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1. Introduction

Let T?={(e"*",e™):0<x;<2rm, j=1,2} be a two dimensional torus and r, s, t and k be
positive integers with k>r+s+t—2. Our main object is to study the approximation
and interpolation properties of a class of smooth functions whose restrictions to each
triangle of a three direction mesh lie in the linear span of {z{z3:0<u<r—1,05v<s—1,
or 0Susr—1, r+s—1Su+vEr+s+t—2, 0or 0SvSs—1, r+s—1Su+v<r+s+t—2}
where (z,,z,)e T2

The one dimensional analogue is the class of uniform complex splines on the circle
studied in [1], [5], (8], [10]. By analogy with [5], [8] and [10], the basic tool for our
investigation will be a class of multivariate complex B-splines on the torus M which is
a complex version of polynomial box splines, a subject which has received much interest
recently (see the survey paper [6] and the reference therein).

The complex B-spline on the torus is a periodic case of a general class of compactly
supported functions, known as the exponential box splines, introduced recently by Amos
Ron [9].

In Section 2 we define the complex B-spline M on the d-dimensional torus and give
a short proof of a basic relation for M. Section 3 deals with those properties of the
linear combinations of translates of M which will be useful in the sequel. The proofs of
the results in Section 3 are just slight modifications of those in [6] and [9] for
polynomial and exponential box splines. In Section 4, we study the complex B-splines
on a three direction mesh on the torus and state an interpolation problem. Section 5
deals with finite double Fourier series which is the tool for our solution of the
interpolation problem. The solution is given in Section 6. In Section 7, we construct the
Bernstein—Schoenberg type approximation operators on the torus.

2. Definition and elementary properties of complex B-splines on the torus

Let d be a positive integer and I" a multiset consisting of a finite number of elements
of the form y=(e, 1), where ee Z*\{0} and 1eZ. We define the sets V:{e:(e,A)el},
Ar:={4:(e,A)eT}, and assume that (V> =R? We shall also use the same notation V;
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to represent the d x |F| matrix whose columns are the vectors of I', and A to stand for
the vectors in Z!"! whose components are the corresponding A’s. We also define the set
J(N):={JcTI:V, is a basis of R?Y}. To each JeJ(I'), there exists a unique ;e R? such
that 6,V,=A,.

Let h=2n/k, where k is a positive integer, such that hee[—n,n]? for y=(e,A)el". We
shall assume throughout that

|detV)|=1,  JeJ(I) (2.1)
and
0<|(2—0,e)h|<2n,  for y=(e,)el\J. (2.2

Let M- be a function on R? defined by

1 d
M(x) =<——> Y (Mp)lexpivx, xe R, 2.3)
271.' veZd
where
expi(A—ve)h—1
(Mr)'v\ = H {—p(—l_v—e—_}’ VE Zd, (2.4)
yell -

where the factors in the product are taken to be ik if the denominators equal zero. We
shall see later that the restrictions (2.1) and (2.2) will ensure that M(x) is a piecewise
polynomial in z:=(expix,,...,expix,) € T%. We shall call M the complex polynomial
B-spline on the d-dimensional torus defined by I

The Fourier coefficients (2.4) show that M is a convolution of periodic distributions
U,y=(4e)el, on R? defined by

U P)=i _'f'exp (iAger)dt,  PeP(RY). (2.5
(1]

The distribution %, is supported on the line segment Uvez.,(va+[O, he]). Hence, the
supp M is contained in { J,cz6(2nv+3 oy [0, he]) = J)yeza(2nv + {Vrt: 1€ [0,h]'1}).

A straightforward computation of the Fourier coefficients shows that for each Je J(I'),
M, is a periodic function given by

expif,x, xe 2av+{V,t:te[0, h)¢
V)= { piyx,xe | Quv+{Vte0.h)%) 26
0 ,otherwise.

