyc
E,8,1 = Ccyc

E,8,3 =
1
5C

cyc
E and Ccyc

E,8,5 = Ccyc
E,8,7 =

3
10C

cyc
E .

where

Ccyc
E ≈ 0.813752.

The values obtained above align well with numerical data for the curve. Among all primes of
Koblitz reduction for E up to 107, 11114 are congruent to 1 modulo 8 and 11259 are congruent to
3 modulo 8; none are congruent to 5 or 7 modulo 8. Among all primes of cyclic reduction for E
up to 107, 108096 are congruent to 1 modulo 8, 108251 are congruent to 3 modulo 8, 162234 are
congruent to 5 modulo 8, and 162286 are congruent to 7 modulo 8.

8.3. Example 3. Let E be the elliptic curve with LMFDB label 864.a1, which is given by

E : y2 = x3 − 216x− 1296.

This curve does not have complex multiplication and is not a Serre curve. Its adelic index is 24 and
adelic level is mE = 12. Running our Magma function KoblitzAP on E with n = 12, we find that

Cprime
E,12,1 =

3
7C

prime
E , Cprime

E,12,5 = 0, Cprime
E,12,7 =

4
7C

prime
E , Cprime

E,12,11 = 0

where

Cprime
E ≈ 0.785814.

Running our Magma function CyclicityAP on E with n = 12, we find that

Ccyc
E,12,1 =

3
19C

cyc
E , Ccyc

E,12,5 =
6
19C

cyc
E , Ccyc

E,12,7 =
4
19C

cyc
E , Ccyc

E,12,11 =
6
19C

cyc
E .

where

Ccyc
E ≈ 0.789512.

As with the previous example, these values agree well with the numerical data for the curve, which
is available through our GitHub repository [38].

8.4. Example 4. Let n = 6 and E be the CM elliptic curve with LMFDB label 432.d1 defined by

(67) y2 = x3 − 4.

We keep the notation from Section 2.3. From the LMFDB, we know that

(1) E has CM by the maximal order O = Z
[
1+

√
−3

2

]
of the CM field K = Q(

√
−3).

(2) E has discriminant ∆E = −2833. So 2 and 3 are the only primes of bad reduction for E.
(3) The map

ρE,ℓ : Gal(K/K) −→ (O/ℓO)×

is surjective for all primes ℓ.
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Invoking the proof of [62, Proposition 2.7], we see that mE is only supported by 2 and 3. Further,

f = 1, L = n1 = n = 6, n2 = 1.

Therefore, for k coprime to 6, by (63),

Cprime
E,6,k =

3

2
·
|GE(6) ∩Ψprime

K,6,k(6)|
|GE(6)|

·
∏
ℓ∤6

(
1− χK(ℓ)

ℓ2 − ℓ− 1

(ℓ− χK(ℓ))(ℓ− 1)2

)
.

By adapting Suther land’s Galrep code [56], we compute GE(6) in Magma and find that∣∣∣Ψprime
K,6,k(6) ∩GE(6)

∣∣∣ = {2 if k ≡ 1 (mod 6),

0 if k ≡ 5 (mod 6).

Thus, we conclude that

Cprime
E,6,1 = Cprime

E and Cprime
E,6,5 = 0

where

Cprime
E =

1

2
·
∏
ℓ∤6

(
1− χK(ℓ)

ℓ2 − ℓ− 1

(ℓ− χK(ℓ))(ℓ− 1)2

)
≈ 0.505448.

In fact, we can verify that Cprime
E,6,5 = 0 using Deuring’s criterion. If p is a rational prime such that

p ≡ 5 (mod 6), then p is inert in the CM field Q(
√
−3). By Deuring’s criterion, p is supersingular,

and hence |Ẽp(Fp)| = p + 1. Since p is an odd prime, we see that p cannot be a prime of Koblitz
reduction for E.
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