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Abstract
Treating inertial measurement unit (IMU) measurements as inputs to a motion model and then preintegrating these
measurements have almost become a de facto standard in many robotics applications. However, this approach has
a few shortcomings. First, it conflates the IMU measurement noise with the underlying process noise. Second, it
is unclear how the state will be propagated in the case of IMU measurement dropout. Third, it does not lend itself
well to dealing with multiple high-rate sensors such as a lidar and an IMU or multiple asynchronous IMUs. In this
paper, we compare treating an IMU as an input to a motion model against treating it as a measurement of the state in
a continuous-time state estimation framework. We methodically compare the performance of these two approaches
on a 1D simulation and show that they perform identically, assuming that each method’s hyperparameters have been
tuned on a training set. We also provide results for our continuous-time lidar-inertial odometry in simulation and on
the Newer College Dataset. In simulation, our approach exceeds the performance of an imu-as-input baseline during
highly aggressive motion. On the Newer College Dataset, we demonstrate state-of-the art results. These results show
that continuous-time techniques and the treatment of the IMU as a measurement of the state are promising areas of
further research. Code for our lidar-inertial odometry can be found at: https://github.com/utiasASRL/steam_icp.

1. Introduction
Inertial measurement units (IMUs) are important sensors in the context of state estimation. A popular
approach in robotics is to treat IMU measurements as inputs to a motion model and then to numerically
integrate the motion model to form relative motion factors between pairs of estimation times in a process
known as preintegration [1–3]. In this paper, we investigate the treatment of IMUs as a measurement
of the state using continuous-time state estimation with a Gaussian process motion prior. We compare
treating an IMU as an input versus a measurement on a simple 1D simulation problem. We then test
our approach to lidar-inertial odometry using a simulated environment and compare to a baseline that
represents the IMU-as-input approach. Finally, we provide experimental results for our lidar-inertial
odometry on the Newer College Dataset.

Preintegration was initially devised as a method to avoid having to estimate the state at each mea-
surement time in (sliding-window) batch trajectory estimation. We will show that by employing our
continuous-time estimation techniques, we can achieve the same big-O complexity as classic prein-
tegration, which is linear in the number of measurements. The contributions of this work are as
follows:

• We provide a detailed comparison of treating an IMU as an input to a motion model versus
as a measurement of the state on a 1D simulation problem. Such a comparison has not been
previously presented in the literature.
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• We show how to perform preintegration using heterogeneous factors (a combination of binary
and unary factors) using continuous-time state estimation. To our knowledge, this has not been
shown before in the literature.

• We present our novel approach to lidar-inertial odometry using a Singer prior which includes
body-centric acceleration in the state. We provide experimental results on the Newer College
Dataset and on a custom simulated dataset. On the Newer College Dataset, we demonstrate state-
of-the art performance.

2. Related work
Lupton and Sukkarieh [1] were the first to show that a temporal window of inertial measurements could
be summarized using a single relative motion factor in a method known as preintegration. Forster et al.
[2] then showed how to perform preintegration on the manifold SO(3). Subsequently, Brossard et al.
[3] demonstrated how to perform preintegration on the manifold of extended poses SE2(3), showing
that this approach captures the uncertainty resulting from IMU measurements more consistently than
SO(3) ×R

3. All of these approaches treat the IMU as an input to a motion model. This approach has a few
shortcomings. First, it conflates the IMU measurement noise with the underlying process noise. Second,
it is unclear how the state and covariance should be propagated in the absence of IMU measurements.
IMU measurement dropout is rare. However, it is worth considering the possibility in safety-critical
applications. The third issue is that classic preintegration does not lend itself well to dealing with
multiple high-rate sensors such as a lidar and an IMU or multiple asyncrhonous IMUs.

Previous work in continuous-time lidar-only odometry and lidar-inertial odometry include [4–9] all
of which employed B-splines. In B-spline approaches, exact derivatives of the continuous-time trajec-
tory can be computed allowing for unary factors to be created for each accelerometer and gyroscope
measurement, removing the need for preintegration. However, the spacing of control points has a large
impact on the smoothness of B-spline trajectories. Determining this spacing is an important engineering
challenge in B-spline approaches. This can be avoided by working with Gaussian processes instead. For
a detailed comparison between B-splines and Gaussian processes in continuous-time state estimation,
we refer the reader to Johnson et al. [10].

Recently, Zheng and Zhu [11] demonstrated continuous-time lidar-inertial odometry using Gaussian
processes where rotation is decoupled from translation. They use a white-noise-on-jerk (WNOJ) prior for
position in a global frame, a white-noise-on-acceleration (WNOA) prior for rotation using a sequence of
local Gaussian processes, and a white-noise-on-velocity prior for the IMU biases. Using this approach,
they demonstrate competitive performance on the HILTI SLAM benchmark [12]. One consequence
of estimating position in a global frame is that the power spectral density matrix Q of the prior must
typically be isotropic, whereas a body-centric approach allows for lateral-longitudinal-vertical dimen-
sions to be weighted differently. In addition, as was shown by Brossard et al. [3], decoupling rotation
from translation does not capture the uncertainty resulting from IMU measurements as accurately as
keeping them coupled. However, one clear advantage of their approach is that all parts of the state are
directly observable by the measurements, whereas in our approach angular acceleration is not directly
observable.

In our prior work, we demonstrated continuous-time lidar-only odometry [13] using a WNOA motion
prior. Lidar-only odometry using a WNOJ prior [14] and a Singer prior [15] have also been previously
demonstrated. In this work, we choose to work with the Singer prior, which includes body-centric accel-
eration in the state. By including acceleration in the state, we can treat gyroscope and accelerometer
measurements as measurements of the state rather than as inputs to a motion model.

Another approach based on Gaussian processes is that of Le Gentil and Vidal-Calleja [16, 17]. They
employ six independent Gaussian processes, three for acceleration in a global frame, and three for angu-
lar velocity. They optimize for the state at several inducing points given a set of IMU measurements over a
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preintegration window. They then analytically integrate these Gaussian processes to obtain preintegrated
measurements that can be queried at any time of interest.

