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1. Introduction

Let T2 = {(eixi,eiX2):Q^Xj<2n, j= 1,2} be a two dimensional torus and r, s, t and k be
positive integers with k>r + s + t — 2. Our main object is to study the approximation
and interpolation properties of a class of smooth functions whose restrictions to each
triangle of a three direction mesh lie in the linear span of {z1zv

2:0^fi^r — 1, OrgvfSs — 1,
or 0 ^ / i g r - l , r + s-l^n + v<:r + s + t-2, or O g v ^ s - l , r + s- 1 g/i + vgr + s + t -2}
where (zuz2)eT2.

The one dimensional analogue is the class of uniform complex splines on the circle
studied in [1], [5], [8], [10]. By analogy with [5], [8] and [10], the basic tool for our
investigation will be a class of multivariate complex B-splines on the torus Mr which is
a complex version of polynomial box splines, a subject which has received much interest
recently (see the survey paper [6] and the reference therein).

The complex B-spline on the torus is a periodic case of a general class of compactly
supported functions, known as the exponential box splines, introduced recently by Amos
Ron [9].

In Section 2 we define the complex B-spline Mr on the d-dimensional torus and give
a short proof of a basic relation for Mr. Section 3 deals with those properties of the
linear combinations of translates of Mr which will be useful in the sequel. The proofs of
the results in Section 3 are just slight modifications of those in [6] and [9] for
polynomial and exponential box splines. In Section 4, we study the complex B-splines
on a three direction mesh on the torus and state an interpolation problem. Section 5
deals with finite double Fourier series which is the tool for our solution of the
interpolation problem. The solution is given in Section 6. In Section 7, we construct the
Bernstein-Schoenberg type approximation operators on the torus.

2. Definition and elementary properties of complex B-splines on the torus

Let d be a positive integer and F a multiset consisting of a finite number of elements
of the form y = (e,X), where eeI\{0} and AeZ. We define the sets Vr:{e:(e,X)eT},
Ar: = {A:(c,A)eF}, and assume that (Vry = W. We shall also use the same notation VT
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198 T. N. T. GOODMAN, S. L. LEE AND A. SHARMA

to represent the d x | r | matrix whose columns are the vectors of F, and Ar to stand for
the vectors in Z | r | whose components are the corresponding k's. We also define the set
J(r): = {Jar: V} is a basis of W}. To each JeJ(V), there exists a unique 0JeRd such
that 6JVJ = AJ.

Let h = 2n/k, where k is a positive integer, such that hee[ — n,n']d for y = (e,k)eV. We
shall assume throughout that

|detF,| = l, JeJ(F) (2.1)

and

0<\(k-6je)h\<2n, for y = {e,X)eF\J. (2.2)

Let M r be a function on Ud defined by

(^) (2.3)

where

\eXPii]-Ve)h-ll (2-4)

where the factors in the product are taken to be ih if the denominators equal zero. We
shall see later that the restrictions (2.1) and (2.2) will ensure that Mr(x) is a piecewise
polynomial in z: = (expix 1;...,e\pixd)eTd. We shall call Mr the complex polynomial
B-spline on the d-dimensional torus defined by T.

The Fourier coefficients (2.4) show that Mr is a convolution of periodic distributions
<%y,y = {k,e)er, on W defined by

h

<%y(4>) = i$e\p(ikt)<l)(et)dt, (j> e §)(Ud). (2.5)
o

The distribution aUy is supported on the line segment [jveZa(2nv + [0,he}). Hence, the
suppMr is contained in \Jv^.42nv + YJeevr[.0,he]) = [jveZ<,(27iv + {Vrt:te[0,hy^}).

A straightforward computation of the Fourier coefficients shows that for each J e J(T),
Mj is a periodic function given by

f exp Wjx, xe 1J (2TTV + {Vjt:te[0,hf})
Mj{x)=). v.z- (2.6)

I 0 , otherwise.

