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Abstract

Background. Late-life depression (LLD) predisposes individuals to cognitive decline, often
leading to misdiagnoses as mild cognitive impairment (MCI). Voxel-based morphometry
(VBM) can distinguish the profiles of these disorders according to gray matter (GM) volumes.
We integrated findings from previous VBM studies for comparative analysis and extended the
research into molecular profiles to facilitate inspection and intervention.
Methods. We comprehensively searched PubMed and Web of Science for VBM studies that
compared LLD and MCI cases with matched healthy controls (HCs) from inception to 31st
December 2023. We included 13 studies on LLD (414 LLDs, 350 HCs) and 50 on MCI (1878
MCIs, 2046 HCs). Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) was
used for voxel-based meta-analysis to assess GM atrophy, spatially correlated with neuro-
psychological profiles. We then used multimodal and linear-model analysis to assess the simi-
larities and differences in GM volumetric changing patterns. Partial least squares (PLS)
regression and gene enrichment were employed for transcription-neuroimaging associations.
Results. GM volumes in the left hippocampus and right parahippocampal gyrus are more
affected in MCI, along with memory impairment. MCI was spatially correlated with a
more extensive reduction in the levels of neurotransmitters and a severe downregulation of
genes related to cellular potassium ion transport and metal ion transmembrane transporter
activity.
Conclusion. Compared to LLD, MCI exhibited more GM atrophy in the hippocampus and
parahippocampal gyrus and lower gene expression of ion transmembrane transport. Our find-
ings provided imaging-transcriptomic-genetic integrative profiles for differential diagnosis
and precise intervention between LLD and MCI.

Introduction

Late-life depression (LLD), depression diagnosed in older adults, affects approximately five
million older adults over the age of 65 years (Zivin, Wharton, & Rostant, 2013). LLD is asso-
ciated with severe health outcomes, including a high risk of mortality, cognitive deficits, and
poor quality of life (Wei et al., 2019). Compared to regular major depressive disorder (MDD),
cognitive deficits in LLD persist despite clinical recovery or psychopathological remission
(Riddle et al., 2017); moreover, there is a decrease in the threshold of dementia due to under-
lying neurological and biomolecular abnormalities (Kuo, Lin, & Lane, 2021; Ly et al., 2021).
Therefore, the timely and accurate diagnosis of LLD is important for public health.

LLD is often underdiagnosed or misdiagnosed as mild cognitive impairment (MCI) (Devita
et al., 2022), a neurodegenerative disease characterized by memory impairment (Petersen &
Negash, 2008) with a morbidity rate of over 15.56% in older adults (Bai et al., 2022). Both con-
ditions commonly coexist (Ismail et al., 2017), LLD and MCI also share entwined neurodegen-
erative symptoms in cognition, such as memory impairment and execution deficits (Mukku
et al., 2021; Panza et al., 2023). Population-based research has shown that both disorders
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are at least predisposing (Hu et al., 2020) and aggravating
(Cooper, Sommerlad, Lyketsos, & Livingston, 2015) factors of
each other. Some scientists even assume that there might be an
LLD-MCI-dementia continuum in which depressive symptoms
act as an early manifestation rather than a risk factor
(Invernizzi, Simoes Loureiro, Kandana Arachchige, & Lefebvre,
2021). However, given the differences in prognosis and treatment
(Association, 2013; Sperling et al., 2011), it is crucial to avoid mis-
diagnoses. The application of gray matter (GM) analysis
(Minkova et al., 2017) combined with co-localized phenotypic
traits, transcriptomic signatures, and genetic features are valuable
tools for conceptualizing and studying the etiological basis of
these disorders (Bao et al., 2023; Verheijen & Sleegers, 2018).

