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Completion problems and sparsity for
Kemeny’s constant

Steve Kirkland

Abstract. For a partially specified stochastic matrix, we consider the problem of completing it so as
to minimize Kemeny’s constant. We prove that for any partially specified stochastic matrix for which
the problem is well defined, there is a minimizing completion that is as sparse as possible. We also find
the minimum value of Kemeny’s constant in two special cases: when the diagonal has been specified
and when all specified entries lie in a common row.

1 Introduction and motivation

We live in a world of incomplete information. Consequently, we face the challenge:
based only on partial information, can we achieve some desirable objective, and if so
how?

That question is at the core of many matrix completion problems. Recall that a
partial matrix is one in which only some of the entries are specified, while a matrix that
arises by assigning values to each of the unspecified entries is known as a completion
of the partial matrix. There is a wealth of literature on matrix completion problems,
often focusing on completions that possess some desirable property (e.g., positive
definiteness or total nonnegativity) or that optimize some scalar function (e.g., rank
or determinant). See, for example, [2, 5] for overviews of the literature on matrix
completion problems.

In this paper, we adopt the perspective of completion problems on the topic
of stochastic matrices. Recall that a square matrix is stochastic if it is entrywise
nonnegative, and each row sum is equal to 1. Any stochastic matrix has 1 as an
eigenvalue, with 1, the all-ones vector of the appropriate order, as a corresponding
eigenvector. Stochastic matrices are central to the study of Markov chains, a rich and
widely applied class of stochastic processes. Each partial matrix P that we will consider
satisfies the following properties:

(i) P is square; (ii) all specified entries of P are nonnegative; (iii) in each row of P,
the sum of the specified entries is bounded above by 1, and is equal to 1 for any fully
specified row; (iv) any row of P for which the sum of the specified entries is equal to
1 is in fact fully specified; and (v) any row of P that is not fully specified contains at
least two unspecified entries.
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2 S. Kirkland

We say that a partial matrix P satisfying (i)–(v) is a partial stochastic matrix.
Evidently, any partial stochastic matrix has a completion to a stochastic matrix. We
note that conditions (iv) and (v) above are imposed largely to avoid uninteresting
cases. If there is a row of P for which the sum of the specified entries is equal to 1, then
any stochastic completion necessarily assigns the value 0 to the unspecified entries in
that row (so those positions of P are specified de facto). Similarly, if the jth row of P
has just one unspecified entry, say in the kth position, then any stochastic completion
assigns the value 1 −∑�≠k p j,� to the ( j, k) position (so that the entire jth row of P is
specified de facto).

Next, we briefly discuss Kemeny’s constant (which first appeared in [6]), the scalar
function that will be minimized in this paper. Given an irreducible n × n stochastic
matrix T and indices j, k = 1, . . . , n, the entry t j,k is the probability that the Markov
chain transitions from state j to state k in one time step. Recall that there is a unique
positive left eigenvector w⊺ whose entries sum to 1 such that w⊺T = w⊺; that vector
is known as the stationary vector for the corresponding Markov chain. For each pair
of indices j, k = 1, . . . , n, the mean first passage time from j to k, m j,k is the expected
number of steps for the Markov chain to enter state k for the first time, given that it
began in state j (we note in passing that m j, j = 1

w j
for each such j). Kemeny’s constant,

denoted K(T), is then given by ∑k≠ j m j,kwk . It turns out that K(T) does not depend
on the choice of j, and K(T) can be interpreted in terms of the expected number of
steps required for the Markov chain to reach a randomly chosen state, starting from
state j. Since ∑n

j=1 w j = 1, we find that K(T) = ∑k , j,k≠ j w jm j,kwk . Hence, K(T) also
reflects the expected number of steps required to transition from a randomly chosen
initial state to a randomly chosen destination state, and so measures the overall ease of
movement from state to state. For this reason, Kemeny’s constant has been proposed
as an indicator of the average travel time in a Markov chain model for vehicle traffic
networks [1].

There are several different formulas for Kemeny’s constant, and each has proven
itself to be useful depending on the context. Setting Q = I − T , we find that Q is
singular, and when T is irreducible, Q has 0 as an eigenvalue of algebraic multiplicity
one. Hence, while Q is not invertible, it has a group inverse, Q#, and it transpires
that K(T) = trace(Q#) (see [10] for background on the group inverse and its use in
the analysis of Markov chains). From this, we find readily that if T has eigenvalues
1 = λ1 , λ2 , . . . , λn (including multiplicities), then K(T) = ∑n

j=2
1

1−λ j
[11] and that if

Q = XY is a full rank factorization of Q, then since Q# = (X(Y X)−2Y , we have
K(T) = trace(X(Y X)−2Y) = trace((Y X)−1). We note that while Kemeny’s constant
was originally defined for the case that T is irreducible (so that all of the mean first
passage times are well defined), the definition can be extended to cover the case
that T has 1 as an algebraically simple eigenvalue. In that setting, we may use any
of trace(Q#), trace((Y X)−1), and ∑n

j=2
1

1−λ j
as the definition for K(T).