Furthermore, if <F\{y}> = IR<i, then
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h

xeW1, (2.7)

where y = (e, A) e Y.
Based on the Fourier coefficients (2.4) we define, for y = (e, A)eT two operators, the

differential operator Dyf: = i(iX — De)f, and the difference operator Vf:=f—
exp(iA/i)/(- — he), where De denotes the directional derivative along e. Then a straight-
forward calculation, using (2.4), gives

Proposition 2.1. ForyeY,

£>yMr = VAMn(y), (2.8)

and ifv = e/\\e\\2, then

De(exp ( - a(v •)) Af r) = i exp ( - iX{v •)) ViW n ( y ) . (2.9)

The following result is similar to that of Ron [9], but we give a short and direct
proof.

Proposition 2.2. If conditions (2.1) and (2.2) are satisfied,

(2.10)

w/iere

ar(J)= [~[ (0je_A)-i (2.11)

Proof. To each J e J ( r ) , A-0jC = OVy = (e,A)e J, and by (2.2) A-0.,e#OVy =
(e, A) e F\7. Using a partial fraction decomposition (see [3]) we have for u e W for which

I^^)'
 (212)

yeT yeT\J yeJ

where the products are over y = (e,X). Multiplying equation (2.12) by f]yer
{expi(A — ve)h— 1}, and taking the limit as u-»v gives
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£ aAJ) n {1
yer\J

where the quotient (exp i(A — ve)h — l)/(A — ve) is equal to ih if the denominator is zero.
Using (2.4) and the relation

we obtain

~ ~~ ? VveZd

from which (2.10) follows. •

Remark. From (2.6) and (2.10) we see that Mr is a linear combination of functions
of the form exp (iOjx), J e J(T), on each open set not crossed by the boundaries of the
translates of supp Mr, J e J(T), along jh, j e Zd. We shall call such a maximal open set a
T-cell. Since |(detF,| = l, Mr(x) equals a polynomial in z: = (eixt,...,eiXd)eTd in each
T-cell.

3. Translates of complex box splines

Let F be as in Section 2 and assume that (Vr} = Ud. Let k be a positive integer,
h: = 2n/k and G£: = {aelR'':aI=0)/i,...,(fc-l)/i, i=l,2,...,d}. By (2.2) we have for each
JeJ(T), \X-9je\<k for all y = {e,X)eT\J.

Proposition 3.1. Suppose conditions (2.1.) and (2.2) are satisfied. For each J eJ(F),

£ exp (i'Aja)Mr(x - VjO) = Cr(J) exp (idjx) (3.1)

holds for xeUd, where

Cr(J)= fl
ver\y

and the void product is taken to be 1.

Proof. The proof is by induction on |l"| and is a straightforward modification of
Theorem 5.1 of [9]. If | r |=d , then J(r) = {r}. With J = r , Cr{J) = l and M/x) is given
by (2.6). Hence
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[_ 0 , otherwise.

Thus (3.1) holds for | r | = d.
Suppose | r |>d. Then for JeJ(F) and y = (e,A)eF\J, by the convolution formula (2.7),

£ exp(iAJa)Mr(x-Kfa)
a EGf|

= 11 exp (iXt) £ exp (/Aya)Mnw(x - F,a - te) dt
0 jeG(

h

= iCr\M(J) J exp (ih) exp (ifl/x - te)) dt
o

= Cr(J) exp (i'0/x). •

Remark. The constants Cr(./)#0 for all JeJ(F) because of the assumption that
\X-6je\<kVy=(e,X)er\J.

Next, we shall prove

Proposition 3.2. Let

S:= £

Then for each yeF,

^^ at r"\{y}^ ' \ /
aeGJ

where the equation is interpreted in the sense of distribution if Mn(y) is supported on a set
of measure zero.

Proof. Suppose y = (e, A) 6 F. By (2.8),

DyS= Y fl.V'Mn,i'-a)

= Z {fl«-exP(''3-'1K-/.e}A^r\(n("-a)
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from which (3.3.) follows. •

We shall now show that the conditions (2.1) and (2.2) imply that the translates
Mf{- — a),aeGjJ are locally linearly independent.