Previous studies have comprehensively enhanced our under-
standings of LLD and MCI separately, revealing GM volume
reduction in frontostriatal-limbic regions in LLD (Agudelo,
Aizenstein, Karp, & Reynolds, 2015) and the wide-spread GM
atrophy in MCI involving the hippocampus and parahippocampal
gyrus (Chen et al., 2020). Zackova, Jani, Brazdil, Nikolova, and
Mareckova (2021) further explored the GM correlations between
MDD and MCI, entailing shared volumetric reductions in the
insula and superior temporal gyrus with other disease-specific
structural changes. However, comparative studies between the
two prevalent senile diseases are limited, hindering the clear distinc-
tion and early intervention in older adults. Additionally, to bridge
the gap between structural findings and transcriptome (Fornito,
Arnatkeviciute, & Fulcher, 2019), which could indicate potential
diagnostic and therapeutic targets, it is necessary to conduct studies
on neuroimaging-associated neurotransmitters (Aquilani et al.,
2023; Jacobs, Baider, Goldzweig, Sapir, & Rottenberg, 2023) and
gene expression (Cai et al., 2021; Liu, Abdellaoui, Verweij, & van
Wingen, 2023), especially on neuronal processes such as synaptic
transmission, anabolic, and biosynthetic pathways. Therefore,
based on comparative changes in GM volume between MCI and
LLD, we conducted further research into neuroimaging-associated
neurotransmitters and transcriptomics.

To accurately and promptly differentiate between LLD and
MCI in clinical practice, we performed a meta-analysis to examine
the represented profiles in structure and gene expression. First,
previous VBM studies were integrated for GM atrophy patterns
and spatially correlated behavioral/disease profiles. Second, we
identified the common and distinct GM volumetric changing pat-
terns. Finally, based on the anatomical results, we decoded the
associated neurotransmitter systems and gene expression profiles.

Methods

Literature search and selection

Our meta-analysis was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) guidelines (Page et al., 2021). We systematically
searched the PubMed andWeb of Science databases from inception
to 31st December 2023, to identify VBM studies on GM changes in
LLD and MCI. The search strategy for LLD was (elder OR geriatric
OR [late life] OR [late onset] OR older OR [old age]) AND
depress* AND ([voxel-based morphometry] OR VBM). The search
strategy for MCI was ([mild cognitive impairment] OR MCI) AND
([voxel-based morphometry] OR VBM).

The studies included in this meta-analysis were required for (i)
original peer-reviewed studies; (ii) quantitative automated whole-
brain GM assessment performed using VBM; (iii) comparison of

the experimental group (i.e. MCI or LLD patients) to a matched
healthy control (HC) group; (iv) provision of results as coordi-
nates of activation foci in stereotactic space, either Montreal
Neurological Institute (MNI) or Talairach reference space; and
(v) selection of participants according to internationally recog-
nized diagnostic criteria. In contrast, we excluded studies with
(i) case reports; (ii) solely region-of-interest (ROI) analysis; (iii)
only functional magnetic resonance imaging (fMRI), positron
emission tomography (PET), electrophysiology; (iv) other psychi-
atric or neurological disorders, such as AD, vascular MCI (vMCI);
(v) comorbidity with any other neurological or neurodegenerative
diseases, such as Parkinson’s disease (PD), multiple sclerosis
(MS); and (vi) substantially overlapping patient populations
with other studies. All the diagnoses of depression relied on
DSM, and all the diagnoses of MCI also relied on DSM or reliable
clinical criteria from Petersen et al. (2001) or the National
Institute on Aging and Alzheimer’s Association (NIA-AA).
Detailed diagnostic tools and criteria are shown in online
Supplementary Tables S1 and S2. In LLD studies, although ‘late-
life’ is generally defined as 65 years or older, various LLD/MDD
cut-offs (commonly ranging from 50 to 75 years) are currently
acceptable in research (Baba et al., 2022). In MCI studies, a cut-off
age is not part of the diagnostic criteria and therefore barely used
in studies, but the overall prevalence has been estimated to be in
the 12 to 18% range in persons over 60 years (Petersen, 2016).
In our study, the mean age of LLDs was 69.97 and the mean
age of MCIs was 71.57, which was acceptable for old age in litera-
ture on this topic.

To measure the quality of studies we included in the
meta-analysis in consideration of reliability, we assessed the qual-
ity of each using the Newcastle-Ottawa scale (NOS) (Stang, 2010),
included those with good (9–8) or moderate (7–5) quality, and
excluded those with poor quality (4–0). In terms of comparability,
we only included those studies with age-matched participants.
The use of matched gender or education was not deemed neces-
sary; however, we allotted one more score for matched studies. We
did not consider handedness.