For any stochastic matrix T, the multiplicity of 1 as an eigenvalue can be understood
from a combinatorial viewpoint. Recall that a state j of an n-state Markov chain is
essential if it has the property that, for any vertex k in the directed graph of T, if
there is a walk from j to k, then necessarily there is a walk back from k to j. The
essential states can thus be partitioned into essential classes, that is, subsets of states
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Completion problems and sparsity for Kemeny’s constant 3

such that (a) within each class, any state can be reached from any other state in the
class and (b) no state from outside the class can be reached from any state inside the
class. (See, for example, [12] for further details.) It is well known that the algebraic
multiplicity of 1 as an eigenvalue of the corresponding transition matrix coincides
with the number of essential classes. Hence, 1 is an algebraically simple eigenvalue
of a stochastic matrix T if and only if there is a single essential class of states in the
Markov chain associated with T. When that is the case, then either T is irreducible,

or it is permutationally similar to a stochastic matrix of the form [T1 0
X T2

] ,where T1

is irreducible and stochastic, and the spectral radius of T2 is less than 1; observe that
since the spectral radius of T2 is less than 1, necessarily X ≠ 0.

In view of the interpretation of Kemeny’s constant as a measure of the ease of
movement between states, there is interest in identifying stochastic matrices for which
the corresponding value of Kemeny’s constant is small. In [4], it is shown that for any
irreducible stochastic matrix of order n, Kemeny’s constant is bounded below by n−1

2 ;
[7] proves that the adjacency matrix of a directed n-cycle is the unique irreducible
stochastic matrix of order n with n−1

2 as the value for Kemeny’s constant. In a related
vein, [7] identifies the stochastic matrix T whose directed graph is subordinate to a
given directed graph and has the smallest value for K(T), while [8] identifies the
stochastic matrices with prescribed stationary distribution that minimize Kemeny’s
constant.

In each of [4], [7], and [8], the minimizing matrices are sparse, that is, the ratio of
zero entries to nonzero entries is high. At least part of our agenda in the present work
is to develop a better understanding of how the sparsity of a stochastic matrix affects
the value of Kemeny’s constant. The following observation goes in that direction.

Observation 1.1 Suppose that we have an irreducible stochastic matrix T of order n,
with corresponding mean first passage matrix M and stationary vector w⊺. In [9], the
following quantity, known as an accessibility index, is defined for each k = 1, . . . , n: αk =
w⊺Mek − 1. Observe that K(T) = ∑n

k=1 wk αk .
For each k = 1, . . . , n, let Rk denote the random variable that is the time of the

first return to state k. Denote the expectation operator by E(⋅). It is well known that
wk = 1

E(Rk)
, and in [9] it is shown that αk = 1

2 (
E(R2

k)

E(Rk)
− 1) , k = 1, . . . , n. Hence, wk αk =

1
2 (

E(R2
k)

(E(Rk))2 − wk) = 1
2 (

E(R2
k)−(E(Rk))

2

(E(Rk))2 ) + 1−wk
2 = w2

k
2 Var(Rk) + 1−wk

2 , and we deduce
that

K(T) = 1
2

n
∑
k=1

w2
k Var(Rk) +

n − 1
2

.(1.1)

The presence of Var(Rk) in (1.1) provides some intuition as to how sparsity plays a role,
as zeros in the transition matrix T may serve to decrease the variances of the first return
times. Indeed, in the extreme case that K(T) = n−1

2 , T has just one nonzero entry in
each row and Var(Rk) = 0, k = 1, . . . , n.

In this paper, we consider the following class of questions. Given a partial stochastic
matrix P, over all stochastic completions of P, what is the minimum value of Kemeny’s
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4 S. Kirkland

constant, and which completions yield that minimum? In Section 2, we show that,
provided that P admits a completion for which Kemeny’s constant is well defined,
there is a completion that minimizes Kemeny’s constant and has the property that
in each row, at most one of the unspecified entries is assigned a positive value. In
particular, such a minimizing completion is as sparse as possible. In the remaining
sections, we solve two specific completion problems; Theorem 3.11 of Section 3
addresses the completion problem for the case that the partial stochastic matrix has
its specified entries on the diagonal, while Corollary 4.10 in Section 4 covers the
case that the partial stochastic matrix has its specified entries in a common row. The
solutions to both completion problems correspond to sparse transition matrices, as
anticipated by the results of Section 2. Both completion problems help to explain how
local information (probability of transition back to the same state, and probabilities
of transitions out of a single state, respectively) influences the global behavior of the
Markov chain as measured by Kemeny’s constant.

We note that the techniques introduced in [7] inform much of our approach.
Indeed, some of the results in Section 2 are modest adaptations of the results in that
paper. This is not so surprising, as the main problem in [7] is to minimize Kemeny’s
constant over all stochastic matrices whose directed graph is a subgraph of a given
directed graph D. This in turn can be rephrased as a completion problem: the relevant
partial matrix has a prescribed entry 0 in position ( j, k) for each pair of indices j, k
such that the arc j → k is not present in D. Evidently, the completions of that partial
matrix correspond to stochastic matrices with directed graphs subordinate to D.