Proposition 3.3 Suppose the conditions (2.1) and (2.2) hold. Then the translates
— a), a 6 Gd

h are locally linearly independent.

Proof. The idea of the proof is the same as in [9]. If A is any non-empty set in a
T-cell, then by Propositions 2.2 and 3.1, the span {Mj-(•— a)|aeG)[} is precisely span
{expiOjx: Je J(T)} and so has dimension \J(T)\. By a result of Dahmen and Micchelli
([4, Theorem 3.1]), the number of a's for which Mp( —a) has support intersecting A is
less than or equal to X/E./ml'tet F,| = |j(r)|. Hence the translates M ^ x - a)#0 for xeA,

form a basis for the span of {Mr(- — oc)|,,:aEGj[}. •

Corollary. suppMr= \JveZ42nv + {Vrt:te[0,h]{r%

Proof. This holds for |T| = rf. By induction, using (2.9), De(exp( — iXvx)M Y{X)) ̂ 0 on
any T-cell in (JveZd(2nv + {Vrt:te[0,fc]|r|}). •

4. Complex B-splines on a three direction mesh on the torus

Let k be a positive integer, h: = 2n/k, a) = expi7i and let e1=(l,0), e2 = (0,1) and
e3=(l , 1). We consider the complex B-spline Mrs,(z): = Mr(x), z = {zuz2)={eix\eix*)eT2,
where Mr is defined by r={(e1,0),.. . ,(e1,r-l), (e2,0,...,(e2,s-l),
(e3,r + s-1),...,(e3,r + s + t — 2)}, and r, s and t are positive integers. By (2.2), the
Fourier coefficients of Mrs, are given by

(Mrs,)? = arvlfeSV2c,VlV2, v = (v,,v2)eZ2, (4.1)

where

l l • . s v 2 l l .
= 0 7 — v l j = 0 J~V2

(4.2)
r - l ^ r + s - 1 + ; - v ] - v 2 |

; ' co = expih,
l+jvV

and the factors in the product (4.2) are taken to be equal ih when the denominators
vanish.

Let J(r): = J , ( r ) u J 2 ( H u J3(r), where
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APPROXIMATION AND INTERPOLATION BY COMPLEX SPLINES 203

For JeJ{(n Bj = (n,v), // = 0 , . . . , r - 1 , v = 0 , . . . , s - I , for

JeJ2(r), 6j = (n,p-fi), fi = O,...,r-l, p = r + s-\,...,r + s + t-2, and for

The |detK,| = l for each JeJ(r). Furthermore, for J e J ( r ) and y = (e,X)er\J,0<
\/. — 8je\^r + s + t — 2. Therefore, condition (2.2) is satisfied if we assume that r + s + t —
2<k. This restriction and (4.2) implies that M^x) is not a polynomial, but a proper
spline function. The support,

and by (2.6) and (2.10) we see that the restriction of Mr5, to each "triangle" bounded by
the mesh lines corrresponding to xl=jh, x2=jh and xl+x2 = jh, jeZ, lies in the span
of

:0^fi^r-l,0^v^s-\, or O^n^r-

— 2, or O^v^s—1, r + s— 1 ^

Since conditions (2.1) and (2.2) are satisfied, the translates

are linearly independent. We shall consider the following interpolation problem.