Furthermore, if (['\{y}> =R, then
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h

Mr(x) = l j Mr\(y)(x - te) eXp (l;»t) dt, Xe Rd, (27)
0

where y=(e,4) el

Based on the Fourier coefficients (2.4) we define, for y=(e,A)eI" two operators, the
differential operator D'f:=i(iAi—D,)f, and the difference operator V'f:=f—
exp (iAh) f(- — he), where D, denotes the directional derivative along e. Then a straight-
forward calculation, using (2.4), gives

Proposition 2.1. For yeTl,
D"My=V*Mpy,, (2.8)
and if v=e/||e||?, then
D (exp(—idv-))Mp)=iexp(—il(v-)V*Mp,. 2.9

The following result is similar to that of Ron [9], but we give a short and direct
proof.

Proposition 2.2. If conditions (2.1) and (2.2) are satisfied,

Mp= Z ar(J)Vr\’M,, (2.10)
JeJ(r)
where
ac(J)= H ((),e—}.)'1 (2.11)
ye\J
and
VY= H v,
yell\J

Proof. To each JeJ(I'), A—0,e=0Vy=(e,A)eJ, and by (2.2) A—0e#0¥y=
(e,4)e"\J. Using a partial fraction decomposition (see [3]) we have for ue R? for which
i—ue£0Vy=(e, A)erl,

1 -5 1 1
H(l—“e)—kur) l—[ (A—0,e) n().—ue)’

yel yel'\J yelJ

(2.12)

where the products are over y=(e,A). Multiplying equation (2.12) by [[,cr
{expi(A—ve)h—1}, and taking the limit as u—v gives
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1 {expi(l—ve)h—l}___ S ard) ] {1 —expici—veyh} H{expi(j:ve)h—l}’

yel A—ve Jed(I) yel\J yed ve

where the quotient (exp i(4A —ve)h — 1)/(A—ve) is equal to ik if the denominator is zero.
Using (2.4) and the relation

(V'VMpA= T] {1-expi(2—ve)h}(M)}

yel\J
we obtain
(Mp)}= Y ad)(V"VMy)} VveZ?
JeJ(r)
from which (2.10) follows. O

Remark. From (2.6) and (2.10) we see that M is a linear combination of functions
of the form exp(if,x), JeJ(I'), on each open set not crossed by the boundaries of the
translates of supp M, J € J(I'), along jh, jeZ’. We shall call such a maximal open set a
I-cell. Since |(det V;|=1, M(x) equals a polynomial in z:=(e'™,...,e*9)eT? in each
I'-cell.

3. Translates of complex box splines

Let I be as in Section 2 and assume that (V->=R’ Let k be a positive integer,
h:=2n/k and Gj:={aeR*a;=0,h,...,(k—1)h, i=1,2,...,d}. By (2.2) we have for each
JeJ(I), |A—0,e|<k for all y=(e,)e"\J.

Proposition 3.1. Suppose conditions (2.1.) and (2.2) are satisfied. For each J e J(I),

Y. exp(iA )M (x - V,a) = C(J) exp(if,x) 3.1

aeGf

holds for xeR?, where

Cr(N=T]

yell\J

{exp i(A—0,e)h— l} (32)

}»—919
and the void product is taken to be 1.
Proof. The proof is by induction on |F | and is a straightforward modification of

Theorem 5.1 of [9]. If |F|=d, then J(IN)={T'}. With J=T, C(J)=1 and M ,(x) is given
by (2.6). Hence
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exp(if,x)exp(—iAja), xe |J Qav+{V{t+a):te[0,h)})
M (x—Va)= vezd
0 , otherwise.

Thus (3.1) holds for |['|=d.
Suppose |F |>d. Then for JeJ(I') and y=(e, ) eI"\J, by the convolution formula (2.7),

Y exp (iAo )M{(x— Vo)

aeGg

h
=ifexp(idt) Y, exp(iA;@)Mp,(x—V;a—te)dt
V]

2eGf
h
=iCr,(J) | exp (iAt) exp (i0 (x — te)) dt
)

=Cr(J)exp (i6,x). O

Remark. The constants C{J)#0 for all JeJ(I') because of the assumption that
|l—6,e|<kVy=(e,,l)eI"\J.

