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Abstract For stable degree 0 operations, and also for additive unstable operations of bidegree (0, 0), it is
known that the centre of the ring of operations for complex cobordism is isomorphic to the corresponding
ring of connective complex K-theory operations. Similarly, the centre of the ring of BP operations is the
corresponding ring for the Adams summand of p-local connective complex K-theory. Here we show that,
in the additive unstable context, this result holds with BP replaced by BP〈n〉 for any n. Thus, for all
chromatic heights, the only central operations are those coming from K-theory.
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1. Introduction

We study cohomology operations for various cohomology theories related to complex
cobordism and show that, in a suitable context, the central cohomology operations
are precisely those coming from complex K-theory. Specifically, we consider the ring
of additive unstable bidegree (0, 0) operations for the Adams summand of p-local com-
plex K-theory, and we show that this ring maps via an injective ring homomorphism to
the corresponding ring of operations for the theory BP〈n〉 for all n � 1. The image of
this map is the centre of the target ring.

Previously, results of this type were established with target BP (which may be regarded
as the n = ∞ case) in both the stable and additive unstable contexts (see [3,5]).

The BP〈n〉 result that we give here is quite a simple consequence of combining certain
unstable BP splittings due to Wilson [7] with the results of [5]. Nonetheless, we think it
is interesting since it shows that the central operations are precisely those arising from
K-theory at every chromatic height.

Let p be an odd prime and let BP be the p-local Brown–Peterson spectrum, a summand
of the p-local complex bordism spectrum MU(p). For each n � 0, there exists a connective
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commutative ring spectrum BP〈n〉 with coefficient groups

BP〈n〉∗ = Z(p)[v1, v2, . . . , vn] = BP∗ /(vn+1, vn+2, . . . ) = BP∗ /Jn.

Here, BP∗ = Z(p)[v1, v2, . . . ], where the vi are Hazewinkel’s generators, with vi in
degree 2(pi − 1) and Jn = (vn+1, vn+2, . . . ). These theories were introduced by Wil-
son in [7] and further studied by Johnson and Wilson in [4]. They fit into a tower of
BP-module spectra:

BP → · · · → BP〈n〉 → BP〈n − 1〉 → · · · .

In particular, BP〈0〉 = HZ(p) and BP〈1〉 = g, the Adams summand of connective
p-local complex K-theory.

Recall that, for a cohomology theory E, the bidegree (0, 0) unstable operations are
given by E0(E0), where E0 denotes the 0th space of the Ω-spectrum representing the
cohomology theory E. Within E0(E0) we have PE0(E0), the additive bidegree (0, 0)
unstable operations, which we denote by A(E). This is a ring, with multiplication given
by the composition of operations.

Using unstable BP splittings due to Wilson, we define an injective ring homomorphism
ι̂n : A(g) → A(BP〈n〉). Our main result, Theorem 5.3, is that the image of ι̂n is the centre
of A(BP〈n〉).

The situation is analogous to that of matrix rings, where the diagonal matrices form
the centre of the n × n-matrices for all n. Indeed, we see that all operations considered
are determined by the matrices giving their actions on homotopy groups. Of course, not
all matrices arise as actions of operations; there are complicated constraints. Essentially,
we show that

(1) at every height n, enough matrices arise that central operations are forced to act
diagonally (in a suitable sense), and

(2) the constraints on the diagonal operations that can occur are the same for all n.

This paper has the following structure. In § 2 we explain some of Wilson’s results on
unstable BP splittings and deduce faithfulness of the actions of additive BP〈n〉 operations
of bidegree (0, 0) on homotopy groups. In § 3 we recall some results on additive operations
for the Adams summand g of connective p-local complex K-theory. We also define our
map of operations A(g) → A(BP〈n〉) and give its basic properties. In § 4 we define and
study diagonal operations. In § 5 we prove our main result, Theorem 5.3, which is that
the image of the map coincides with the centre of the target ring.

2. Unstable splittings

In this section we begin by recalling some results on unstable BP splittings. These results
are due to Wilson [7] (we use [2] as our main reference). We then deduce some straight-
forward consequences for operations.
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As usual, let Ek denote the kth space of the Ω-spectrum representing the cohomology
theory E. For n � 0, write πn : BP0 → BP〈n〉

0
for the map coming from the map of

BP-module spectra BP → BP〈n〉. The induced map on homotopy,

(πn)∗ : BP∗ → BP〈n〉∗ = BP∗ /Jn,

is the canonical projection.
The following lemma is the special case of [2, Lemma 22.1] for zero spaces.