Problem I: Given complex numbers yf, PeK, find (cx)xeK such that

^ / (4.4)

The corresponding problem of interpolation by polynomial box spline has been
solved by de Boor, Hollig and Riemenschneider [2]. For the one dimensional case of
uniform complex splines on the circle, the corresponding problem has been solved by
Ahlberg, Nilson and Walsh [1] and Schoenberg [10]. Following Schoenberg, we shall
formulate the Problem I in terms of finite Fourier series.
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204 T. N. T. GOODMAN, S. L. LEE AND A. SHARMA

5. Double finite Fourier series and the interpolation problem

Take /c^2, and set h = 2n/k, co = expih. Consider an array {aa:aeZ2} satisfying
ax+$k — 'lti f° r a n y Pel2. We define its Fourier coefficients {av:vel2} by

«v=p I aja-". (5.1)

Clearly, av+pk = ay for any Pel2, and

a a = £ avco°\ (5.2)
veK

If we denote by Q the k2 x k2 matrix {oiae)x^sK, then Q~1 is the matrix (\/k2)(u>'''e)I^eK,
and the relations (5.1) and (5.2) can be written in matrix form

(a«)«6jf=fi(av)v6K. (5-3)

Furthermore, if A denotes the k2xk2 matrix (aa-^)a,peK, then Cl~iAQ = k2dia.g(av)veK.
In particular

,4 is non singular if and only if av ̂ 0 V v e K. (5.4)

By (2.3) the complex B-spline Mrst on the two dimensional torus can be written as

where (Mrs,)^ is given by equation (4.1). For oce/C

1

which can be written as

47t2
 v e K

where

-4v= I2(MrsI)^+»y. (5.7)

The interpolation problem (4.4) is uniquely solvable if and only if the matrix
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\

0

©

o

\

0
0 r- l r+s-2

FIGURE 1 K = {

0

\

\

r+s+t-2 k

fc-l, i=l,2}.

(Mrs,(a/' °",a/2 X2))a fieK is non singular which is equivalent to 4 v # 0 for all veK. By
(4.1)

" • \ —
(5.8)

where

j = 0 J-

/=o j-v2-ky2'

.,+»,,«+*»= .n r+s_l+j_Vi_V2_kyi_ky2

(5.9)

6. Solution of the interpolation problem

In order to show that the finite Fourier coefficients Av are non zero, we shall partition
K into several regions (Figure 1) and look at the expressions for Av in each case.
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Case 1. Ogv,^r—1 and Ogv2:gs— 1. Then arv i#0 and arVi+kyi = 0 for y,#0.
Similarly feSV2#0 and bSV2+kyz = 0 for y2#0. Thus

r"1 /ay'~Vl — 1\ s - 1

2. O ^ v ^ r - 1 and r + s-\giv1 + v2<ir + s + t-2. Then ar v i + t y i#0 if and only
if )>! =0 and cIVl+kyiV2+ky2^=0 if and only if y1 + y2 = 0. Then >1V reduces to the expression
in (6.1).

Case 3. 0^v2^s— 1 and r + s— l<^vi+v2^r + s + t — 2. Then, as in Case 2, Av is as
given in (6.1).

Case 4. 0 g v r ^ r - l , r>l and s^v 2 ^r+s-2-v 1 . Then f ] ; . : ^ ^ " ' 2 - l)#0 and
niIo(«r + s"1 + J"v l"V 2- 1)^0, since - r - s + 2 ^ ; - v 2 g - 1 , for O^y^s-1 and l g
s— 1 + j — Vi — v2<k,for O^j^t—l. Hence

0 0 5 — 1 1 t~ 1 1

where

B1=flm n K - ! - i ) n (a/
j=0 j=0

5. O^Vj^r-1 and r + s + t - 1 ^v1 + v 2 | r + s + t - 2 . Then ]l;=o(<»J~V2

and n i = oK+s"1+J'"v'"V2-1)#0> since -fe + l g ; - v 2 g - t - 1 for 0 g ; ^ s - l and
— /c+lrgr + s— 1 +y — Vj — v2^ — 1, for O^j^t— 1. In this case /lv reduces to the same
expression as in (6.2).

Case 6. OfS v2^s— 1, s> 1 and r^vt g?r + s — 2 — v2.