Throughout, we rely on a mix of combinatorial and matrix analytic techniques. We
also employ basic results and terminology from nonnegative matrix theory and the
study of Markov chains. The reader is referred to [6, 12] for the necessary background.

2 Preliminaries

Our interest in this paper is Kemeny’s constant, which is only well defined for
a stochastic matrix having a single essential class of indices. For this reason, we
first identify the partial stochastic matrices for which at least one completion has
a single essential class of indices. Here we use the notation that for a matrix A and
nonempty subsets X , Y of its row and column indices, respectively, A[X , Y] denotes
the submatrix of A on rows indexed by X and columns indexed by Y.

Proposition 2.1 Suppose that P is a partial stochastic matrix of order n. There is a
completion of P having a single essential class of indices if and only if for each nonempty
X ⊂ {1, . . . , n}, one of P[X , X c] and P[X c , X] contains either a positive entry or an
unspecified entry.

Proof We first note that a stochastic matrix T has a single essential class if and only
if it cannot be written as a direct sum of stochastic matrices of smaller order. This in
turn is equivalent to the property that for each nonempty proper subset X of the index
set, either T[X , X c] or T[X c , X] has a positive entry.

Let P be a partial stochastic matrix and suppose that T is a completion with a single
essential class of indices. Fix a nonempty subset X ⊂ {1, . . . , n}. Then one of T[X , X c]
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and T[X c , X] has a positive entry, from which we conclude that one of P[X , X c] and
P[X c , X] contains either a positive entry or an unspecified entry.

Conversely, suppose that for each nonempty X ⊂ {1, . . . , n}, one of P[X , X c]
and P[X c , X] contains either a positive entry or an unspecified entry. Let T be a
completion of P having the largest number of positive entries; from properties (i)–
(v), we find that T assigns a positive number to each unspecified entry in P. It now
follows readily that T has a single essential class of indices. ∎

For a partial stochastic matrix P, let SC(P)={T ∣T is a stochastic completion of P},
and in the case that there is a stochastic completion of P with a single essential class, we
define m(P) = inf{K(T)∣T ∈ SC(P) and has a single essential class}. In this section,
we establish some technical lemmas, and prove a general result (Proposition 2.3
below) regarding completions that realize m(P).

The proof of the next result is basically the same as that of Lemma 2.4 in [7]. Its
proof uses the fact (established by adapting the proof of Lemma 2.3 in [7]) that for
an n × n stochastic matrix T with 1 as an algebraically simple eigenvalue, if λ ≠ 1 is an
eigenvalue of T, then ∣1 − λ∣ ≥ 1−cos( 2π

n )

K(T) .

Lemma 2.2 Let P be a partial stochastic matrix for which there is a stochastic
completion having a single essential class of indices. There is a T ∈ SC(P) having a single
essential class such that K(T) = m(P).

The following result is a slight extension of Lemma 2.5 in [7]. We include a short
proof in order to illustrate a key technique.

Proposition 2.3 Let P be a partial stochastic matrix for which there is a stochastic
completion having a single essential class of indices. There is a T ∈ SC(P) such that

(i) T has a single essential class,
(ii) K(T) = m(P), and
(iii) for each j = 1, . . . , n, there is at most one k such that p j,k is unspecified and

t j,k > 0.

Proof From Lemma 2.2, there is a T ∈ SC(P) satisfying (i) and (ii). If T also
satisfies (iii), we are done, so suppose that for some indices j, k1 , k2, the ( j, k1), ( j, k2)
entries of P are unspecified and t j,k1 , t j,k2 > 0. Our goal is to construct a matrix T̂
satisfying (i) and (ii) such that T̂ has fewer positive entries than T does. The conclusion
will then follow by an induction step on the number of positive entries.

For each x ∈ [−t j,k1 , t j,k2], let Ex = xe j(ek1 − ek2)⊺ , and observe that T +
Ex ∈ SC(P) for all such x . Arguing as in the proof of Lemma 2.5 of [7], we
find that for each x such that x(ek1 − ek2)⊺(I − T)#e j ≠ 1,K(T + Ex) =K(T) +

x
1−x(ek1−ek2 )

⊺(I−T)# e j
(ek1 − ek2)⊺((I − T)#)2e j ; in particular, this holds whenever

∣x∣ is sufficiently small. Further, when ∣x∣ is sufficiently small, it is also the case
that T + Ex has a single essential class. Since K(T) is a minimum, it must be
the case that (ek1 − ek2)⊺((I − T)#)2e j = 0. Hence, K(T) =K(T + Ex) for any
x ∈ [−t j,k1 , t j,k2] such that x(ek1 − ek2)⊺(I − T)#e j ≠ 1. Further, since K(T + Ex)
is a minimum, it must be the case that T + Ex has a single essential class for any
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6 S. Kirkland

such x. If (ek1 − ek2)⊺(I − T)#e j ≤ 0, we find that T + Et j,k2
satisfies (i) and (ii) and

has fewer positive entries than T does, while if (ek1 − ek2)⊺(I − T)#e j > 0, T + E−t j,k1
satisfies (i) and (ii) and has fewer positive entries than T does. ∎

3 P with all specified entries on the diagonal

In this section, we consider the problem of finding m(P) for the case that the
specified entries of the partial stochastic matrix P are all on the diagonal. The following
technical result will be useful in the subsequent discussion. Recall that a square matrix
is substochastic if it is entrywise nonnegative and each row sum is at most 1.