Prior lidar-inertial odometry methods include [18–21]. For a recent survey and comparison of open-
source lidar-only and lidar-inertial odometry approaches, we refer the reader to [22]. For a more detailed
literature review of lidar odometry, lidar-inertial odometry, and continuous-time state estimation, we
refer the reader to our prior work [23]. For a recent survey on continuous-time state estimation, we refer
the reader to Talbot et al. [24]. Extrinsic calibration of an IMU and calibration of the temporal offset
between the IMU timestamps and the other sensors are both important areas of research. Recent works in
this area include [25, 26]. By working with an existing dataset where extrinsic calibration and temporal
synchronization has been taken care of, we can focus on the task of localization.

3. IMU as an input versus a measurement
In this section, we investigate an approach where IMU measurements are treated as direct measurements
of the state using a continuous-time motion prior. We compare the performance of these two approaches
on a simulated toy problem where we estimate the position and velocity of a 1D robot given noisy
measurements of position and acceleration. Position measurements are acquired at a lower rate (10 Hz),
while the acceleration measurements are acquired at a higher rate (100 Hz). For both approaches, our
goal will be to reduce the number of states being estimated through preintegration.

3.1. IMU as an input
As a baseline, we consider treating IMU measurements as inputs to a discrete motion model:[

pk

ṗk

]
︸ ︷︷ ︸

xk

=
[

1 �tk1

0 1

]
︸ ︷︷ ︸

�(tk ,tk−1)

[
pk−1

ṗk−1

]
︸ ︷︷ ︸

xk−1

+
[

1
2
�t2

k

�tk

]
︸ ︷︷ ︸

Bk

uk, (1)

where �tk = tk − tk−1, �(tk, tk−1) is the transition function, and uk are acceleration measurements. A
preintegration window is then defined between two endpoints, (tk−1, tk), which includes times τ0, . . . , τJ .
Following the approach of [1, 2], the preintegrated measurements �xk,k−1 are computed as:

�xk,k−1 =
J∑

n=1

�(τJ , τn)Bnun. (2)

These preintegrated measurements can be used to replace the acceleration measurements with a single
relative motion factor between two endpoints:

Jv,k = 1

2
eT

k �
−1
k ek, (3a)

ek = xk − �(tk, tk−1)xk−1 − �xk,k−1, (3b)
where

�k =
J∑

n=1

�(τJ , τn)BnQnBT
n �(τJ , τn)T , (4)

and Qn is the covariance of the acceleration input un ∼N (0, Qn). Note that in this approach, uncertainty
is propagated using the covariance on the acceleration input, Qn, which conflates IMU measurement
noise and the underlying process noise. If the acceleration measurements were to drop out suddenly,
it is unclear how the state and covariance should be propagated using this approach. It can be shown
that preintegration is mathematically equivalent to marginalizing out the states between xk−1 and xk.
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The overall objective function that we seek to minimize is then

J(x) =
K∑

k=0

(
Jv,k(x) + Jy,k(x)

)
, (5)

where

Jy,k = 1

2
(yk − Ckxk)

T R−1
k (yk − Ckxk) (6)

are the measurement factors, and Rk is the associated measurement covariance.

3.2. Continuous-time state estimation
In order to incorporate potentially asynchronous position and acceleration measurements, we propose to
carry out continuous-time trajectory estimation as exactly sparse Gaussian process regression [27–29].
We consider systems with a Gaussian process (GP) prior and a linear measurement model:

x(t) ∼ GP(x̌(t), P̌(t, t′)), (7a)

yk = Ckx(tk) + nk, (7b)

where x(t) is the state, x̌(t) is the mean function, P̌(t, t′) is the covariance function, and yk are measure-
ments corrupted by zero-mean Gaussian noise nk ∼N (0, Rk). In this section, we restrict our attention to
a class of GP priors resulting from linear time-invariant (LTI) stochastic differential equations (SDEs)
of the form:

ẋ(t) = Ax(t) + Bu(t) + Lw(t), (8)

w(t) ∼ GP(0, Qδ(t − t′)),

where w(t) is a white-noise Gaussian process, Q is a power spectral density matrix, and u(t) is a known
exogenous input. The general solution to this differential equation is

x(t) = �(t, t0)x(t0) +
∫ t

t0

�(t, s)(Bu(s) + Lw(s))ds, (9)

where �(t, s) = exp(A(t − s)) is the transition function. The mean function is

x̌(t) = E[x(t)] = �(t, t0)x̌0 +
∫ t

t0

�(t, s)Bu(s)ds. (10)

Over a sequence of estimation times, t0 < t1 < · · · < tK , the mean function can be written as:

x̌(tk) = �(tk, t0)x̌0 +
k∑

n=1

�(tk, tn)Bnun, (11)

assuming piecewise-constant input un. This can be rewritten in a lifted form as:

x̌ = ABu, (12)

where A is the lifted lower-triangular transition matrix, the inverse of which is

A−1 =

⎡
⎢⎢⎢⎢⎢⎣

1

−�(t1, t0)
. . .

. . . 1

−�(tK , tK−1) 1

⎤
⎥⎥⎥⎥⎥⎦ , (13)
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B = diag(1, B1, · · · , BK), and u = [x̌T
0 uT

1 · · · uT
K]T . See [29] for further details on the formulations

above. The covariance function is then
P̌(t, t′) = E[(x(t) − E[x(t)])(x(t′) − E[x(t′)])T] (14)

= �(t, t0)P̌0�(t′, t0)
T +

∫ min(t,t′)

t0

�(t, s)LQLT�(t′, s)Tds.