Initially, 775 MCI studies and 92 LLD studies were found dur-
ing the systematic search. After carefully screening the studies
according to their abstracts and full texts, we retained those stud-
ies that met the inclusion criteria. Among these, five MCI studies
(Du et al., 2022; Gupta, Kim, Kim, & Kwon, 2020; Huang et al.,
2023; van de Mortel, Thomas, van Wingen, & Alzheimer’s
Disease Neuroimaging, 2021; Xiong et al., 2023) obtained data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (http://adni.loni.usc.edu) and two LLD studies (Harada
et al., 2016, 2018) comprised participants that overlapped accord-
ing to the author. We only retained studies with the largest group
size for the meta-analysis. Regarding longitudinal studies, only
data collected at baseline was utilized. We included and recorded
studies that reported different subtypes, such as early/late MCI
and AD converter/non-converter, as different datasets.
We excluded the datasets of non-amnestic mild cognitive impair-
ment (naMCI) when it was divided from amnestic mild cognitive
impairment (aMCI) in consideration of consistency and specifi-
city. This is because aMCI was closer to the earlier concept of
MCI prior to updates (Petersen et al., 2014); moreover, it has
more distinct structural and cognitive patterns compared to het-
erogeneous naMCI (Du, Dang, Chen, Chen, & Zhang, 2023;
Qin et al., 2022), whose higher risk of progressing to AD makes
it the focus in research concerning LLD-MCI-dementia con-
tinuum (Invernizzi et al., 2021).
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Finally, we investigated 50 MCI studies with 55 datasets (1878
patients, 2046 HCs) and 13 LLD studies with 13 datasets (414
patients, 350 HCs). All of them were eligible for meta-analysis
(NOS ⩾ 5), in which ten MCI datasets and two LLD datasets
were classified as having good quality (NOS ⩾ 8) according to
NOS (online Supplementary Tables S1 and S2). The detailed
process of inclusion and exclusion is shown in the flow diagram
in Fig. 1.

Coordinate-based analysis

A voxel-based meta-analysis of neuroimaging studies was con-
ducted using seed-based d Mapping (formerly Signed
Differential Mapping) with Permutation of Subject Images
(SDM-PSI) software for Windows 64 bits (www.sdmproject.
com/). The voxel-based meta-analytic methods benefit from a
more exhaustive and unbiased inclusion of studies (Muller
et al., 2018; Radua & Mataix-Cols, 2012). SDM-PSI has been pro-
ven to be a conservative method that increases the statistical
power when there are multiple effects, and is distinct from
other current meta-analyses methods due to the use of effect
sizes, random-effects models, Freedman-Lane-based permuta-
tions, and threshold-free cluster enhancement (TFCE) statistics
(Albajes-Eizagirre, Solanes, Vieta, & Radua, 2019). To optimally
balance sensitivity and specificity (Albajes-Eizagirre et al., 2019),
the parameters were set using the modality of VBM-GM (anisot-
ropy = 1, isotropic FWHM= 20mm, mask = gray matter, voxel =
2 mm) and the default SDM threshold ( p < 0.05 with peak Z > 1
and a cluster extent >10 voxels). To validate the significant clus-
ters, we derived heterogeneity analysis using I2 statistics and
assessed publication bias by conducting Egger’s test and generat-
ing funnel plots. I2 < 50% was considered low heterogeneity
(Higgins, Thompson, Deeks, & Altman, 2003). Egger-p > 0.05
and visually symmetric funnel plots indicate non-significant pub-
lication bias.

We recorded each article’s peak coordinates and correspond-
ing statistics (t, z, or p values), with their software packages,
stereotactic spaces, and threshold according to the SDM tutorial.
First, we separately investigated the GM alteration within each
group (LLD v. HC or MCI v. HC). Second, we detected regions
with common GM atrophy by conducting Multimodal analysis
(Radua, Romeo, Mataix-Cols, & Fusar-Poli, 2013) and compared
the discrepant GM atrophy by conducting Linear model analysis
(Radua, van den Heuvel, Surguladze, & Mataix-Cols, 2010).
Third, the p values maps were used for further investigation.