Lemma 2.1 (Boardman et al . [2, Lemma 22.1]). For all n � 0, there exists an
H-space splitting θn : BP〈n〉

0
→ BP0 of πn. Let en = θnπn denote the corresponding

additive idempotent BP operation; the choices can be made compatibly, so that enem =
emen = em for m < n.

These splittings immediately allow us to compare operations.

Lemma 2.2. We have maps

in : A(BP〈n〉) � A(BP) :pn

such that

(1) inpn : A(BP) → A(BP) is given by [f ] �→ [enfen],

(2) pn splits in (so in is injective and pn is surjective),

(3) in is a non-unital ring homomorphism,

(4) pn is an additive group homomorphism.

Proof. We have the maps

[θn ◦ − ◦ πn] : BP〈n〉0(BP〈n〉
0
) → BP0(BP0)

[f ] �→ [θnfπn]

and

[πn ◦ − ◦ θn] : BP0(BP0) → BP〈n〉0(BP〈n〉
0
)

[f ] �→ [πnfθn].

Since πn and θn are H-space maps, these maps restrict to maps on the additive operations,
which we denote by in and pn, respectively.

The first property follows from θnπn = en. The remaining properties are easy to check
using that πnθn � id and that θn is a map of H-spaces. �

Remark 2.3. It follows that we may identify A(BP〈n〉) with the subring enA(BP)en

of A(BP).
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In the following lemma, we record some information about actions in homotopy. Note
that we can regard BP〈n〉∗ = Z(p)[v1, . . . , vn] as both a subring and a quotient ring
of BP∗. We will abuse notation by just writing BP〈n〉∗ when this is viewed as a subring
of BP∗, without explicit notation for the inclusion, and we use [·] to denote classes in
BP〈n〉∗ = BP∗ /Jn.

Lemma 2.4.

(1) For x ∈ BP〈n〉∗, (θn)∗(x) ≡ x mod Jn. In particular, (θn)∗ is the identity in degrees
less than 2(pn+1 − 1).

(2) Let φ ∈ A(BP〈n〉). Then,

(a) for y ∈ BP∗, (inφ)∗(y) ≡ φ∗([y]) modJn, and,

(b) for y ∈ Jn, (inφ)∗(y) = 0.

(3) Let ϕ ∈ A(BP) and suppose that ϕ∗(Jn) ⊆ Jn. Then, for z ∈ BP〈n〉∗, (pnϕ)∗(z) =
[ϕ∗(z)].

Proof. (1) is immediate from πnθn � id. Then, for (2), for y ∈ BP∗,

(inφ)∗(y) = (θn)∗φ∗(πn)∗(y) = (θn)∗φ∗([y]) ≡ φ∗([y]) modJn,

and, for y ∈ Jn,
(inφ)∗(y) = (θn)∗φ∗(πn)∗(y) = (θn)∗φ∗(0) = 0.

Finally, for (3), we have that

(pnϕ)∗(z) = (πn)∗ϕ∗(θn)∗(z)

= (πn)∗ϕ∗(z + w) for some w ∈ Jn

= (πn)∗(ϕ∗(z) + ϕ∗(w)) since ϕ is additive

= [ϕ∗(z)] since, by hypothesis, ϕ∗(w) ∈ Jn.

�

Remark 2.5. It is worth noting that (θn)∗ is not the obvious splitting on homotopy
groups with image Z(p)[v1, . . . , vn] (and it is not a ring homomorphism). See [2, p817]
for an example.

Another important consequence of the splitting is that the action of the additive BP〈n〉
operations of bidegree (0, 0) on homotopy groups is faithful. As we will see, the splitting
allows us to deduce this from the corresponding result for BP, which was proved in [5,
Proposition 1]. (Key ingredients for the BP case are that BP theory has good duality
and that everything is torsion free.)

Given an unstable E-operation θ ∈ E0(E0) ∼= [E0, E0], we may consider the induced
homomorphism of graded abelian groups θ∗ : π∗(E0) → π∗(E0) given by the action of θ

on homotopy groups. For a graded abelian group M , we write End(M) for the ring of
homomorphisms of graded abelian groups from M to itself.
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Sending an operation to its action on homotopy groups gives a map

E0(E0) → End(π∗(E0))

φ �→ φ∗.