Lemma 3.1 Let T be an n × n substochastic matrix whose spectral radius is strictly
less than 1. We have trace((I − T)−1) ≥ ∑n

k=1
1

1−tk ,k
.

Proof We proceed by induction on n, and note that the case n = 1 is readily
established. Suppose now that n ≥ 2 and that the statement holds for matrices of order

n − 1. Write I − T in a partitioned form as I − T = [
I − T̂ −x
−y⊺ 1 − tn ,n

] , where T̂ is of

order n − 1 and x , y ≥ 0. From the partitioned form of the inverse [3], we find that

trace((I − T)−1) = trace
⎛
⎝
(I − T̂ − 1

1 − tn ,n
x y⊺)

−1⎞
⎠
+ 1

1 − tn ,n − y⊺(I − T̂)−1x
.

Hence,

trace((I − T)−1)) =

trace((I − T̂)−1 + 1
1 − tn ,n − y⊺(I − T̂)−1x

(I − T̂)−1x y⊺(I − T̂)−1)

+ 1
1 − tn ,n − y⊺(I − T̂)−1x

.

We deduce that trace((I − T)−1)) ≥ trace((I − T̂)−1)) + 1
1−tn ,n

, and applying the
induction hypothesis now yields the desired inequality. ∎

Lemma 3.2 Suppose that T is a stochastic matrix of order n with a single essential

class. Suppose that T = [
S 1 − S1

u⊺ 1 − 1⊺u
] ,where the spectral radius of S is less than 1.

Then

K(T) = trace((I − S)−1) − 1
1 + u⊺(I − S)−11

trace((I − S)−11u⊺(I − S)−1).

Proof Write X = [
I − S
−u⊺

] , Y = [I ∣ − 1] , so that I − T = XY is a full rank fac-

torization of I − T . As noted in Section 1, K(T) = trace((Y X)−1). Since Y X = I −
S + 1u⊺ , the conclusion follows from the Sherman–Morrison formula [3]. ∎
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Example 3.3 Suppose that for our partial stochastic matrix P of order n, the speci-
fied entries are on the diagonal, with p j, j = d j , j = 1, . . . , n. As a warm-up exercise, we
first consider the case that some diagonal entry of P is 1. Without loss of generality,
we assume that d1 = 1 and d j < 1, j = 2, . . . , n. For any stochastic completion T of P
having just one essential class, T is of the form

T = [
1 0⊺

1 − T̂1 T̂
] ,

where the spectral radius of T̂ is less than 1, and t j, j = d j , j = 2, . . . , n. Then K(T) =
trace((I − T̂)−1) ≥ ∑n

j=2
1

1−d j
, the inequality following from Lemma 3.1. Evidently,

equality in the lower bound can be attained by letting T̂ be the diagonal matrix with
diagonal entries d2 , . . . , dn . Hence, m(P) = ∑n

j=2
1

1−d j
.

In the remainder of this section, we assume that d j < 1, j = 1, . . . , n.

Theorem 3.4 Suppose that d j ∈ [0, 1), j = 1, . . . , n. Let C be the adjacency matrix for
a directed n-cycle, and define D = diag(d1 , . . . , dn), T = D + (I − D)C . Then

K(T) = 1
2∑n

j=1
1

1−d j

⎛
⎜
⎝
⎛
⎝

n
∑
j=1

1
1 − d j

⎞
⎠

2

−
n
∑
j=1

1
(1 − d j)2

⎞
⎟
⎠

.

Proof Without loss of generality, we assume that C corresponds to the cycle
1 → 2 →⋯→ n → 1. We apply Lemma 3.2 and note that in the notation of that
lemma, the submatrix of T consisting of its first n − 1 columns can be written as

[
D̂ + (I − D̂)N
(1 − dn)e⊺1

] , where N is the matrix of order n − 1 whose first superdiagonal

consists of ones, and where all other entries are zero, and where D̂ is the leading
(n − 1) × (n − 1) principal submatrix of D. It now follows that K(T) is the trace of
the matrix

(I − N)−1(I − D̂)−1 − ( 1 − dn

1 + (1 − dn)e⊺1 (I − N)−1(I − D̂)−11
)×

(I − N)−1(I − D̂)−11e⊺1 (I − N)−1(I − D̂)−1 .

Observe that (I − N)−1 is the upper triangular matrix of order n − 1 whose entries
on and above the diagonal are ones. From that observation, we find the following:
(a) trace((I − N)−1(I − D̂)−1) = ∑n−1

j=1
1

1−d j
; (b) 1−dn

1+(1−dn)e⊺1 (I−N)−1(I−D̂)−1 1 =
1

∑n
j=1

1
1−d j

.