Behavioral and disease decoding

Data taken from the BrainMap database (http://www.brainmap.
org/), which documents over 20 years of published functional
brain imaging studies, was used to separately decode the structural
changes in behavior and disease. Behavioral profiles span action,
cognition, emotion, interoception, and perception, while disease
profiles were generalized from neurological disorders according
to the International Classification of Diseases (ICD). Multi-
image Analysis GUI (Mango) (https://mangoviewer.com) was
used to compute and compare the fraction of coordinates falling
within the ROI with the fraction uniformly distributed (Lancaster
et al., 2010, 2011). Behavioral or disease association is indicated
when the difference between these fractions is significant (Z score
⩾ 3.0), viz Bonferroni corrected to an overall p value of 0.05 for all
behavior sub-domains (Lancaster et al., 2012).

Spatial correlation of receptor/transporter

JuSpace (https://github.com/juryxy/JuSpace) was used to quantify
the co-localization between disease and altered expression of
respective neurotransmitter systems based on the topographical
relationship. Unthresholded meta-analysis maps testing for
regions showing and those not showing convergence in the
meta-analyses were used for Pearman’s rank partial correlation

Figure 1. Flow diagram of inclusion and exclusion process of MCI (left) and LLD (right) studies.
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analysis with default settings (controlling for partial volume
effects and spatial autocorrelation using underlying gray matter
probability) (Dukart et al., 2021). We included receptor maps cov-
ering cholinergic, dopaminergic, GABAergic, glutamatergic, nor-
adrenergic, opioidergic, and serotonergic neurotransmission.
Receptor maps showing a significant association with respective
brain maps of reduced GM volume entered multiple linear regres-
sion analyses to test for specificity. Statistical significance was set
at p < 0.05 (FWE rate corrected) to control the rate of false posi-
tives in multiple comparisons (Glickman, Rao, & Schultz, 2014).

Transcription-neuroimaging association

The microarray-based gene expression data were acquired from
the Allen Human Brain Atlas (AHBA) database (Hawrylycz
et al., 2015). The gene expression data and Z-map of LLD and
MCI were preprocessed through a recommended pipeline
(Arnatkeviciute, Fulcher, & Fornito, 2019; Glasser et al., 2016),
with further details provided in the online Supplementary
Methods.

Partial least squares (PLS) regression (Abdi & Williams, 2013)
was employed to identify the transcriptional profiles associated
with abnormal GM volume in LLD and MCI. The PLS compo-
nents were ranked based on the variance explained between the
independent variable (gene expression matrix) and dependent
variable (case–control t vector). A spatial autocorrelation (SA)
corrected permutation test was adopted to examine whether the
R2 of the PLS component was significantly greater than that
expected by chance. For each significant component, the boot-
strapping method was used to correct estimation errors and
rank the contribution of the weight of each gene. We ranked
these genes descending by their corrected weight in significant
PLS components. GOrilla (http://cbl-gorilla.cs.technion.ac.il/)
was used for gene enrichment analysis, which identified enriched
GeneOntology (GO) terms (Eden, Navon, Steinfeld, Lipson, &
Yakhini, 2009). All ontology categories were considered, including
biological process, molecular function, and cellular components.

Significant enrichment was set to Benjamini-Hochberg false dis-
covery rate (FDR)-corrected q < 0.05 (Xia et al., 2022).

Results

Decoding GM alteration in LLD

We investigated 13 datasets on LLD (414 patients, 350 HCs).
Basic information, diagnostic tools and quality assessment for
each study, along with detailed demographic and clinical charac-
teristics, are shown in online Supplementary Table S1. We gained
a holistically balanced demographic profile by including only
studies with participants of similar ages, alongside accounting
for gender and education when evaluating study quality, which
facilitates a comprehensive and credible neurobiological insight
across the entire elderly population. Compared to HCs, patients
with LLD showed a decrease in GM volume in the right gyrus rec-
tus, left middle temporal gyrus, left inferior frontal gyrus (orbital
part), right anterior thalamic projections, left anterior cingulate/
paracingulate gyri, right insula, right median cingulate/paracingu-
late gyri, left insula, and left middle temporal gyrus (Fig. 2a,
online Supplementary Table S3). No regions with increased GM
volumes were observed. Heterogeneity analysis using I2 statistics
(1.60–35.04%) showed no significant variability between studies,
and quantitative assessment of Egger’s test ( p = 0.339–0.928)
showed no publication bias in all significant brain regions.