The restriction of this map to the additive E-operations A(E) is a ring homomorphism,
and we denote this by βE :

βE : A(E) → End(π∗(E0))

φ �→ φ∗.

Proposition 2.6. For all n � 0, the ring homomorphism

βBP〈n〉 : A(BP〈n〉) → End(π∗(BP〈n〉
0
))

is injective.

Proof. Let φ ∈ A(BP〈n〉) and suppose that βBP〈n〉(φ) = φ∗ = 0. Then,

βBP(in(φ)) = (in(φ))∗ = (θnφπn)∗ = (θn)∗φ∗(πn)∗ = 0.

But βBP is injective (see [5, Proposition 1]), and so is in, so φ = 0. �

3. The comparison map

In this section we begin with some reminders about the additive operations for the Adams
summand g of p-local connective complex K-theory, and we recall the main result of [5].
We then go on to define the main map to be studied in this paper, ι̂n : A(g) → A(BP〈n〉),
and we discuss its basic properties.

A description of the ring of additive operations A(g) for the Adams summand can be
deduced from the corresponding result for integral complex K-theory (see [1, Lecture 4]).
Another description can be found in [6]: Theorems 3.3 and 4.2 of [6] together give a
topological basis for this ring, where the basis elements are certain polynomials in the
Adams operations Ψ0, Ψp and Ψ q (where q is primitive modulo p2 and, thus, a topological
generator for the p-adic units). The precise details of the description are not needed here;
what is important to note is that all operations can be described in terms of Adams
operations.

The main result of [5] (in the split case) is the following.

Theorem 3.1 (Strong and Whitehouse [5, Theorem 19]). There exists an injec-
tive ring homomorphism ι̂ : A(g) → A(BP) such that the image is precisely the centre of
the ring A(BP).

It is worth noting that ι̂ is different from the ring homomorphism i1 : A(BP〈1〉) =
A(g) → A(BP) provided by Lemma 2.2. Indeed, ι̂ sends the identity operation of g to
the identity operation of BP, whereas i1 sends the identity operation of g to e1. More
generally, it is instructive to consider the effects of these two maps on Adams operations:
ι̂ takes the Adams operation Ψk

g of the Adams summand to the corresponding Adams
operation Ψk

BP for BP; this operation acts as multiplication by k(p−1)n on each element
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of the group π2(p−1)n(BP). On the other hand, i1 sends Ψk
g to an operation which acts

as 0 on the ideal J1.
The two maps share the property of being split by p1.

Lemma 3.2. The map p1 also splits ι̂.

Proof. All elements of the topological ring A(g) can be explicitly expressed as cer-
tain (infinite) linear combinations of Adams operations (see [5, Proposition 18]). By
Lemma 2.2, p1 is additive, and it is straightforward to see that it is continuous with
respect to the profinite filtrations on the rings of operations. Thus, it is enough to check
that p1ι̂(Ψk

g ) = Ψk
g for all k ∈ Z(p). Now, ι̂(Ψk

g ) = Ψk
BP and this BP Adams operation acts

as multiplication by k(p−1)r on BP2(p−1)r (and so, in particular, preserves J1). Then, by
Lemma 2.4 (3), p1ι̂(Ψk

g ) acts as multiplication by k(p−1)r on π2(p−1)r(g) = Z(p)〈vr
1〉. But,

by [5, Proposition 1], this completely characterizes Ψk
g . �

The main map we consider comes from composing the map ι̂ : A(g) → A(BP) of
Theorem 3.1 with the map pn : A(BP) → A(BP〈n〉) of Lemma 2.2.

Definition 3.3. Define ι̂n = pnι̂ : A(g) → A(BP〈n〉).

Note that this gives us our map of operations without explicitly mentioning Adams
operations for BP〈n〉. On the other hand, we can define such Adams operations as follows.

Definition 3.4. Define unstable Adams operations for BP〈n〉 as the images of the
corresponding BP operations:

Ψk
BP〈n〉 := pn(Ψk

BP)

for k ∈ Z(p).

Using Lemma 2.4 (3), we see that this definition gives unstable Adams operations
for BP〈n〉 with the expected actions on homotopy (namely, Ψk

BP〈n〉(z) = k(p−1)rz for
z ∈ BP〈n〉2(p−1)r).