Next, we shall prove

Proposition 3.2. Let

S:= Y aMH-—a).
aeGg
Then for each yeT,
DyS= Z VyaaMr\(y)(' —a) (33)
aeGg

where the equation is interpreted in the sense of distribution if Mr,, is supported on a set
of measure zero.

Proof. Suppose y=(e,A)eI. By (2.8),

DVS= z aaVYMr\‘y)( ‘ —CX)
aeGf

aeGf aeGg

= Z;{ {aa —exp(ith)a, —he} Mpyr(-—a)
aeG
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from which (3.3.) follows. O

We shall now show that the conditions (2.1) and (2.2) imply that the translates
M- —a),a e G{ are locally linearly independent.

Proposition 3.3 Suppose the conditions (2.1) and (2.2) hold. Then the translates
M- —a),a€ G} are locally linearly independent.

Proof. The idea of the proof is the same as in [9]. If A is any non-empty set in a
I'-cell, then by Propositions 2.2 and 3.1, the span {M{(-—a)|xeG}} is precisely span
{expif,;x:J€J(I)} and so has dimension |[J(I')|. By a result of Dahmen and Micchelli
([4, Theorem 3.1]), the number of a’s for which M (- —a) has support intersecting A is
less than or equal to Y, |det V,|=|J(I)|. Hence the translates M{x—a)#0 for x € 4,
a € Gf form a basis for the span of {M{(- —oz)]A aeGi}. O

Corollary. supp M=), z¢(2nv+ {V;1:t€[0,R]T1}).

Proof. This holds for [[|=d. By induction, using (2.9), D (exp(—ilvx)M(x))50 on
any I-cell in | J, 7427y + {Vi-t: £ € [0,h]'T1}). -

4. Complex B-splines on a three direction mesh on the torus

Let k be a positive integer, h:=2n/k, w=expih and let e!=(1,0), e?=(0,1) and
e*=(1,1). We consider the complex B-spline M, (z):=M(x), z=(z,,2,) =(e™,e*?) e T?,
where Mp s defined by I={'0),...,(e',r—=1), (€3,0,...,(e%,5s—1),
(e r+s—1),...,(e%r+s+t—2)}, and r, s and ¢ are positive integers. By (2.2), the
Fourier coefficients of M, are given by

(Mrsr) rvl svzctvlvp V=(V1,VZ)EZZ, (41)
where
r—1 a)i—vn_l - CL)j—vz 1
Apy, = . s svz= I_l
=0 J—V j=0 _v2
(4.2)
t—1 wr+s—1+j—v;—vz_

, w=expih,
or+s—1+j—v,—~v, P

and the factors in the product (4.2) are taken to be equal ih when the denominators
vanish.
Let J(I'):=J (I u J,(I') u J4(I), where

Ju(D):={{{e", ), (€?,v)}: p=0,...,r—1,v=0,...,5—1},
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JyD):={{(e", m). (e p)}:u=0,...,r—1,p=r+s—1,...,r+s+t-2},
JyD):={{(e%v) (e p)}:v=0,...,s— 1, p=r+s—1,...,r+s+t—2}.

For JeJ (), 8,=(u,v), pu=0,...,r—1,v=0,...,s—1, for
JelJ,(), 8,=(,p—p), u=0,....,r—1, p=r+s—1,...,r+s+t—2, and for
JeldyI), 8,=(p—v,v), v=0,...,5—1, p=r+s—1,...,r+s+t—2.