Regarding behavioral analysis, the obtained meta-analysis map
of LLD corresponds to executive function (Z = 4.44), working
memory (Z = 3.80), and motion vision (visual perception that
receives motor-related input) (Z = 3.03) (Fig. 2b). Regarding dis-
ease analysis, we found behavioral variant frontotemporal demen-
tia (bvFTD) (Z = 3.30) to be the most relevant disease (Fig. 2c).

Decoding GM alteration in MCI

We investigated 55 datasets on MCI (1878 patients, 2046 HCs).
Detailed information, diagnostic tools and quality assessment

Figure 2. Regions with GM atrophy in LLD/MCI and their related behavioral/disease profiles. (a) Regions of GM volume decreases in LLDs compared to HCs; (b)
Behavior profile of LLD related to GM atrophy; (c) Disease profile of LLD related to GM atrophy; (d) Regions of GM volume decreases in MCIs compared to HCs;
(e) Behavior profile of MCI related to GM atrophy; (f) disease profile of MCI related to GM atrophy. (GM, gray matter; LLD, late-life depression; MCI, mild cognitive
impairment; HC, healthy controls; Voxel-wise threshold p < 0.05 uncorrected; minimum cluster extent 10 voxels.).
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for each study, as well as the summarized demographic and clin-
ical characteristics are shown in online Supplementary Table S2 in
the Supplementary. The well-matched qualified literature
included allowed for a more comprehensive and credible neuro-
biological evaluation whithin the population. We noticed that,
compared to HCs, patients with MCI showed decreased GM vol-
ume in the right parahippocampal gyrus, left hippocampus, left
precuneus, and left angular gyrus (Fig. 2d, online
Supplementary Table S3). No region with an increased GM vol-
ume was observed. Heterogeneity analysis using I2 statistics
showed no variability in the regions of the left hippocampus
(5.96%) and left precuneus (0.21%) between the studies, while
there was variability in the regions of the right parahippocampal
gyrus and left angular gyrus. A quantitative assessment of Egger’s
test ( p = 0.181–0.967) showed no publication bias in all signifi-
cant brain regions.

Behavioral analysis (Fig. 2e) revealed that the obtained
meta-analysis map of MCI significantly correspond to functions
in varied domains, including social cognition (Z = 10.14), fear
(Z = 9.36), explicit memory (Z = 9.83), and executive function
(Z = 9.63). Regarding disease analysis (Fig. 2f), a large number
of diseases were found to be related, including AD (Z = 19.90),
MCI (Z = 13.28), bvFTD (Z = 10.881), schizophrenia (Z =
10.113), and frontotemporal Dementia (Z = 9.629).

Comparison of GM atrophy and spatially correlated receptor/
transporter densities

Conjunction analyses showed that the right median cingulate/
paracingulate gyri and the right insula exhibited significant
reduced GM volume in both LLD and MCI (Fig. 3a, online
Supplementary Table S4). We separately tested the heterogeneity
of the regions above in the LLD v. HCs group and the MCI v. HCs
group. No significant corresponding features were found in

behavioral/disease analysis (Z < 3). Regression analysis was used
to compare LLDs and MCIs, where MCI showed more significant
reductions in GM volume in the left hippocampus and right para-
hippocampal gyrus (Fig. 3b, online Supplementary Table S5). We
found that atrophic regions specific to MCI corresponded to
explicit memory (Z = 3.45) in behavioral analysis and were related
to AD (Z = 4.30) in disease analysis.

JuSpace was used to link the neuroimage to neurotransmitter
information, which included receptor/transporter maps covering
cholinergic, dopaminergic, GABAergic, glutamatergic, noradre-
nergic, opioidergic, and serotonergic neurotransmission
(Fig. 3c). In LLD, the neurotransmitters that were significantly
correlated were CB1 (Fisher’z =−0.331, p = 0.023) at opioidergic
synapses, D1 (Fisher’z =−0.320, p < 0.001) at dopaminergic
synapses, VAChT (Fisher’z =−0.252, p = 0.007) at cholinergic
synapses, and mGluR5 (Fisher’z =−0.268, p = 0.043) at glutama-
tergic synapses. In MCI, we found that GM morphological abnor-
malities were significantly correlated within 5-HT1A (Fisher’z =
−0.650, p < 0.001), 5-HT4 (Fisher’z =−0.182, p = 0.049) and
SERT (Fisher’z =−0.611, p = 0.001) at serotonergic synapses; D1
(Fisher’z =−0.397, p < 0.001), DAT (Fisher’z =−0.540, p <
0.001), and FDOPA (Fisher’z =−0.306, p = 0.001) at dopamin-
ergic synapses; NAT (Fisher’z = −0.210, p = 0.022) at noradrener-
gic synapses; and VAChT (Fisher’z = −0.235, p = 0.013) at
cholinergic synapses.