Case 7. 0^v2gs—1, and r + s + t- 1 ^vl +

As in Cases 4 and 5, Cases 6 and 7 gives

oo r - 1 1 1-1 i

where
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j = o

Case8. r^vt^k-l, s^v2^k-l and vl + v2^r + s + t-2. Then Y\jZo{(o>~y'
0, r i j l i K ^ 2 - 1 ) ^ 0 a n d cI v l +*y iv2 +^/0 if and only if y1 + y2 = 0. Hence

where

n
j=0

9. r + s + /c — 1 ^Vj + v2^r + s + t + k — 2. In this case v ^ r and v2^s. Further-
more cIV|+tyiV2+ty2#0 if and only if 7i +y2 = — 1- Hence

oo r - 1 J s - 1 1

,=^00 /=(, j-vi-ky }=[ y-v2 + /c7 + /c' (6.5)

where

B4=wi-*n(®;""-i)nK"v!

j=0 j=0

Case 10. r + s + t— 1 ^v, +v 2 ^ r + s + /c — 2. In this case v t ^ r and v2^s which
implies that YYjZKcJ'*1-1)^0 and n?=o(^~ V 2 - l )^0- Furthermore, the above
inequalities for vx+v2 implies that — k+ 1 ^ r + s— 1 + 7 — V| — v2^ — 1 for j = 0,2,...,t.
Hence, we also have nj l£(a/+ I~1 + ' '~v l~V 2- l )#0, and therefore we can write

r - l j s - 1 j r - 1 j

5 2 j = o ;-V!-fcy, j=oj-v1-ky2 }j0 r + s-l +j-v1-v2-ky1-ky2'

where

r - l s - l

j=0 j=0
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Case 11. r + s + t + k — l^vl+v2^2k — 2. In this case, a similar analysis shows that
Av is also given by (6.6).

From the above expressions for Av, it is clear that if r, s and t are all even, then
/ l v # 0 for veK. Thus, in this case, the interpolation is uniquely solvable. We state the
above result as

Theorem 6.1. Given complex numbers yp, PeK, there exists a unique sequence (cJa e X

such that (4.4) holds ifr, s and t are even.

Remark. Theorem 6.1 is the solution of a particular case of a more general
interpolation problem which can be stated as follows:

Problem II. Given complex numbers yp, fleK, find (ca)aeK such that

xeK

where £ = (£^£2), £,e{0,1}, i '=l ,2 . Theorem 6.1 gives a solution to the case e = 0. We
conjecture that Problem II is uniquely solvable if (sl,e2) = (r + t,s + t)mod2.

7. Bernstein-Schoenberg type operator

We shall consider the complex B-splines Mrst{z), zeT2. Since |detJ j | = l for all
JeJ(F), by Proposition 3.1, we have for each J

CTiJylY.oiejxMr5t{zloi-x\w-^) = ze\ z=(zuz2)eT2, (7.1)

where

;

and we have used the standard multivariate notation z&J = z\z"2, 9j = (n,v).
Let Jo = {(e\0), (e2,0)}. Then 0Jo = O and

r + s-2\ r
T^1, , sz} ' - 1

— 1) 11 (or —1) I I (co

We now normalise the B-spline Mrst and set

Nra = Cr{Joy
lMnt. (7.3)

It follows from (7.1) that
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£ ") = lVz = (Z l ,z2 )er2
) (7.4)

xeK

and for each J.

«) = z^, zeT2. (7.5)
xeK

We shall show that there is a unique linear operator

i>Z2"~a2), zeT2, (7.6)
xeK

where / is defined on a polyannulus, which reproduces z8j> and z8-72 for any two distinct
JUJ2 in J(r). Let OJx=(nx,ti2) and 0j2 = (M2, v2), where for i = l,2, Og /x .^ r - l ,
O^v.-gs-l , or O g / i . ^ r - 1 , r + s - 1 g/ii + v,^r + s + t - 2 , or 0 g v , g s - l ,

—2. In view of (7.5) the above requirement give

which can be written as

^ \ > " " + ̂  (7.7)