The covariance can also be rewritten in a lifted form using the same set of estimation times as above:
P̌ = AQAT , (15)

where Q = diag(P̌0, Q1, · · · , QK), and

Qk =
∫ �tk

0

exp(A(�tk − s))LQLT exp(A(�tk − s))Tds. (16)

Our prior over the entire trajectory can then be written as:
x ∼N (x̌, P̌), (17)

where P̌ is the kernel matrix. Note that the inverse kernel matrix P̌−1 is block-tridiagonal thanks to the
Markovian nature of the state. This sparsity property also holds for linear time-varying (LTV) SDEs,
provided that they are also Markovian [28]. The exact sparsity of P̌−1 is what allows us to perform
efficient Gaussian process regression. This fact can be observed more easily by inspecting the following
linear system of equations: (

P̌−1 + CTR−1C
)

︸ ︷︷ ︸
P̂−1

x̂ = A−TQ−1Bu + CTR−1y, (18)

where the Hessian is on the left-hand side, P̂−1 is block-tridiagonal since P̌−1 is block-tridiagonal, and
CTR−1C is block-diagonal. Thus, this linear system of equations can be solved in O(K) time using a
sparse Cholesky solver. The exact sparsity of P̌−1 also enables us to perform efficient Gaussian process
interpolation. The standard GP interpolation formulas are given by:

x̂(τ ) = x̌(τ ) + P̌(τ )P̌−1(x̂ − x̌), (19a)

P̂(τ , τ ) = P̌(τ , τ ) + P̌(τ )P̌−1
(

P̂ − P̌
)

P̌−T P̌(τ )T , (19b)

where
P̌(τ ) =

[
P̌(τ , t0) P̌(τ , t1) · · · P̌(τ , tK)

]
. (20)

The key to performing efficient interpolation relies on the sparsity of
P̌(τ )P̌−1 = [

0 · · · 0 �(τ ) �(τ ) 0 · · · 0
]

, (21)
where

�(τ ) = Qτ�(tk+1, τ )TQ−1
k+1, (22a)

�(τ ) = �(τ , tk) − �(τ )�(tk+1, tk), (22b)

are the only nonzero block columns at indices k + 1 and k, respectively. Thus, each interpolation query
of the posterior trajectory is an O(1) operation.

3.3. A generalization to preintegration
In Section 3.1, we showed how to perform preintegration when considering acceleration measurements
as inputs to a motion model following closely from [1, 2]. In this section, we generalize the concept of
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Figure 1. In this factor graph, we consider a case where we would like to marginalize several states out
of the full Bayesian posterior. The triangles represent states and the black dots represent factors. This
factor graph could potentially correspond to doing continuous-time state estimation with binary motion
prior factors, unary measurement factors, and a unary prior factor on the initial state x0.

preintegration to support heterogeneous factors (a combination of binary factors and unary factors). An
example factor graph is shown in Figure 1. As a motivating example, consider having measurements of
position such as from a GPS and measurements of acceleration coming from an accelerometer. These
are unary measurement factors, called such because they only involve a single state. The binary factors
here are motion prior factors derived from our Gaussian process motion prior, called binary because
they are between two states. In classic preintegration, the only factors that are preintegrated are binary
factors. Here, we show that we can simply use the formulas for querying a Gaussian process posterior
at the endpoints of the preintegration window to form a preintegration factor that summarizes all the
measurements contained therein. First, we consider the joint density of the state at a set of query times
(τ0 < τ1 < · · · < τJ) and the measurements:

p

([
xτ

y

])
=N

([
x̌τ

Cx̌τ

]
,

[
P̌τ ,τ P̌τ CT

CP̌T
τ

R + CP̌CT

])
. (23)

We then perform the usual factoring using a Schur complement to obtain the posterior:

p(xτ |y) =N
(

x̌τ + P̌τ CT(CP̌C + R)−1(y − Cx̌),

P̌τ ,τ − P̌τ CT(CP̌CT + R)−1CP̌T
τ

)
, (24)

where we obtain expressions for x̂τ and P̂τ ,τ . We rearrange this further by inserting P̌−1P̌ after the first
instance of P̌τ and by applying the Sherman–Morrison–Woodbury identities to obtain

x̂τ = x̌τ + P̌τ P̌−1(P̌−1 + CTR−1C)−1CTR−1(y − Cx̌), (25a)

P̂τ ,τ = P̌τ ,τ − P̌τ P̌−1(P̌−1 + CTR−1C)−1CTR−1CP̌T
τ
, (25b)

where we note that (P̌−1 + CTR−1C) is block-tridiagonal, and so the product (P̌−1 +
CTR−1C)−1CTR−1(y − Cx̌) can be evaluated in O(K) time using a sparse Cholesky solver. When
we encounter products resembling A−1b where A is block-tridiagonal, we can instead solve Az = b for
z using an efficient solver that takes advantage of the sparsity of A. Finally, the product P̌τ P̌−1 is quite
sparse, having only two nonzero block columns per block row as shown earlier in (21). It follows that
x̂τ and P̂τ ,τ can be computed in time that scales linearly with the number of measurements. Now, we
consider the case where the query times consist of the beginning and end of a preintegration window,
(tk, tk+1). The queried mean and covariance can be treated as pseudomeasurements summarizing the
measurements contained in the preintegration window. We adjust our notation to make it clear that
these are now being treated as measurements by using x̃ instead of x̂. What we obtain is a joint Gaussian
factor for the states at times tk and tk+1:

J = 1

2

[
xk − x̃k

xk+1 − x̃k+1

]T [
P̃k,k P̃k,k+1

P̃k,k+1 P̃k+1,k+1

]−1 [
xk − x̃k

xk+1 − x̃k+1

]
. (26)
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Original Preintegration Window

(a) (b)

Preintegrated

Figure 2. This figure depicts the results of our preintegration, which can incorporate heterogeneous
factors. The resulting joint Gaussian factor in (26) can be thought of as two unary factors, one each for
xk and xk+1, and an additional binary factor between xk and xk+1.