Gene expression profiles related to GM volume alteration in
MCI

We obtained normalized gene expression data of 10 027 genes for
176 ROIs of HCP atlas from the AHBA data and set these expres-
sion data as the predictor variables in PLS. The Z-maps, depicting
the differences in GM volume among individuals diagnosed with
MCI/LLD and healthy controls across the 176 ROIs based on the
HCP atlas, were employed as the dependent variable in the PLS.
Only the first component of the PLS regression with MCI
Z-map was significant and explained 36.17% of the variance in
the MCI-related alteration in GM volume ( p < 0.05 for compo-
nent 1, permutation tests with spatial autocorrelation corrected).
The first component represented a transcriptional profile charac-
terized by high expression, mainly in the left anterior agranular
insula complex in the HCP atlas (Fig. 4a), a cytoarchitecturally
distinct sub-region in the insula. The Z-map of gray matter vol-
ume difference between MCI and healthy controls was signifi-
cantly positive with the regional mapping of the first
component (r = 0.6015, p < 0.0001, Fig. 4b). Results from the
Gene Ontology enrichment analysis revealed that the genes
ranked in descending order of the first component weight were
enriched in biological processes including cellular potassium ion
transport, molecular function related to metal ion transmembrane
transporter activity (Fig. 4c, 4d, FDR-corrected q < 0.05). No sig-
nificant enrichment of cellular components was observed.

Discussion

To facilitate timely differentiation between LLD and MCI, we con-
ducted a meta-analysis examining associated profiles of atrophic
structures alongside decoding of neuropsychological features,
neurotransmission and gene expression. We observed reduced
GM volumes in the right median cingulate/paracingulate gyri
and the right insula in both conditions, whereas the left hippo-
campus and the right parahippocampal gyrus demonstrated

Figure 3. Comparison of GM-atrophic regions in LLD and MCI and their spatial-
correlated neurotransmitter densities. (a) Shared regions with GM volume decrease
in LLD and MCI; (b) Specific regions with GM atrophy in MCI in preference to LLD;
(c) Receptor/transporter densities colocalized with different GM-atrophic regions in
LLD and MCI. (GM, gray matter volume; LLD, late-life depression; MCI, mild cognitive
impairment; HC, healthy controls; Voxel-wise threshold p < 0.05 uncorrected; min-
imum cluster extent 10 voxels; p < 0.0025 for conjunction meta-analysis; * p < 0.05).
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more pronounced reductions specifically in MCI. This indicates
that executive function is essential in these two diseases, while
memory deficit is more relevant in aMCI. In terms of the neuro-
transmission system, D1 at dopaminergic synapses and VAChT at
cholinergic synapses play prominent roles in LLD, while MCI is
related to serotonergic synapses including 5-HT1A and SERT,
dopaminergic synapses including D1, DAT, and FDOPA, together
with various other neurotransmitters such as cholinergic synap-
ses. In the assessment of gene expression, the first component
was significant in MCI, which was highly expressed in the left
anterior insula complex in the HCP atlas and enriched in pro-
cesses including cellular potassium ion transport and metal ion
transmembrane transporter activity.