2ai + V2a2 (7-8)

where xa = (ral,Ta2) and a=(a1,a2)ei( . A straightforward computation gives

t.,=Cr(Jo)(V2-1")A"1(Cr(y2)yi/Cr(y1nA-1ai-
(7.9)

where A = ^!V2 —^2v,. Thus the operator (7.6) with Ta=(tal,Ta2) defined by (7.9)
reproduces the constant function and the functions z9jt and zBjl, where 6Jl={jii,viit

For simplicity, we shall assume that J1 = {(e1,1), (e2,0)} and J2 = {(el,0), (e2,1)}. Then
^,=(1,0), ej2 = (0,\), and z ^ ' ^ z , and z9^ = z2. By (7.9).

and it follows from (7.2) by elementary computation that
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xx = {Rlaj"i+(r+')l2,R2o}"+is+m), (7.11)

where

_ /sin (r - l)n/k\ /sin (r + s + t- 2)n/k\ I /sin n/k\ /sin (r + s- 2)n/k
1 ~{ (r-\)n/k ){ (r + s + t-2)n/k ) \ \ n/k ){ (r + s-2)n/k

_
2 =

/ s in (s- l)n/k\ /sin(r + s +1-2)n/k\ //sin n/k\ /sin (r + s-2)n/k
\ (s-\)n/k ) \ (r + s + t-2)n/k ) \ \ n/k ){ (r + s-2)n/k

(7.12)

It is easy to see that

\-Ri = 0(k-2). (7.13)

We shall prove the following.

Theorem 7.1 Let f(z) be defined and continuous on a polyannulus A2: = {(z1,z2):pt^
| z , | ^ l , i= l ,2} , where 0<p,</? ( . Then the operator Sf defined by (7.6), where Ta is given
by (7.11), reproduces the functions 1, ztz2, and

\(Sf)(z)-f{z)\^Ma>(f;k-1), zeT2, (7.14)

where M is independent of f and k, and a>(f;k~l) denotes the modulus of continuity.

We shall first establish a simple lemma.

Lemma 1. For fixed integers r, s, t,

K , M | = 0 ( l ) , zeT2. (7.15)

Proof. First, we observe that |Mllo(z)| = 0(l), and using (2.7) by induction on
n = r + s + t, it is easy to see that |Mrs,(z)| = 0(fe"" + 2). The result then follows from (7.3),
since

/r + s — 2\ r'1 s~l

| = ,
\ r~l

r] (2sin(r + s+ j-\)n/k)/(

Proof of Theorem 7.1. By (7.4) and (7.6), we have
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(S/)(z)-/(z)=X(/(Tj-/(z))/Vrs((z1o)--,z2«-«), zeT2. (7.16)
xeK

For a fixed (zl,z2) = (eix',eiX2)eT2, Arrs r(z1ara ' ,z2aj-a2)^0 if and only if a
(r + t + ax)h, <x2h<x2<(s + t + tx2)h, and ( — s + <xl—a.2)h<xl — x2<{r + <xl — a2)h. Therefore
from (7.11), in view of (7.13), a straightforward computation gives

, I 2

— Z l I

The result now follows from (7.15) and (7.16). •

Remarks. 1. The order of approximation in (7.14) is best possible for the class of
continuous functions on A2. For if f(zl,z2) = \zl\

112, then there exists a constant C such
that KS/XrJ-.ftzJl^Cfc-1.

2. The Bernstein-Schoenberg operator (7.6), with Ta given by (7.11), reproduces the
constant function and the functions zv and z2. In this case the function / is defined on
the polyannulus A2. However, for any feC(T2), we can define a linear operator

(Sf)(z)= £ /((B"+<r+ l ) / 2 ,fl>" + (*+l) /2)Nra(zi(u-"',z2(B-"2), zeT2. (7.17)

This operator Sf does not reproduce z1; z2, and as in the proof of Theorem 7.1, we
have

Theorem 7.2. For feC( T2),

\(5f){z)-f(z)\£MMf,k~l), zeT2, (7.18)

where M, is independent off and k.
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