Recalling that for vectors u, v ∈ Rn−1 , trace(uv⊺) = v⊺u, we find that trace((I −
N)−1(I − D̂)−11e⊺1 (I − N)−1(I − D̂)−1) = ∑n−1

j=1
1

1−d j
∑n−1

�= j
1

1−d�
.
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Next, we note that ∑n−1
j=1

1
1−d j

∑n−1
�= j

1
1−d�

can be written as 1
2 ((∑

n−1
j=1

1
1−d j

)2 +
∑n−1

j=1
1

(1−d j)2 ). Assembling these observations, we find that

K(T) =
n−1
∑
j=1

1
1 − d j

−
(∑n−1

j=1
1

1−d j
)2 +∑n−1

j=1
1

(1−d j)2

2(∑n
j=1

1
1−d j

)
.

Simplifying that expression now yields

K(T) = 1
2(∑n

j=1
1

1−d j
)
⎛
⎜
⎝
⎛
⎝

n−1
∑
j=1

1
1 − d j

⎞
⎠

2

+ 2
1 − dn

n−1
∑
j=1

1
1 − d j

−
n−1
∑
j=1

1
(1 − d j)2

⎞
⎟
⎠

= 1
2∑n

j=1
1

1−d j

⎛
⎜
⎝
⎛
⎝

n
∑
j=1

1
1 − d j

⎞
⎠

2

−
n
∑
j=1

1
(1 − d j)2

⎞
⎟
⎠

.
∎

Lemma 3.5 Suppose that n ≥ 2 and x j > 0, j = 1, . . . , n, and let

sk =
(∑k

j=1 x j)2 −∑k
j=1 x2

j

2∑k
j=1 x j

+
n
∑

j=k+1
x j .

We have s1 > s2 > ⋯ > sn .

Proof Suppose that 1 ≤ k ≤ n − 1. Observe that

sk − sk+1 = − 1
2

xk+1 + xk+1 +
∑k+1

j=1 x2
j

2∑k+1
j=1 x j

−
∑k

j=1 x2
j

2∑k
j=1 x j

= 1
2
⎛
⎝

xk+1 +
∑k

j=1 x j ∑k+1
j=1 x2

j −∑k+1
j=1 x j ∑k

j=1 x2
j

∑k
j=1 x j ∑k+1

j=1 x j

⎞
⎠

= 1
2∑k

j=1 x j ∑k+1
j=1 x j

⎛
⎝

x2
k+1

k
∑
j=1

x j + xk+1

k
∑
j=1

x j
k+1
∑
j=1

x j − xk+1

k
∑
j=1

x2
j
⎞
⎠

.

Since ∑k
j=1 x j ∑k+1

j=1 x j > ∑k
j=1 x2

j , we deduce that sk > sk+1 . ∎

Theorem 3.6 Suppose that d j ∈ [0, 1), j = 1, . . . , n, and that P is an n × n partial
stochastic matrix with p j, j = d j , j = 1, . . . , n and all other entries unspecified. Then

m(P) = 1
2∑n

j=1
1

1−d j

⎛
⎜
⎝
⎛
⎝

n
∑
j=1

1
1 − d j

⎞
⎠

2

−
n
∑
j=1

1
(1 − d j)2

⎞
⎟
⎠

.

Proof Suppose that T is a completion of P such thatK(T) = m(P). By Proposition
2.3, we may assume, without loss of generality, that T has precisely one nonzero off-
diagonal entry in each row, and a single essential class of indices. In the directed graph
of T , for each vertex j, there is precisely one vertex � ≠ j such that j → �. Hence, this
directed graph has at least one cycle of length greater than 1, and if it were to have more
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than one such cycle, then there would be more than one essential class. We deduce
that the directed graph of T has precisely one cycle, of length k say, and without loss
of generality, it is on vertices 1, . . . , k.

If k < n, then K(T) =
(∑

k
j=1

1
1−d j
)2−∑

k
j=1

1
(1−d j)2

2∑k
j=1

1
1−d j

+∑n
j=k+1

1
1−d j

. Appealing to Lemma

3.5 (with x j = 1
1−d j

), we see that T cannot minimize Kemeny’s constant over SC(P).
Hence, k = n, and the conclusion now follows from Theorem 3.4. ∎

Remark 3.7 Fix an index j0 = 1, . . . , n, and consider the expression

f ≡ 1
∑n

j=1
1

1−d j

⎛
⎜
⎝
⎛
⎝

n
∑
j=1

1
1 − d j

⎞
⎠

2

−
n
∑
j=1

1
(1 − d j)2

⎞
⎟
⎠

as a function of d j0 . A straightforward computation shows that ∂ f
∂d j0

has the same sign

as (∑ j≠ j0
1

1−d j
)

2
+∑ j≠ j0

1
(1−d j)2 . In particular, f is increasing in each d j .