GM morphological abnormalities differ between LLD and MCI

GM reduction in the left hippocampus and the right parahippo-
campal gyrus was more specific in MCIs than in LLDs, which cor-
respond to explicit memory and AD. The hippocampus, whose
subfields selectively correspond to different cognitive domains
(Liu, Liu, Qiu, & Alzheimer’s Disease Neuroimaging, 2021), is
also vulnerable in deleterious conditions (Zhang et al., 2022),
and shows structural and biochemical changes when MCI occurs
or progresses (Geerlings & Gerritsen, 2017; Wang et al., 2024).
Specifically, reducing cornu ammonis 1 (CA1) in the hippocam-
pus is a pathway that links LLD to persistent cognitive decline,
such as aMCI and AD (Choi et al., 2017). The hippocampus
also collaborates with other cortico-subcortical structures such
as the parahippocampal gyrus (PHG), integrating into the
Papez circuit and participating in high-level cognitive processes
such as episodic memory synchronization (Forno, Llado, &
Hornberger, 2021). PHG is proven to have significant volume dif-
ferences when comparing MCI to HCs and ADs to MCIs

(Echavarri et al., 2011), due to neuronal degeneration (Wang
et al., 2017), and abnormalities in microvasculature-associated
gene expression (Katsel et al., 2018). The observed variability in
our findings in MCI could be attributable to its variability in
neuropsychiatric symptoms. The structural involvement of the
fronto-limbic circuit corresponds to specific neuropsychiatric
symptoms (Cotta Ramusino et al., 2024). For instance, researchers
have related the right parahippocampal gyrus to cognitive reserve
(Zhou et al., 2024) and the left angular gyrus to financial capacity
(Nowrangi et al., 2022) in MCI. Potential confounding factors,
such as age (Taylor et al., 2020) or medication (Chan, Yiu,
Kwok, Wong, & Tsoi, 2019), might also explain these findings;
however, subgroup analysis was not conducted due to the rela-
tively uniform demographics and finite number of studies.

GM morphological abnormalities have common ground
between LLD and MCI

The right insula and right median cingulate/paracingulate gyri are
the two shared reduced regions in LLD and MCI. Both regions
have direct structural connections with various systems involved
in these two diseases. The insula serves a wide variety of functions
in concert within and across functional networks, ranging from
sensory and motor functions to high-level cognition such as
primordial and social emotions (Fermin et al., 2023; Uddin,
Nomi, Hebert-Seropian, Ghaziri, & Boucher, 2017). This is con-
sistent with the reports of previous studies, as Zackova et al.
(2021) suggested that the decreased volume of the insula may
reflect communication deficits and may be regarded as a risk fac-
tor for both MDD and MCI because of the consequent infrequent
participation in mental or social stimulating activities. Moreover,
the median cingulate motor area is allowed to output
action-outcome learning to premotor areas after the posterior

Figure 4. Association between gray matter volume alternation in MCI and gene expressions. (a) A gene expression profile identified by the first PLS component; (b)
The transcriptional profiles were positively correlated with the z-map of the gray matter volume differences; (c) Genes ranked in ascending order of the PLS 1
weight were enriched in the biological process of cellular potassium ion transport (FDR-corrected q < 0.05); (d) The molecular function of metal ion transmembrane
transporter activity (FDR-corrected q < 0.05).
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cingulate cortex receives spatial and action-related information
from the hippocampal system and parietal cortical areas (Rolls,
2019), which is part of the Papez circuit that is related to both
emotions and memory (Forno et al., 2021).

Discriminating patterns of spatial correlated
neurotransmission and transcription

Dopamine (DA) plays significant roles in numerous cognitive func-
tions, including memory processing and behavioral formations
(Chen, Chen, Kim, & Xiong, 2021). The cholinergic system, includ-
ing acetylcholine (ACh) and vesicular acetylcholine transporter
(VAChT), acts as a modulator of cognition in terms of attention,
learning, reward behavior, and memory (Hampel et al., 2018;
Han et al., 2017). Moreover, cholinergic innervation interacts
with DA (Skirzewski et al., 2022). The impact of serotonergics is
noticeable in MCI (Smith et al., 2017), in accordance with novel
therapeutics in AD containing psychedelics (Garcia-Romeu,
Darcy, Jackson, White, & Rosenberg, 2022). Furthermore, the sig-
nificant effects of opioidergic (Browne, Jacobson, & Lucki, 2020)
and glutamatergic synapses (Lissemore et al., 2018) in LLD are con-
sistent with those reported by research for novel targets.