The |det V,|=1 for each JeJ(I). Furthermore, for JeJ(I') and y=(e,)eI\J,0<
|/'.—9,e|§r+s+t—2. Therefore, condition (2.2) is satisfied if we assume that r+s+1—
2<k. This restriction and (4.2) implies that M{(x) is not a polynomial, but a proper
spline function. The support,

supp M, ={(z,2,) =(e"",e™?):0< x, S(r+t)h, 0 x, S(s+1)h, —sh<x,—x,<rh},
and by (2.6) and (2.10) we see that the restriction of M, to each “triangle” bounded by
the mesh lines corrresponding to x, =jh, x,=jh and x,+x,=jh, jeZ, lies in the span
of
{z425:0Su<r—1,0Zv<s—1, or 0gpusr—1,
r+s—1Spu+vSr+s+t—2, or 0=<v<s—1, r+s—1Su+vSr+s+t—2}.
Since conditions (2.1) and (2.2) are satisfied, the translates

M, (z;0™ " 2,07, a=(a,,a,) € K:={(v{,v,) € Z*: 05 v;<k,i=1,2},

are linearly independent. We shall consider the following interpolation problem.

Problem I: Given complex numbers y;, fe K, find (c,),cx such that

Y M (of 0P )=y, VBeK. (4.4)

aeK

The corresponding problem of interpolation by polynomial box spline has been
solved by de Boor, Hollig and Riemenschneider [2]. For the one dimensional case of
uniform complex splines on the circle, the corresponding problem has been solved by
Ahlberg, Nilson and Walsh [1] and Schoenberg [10]. Following Schoenberg, we shall
formulate the Problem I in terms of finite Fourier series.

https://doi.org/10.1017/50013091500028601 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500028601

204 T. N. T. GOODMAN, S. L. LEE AND A. SHARMA

5. Double finite Fourier series and the interpolation problem

Take k=2, and set h=2n/k, w=expih. Consider an array {a,:aeZ?} satisfying
a,,p=a, for any pe Z* We define its Fourier coefficients {a,:ve Z*} by

1
éy:k—i Z a,w” " (5.1)

acK
Clearly, &, . g =4, for any €72, and

4= Y a0 (5.2)
vek

If we denote by Q the k? x k? matrix (w*), 5.k, then Q™" is the matrix (1/k*) (@~ ), sk
and the relations (5.1) and (5.2) can be written in matrix form

(aa)aeK=Q(&v)veK. (53)

Furthermore, if 4 denotes the k*x k? matrix (a,_g), sex, then Q7' AQ=k?diag(a,), .-
In particular

A is non singular if and only if 4,20Vve K. (5.4)

By (2.3) the complex B-spline M,,, on the two dimensional torus can be written as

1
Mrst(z) =E[§ ZZZ (Mrst):'\z‘luzzz’ 4 =(zlv ZZ) € U27
ve

where (M,,,)? is given by equation (4.1). For aeK

1
Moy, 0) =23 T (Ma)io™ (53)
T~ vez?
which can be written as
a1 22 1 av
Mrsl(w , W )=Zp VEZK Avw (56)
where
Av= z (Mrst)\l'\+ky' (57)
yeZ2

The interpolation problem (4.4) is uniquely solvable if and only if the matrix
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vl+v2-r+s+:+k-2

vl+v2-r+s4k-2

FIGURE 1 K={(v,,v):0Sv,<k—1,i=1,2}.

(M, (@ =", @P27%2)), 4. is non singular which is equivalent to 4,%#0 for all veK. By

(4.1)
Av= Z arv|+ky1bsvz+k72ctv1+ky1vz+kyp VEK’ (58)
veZ?
where
R B
rtin j=0 j—vl—k)’l’
s—1 a)j-vz_l
b,, = —_——, (5.9)
2tk 11:[0 j=va—ky,
-1 Tt tsT i