Corollary 3.8 Suppose that d j ∈ [0, 1), j = 1, . . . , k. Suppose that P is a partial
stochastic matrix of order n > k with p j, j = d j , j = 1, . . . , k, and all other entries
unspecified. Then m(P) =

1
2(∑k

j=1
1

1−d j
+ n − k)

⎛
⎜
⎝
⎛
⎝

k
∑
j=1

1
1 − d j

+ n − k
⎞
⎠

2

−
k
∑
j=1

1
(1 − d j)2 − (n − k)

⎞
⎟
⎠

.

Proof Set dk+1 , . . . , dn all equal to 0. From Theorem 3.6 and Remark 3.7, we
find that for any stochastic matrix T such that t j, j = d j , j = 1, . . . , k, K(T) ≥

1
2(∑k

j=1
1

1−d j
+n−k) ((∑

k
j=1

1
1−d j

+ n − k)
2
−∑k

j=1
1

(1−d j)2 − (n − k)) . Let C denote a cyclic

permutation matrix of order n. Setting D = diag(d1 , . . . , dn) and T0 = D + (I − D)C ,
we find from Theorem 3.4 that K(T0) =

1
2(∑k

j=1
1

1−d j
+ n − k)

⎛
⎜
⎝
⎛
⎝

k
∑
j=1

1
1 − d j

+ n − k
⎞
⎠

2

−
k
∑
j=1

1
(1 − d j)2 − (n − k)

⎞
⎟
⎠

.
∎

Our next goal is to characterize the matrices yielding the minimum value m(P)
in Theorem 3.6. We first establish some technical results that will assist in that
characterization. The following formula appears in the proof of Lemma 2.5 in [7].

Lemma 3.9 Suppose that T is a stochastic matrix with one essential class, and for each
x ∈ [−t i , p , t i ,q], set Sx = T + xe i(ep − eq)⊺ . Then, for any x ∈ [−t i , p , t i ,q] such that
1 − x(ep − eq)⊺(I − T)#e i ≠ 0, K(Sx) =K(T) + x

1−x(e p−eq)⊺(I−T)# e i
(ep − eq)⊺((I −

T)#)2e i .

Lemma 3.10 Suppose that d j ∈ [0, 1), j = 1, . . . , n, let D = diag(d1 , . . . , dn) and let
C be the permutation matrix corresponding to the cyclic permutation 1 → 2 →⋯→ n −
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1 → n → 1. Let T = D + (I − D)C. Fix an index k = 2, . . . , n − 1, and for each x ∈ [0, 1 −
dn], let Tx = T + xen(ek − e1)⊺ . Then K(Tx) >K(T) for all x ∈ (0, 1 − dn].

Proof Here we employ the notation of Theorem 3.4. Let X = [
(I − D̂)(I − N)
−(1 − dn)e⊺1

] ,

Y = [ I −1 ] . Then I − T = XY so that (I − T)# = X(Y X)−2Y .
We have Yen = −1, and it now follows that

(Y X)−1Yen = −1
1 + (1 − dn)e⊺1 (I − N)−1(I − D̂)−11

(I − N)−1(I − D̂)−11.(3.1)

Also, (ek − e1)⊺X = ((1 − dk)ek − (1 − d1)e1)⊺(I − N), and it follows that

(ek − e1)⊺X(Y X)−1 = (ek − e1)⊺ .(3.2)

We find from (3.1) and (3.2) that

1 − x(ek − e1)⊺(I − T)#en = 1 − x(ek − e1)⊺X(Y X)−1(Y X)−1Yen =

1 + x
1 + (1 − dn)e⊺1 (I − N)−1(I − D̂)−11

(ek − e1)⊺(I − N)−1(I − D̂)−11.

Hence, 1 − x(ek − e1)⊺(I − T)#en = 1 + x
1−dn

∑
k−1
j=1

1
1−d j

∑n
j=1

1
1−d j

> 0. In particular, we find from

Lemma 3.9 that K(Tx) =K(T) +
x(1−dn)∑

n
j=1

1
1−d j

(1−dn)∑n
j=1

1
1−d j
+x∑k−1

j=1
1

1−d j
(ek − e1)⊺((I − T)#)2en .

It remains to compute (ek − e1)⊺((I − T)#)2en .
We have ((I − T)#)2 = X(Y X)−3Y . From (3.1) and (3.2), we deduce that (ek −

e1)⊺X(Y X)−3Yen has the same sign as (e1 − ek)⊺(Y X)−1(I − N)−1(I − D̂)−11.
Observe that for each j = 1, . . . , n − 1, the jth entry of (I − N)−1(I − D̂)−11 is

∑n−1
�= j

1
1−d�

. We also have (e1 − ek)⊺(Y X)−1 = ∑k−1
j=1

1
1−d j

e⊺j −
∑

k−1
�=1

1
1−d�

∑n
�=1

1
1−d�

∑n−1
j=1

1
1−d j

e⊺j . We

thus find that (ek − e1)⊺((I − T)#)2en has the same sign as

n
∑
�=1

1
1 − d�

⎛
⎝

k−1
∑
j=1

1
1 − d j

n−1
∑
�= j

1
1 − d�

⎞
⎠
−

k−1
∑
�=1

1
1 − d�

⎛
⎝

n−1
∑
j=1

1
1 − d j

n−1
∑
�= j

1
1 − d�

⎞
⎠

.(3.3)