Functional enrichment analysis of significant genes has revealed
a functional imbalance of neurotransmitters and synapses in AD
(Scaduto et al., 2023). The anterior agranular insula complex is
an essential node in projections connected to the hippocampus
(Cenquizca & Swanson, 2007), the central medial nucleus, and
the striatal and limbic forebrain circuitry (Vertes, Hoover, &
Rodriguez, 2012). Ion channels not only maintain water/ion metab-
olism homeostasis but also moderate the signaling pathways of neu-
rons and glial cells, and their dysfunction are significant
pathological features and new therapeutic targets for neurodegen-
erative disorders (Wang et al., 2022). For example, depressed
Na+/K+ ATPase levels and impaired glutamate clearance in AD
brain could lead to a cellular ion imbalance and electrophysiological
dysfunction, probably triggered by amyloid beta peptide (Aβ)
(Vitvitsky, Garg, Keep, Albin, & Banerjee, 2012). Additionally, dys-
regulation of neuronal iron homeostasis is likely to be an alternative
unifying effect of early-onset familial AD (Lumsden et al., 2018).

Strength and limitations

This study has some limitations. First, the amount of LLD research
was finite, which might influence the representativeness and repeat-
ability of the results. Future research should aim to include more
studies on LLD to validate these findings. Second, there was some
variability in the clinical implementation of LLD and MCI, which
was mainly caused by disparities in the chosen cut-off values
(Baba et al., 2022) and inner heterogeneity (Cotta Ramusino
et al., 2024). Either LLD or MCI may be comparatively broad con-
cepts, supplemented by conceptions including late-onset depression
(LOD) (Olgiati, Fanelli, & Serretti, 2023), aMCI, and naMCI
(Csukly et al., 2016). However, a more in-depth study could not
be conducted due to the limited amount of available data. Future
research should aim to standardize the identification and inclusion
of subgroups to validate these findings. Third, the influence of med-
ications was not thoroughly addressed in the analysis, and this
could be a potential confounding factor in the interpretation of
the results (Chan et al., 2019). Only 14 out of 55 datasets on
MCI and 9 out of 13 datasets on LLD reported medication use,
whose reported usage varied widely from 0% to 100% and differed
in terms of treatment, making it impractical to separate our analysis

based on medication use. Hence, the elaboration of medication use
in future studies is encouraged.

Despite these limitations, we conducted a systematic literature
search and included several datasets to conduct a comprehensive
analysis of the commonalities and discrepancies between LLD
and MCI. We chose parameters and thresholds for each research
method meticulously adhering to the established manuals, which
ensured and maximized the reliability of each part of the study,
and balanced the sensitivity and specificity. Moreover, integrating
neuroimaging findings with spatially correlated neurotransmitter
data and gene expression profiles facilitated a better understanding
of the structural and molecular differences between LLD and MCI.
Finally, GM atrophy in the hippocampus and parahippocampal
gyrus, alongside lower gene expression in ion transmembrane trans-
port, can be used to accurately differentiate MCI from LLD. Prior
studies have highlighted the potential of morphometric and
molecular profiles as biomarkers due to their early manifestation
prior to relatively overlapping and intricate symptomatic patterns
(Cai et al., 2021; Liu et al., 2023). These features also serve as prom-
ising targets for timely and accurate therapeutic approaches,
because rebalanced or imbalanced gene expression and synaptic
transmission are believed to underpin changes in brain structure
and clinical manifestation (Aquilani et al., 2023; Jacobs et al., 2023).

Overall, our study provides valuable insights into the structural
and molecular profiles of LLD and MCI. Future research should
address the abovementioned limitations and further explore the
impact of clinical factors and treatment interventions on neuroi-
maging and molecular findings. Additionally, the clinical implica-
tions of the study’s findings should be validated through
prospective studies and clinical trials to confirm their utility in
the differential diagnosis and management of LLD and MCI.

Conclusions

In conclusion, GM volume in the left hippocampus and right
parahippocampal gyrus is more likely to be affected in MCI
along with memory impairment, while GM atrophy in the right
insula and right median cingulate/paracingulate gyri coexist in
both LLD and MCI. MCI is related to extended downregulation
in various neurotransmissions besides dopaminergic and cholin-
ergic synapses, coupling with downregulation of genes enriched
in ion transmembrane transporter activity. We infer that these
imaging-transcriptomic-genetic integrative profiles can serve as
potential targets for timely differential diagnosis and precise
intervention between LLD and MCI.
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