Since ι̂(Ψk
g ) = Ψk

BP, it follows from this definition of the Adams operations for BP〈n〉
and the description of A(g) in terms of Adams operations that the map ι̂n is determined
by mapping g Adams operations to the corresponding BP〈n〉 Adams operations and
extending to (suitable infinite) linear combinations.

Our main result is that the analogue of Theorem 3.1 holds for ι̂n : A(g) → A(BP〈n〉).
We begin with some basic properties of ι̂n; in particular, it is a ring homomorphism (even
though pn is not).

Proposition 3.5. For all n � 1, the map ι̂n : A(g) → A(BP〈n〉) is an injective unital
ring homomorphism whose image is contained in the centre of A(BP〈n〉).
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Proof. First, we check that ι̂n is a ring homomorphism. For a, b ∈ A(g), we have that

in(ι̂n(a)ι̂n(b)) = in(ι̂n(a))in(ι̂n(b)) (in ring homomorphism)

= inpnι̂(a)inpnι̂(b) (definition of ι̂n)

= enι̂(a)e2
nι̂(b)en (by Lemma 2.2)

= e3
nι̂(a)ι̂(b)en (image of ι̂ central)

= enι̂(a)ι̂(b)en (en idempotent)

= enι̂(ab)en (ι̂ ring homomorphism)

= inpnι̂(ab) (by Lemma 2.2)

= inι̂n(ab) (definition of ι̂n).

But in is injective, so ι̂n(a)ι̂n(b) = ι̂n(ab).
Similarly, we find that in(ι̂n(1)) = en = in(1), so ι̂n(1) = 1 and ι̂n is unital.
Next, we show injectivity. Let φ ∈ A(g), with φ �= 0. By [5, Proposition 1], the action

of operations in A(g) on homotopy groups is faithful. Thus, there exists some r such that
φ acts on π2(p−1)r(g0

) as multiplication by some non-zero element λ of Z(p). But, then,
the action of ι̂n(φ) is given by multiplication by λ �= 0 on π2(p−1)r(BP〈n〉

0
) �= 0, and so

ι̂n(φ) �= 0.
Finally, we need to show that the image is central. The image consists of certain

infinite linear combinations of Adams operations for BP〈n〉. It is clear from the action
of Ψk

BP〈n〉 on homotopy that βBP〈n〉(Ψk
BP〈n〉) = (Ψk

BP〈n〉)∗ commutes with all elements
of End(π∗(BP〈n〉

0
)). So the same holds for the image under βBP〈n〉 of (suitable infinite)

linear combinations of the Adams operations. But, by Proposition 2.6, βBP〈n〉 is injective,
so any element of the image of A(g) commutes with all elements of A(BP〈n〉). �

As a consequence of the definitions, we have the following commutative diagram of
abelian groups, for m � n, giving the compatibility between the various ι̂ maps:

A(BP〈n〉)
∼=
in

�� enA(BP)en

em◦−◦em

��

A(g)

ι̂n

�����������
ι̂ ��

ι̂m �����������
A(BP)

pn

��

pm

��
A(BP〈m〉)

∼=
im

�� emA(BP)em

Remark 3.6. It is natural to ask if one can obtain the ring A(BP) as any kind
of limit over the A(BP〈n〉), but this does not seem to be the case. On the one hand,
we can put the A(BP〈n〉) into a direct system of injective ring homomorphisms and
produce an injective ring homomorphism lim→nA(BP〈n〉) → A(BP). However, this is
not surjective; for example, the identity operation on BP is not in the image. On the
other hand, the maps in the other direction are not ring homomorphisms, so the inverse
limit lim←n

A(BP〈n〉) can only be formed in the category of abelian groups.
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4. Diagonal operations

We define unstable diagonal operations for BP〈n〉, just as was done for BP in [5].

Definition 4.1. Write D(BP〈n〉) for the subring of A(BP〈n〉) consisting of opera-
tions whose action on each homotopy group π2(p−1)r(BP〈n〉

0
) is multiplication by an

element µr of Z(p). We call elements of D(BP〈n〉) unstable diagonal operations.

The main result of this section is that the central operations coincide with the diagonal
operations. One inclusion is easy.

For a ring R, we write Z(R) for its centre.

Lemma 4.2. We have D(BP〈n〉) ⊆ Z(A(BP〈n〉)).