We claim that (3.3) is strictly positive.
In order to establish the claim, we rewrite (3.3) as follows:

n
∑
�=1

1
1 − d�

⎛
⎝

k−1
∑
j=1

1
1 − d j

n−1
∑
�=k

1
1 − d�

+
k−1
∑
j=1

1
1 − d j

k−1
∑
�= j

1
1 − d�

⎞
⎠

−
k−1
∑
�=1

1
1 − d�

⎛
⎝

1
2
(

n−1
∑
�=1

1
1 − d�

)
2

+ 1
2

n−1
∑
�=1

1
(1 − d�)2

⎞
⎠

=
n
∑
�=1

1
1 − d�

k−1
∑
j=1

1
1 − d j

n−1
∑
�=k

1
1 − d�

+
n
∑
�=1

1
1 − d�

⎛
⎝

1
2
(

k−1
∑
�=1

1
1 − d�

)
2

+ 1
2

k−1
∑
�=1

1
(1 − d�)2

⎞
⎠
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−
k−1
∑
�=1

1
1 − d�

⎛
⎝

1
2
(

n−1
∑
�=1

1
1 − d�

)
2

+ 1
2

n−1
∑
�=1

1
(1 − d�)2

⎞
⎠

=
n
∑
�=1

1
1 − d�

k−1
∑
j=1

1
1 − d j

n−1
∑
�=k

1
1 − d�

+ 1
2

n
∑
�=1

1
1 − d�

(
k−1
∑
�=1

1
1 − d�

)
2

+ 1
2

n
∑
�=1

1
1 − d�

k−1
∑
�=1

1
(1 − d�)2 − 1

2

k−1
∑
�=1

1
1 − d�

(
k−1
∑
�=1

1
1 − d�

)
2

− 1
2

k−1
∑
�=1

1
1 − d�

(
n−1
∑
�=k

1
1 − d�

)
2

−
k−1
∑
�=1

1
1 − d�

k−1
∑
�=1

1
1 − d�

n−1
∑
�=k

1
1 − d�

− 1
2

k−1
∑
�=1

1
1 − d�

n−1
∑
�=1

1
(1 − d�)2

= 1
2

n
∑
j=k

1
1 − d j

(
k−1
∑
�=1

1
1 − d�

)
2

+
k−1
∑
�=1

1
1 − d�

n−1
∑
�=k

1
1 − d�

n
∑
�=k

1
1 − d�

− 1
2

k−1
∑
�=1

1
1 − d�

(
n−1
∑
�=k

1
1 − d�

)
2

+ 1
2

n
∑
�=k

1
1 − d�

k−1
∑
�=1

1
(1 − d�)2

− 1
2

k−1
∑
�=1

1
1 − d�

n−1
∑
�=k

1
(1 − d�)2 .

Inspecting this final expression, we see that (3.3) is strictly positive. The conclusion
now follows readily. ∎

Theorem 3.11 Suppose that d j ∈ [0, 1), j = 1, . . . , n and that P is an n × n partial
stochastic matrix with p j, j = d j , j = 1, . . . , n and all other entries unspecified. Let D =
diag(d1 , . . . , dn). Then T ∈ SC(P) with K(T) = m(P) if and only if T = D + (I −
D)C , where C is a cyclic permutation matrix for a cycle of length n.

Proof Suppose that T ∈ SC(P) and that T cannot be written as D + (I − D)C , for
any n-cyclic permutation matrix C. Let the number of positive off-diagonal entries in
T be �. We claim that K(T) > m(P), and proceed by induction on �.

If � = n, then from the proof of Theorem 3.6, we find that for some k < n, K(T) =
(∑

k
j=1

1
1−d j
)2−∑

k
j=1

1
(1−d j)2

2∑k
j=1

1
1−d j

+∑n
j=k+1

1
1−d j

. The conclusion then follows from Lemma 3.5.

Suppose now that � > n (here we mimic the approach of Proposition 2.3). Then
there are indices j, k1 , k2 such that t j,k1 , t j,k2 > 0. If (ek1 − ek2)⊺((I − T)#)2e j ≠ 0,
then we may perturb T slightly in the jth row to produce a matrix T̂ ∈ SC(P) such
that K(T̂) <K(T). On the other hand, if (ek1 − ek2)⊺((I − T)#)2e j = 0, then there
is a matrix T̃ ∈ SC(P) such that K(T̃) =K(T) and T̃ has � − 1 positive off-diagonal
entries. If T̃ is not of the form D + (I − D)C for any n-cyclic permutation matrix C,
thenK(T̃) > m(P) by the induction hypothesis. Suppose now that T̃ = D + (I − D)C
for some n-cyclic permutation matrix C, and without loss of generality, C corresponds
to the permutation 1 → 2 →⋯→ n → 1. In that case, T is permutationally similar to
a matrix Tx = D + (I − D)C + xen(ek − e1)⊺ for some x > 0. Then K(T) =K(Tx) >
m(P), the strict inequality following from Lemma 3.10. ∎
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4 P with all specified entries in one row