Crv = - .
ikt on r+s—1+j—vy,—vy—ky,—ky,

6. Solution of the interpolation problem

In order to show that the finite Fourier coefficients A, are non zero, we shall partition
K into several regions (Figure 1) and look at the expressions for A4, in each case.
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Casel. 0<v,sr—1 and 0=v,<s-1. Then q,, #0 and aq,, ;+,=0 for y,#0.
Similarly b,,,#0 and b,,, ,,,,=0 for y, #0. Thus

r-1 Cl)j—v’—l s—1 wj—vz_l t—1 wr+s—l+j—v|—vz_1
A,=[] <~—— ) I1 < . ) l'[( : > (6.1)
j=o\ J=Vvi Jjzo\ J—v2 ) jso\rts—1+j~v,—v,

Case 2. 0Zv,sr—tand r+s—1<v,+v,Sr+s+t-2. Then a,, +,, #0 if and only
if y,=0 and c,,, +xy,v,+xy, 70 if and only if y,+7,=0. Then A, reduces to the expression
in (6.1).

Case 3. 0Zvy,<s—land r+s—1=Zv,+v,Zr+s+t—2. Then, as in Case 2, A4, is as
given in (6.1).

Case 4. 0<v;=r—1, r>1 and s<v,<r+s—2—v,. Then [[{25(«’/ **—1)#0 and
[Tizb (@t 1172 1) £0, since —r—s+2=<j—v,<~1, for 0<j<s—1 and 1<r+
s—1+ j—v,—v,<k, for 0= j<t—1. Hence

@ s—1 1 t—1 1
Av=Bl Z U

- - , 6.2)
y=—w j 0]—V2—k)’jl:[0 r+s—1+j—v,—v,—ky (

where
s—1

=1
Bl=arv1 H((Dj—v;_l) l—[ (wr+s—1+j—v1—v2_1)#0.
j=0

i=0

Case 5. 0<v,sr—1land r+s+t—1=5v,+v,<r+s+k—2. Then [[{§ (/2= 1)#0
and [[iZf(@™** 12— 1)#£0, since —k+1<j—v,<—t—1 for 0<j<s—1 and
—k+1<r+s—1+j—-v,—v2_-1 for 0<]<t—1 In this case 4, reduces to the same
expression as in (6.2).

Case 6. 0Zv,<s—1l,s>land r=sv,<r+s—2—v,.

Case7. 0Zv,<s—l,and r+s+t—15v,+v,Sr+s+k—2.
As in Cases 4 and 5, Cases 6 and 7 gives

t=1 1

a-e: £ T

6.3
ye j—v,— kyjllr+s—1+j—v1—v2—ky (63)

where
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r—1 t—1

B,=b,, [[ (@ " =) [] (@** 1+~ 1)%0.
j=0 ji=0

Case 8. r<v;<k—1, s<v,<k-—1 and v, +v,<r+s+t—2. Then H};(‘,(w"_“—l);é
0, [F2o(«’ "2 =1)#0 and ¢y, +4y,v; +4y, #0 if and only if y, +7y,=0. Hence

@ i s—1 1
A,=B (6.4)
3 y=z_ U —vl—ky JHO j—va—ky’
where
r—1 . s—1 .
By=cp,, [ (@7 =1 [ (@~ = 1) 0.
_ j=0 j=0
Case 9. r+s+k—1=Zv,+v,<r+s+t+k—2. In this case v,=r and v,=s. Further-
MOTE Cyy, 4+ kyyv, +ky, 70 if and only if y, +y,= —1. Hence
cor—1 a)j—vl_l s-1 Ct)j—vz—l
Av=cv1v2— . .
' kv1+)§=—1jl=—[0 <J—V1—k3’1> jl:IO (]—Vz—k'h)
Z l_[ s—1 1
y——ooj 0] kYJl—[() ]—Vz+k7+k (65)
where
r—1 ) s—1 .
Bi=¢py vy -k n (0™ =1) H (0’ "2 —1) 0.
j=0 j=0