A diagram depicting how this affects the resulting factor graph is shown in Figure 2. Using this
approach, we can ‘preintegrate’ heterogeneous factors between pairs of states. One clear advantage of
this approach is that it offers a tidy method for bookkeeping measurement costs and uncertainties. In
the supplementary materials, we provide an alternative formulation using a Schur complement with
the same linear time complexity. Indeed, marginalization with a Schur complement is equivalent to
the presented marginalization approach using a Gaussian process. However, the Gaussian process still
serves a useful purpose in creating motion prior factors. Furthermore, the Gaussian process provides
methods for interpolating the posterior.

It is unclear how to extend this marginalization approach to SE(3) due to our choice to approximate
SE(3) trajectories using sequences of local Gaussian processes [28]. It is possible that this marginaliza-
tion approach could be applied using a global GP formulation such as the one presented by Le Gentil
and Vidal-Calleja [17]. However, their approach must contend with rotational singularities. We leave the
extension to SE(3) as an area of future work. In our implementation of lidar-inertial odometry, we instead
use the posterior Gaussian process interpolation formula as in (19) to form continuous-time measure-
ment factors. This is actually an approximation, as it is not exactly the same as marginalization. However,
we have found the interpolation approach to work well in practice. Furthermore, the interpolation
approach lends itself quite easily to parallelization enabling a highly efficient implementation.

3.4. IMU as a measurement
In our proposed approach, we treat IMU measurements as direct measurements of the state within a
continuous-time estimation framework. For the 1D toy problem, we chose to use a Singer prior, which
is defined by the following LTI SDE:

...
p(t) = −αp̈(t) + w(t), (27)

w(t) ∼ GP(0, Qcδ(t − t′)),

where w(t) is a white-noise Gaussian process and Qc = 2ασ 2 is the power spectral density matrix [30].
By varying α and σ 2, the Singer prior can model motion priors ranging from WNOA (α → ∞, σ̃ 2 =
α2σ 2) to WNOJ (α→0). The discrete-time motion model is given by:

xk = �(tk, tk−1)xk−1 + wk, wk ∼N (0, Qk), (28)

where wk is the process noise, xk = [pT
k ṗT

k p̈T
k ]T , �(tk, tk−1) is the state transition function, and Qk is

the discrete-time covariance. Expressions for �(tk, tk−1) and Qk for the Singer prior are provided by
Wong et al. [30] and are repeated in the supplementary materials. The binary motion prior factors are
given by:

Jv,k = 1

2
eT

k Q−1
k ek, (29a)

ek = xk − �(tk, tk−1)xk−1. (29b)
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The unary measurement factors have the same form as in (6) except that now accelerations are treated
as direct measurements of the state. In addition, the overall objective is the same as in (5). We arrive at
the linear system of equations from (18). By default, this approach would require that we estimate the
state at each measurement time. In order to reduce the size of the state space, as in Section 3.1, we build
preintegrated factors using the approach presented in Section 3.3 in order to bundle together both the
unary measurement factors as well as the binary motion prior factors into a single factor. In the exact
same fashion as the IMU-as-input approach, we preintegrate between pairs of states associated with the
low-rate measurement times.

3.5. Simulation results
In this section, we compare two different approaches to combining high-rate acceleration measurements
with low-rate position measurements. We refer to these two different approaches as IMU-as-input and
IMU-as-measurement. The comparison is conducted on a toy 1D simulation problem. We sample tra-
jectories from a GP motion prior as defined in (17) by using standard methods for sampling from a
multidimensional Gaussian [29].

In our first simulation, we sample trajectories from a WNOJ motion prior with Qc = 1.0. Figure 3
provides a qualitative comparison of the IMU-as-input and IMU-as-measurement approaches for a sin-
gle sampled simulation trajectory. Note that the performance of the two estimators including their 3-σ
confidence bounds appears to be nearly identical. Figure 4 depicts 1000 trajectories sampled from this
motion prior. In order to simulate noisy sensors, we also corrupt both position and acceleration mea-
surements using zero-mean Gaussian noise where ypos,k = [

1 0 0
]

xk + npos,k, npos,k ∼N (0, σ 2
pos), yacc,k =[

0 0 1
]

xk + nacc,k, and nacc,k ∼N (0, σ 2
acc). In the simulation, we set σpos = 0.01m and σacc = 0.01m/s2.

Both IMU-as-input and IMU-as-measurement have parameters that need to be tuned on the dataset.
For this purpose, we use a separate training set of 100 sampled trajectories. For the IMU-as-input
approach, we learn the covariance of the acceleration input Qk using maximum likelihood over the train-
ing set where we have the benefit of using noiseless ground-truth states in simulation. The objective that
we seek to minimize is

J = 1

2
ln
∣∣∣P̌∣∣∣+ 1

2T

T∑
t=1

(xt − x̌)T P̌−1(xt − x̌), (30)

where xt are validation set trajectories, x̌ = Av is the full trajectory prior for the IMU-as-input method,
P̌ = AQAT is the prior covariance over the whole trajectory, A is the lifted transition matrix as in (13),
v = [

x̌T
0 �xT

1,0 · · · �xT
K,K−1

]T , and Q = diag(P̌0, �1, · · · , �K).
Using a numerical optimizer, we found that Qk ≈ 0.00338 given a WNOJ motion prior with Qc = 1.0,

and acceleration measurement noise of σ 2
acc = 0.0001m2/s4. Note that the input covariance Qk is clearly

much greater than the simulated noise on the acceleration measurements σ 2
acc. This is because, for the

IMU-as-input approach, the covariance on the acceleration input Qk is conflating two sources of noise,
the IMU measurement noise and the underlying process noise. It also means that Qk has to be trained
and adapted to new datasets in order to maintain a consistent estimator.