Proof. The action on homotopy of φ ∈ D commutes with the action of any operation
in A(BP〈n〉), so the inclusion D(BP〈n〉) ⊆ Z(A(BP〈n〉)) follows from the faithfulness of
the action (see Proposition 2.6). �

Our proof of the reverse inclusion amounts to finding enough operations in order to
force a central operation to act diagonally. Our strategy is to start from stable BP oper-
ations, over which we have better control, and then to view these as additive unstable
operations and project them to A(BP〈n〉).

First, we need some notation for sequences indexing monomials. We write vα for the
monomial vα1

1 vα2
2 · · · vαm

m , where α = (α1, α2, . . . , αm) is a sequence of non-negative
integers, with αm �= 0. We order such sequences right lexicographically; explicitly for
α = (α1, α2, . . . , αm) and β = (β1, β2, . . . , βn), we have α < β if m < n or if m = n and
there exists some j, with 1 � j � m, such that αk = βk for all k > j but αj < βj .

We add sequences placewise: (α + β)i = αi + βi, so that vαvβ = vα+β . It is straight-
forward to check that the ordering behaves well with respect to the addition: if α � α′

and β � β′, then α + β � α′ + β′.
The degree of vα is 2

∑m
i=1αi(pi − 1), and we write this as |α|.

Lemma 4.3. Let α, β, γ denote sequences indexing monomials in the same degree,
|α| = |β| = |γ|.

(1) There exists a stable BP operation φβ in BP|α|(BP) whose action

BP|α| → BP0 = Z(p)

has the property that (φβ)∗(vγ) = µγ,β , where

µβ,β �= 0,

µγ,β = 0 if γ < β.

(2) There exists a stable BP operation φα,β in BP0(BP) whose action BP|α| → BP|α|
has the property that (φα,β)∗(vγ) = µγ,βvα, where

µβ,β �= 0,

µγ,β = 0 if γ < β.
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Proof. The second part follows immediately from the first, by taking φα,β = vαφβ .
For the first part, we recall that BP has good duality, so a stable operation φ in

BP∗(BP) corresponds to a degree 0 BP∗-linear functional φ̄ : BP∗(BP) → BP∗. The
action of the operation on coefficient groups is recovered from the functional by precom-
position with the right unit map, ηR : BP∗ → BP∗(BP), that is, φ∗ = φ̄ηR. We have
that BP∗(BP) = BP∗[t1, t2, . . . ], so a functional as described above is determined by any
choice of its value on each monomial in the ts.

The map ηR is of course very complicated, but we need only exploit some basic infor-
mation about its form. We have that

ηR(vm) = ptm +
∑

λγtγ +
∑

µδ,δ′vδtδ
′
,

where λγ , µδ,δ′ ∈ Z(p), δ �= ∅, and γ runs over sequences other than (0, . . . , 0, 1) in the
degree of vm. (The point is the form of the top term, of course.) Now, ηR is a ring map
and it follows from the properties of the ordering on monomials described above that

ηR(vγ) = λtγ +
∑
γ′<γ

λ′
γ′tγ

′
+

∑
δ 	=∅

µ′
δ,δ′vδtδ

′

for some λ, λ′
γ′ , µ′

δ,δ′ ∈ Z(p) with λ �= 0.
Now consider the functional φ̄β : BP∗(BP) → BP∗, which is 0 on all monomials

except tβ , and sends tβ to 1. By construction, the corresponding operation φβ has the
required property. �

Lemma 4.4 now follows as a matter of elementary linear algebra.
Let Eα,β denote the elementary matrix with 1 in the (α, β) position and 0 everywhere

else.

Lemma 4.4. For all α, β with |α| = |β|, there exist some non-zero µ̄α,β ∈ Z(p) and
an operation ϕα,β in BP0(BP) such that the matrix of its action on BP|α| is µ̄α,βEα,β .

Proof. The preceding lemma gives the operation φα,β . Using the Z(p)-basis of mono-
mials in the vs, ordered as above, this operation acts on coefficients in the given degree
by the matrix

Mα,β =
∑
γ�β

µγ,βEα,γ ,

where µβ,β �= 0.
If we order the elementary matrices by Eβ,γ < Eβ′,γ′ if γ < γ′ or γ = γ′ and β < β′,

then the above shows that the matrix writing the Mα,β in terms of the Eα,β is non-
singular lower triangular. Hence, for some µ̄α,β �= 0, we can write µ̄α,βEα,β as a Z(p)-linear
combination of the Mα,β . We take ϕα,β to be the corresponding linear combination of
the φα,β . �

Theorem 4.5. We have Z(A(BP〈n〉)) = D(BP〈n〉).
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Proof. We noted the inclusion D(BP〈n〉) ⊆ Z(A(BP〈n〉)) in Lemma 4.2, so it remains
to show the reverse inclusion.