Case 10. r+s+t—1=2v,+v,<r+s+k—2. In this case v,2r and v,2s which
implies that [[;Z§(w/ "' —1)#0 and [[5C§(w’~*2—1)#0. Furthermore, the above
inequalities for v, +v, implies that —k+1gr+s—1+ j—v,—v,<—1 for j=0,2,...,¢t
Hence, we also have [[{25(w™ 7' */7*172—1)#0, and therefore we can write

A,=Bs Y ]‘[ s]:f, : '1—'11 . : , (6.6)

yez? j=0 J— k)’l j=0j—Va—kyy jeor+s—1+4j—v,—v,—ky, —ky,

where

r—1 s—1 t—1
Bs=[[ (@™ =) [T (@ " =1) [ (@*s 1" 1) 0.

j=0 ji=0 j=0
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Case 11. r+s+t+k—1Zv,+v,<2k—2. In this case, a similar analysis shows that
A, is also given by (6.6).

From the above expressions for A,, it is clear that if r, s and t are all even, then
A,#0 for ve K. Thus, in this case, the interpolation is uniquely solvable. We state the
above result as

Theorem 6.1. Given complex numbers yg, f€ K, there exists a unique sequence (C,),cx
such that (4.4) holds if r, s and t are even.

Remark. Theorem 6.1 is the solution of a particular case of a more general
interpolation problem which can be stated as follows:

Problem II. Given complex numbers y;, fe K, find (c,),.x such that

Z caMrs‘(wﬂn —ay +£1/2’ wfr—a +ez/2) =y;, BeKk,
aek

where e=(¢,¢,), £€{0,1}, i=1,2. Theorem 6.1 gives a solution to the case e=0. We
conjecture that Problem II is uniquely solvable if (g,,¢,)=(r+t,s+¢) mod 2.

7. Bernstein—Schoenberg type operator

We shall consider the complex B-splines M, (z), ze T% Since |det¥;|=1 for all
JeJ(I), by Proposition 3.1, we have for each J

CH) ™ Y 0™ M (20”07 ) =2%, z2=(z2;,2,)€ T, (7.1)

aeK

where

A—8ye__ 1
=11 (‘”———) (72)

yeru \ A—0,e

and we have used the standard multivariate notation z% =z4z}, 8, =(u, v).
Let Jo={(e',0), (¢?,0)}. Then 6,,=0 and

- r—1 s—1 -1
cr(Jo)=<'Jr’i12) @ =) [T @1 [] @5 = fr+s+t-2)!

j=1
We now normalise the B-spline M, and set
Nrsr= CF(JO)_ersP (73)

It follows from (7.1) that
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2 Nrsx(zlw_alaz2w_u)=l VZ=(21,ZZ)ET2, (74)
aeK
and for each J.
(CHI)/CHI)) Y, 0™N, (2,0~ z,w™ ) =2%, ze T2 (1.5)
ackK .

We shall show that there is a unique linear operator

$N@ =Y fEIN,(z:07*,2,07%), zeT?, (7.6)

xeK

where f is defined on a polyannulus, which reproduces z°* and z%: for any two distinct
Ji,J, in JI). Let 8, =(uy,u,) and 8;,=(u,v,), where for i=1,2, 0y, Sr—1,
0Zv,Ss—l,or 0=y, Sr—1, r+s—18pu+v;Sr+s+t—2,0or 08v;Ss— 1L, r+s—15p;+
v;Sr+s+t—2. In view of (7.5) the above requirement give

0y _CI‘(JO) 0.a 0 _CI‘(JO) 010
‘[al____w |, ,“——"‘_‘w 2
CJy) CHJ>2)
which can be written as
Cr(Jo) .
113 5} = s1xy ¥ viaa 77
talraZ Cr(Jl)w ( )
Cr(J
ez = 00 gy v (7.8)

CJ2)
where 17, =(t,,, T,2) and a=(a;,a;)€ K. A straightforward computation gives

T, =Cr(Jo)"* "2 (Cr(J )" /Cr(J 1))A ™ o™
_ (7.9)
Tua = Cr(Jo)#1 T#24” ’(Cr(Jl)“z/Cr(Jz)"')A “lw*

where A=u,v,—pu,v,. Thus the operator (7.6) with 1,=(1,,,7,,) defined by (7.9)
reproduces the constant function and the functions z%: and z%/:, where 6, =(u,,v,),
011 =(uz, V2)-

For simplicity, we shall assume that J, ={(e', 1), (¢?,0)} and J,={(e',0), (¢?,1)}. Then
6,,=(1,0), 8,,=(0,1), and z%' =2z, and z%:=z,. By (7.9).