For the IMU-as-measurement approach, we need to train the parameters of our Gaussian process
(GP) motion prior. In order to highlight the versatility of our proposed approach, we employ a Singer
motion prior [30], which has the capacity to model priors ranging from WNOA to WNOJ. The Singer
prior is parametrized by an inverse length scale matrix α and a variance σ 2, both of which are diagonal.
For values of α close to zero, numerical optimizers encounter difficulties due to numerical instabilities
of Qk and its Jacobians. Instead, we derive the analytical gradients to learn {α, σ 2} using gradient descent
following the approach presented by Wong et al. [30]. The objective that we seek to minimize is

J = 1

2

T∑
t=1

K∑
k=1

(
eT

k,tQ
−1
k,t ek,t + ln

∣∣Qk,t

∣∣) , (31)

https://doi.org/10.1017/S0263574724002121 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724002121


Robotica 9

Figure 3. The estimated trajectories of IMU-as-input and IMU-as-measurement are plotted alongside
the ground-truth trajectory, which is sampled from white-noise-on-jerk motion prior with Qc = 1.0. Both
methods were pretrained on a hold-out validation set of simulated trajectories.

where both ek,t and Qk,t are functions of the Singer prior parameters {α, σ 2}. Further details on the ana-
lytical gradients are provided in the supplementary materials. Note that the approach of Wong et al. [30]
supports learning the parameters of the Singer prior even with noisy ground truth; however, it requires
that we first estimate the measurement covariances and then keep them fixed during the optimization.
In order to learn both the GP parameters and the measurement covariances simultaneously, Wong et al.
leverage exactly sparse Gaussian variational inference [15].

Figure 5 shows the results of our first simulation experiment with the WNOJ prior. Each row in
Figure 5 is a box plot of a metric computed independently for each of the 1000 simulated trajectories.
The blue boxes represent the interquartile range, the red lines are the medians, the whiskers correspond
to the 2.5 and 97.5 percentiles, and the red dots denote outliers (data points beyond the whiskers). The
black dashed lines in the first, third, and fourth rows corresponds to the target value that is 0 for the
mean error and 1 for the normalized estimation error squared (NEES). Underneath each box plot, we
also compute the mean value of the metrics across all data points.

In the first row of Figure 5, we can see that the mean error in both position and velocity is close to
zero for both estimators. The gray lines in the first row denote a 95% two-sided confidence interval, a
statistical test to check that the estimators are unbiased. We expect to see the whiskers of the box plots
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Figure 4. This figure depicts 1000 simulated trajectories sampled from a white-noise-on-jerk (WNOJ)
prior where x̌0 = [0.0 0.0 1.0]T , P̌0 = diag(0.001, 0.001, 0.001), Qc = 1.0.

lie within the 95% confidence interval in order to confirm that the estimator is unbiased, which is the
case.

The third row displays a commonly used method for computing the NEES. This method uses the
marginals of the posterior covariance and relies on the ergodic hypothesis in order to treat the error
from each timestep as being independent. In this case, we compute the marginal covariance at each
timestep for position and velocity only so that the results of the two estimators can be compared directly.
The gray lines denote a 95% chi-squared bound, a statistical test for checking that the estimators are
consistent. Interestingly, we observe that neither estimator passes the statistical test in this case, even
though the mean and median NEES are close to 1. It appears that, in this case, the ergodic hypothesis is
not valid.

In the fourth row, we present an alternative formulation of the NEES that uses the full posterior
covariance over the entire trajectory. In this case, we are satisfied to find that both estimators pass the
statistical test for confirming that they are consistent. The main difference between this version of the
NEES and the previous one is that we have retained the cross-covariance terms between timesteps.

In summary, we observe that the two approaches achieve nearly identical performance. Both
estimators are unbiased and consistent so long as their parameters are trained on a training set.

Figures 6, 7 depict the results of our second experiment where the ground-truth trajectories are sam-
pled from a Singer prior with α = 10.0, σ 2 = 1.0. This large value of α is intended to approximate a
WNOA prior. Our results show that both estimators are capable of adapting to a dataset with a different
underlying motion prior while remaining unbiased and consistent.

3.6. Discussion
As mentioned previously, the big-O time complexity of classic preintegration and our approach are the
same. In practice, our approach is slightly slower but not by much. Using a modern CPU, either approach
can be considered real-time capable. Note that the number of preintegration windows could be adjusted
and each preintegration window could be computed in parallel to make the approach more efficient. In
this way, we could parallelize the solving of some estimation problems. We are motivated by sensor
configurations that cannot be easily handled by classic preintegration such as multiple asynchronous
high-rate sensors. This could include a lidar and an IMU or multiple asynchronous IMUs.
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Figure 5. This figure compares the performance of the baseline IMU-as-input approach versus our
proposed IMU-as-measurement approach that leverages a Gaussian process (GP) motion prior. The
ground-truth trajectories are sampled from a white-noise-on-jerk (WNOJ) prior as shown in Figure 4.
The IMU input covariance Qk for the IMU-as-input method was trained on a validation set, with a value
of 0.00338. The parameters of our proposed method was also trained on the same validation set, with
resulting values of σ 2 = 1.0069 and α = 0.0. Rpos for both methods was chosen to match the simulated
noise added to the position measurements. Similarly, Racc for the IMU-as-measurement approach was set
to match the simulated noise added to the acceleration measurements. In the bottom row, the chi-squared
bounds have a different size because the dimension of the state in IMU-as-measurement is greater (it
includes acceleration), and so the dimension of the chi-squared distribution increases, resulting in a
tighter chi-squared bound.

4. Lidar-inertial odometry
Our lidar-inertial odometry is implemented as sliding-window batch trajectory estimation. The factor
graph corresponding to our approach is depicted in Figure 8. The state x(t) = {T(t), � (t), �̇ (t), b(t)}
consists of the SE(3) pose Tvi(t), the body-centric velocity � vi

v (t), the body-centric acceleration �̇ vi
v (t),

and the IMU biases b(t). � vi
v is a 6 × 1 vector containing the body-centric linear velocity νvi

v and angular
velocity ωvi

v . We approximate the SE(3) trajectory using a sequence of local Gaussian processes as in
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Figure 6. This figure depicts 1000 simulated trajectories sampled from a singer prior where
x̌0 = [0.0 1.0 0.0]T , P̌0 = diag(0.001, 0.001, 0.001), α = 10.0, and σ 2 = 1.0. A large value of α is
intended to approximate a white-noise-on-acceleration (WNOA) prior.