As in the proof of [5, Lemma 11], there exists an injection BP0(BP) ↪→ A(BP) from
the stable degree 0 BP operations to the additive unstable bidegree (0, 0) operations,
given by sending a stable operation to its zero component (that is, applying Ω∞). This
allows us to view the operation ϕα,β constructed above as an element of A(BP), still
acting on coefficients in the specified degree as some non-zero multiple of the elementary
matrix Eα,β .

We next map these operations to A(BP〈n〉): consider pn(ϕα,β) ∈ A(BP〈n〉). We con-
sider the action of this operation on coefficients in degree |α|. We can now write BP|α| as a
direct sum of Z(p)-modules R⊕J , where R = BP|α| ∩Z(p)[v1, . . . , vn] and J = BP|α| ∩Jn.
Note that any monomial in the vs lying in R is lower in the ordering than any monomial
lying in J . So, when we write the action of an operation as a matrix with respect to the
monomial basis, this splits into blocks, according to the decomposition into R and J .

Now let α, β index monomials in R. Using that (pn(ϕα,β))∗ = (πn)∗(ϕα,β)∗(θn)∗, it is
easy to check the action of pn(ϕα,β) is given by µ̄α,βEα,β on BP〈n〉|α|.

So, now, suppose that we have a central operation φ ∈ A(BP〈n〉). Since it commutes
with each operation ϕα,β , its action on BP〈n〉|α| commutes with the action of some non-
zero multiple of each elementary matrix. Hence, the matrix of its action in this degree is
diagonal with all diagonal entries equal. That is, φ ∈ D(BP〈n〉). �

5. Congruences

Consider the map

A(g) →
∞∏

i=0

Z(p)

given by sending an additive operation θ to the sequence (µi) such that θ acts on
π2(p−1)i(g) = Z(p) as multiplication by µi. We define Sg to be the image of this map.
As detailed in [5, § 4], Sg is completely characterized by a system of congruences.

The congruences can be described as follows. Let G denote the periodic Adams sum-
mand and let {f̂n | n � 0} be a Z(p)-basis for QG0(G0), where Q denotes the inde-
composable quotient for the �-product. These basis elements can be written as rational
polynomials in the variable ŵ = û−1v̂, where G∗ = Z(p)[û±1] and v̂ = ηR(û). The nth con-
gruence is the condition that the rational linear combination of the µi obtained from f̂n

by sending ŵi to µi lies in Z(p). Different choices of basis lead to equivalent systems of
congruences with the same solution set Sg. (Explicit choices, involving Stirling numbers,
are known, but we do not need these here.)

The following proposition is a stronger version of the congruence result of [5]. The
proof closely follows that of [5, Proposition 16].

Proposition 5.1. Fix n � 1. Suppose that an operation θ ∈ A(BP) is such that its
action on homotopy θ∗ : BP∗ → BP∗ satisfies the following conditions. For each i � 0,
there exists some µi ∈ Z(p) such that
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(1) θ∗(x) ≡ µix mod Jn if x /∈ Jn, |x| = 2(p − 1)i, and

(2) θ∗(x) = 0 if x ∈ Jn.

Then, (µi)i�0 ∈ Sg.

Proof. Under the isomorphism P BP0(BP0) ∼= HomBP∗(QBP∗(BP0), BP∗), the oper-
ation θ corresponds to a BP∗-linear functional θ̄ : QBP∗(BP0) → BP∗ of degree 0.

Let Vµ : QBP∗(BP0) → Z(p) be the composite πθ̄, where π : BP∗ → Z(p) is defined to
be the ring map determined by

v1 �→ 1,

vi �→ 0 for i > 1.

Thus, we have a commutative diagram:

QBP∗(BP0)
θ̄ ��

Vµ �����������������
BP∗

π

��
Z(p)

Recall from [2] that QBP∗(BP0) is torsion free and rationally generated by elements
of the form vαe2(p−1)hηR(vβ), where vα ∈ BP∗, vβ ∈ BP2(p−1)h, e ∈ QBP1(BP1) is
the suspension element and ηR is the right unit map. By [2, 12.4], the action of an
operation θ on homotopy can be recovered from the corresponding functional θ̄ via
θ∗(vβ) = θ̄(e2(p−1)hηR(vβ)) for vβ ∈ BP2(p−1)h.