. (Cr(Jo) o Ertdo) w,z) (7.10)

*\CrUy) T TCHYY)

and it follows from (7.2) by elementary computation that
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Ta=(lea1+(r+t)/2’R2wa2+(s+t)/2)’ (711)

where

R. = sin{(r— D)a/k\ [/sin(r+s+t—2)n/k sinn/k\ [sin(r+s—2)n/k
‘_( (r—n/k )( (r+s+t—2)n/k )/( n/k >( (r+s—2)m/k )

R.— sin(s— )a/k\ (sin(r+s+t—2)a/k\ |/sinn/k\ [sin(r+s—2)n/k
2-< (s—)n/k )( (r+s+t—2)n/k )/( n/k )( (r+s—2)n/k )

It is easy to see that

(1.12)

1—R;=0(k™2). (7.13)
We shall prove the following.

Theorem 7.1 Let f(z) be defined and continuous on a polyannulus A*:={(z,,2,): p; <
|z,-| <1, i=1,2}, where 0<p;<R;. Then the operator Sf defined by (7.6), where 1, is given
by (7.11), reproduces the functions 1, z,z,, and

(SN2~ f(@)| Mo (f;k™Y), ze T?, (7.14)
where M is independent of f and k, and w(f;k™') denotes the modulus of continuity.

We shall first establish a simple lemma.

Lemma 1. For fixed integers r, s, t,
IN,o(2)|=0(1), zeT2 (7.15)

Proof. First, we observe that |M“0(z)|=0(l), and using (2.7) by induction on
n=r+s+t, it is easy to see that |[M,,(z)|=0(k™"*2). The result then follows from (7.3),
since

r+s—2
r—1

|C,-(J0)|=( ) ’]jl (2sin ja/k) sli—ll (2sin jn/k).

=1

[T @sin(r+s+ j— Da/k)/(r +s+t—2)!

i=0

=0(k-"+2). D

Proof of Theorem 7.1. By (7.4) and (7.6), we have
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SNE@~f@)= ) (f)—f(DIN, 2,07, 2,07%),  zeT> (7.16)

aekK

For a fixed (z,,z;)=(e"",e*)eT? N,{z,0 ", z,w *)#0 if and only if a,h<x,<
(r+t+o,)h, a,h<x,<(s+t+a,)h, and (—s+a, —a)h<x, —x, <(r+o, —a,)h. Therefore
from (7.11), in view of (7.13), a straightforward computation gives

|[ra—z}:= (s — 2y [ +]ra2 — 25| 2 = 0.

The result now follows from (7.15) and (7.16). O

Remarks. 1. The order of approximation in (7.14) is best possible for the class of
continuous functions on A2 For if f(z,,2,)=|z,|"/% then there exists a constant C such
that |(Sf)(z)— f(z)| 2 Ck "

2. The Bernstein—-Schoenberg operator (7.6), with 1, given by (7.11), reproduces the
constant function and the functions z, and z,. In this case the function f is defined on
the polyannulus A2. However, for any f € C(T?), we can define a linear operator

(SN)D)= T, @ IR0 N, (07 207, 26T (117)

aek

This operator Sf does not reproduce z,, z,, and as in the proof of Theorem 7.1, we
have

Theorem 7.2. For feC(T?),
I8N - fD)|sM0(fk7Y),  zeT? (7.18)
where M, is independent of f and k.
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