[28]. Between pairs of estimation times, the local variable ξ k(t) is defined as:

ξ k(t) = ln (T(t)T(tk)
−1)∨. (32)

We use (32) and the following to convert between global and local variables:

ξ̇ k(t) =J (ξ k(t))
−1� (t), (33)

ξ̈ k(t) ≈ −1

2
(J (ξ k(t))

−1� (t))�� (t) +J (ξ k(t))
−1�̇ (t), (34)

where the approximation for ξ̈ k(t) was originally derived by Tang et al. [14]. We use a Singer prior,
introduced in [30], which is defined by the following Gaussian process:

ξ̈ k(t) ∼ GP(0, σ 2 exp(−�−1|t − t′|)), (35)

and which can equivalently be represented using the following LTI SDE:

γ̇ k(t) = Aγ k(t) + Lw(t), (36)

where

w(t) ∼ GP(0, Qcδ(t − t′)),

γ k(t) =
⎡
⎢⎣

ξ k(t)

ξ̇ k(t)

ξ̈ k(t)

⎤
⎥⎦ , A =

⎡
⎢⎣1 0 0

0 1 0

0 0 −α

⎤
⎥⎦ , L =

⎡
⎢⎣0

0

1

⎤
⎥⎦ ,

σ 2 is a variance, � is a length scale, α = �−1, and w(t) is a white-noise Gaussian process where Qc = 2ασ 2

is the associated power spectral density matrix. (36) can be stochastically integrated to arrive at a local
Gaussian process:

γ k(t) ∼ GP(�(t, tk)γ̌ k(tk)), �(t, tk)P̌(tk)�(t, tk)
T + Qt), (37)

where the formulation for the transition function �(t, tk) and the covariance Qt can be found in [30].
In order to convert our continuous-time formulation into a factor graph, we build a sequence of motion
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Figure 7. This figure summarizes the results of our second simulation experiment where the
ground-truth trajectories were sampled from a singer prior with α = 10.0, σ 2 = 1.0. The trained accel-
eration input covariance for IMU-as-input was Qk ≈ 0.00283. The trained singer prior parameters
were α = 10.2442 and σ 2 = 1.0074. Note that even though the underlying prior changed by a lot
from the first simulation to the second, from a white-noise-on-jerk prior to an approximation of a
white-noise-on-acceleration prior, both estimators were able to remain unbiased and consistent.

prior factors between pairs of estimation times using

Jv,k = 1

2
eT

v,kQ
−1
k ev,k, (38a)

ev,k = γ k(tk+1) − �(tk+1, tk)γ k(tk). (38b)

Our IMU measurement model is[
ã

ω̃

]
=
[

avi
v − Cvigi

ωvi
v

]
+
[

ba

bω

]
+
[

wa

wω

]
, (39)
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Figure 8. This figure depicts a factor graph of our sliding-window lidar-inertial odometry using a
continuous-time motion prior. The larger triangles represent the estimation times that form our sliding
window. The state x(t) = {T(t), � (t), �̇ (t), b(t)} includes the pose T(t), the body-centric velocity � (t),
the body-centric acceleration �̇ (t), and the IMU biases b(t). The gray-shaded state xk−2 is next to be
marginalized and is held fixed during the optimization of the current window. The smaller triangles are
interpolated states that we do not directly estimate during the optimization process. Instead, we construct
continuous-time measurement factors using the posterior Gaussian process interpolation formula. We
include a unary prior on xk−2 to denote the prior information from the sliding-window filter.

where ba and bω are the accelerometer and gyroscope biases, wa ∼N (0, Ra) and wω ∼N (0, Rω) are
zero-mean Gaussian noise. Due to angular velocity and acceleration being a part of the state, the
associated IMU error function is straightforward:

Jimu,� = 1

2

[
ea,�

eω,�

]T [
Ra

Rω

]−1 [
ea,�

eω,�

]
, (40a)

ea,� = ã� − ν̇(τ�) + Cvi(τ�)gi − ba(τ�), (40b)

eω,� = ω̃� − ω(τ�) − bω(τ�), (40c)

where we rely on forming measurement factors using the posterior Gaussian process interpolation for-
mula. For each of these continuous-time measurement factors, we compute Jacobians of the perturbation
to the state at the interpolated times with respect to the bracketing estimation times. This is an approx-
imation, as it is not exactly the same as marginalization. However, we have found it to work well in
practice. We also include motion prior factors for the IMU biases:

Jv,b,k = 1

2
eT

v,b,kQ
−1
b,k ev,b,k, (41a)

ev,b,k = b(tk+1) − b(tk), (41b)

where Qb,k = Qb�tk is the covariance resulting from a white-noise-on-velocity motion prior and Qb is the
associated power spectral density matrix. We use point-to-plane factors. The associated error function
is

Jp2p,j = eT
p2p,jR

−1
p2p,jep2p,j, (42a)

ep2p,j = αjnT
j D(pj − Tvi(τj)

−1Tvsqj), (42b)
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where qj is the query point, pj is the matched point in the local map, nj is an estimate of the surface
normal at pj given neighboring points in the map, D is a constant matrix removing the homogeneous
component, Tvs is a known extrinsic calibration between the lidar frame and the vehicle frame, and
αj = (σ2 − σ3)/σ1 [31] is a heuristic weight to favor planar neighborhoods. The objective function that
we seek to minimize is

J =
∑

k

Jv,k +
∑

j

Jp2p,j +
∑

�

Jimu,�. (43)

We solve this nonlinear least squares problem for the optimal perturbation to the state using Gauss-
Newton. Once the solver has converged, we update the pointcloud correspondences and iterate this
two-step process to convergence. In practice, we typically limit the maximum number of inner-loop
Gauss-Newton iterations to 10, and the number of outer-loop iterations to 10 in order to enable real-time
operation.