We have that

Vµ(vαe2(p−1)hηR(vβ)) = πθ̄(vαe2(p−1)hηR(vβ))

= π(vαθ∗(vβ))

=

{
π(vα(µhvβ + y)) for some y ∈ Jn if vβ /∈ Jn,

0 if vβ ∈ Jn,

=

{
µh if α = (α1, 0, 0, . . . ) and β = (h, 0, 0, . . . ),

0 otherwise.

Thus, for each x ∈ QBP∗(BP0), Vµ(x) is some rational linear combination of the µi and,
since this lies in Z(p), this gives congruences that must be satisfied by the µi.

Consider the standard map of ring spectra BP → G. This induces a map of Hopf
rings BP∗(BP∗) → G∗(G∗) and, thus, a ring map on indecomposables QBP∗(BP0) →
QG∗(G0), which we denote by φ.

We now claim that we can factorize Vµ as πµφ̃, where φ̃ : QBP∗(BP0) → Im(φ) is the
map given by restricting the codomain of φ : QBP∗(BP0) → QG∗(G0), and

πµ : Im(φ) → Z(p)
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is the Q-linear map determined by

ûae2(p−1)bv̂b �→ µb.

To prove the claim, it is enough to check on rational generators:

πµφ̃(vαe2(p−1)hηR(vβ))

=

{
πµ(ûα1e2(p−1)hv̂h) if α = (α1, 0, 0, . . . ) and β = (h, 0, 0, . . . ),

0 otherwise,

=

{
µh if α = (α1, 0, 0, . . . ) and β = (h, 0, 0, . . . ),

0 otherwise,

= Vµ(vαe2(p−1)hηR(vβ)).

Just as in [5, proof of Theorem 19], up to some shift by a power of û, each basis element
of QG0(G0), say f̂n for n � 0, is in the image of the map from QBP∗(BP0). So, we have
xn ∈ QBP∗(BP0) such that φ(xn) = ûcn f̂n for some cn ∈ Z. Then, Vµ(xn) = πµφ̃(xn) =
πµ(ûcn f̂n).

But Vµ(xn) ∈ Z(p), and πµ(ûcn f̂n) ∈ Z(p) is exactly the nth congruence condition for g.
Hence, (µi)i�0 ∈ Sg. �

We now show how this applies to BP〈n〉 operations.

Proposition 5.2. Let n � 1 and φ ∈ D(BP〈n〉). Then, in(φ) ∈ A(BP) satisfies the
hypotheses of Proposition 5.1.

Proof. Let φ ∈ D(BP〈n〉), where the action of φ∗ on π2(p−1)i(BP〈n〉
0
) is multiplica-

tion by µi. Then, using [·] to denote classes modulo Jn, for vα ∈ BP∗, by Lemma 2.4 (2),

(in(φ))∗(vα) =

{
φ∗([vα]) modJn if vα /∈ Jn,

0 if vα ∈ Jn,

=

{
µ‖α‖v

α mod Jn if vα /∈ Jn,

0 if vα ∈ Jn,

where ‖α‖ = |α|/2(p − 1). �

Putting everything together gives the following.

Theorem 5.3. For all n � 1, the image of the injective ring homomorphism
ι̂n : A(g) ↪→ A(BP〈n〉) is the centre Z(A(BP〈n〉)) of A(BP〈n〉).

Proof. We have that Im(ι̂n) ⊆ Z(A(BP〈n〉)) = D(BP〈n〉), by Proposition 3.5 and
Theorem 4.5. Now let φ ∈ D(BP〈n〉), where φ acts on π2(p−1)i(BP〈n〉

0
) as multiplication

by µi. By Proposition 2.6, φ is completely determined by the sequence (µi)i�0. By Propo-
sition 5.2, in(φ) satisfies the hypotheses of Proposition 5.1 for the same sequence (µi)i�0,

https://doi.org/10.1017/S0013091513000680 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000680


Central cohomology operations and K-theory 711

and so, by Proposition 5.1, (µi)i�0 ∈ Sg. Thus, we have the following commutative
diagram:

A(g)
∼=
ι̂n

��

∼=
��

Im(ι̂n) � � �� Z(A(BP〈n〉)) = �� D(BP〈n〉)� �

��
Sg

= �� Sg

So the inclusions are equalities. �
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