In our approach, we estimate the orientation of the gravity vector relative to the initial map frame at
startup. We perform sliding-window batch trajectory estimation where the length of the sliding window
is 200 ms. We output the pose at the middle of the newest lidar scan.

5. IMU-as-input lidar-inertial baseline
As a baseline where IMU measurements are treated as an input, we consider a lidar-inertial odometry
approach where IMU measurements are used to de-skew the lidar pointcloud and classic preintegra-
tion is used as a prior. The baseline is implemented as sliding-window batch trajectory estimation
and the factor graph corresponding to the baseline approach is depicted in Figure 9. The state x(tk) =
{Civ(tk), rvi

i (tk), vvi
i (tk), b(tk)} consists of the orientation Civ(tk), position rvi

i (tk), velocity vvi
i (tk), and IMU

biases. All variables are expressed in a global frame. We use classic preintegration to form binary factors
between pairs of estimated states in the sliding window [2]. At each iteration of the optimization, we
integrate the IMU measurements to extrapolate for the state at each IMU measurement time using

Cj = Ci

j−1∏
k=i

exp
(
�tk(ω̃k − bω(tk))

∧) , (44a)

vj = vi + g�tij +
j−1∑
k=i

Ck(ãk − ba(tk))�tk, (44b)

rj = ri +
j−1∑
k=i

[
vk�tk + 1

2
g�t2

k + 1

2
Ck(ãk − ba(tk))�t2

k

]
. (44c)

The position at a given lidar point time can then be obtained by linearly interpolating between the posi-
tions at the IMU measurement times. The orientation at a given lidar point time can be obtained using
the following formula:

C(τj) = C(t�)
(
C(t�)

TC(t�+1)
)α (45)

where α = (τj − t�)/(t�+1 − t�). Using these interpolated states, we can write the point-to-plane error
function as:

ep2p,j = nT
j

(
pj − Civ(τj)(Cvsqj + rsv

v ) − rvi
i (τj)

)
. (46)

The Jacobians of this error function with respect to perturbations to the state variables are provided in
the appendix.
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Figure 9. This figure depicts a factor graph of our baseline approach that uses IMU mea-
surements to de-skew the pointcloud and to form relative motion priors using classic preintegra-
tion. The larger triangles represent the estimation times that form our sliding window. The state
x(tk) = {Civ(tk), rvi

i (tk), vvi
i (tk), b(tk)} includes the orientation and position in a global frame, the veloc-

ity in a global frame, and the IMU biases. The gray-shaded state xk−2 is next to be marginalized. The
smaller triangles are extrapolated states that we do not directly estimate during the optimization pro-
cess. Instead, we extrapolate for these states using IMU integration starting at an estimated state. The
factor graph includes a unary prior on xk−2 to denote the prior information from the sliding-window
filter.

6. Lidar-inertial simulation
In this section, we compare the performance of our lidar-inertial odometry to the baseline imu-as-input
approach in a simulated environment. The simulated environment is a rectangular room, and we simulate
trajectories using sinusoidal body-centric velocities:

[� (t)]j = Aj sin(2π fjt), (47)

where Aj and fj are configurable amplitude and frequency parameters. The resulting body-centric
acceleration can be obtained via differentiation:

[�̇ (t)]j = Aj2π fj cos(2π fjt). (48)

We then step through the simulation so as to replicate the lidar firing sequence of a Velodyne Alpha-
Prime 128-beam lidar, obtaining the pose of the sensor for each firing sequence. Starting with T0 =
Tvi(t0) = 1,

Tk+1 ≈ exp

((
� (tk)�tk + 1

2
�t2

k�̇ (tk)

)∧)
Tk, (49)

where �tk is very small (53.3μs). By generating the trajectories in this way, it is straightforward to
extract the body-centric angular velocity and linear acceleration to simulate IMU measurements. We
use the measurement model in (39) to simulate biases and gravity components. We simulate a constant
nonzero bias on each gyroscope and accelerometer axis. We include zero-mean Gaussian noise on IMU
measurements as well as Gaussian noise on the range measurement of each lidar point. We chose mea-
surement noises to be close to what we experience on our experimental platform. Figure 10 depicts
an example pointcloud produced in our simulation environment where the points are colored based off
which wall they are reflected. Figure 11 compares the trajectory estimated by our lidar-inertial odometry
with the ground truth.

For the simulation parameters, we use an IMU rate of 200 Hz, a simulation length of 20s, and three
motion regimes denoted slow, medium, and fast. Where for each of these motion regimes, we randomly
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Figure 10. This figure depicts an example lidar pointcloud produced by our simulation, which contains
motion distortion. The pointcloud is colored based off which wall the lidar point is reflected.

Figure 11. This figure depicts the results of our lidar-inertial simulation where the ground-truth posi-
tion (dashed line) is compared to the position estimated by Singer-LIO colored by the absolute position
error. This trajectory is an example of one of the slow sequences.

sample for the amplitudes and frequencies of the body-centric velocities used in the simulation of a
sequence. The ranges for these parameters is given in Table I. One set of amplitudes and frequencies
is sampled for each of the 20 sequences simulated for the three motion regimes. We set the standard
deviation of the accelerometer measurement noise to 0.02 m/s2, the standard deviation of the gyroscope
measurement noise to 0.01 rad/s, and the standard deviation of the lidar range measurements to 0.02 m.
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Table I. Simulation parameter ranges for the different motion regimes.

Slow Medium Fast
Linear velocity amplitude [m/s] A ∈ [0.1, 0.5] A ∈ [0.5, 1.0] A ∈ [1.0, 2.0]
Angular velocity amplitude [rad/s] A ∈ [0.1, 0.5] A ∈ [0.5, 1.0] A ∈ [1.0, 2.0]
Linear velocity frequency [Hz] f ∈ [0.5, 1.0] f ∈ [1.0, 2.0] f ∈ [2.0, 4.0]
Angular velocity frequency [Hz] f ∈ [1.0, 2.0] f ∈ [2.0, 4.0] f ∈ [4.0, 8.0]

Table II. Simulation results. Root mean squared absolute trajectory error (m). For
each speed category (slow, medium, and fast), 20 randomized sequences were cre-
ated. The results in this table are the overall root mean squared absolute position
error across 20 sequences, for each approach.

Slow Medium Fast
Baseline (IMU as input) 0.0026 2.1734 Failed
Singer-LIO 0.0026 0.0025 0.0208
Singer-LO + Gyro 0.0052 0.0085 0.0445
Singer-LO 0.0012 12.34 Failed

The accelerometers were given a constant bias of 0.05 m/s2, and the gyroscopes were given a constant
bias of 0.05 rad/s.

We compare the performance of our lidar-inertial odometry against the baseline in Table II where we
also show the performance of our approach using only the lidar and the gyroscope, and lidar only. We
obtained the results by computing the absolute trajectory error between our estimated trajectories and
the ground truth using the evo evaluation tool.1 The results in the table are the overall root mean squared
error obtained by concatenating the error from each individual sequence. The results show that in the
low speed regime, the imu-as-input baseline approach and our imu-as-measurement approach based on
the Singer prior achieve nearly identical results. This is unsurprising as it appears to replicate the results
from Section 3.5. Interestingly, our lidar-only approach performs the best on the slow regime. However,
in the medium and fast regime, the advantage of our lidar-inertial approach becomes apparent. In the
medium regime, the baseline imu-as-input approach begins to break down. This is possibly due to the
fact that the motion is no longer approximately constant acceleration and constant angular rate. On the
other hand, our lidar-inertial approach performs roughly the same in the medium regime. Our lidar-only
approach also breaks down in the medium regime. In the fast regime, both our lidar-inertial and lidar
with gyro approaches achieve respectable results, while the lidar-only approach and the imu-as-input
baseline fail completely.

7. Experimental results
In this section, we provide experimental results on the Newer College Dataset [32]. This dataset features
a 64-beam Ouster lidar and provides the internal IMU measurements of the Ouster lidar. Ground-
truth poses were obtained by matching live lidar poses to a map of the environment created using
a survey-grade lidar at several stationary poses. This dataset is somewhat unique in that it features
several sequences with highly dynamic motions. In Table III, we compare the performance of using
our continuous-time Singer prior using lidar only (Singer-LO), lidar and a gyroscope only (Singer-
LO + Gyro), and a full lidar-inertial setup including an accelerometer (Singer-LIO). We also compare
the performance of our approach to some comparable works in the literature such as CT-ICP [31], a
lidar-only approach, FAST-LIO2 [20] and DLIO [21], which can be considered the prior state of the
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Table III. Newer College Dataset results. Root mean squared absolute trajectory error (m).
Estimated trajectory aligned with ground truth using Umeyama algorithm. ∗ uses loop closures, †

results obtained from [21], ‡ uses camera images.

Newer College 05-Quad w/ 06-Dynamic 07-Parkland
Dataset 01-Short 02-Long Dynamics Spinning Mound Overall
CT-ICP∗ [31] 0.36
KISS-ICP† [34] 0.6675 1.5311 0.1040 Failed 0.2027
FAST-LIO2† [20] 0.3775 0.3324 0.0879 0.0771 0.1483 0.3152
DLIO [21] 0.3606 0.3268 0.0837 0.0612 0.1196 0.3048
SLICT∗ [33] 0.3843 0.3496 0.1155 0.0844 0.1290 0.3263
CLIO∗‡ [8] 0.408 0.381 0.091
Singer-LO (Ours) 0.4543 Failed 0.1120 0.0804 Failed
Singer-LO + Gyro (Ours) 0.3044 0.3267 0.1092 0.0818 0.1457 0.2887
Singer-LIO (Ours) 0.3020 0.3186 0.1091 0.0821 0.1411 0.2832

art for this dataset, and SLICT [33] and CLIO [8], which are two continuous-time approaches that use
linear interpolation and B-splines, respectively.

Our approach, Singer-LIO, demonstrates the best performance on the 01-Short and 02-Long
sequences and also demonstrates the best overall performance. Interestingly, the sequences in which we
expected the IMU to make the most difference were 05-Quad w/ Dynamics and 06-Dynamic Spinning
due to their dynamic motions. However, we observe that in these sequences, our lidar-only approach per-
forms similarly or even better, replicating the results of our lidar-inertial simulation. It appears that, in
this dataset, the addition of an IMU mainly helps in areas where there are geometric degeneracies rather
than the areas with dynamic motions. Sequences 05-Quad w/ Dynamics and 06-Dynamic Spinning are
very similar to our lidar-inertial simulation in the slow regime, as they are conducted in a rectangular
quad at New College, Oxford. FAST-LIO2 and DLIO can be considered state-of-the-art IMU-as-input
approaches, and our approach demonstrates a clear advantage over these methods.

8. Conclusions
In this work, we compared treating an IMU as an input to a motion model versus treating it as a mea-
surement of the state. On a 1D simulation problem, we showed that these two approaches performed
identically when the data are sampled from either a constant velocity or constant acceleration prior and
both methods are trained on a hold-out set. We demonstrated our approach to continuous-time lidar-
inertial odometry using the Singer prior where body-centric acceleration is included in the state. In our
simulated environment, we showed that our lidar-inertial odometry outperformed lidar-only odometry
and an IMU-as-input baseline approach. On the Newer College Dataset, we demonstrated state-of-the-
art resuts. There is still plenty of work to be done in treating IMU measurements as measurements of the
state. Similar to nonuniform B-splines, it would be interesting to investigate a setup where the parame-
ters of the Singer prior are adjusted on the fly so as to adjust between periods of smooth versus highly
dynamic motion. When the IMU is treated as a measurement of the state, this allows us to now incorpo-
rate exogenous control inputs into our Gaussian process motion prior. This could be a promising area of
research for estimating the state of drones where the torque commanded to the motors is often known.
Our approach to combine multiple asynchronous high-rate sensors may prove beneficial in other sensor
configurations such as multiple asynchronous IMUs.
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