In this section, we consider the case that the n × n partial stochastic matrix P has n
specified entries, all lying in a common row. By applying a permutation similarity if
necessary, we may assume, without loss of generality, that the specified entries are
in row n, and take the values r0 , r1 , . . . , rn−1, with r0 on the diagonal of P, with the
remaining values occupying positions (n, 1), . . . , (n, n − 1). Throughout this section,
we assume that r j ≥ 0, j = 0, . . . , n − 1, and ∑n−1

j=0 r j = 1.
As in Section 2, we consider a T ∈ SC(P) that minimizes Kemeny’s constant, and

in view of Proposition 2.3, we focus on the case that the first n − 1 rows of T are (0, 1).
That leads to two possibilities for the directed graph of T: either there is a cycle in the
subgraph induced by vertices 1, . . . , n − 1 or every cycle passes through vertex n. The
next two results address those cases.

Proposition 4.1 Suppose that the first n − 1 rows of the stochastic matrix T are (0, 1),
the directed graph of T has a cycle on vertices 1, . . . , k, that T has a single essential class,
and that the last row of T is specified, with diagonal entry r0 . Then K(T) = 2n−k−3

2 +
1

1−r0
. In particular, K(T) ≥ n−2

2 + 1
1−r0

, with equality if k = n − 1.

Proof Write T as T =
⎡⎢⎢⎢⎢⎢⎣

C 0 0
X N 0
u⊺ v⊺ r0

⎤⎥⎥⎥⎥⎥⎦
, where C is the adjacency matrix of the

k-cycle, N is a (0, 1) matrix of order n − k − 1, and u⊺ , v⊺ are vectors whose entries
comprise r1 , . . . , rn−1. The directed graph of N cannot contain a cycle, otherwise the
fact that N is (0, 1) implies that T has more than one essential class. Consequently, N
is nilpotent.

We now find that K(T) =K(C) + trace((I − N)−1) + 1
1−r0

= k−1
2 + n − k − 1 +

1
1−r0

. The conclusion follows. ∎

Proposition 4.2 Suppose that the first n − 1 rows of the stochastic matrix T are (0, 1)
and that every cycle in the directed graph of T goes through vertex n. Suppose that in the
last row of T, the entries r1 , . . . , rn−1 appear in positions 1, . . . , n − 1 (in some order) and
that the (n, n) entry is r0. Partition the vertices of the directed graph associated with T
into sets A0 = {n}, A1 , . . . , Ad−1 where A j is the set of vertices at distance j from n, and
d − 1 is the maximum distance from n. For each j = 0, . . . , d − 1, let r̃ j = ∑k∈A j rk . Then

K(T) = n − 1 − ∑
d−1
j=0 j( j+1)r̃ j

2∑d−1
j=0( j+1)r̃ j

.

Proof We proceed by induction on n and note that the case n = 2 is straightforward.
Henceforth, we suppose that n ≥ 3. We subdivide the rest of the proof into two cases.

Case 1, the first n − 1 rows of T are distinct.
In this case, we have d = n, and each A j consists of a single vertex. Without loss

of generality, we may write T as [
N en−1

u⊺ r̃0
] , where N is the nilpotent matrix of

order n − 1 with ones on the superdiagonal and zeros elsewhere, and where the entries
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in u⊺ correspond to r1 , . . . , rn−1 . Indeed, in the notation of the statement, u j = r̃n− j ,
j = 1, . . . , n − 1.

Applying Lemma 3.2, we find that

K(T) = trace((I − N)−1) − 1
1 + u⊺(I − N)−11

trace((I − N)−11u⊺(I − N)−1)

= n − 1 − 1
1 + u⊺(I − N)−11

u⊺(I − N)−1(I − N)−11.

The desired expression now follows from a computation.

Case 2, among the first n − 1 rows of T, two rows are the same.
For concreteness, but without loss of generality, we may assume that the first two

rows of T are equal to e⊺3 . We may then write T as T =
⎡⎢⎢⎢⎢⎢⎣

0⊺ e⊺1
0⊺ e⊺1
T1 T2

⎤⎥⎥⎥⎥⎥⎦
, where T1 is

(n − 2) × 2, T2 is (n − 2) × (n − 2), the first n − 3 rows of [ T1 T2 ] are (0, 1), and
the last row of [ T1 T2 ] consists of the entries r1 , . . . , rn−1 in the first n − 1 positions
and r0 in the last position.

We may factor T as UV where U = [
1 0⊺

0 I
] , V = [

0⊺ e⊺1
T1 T2

]. Here the rows

of U are partitioned as 2 rows/(n − 2) rows, and the columns are partitioned as 1
column/(n − 2) columns, while the rows of V are partitioned as 1 row/(n − 2) rows,
and the columns are partitioned as 2 columns/(n − 2) columns. The eigenvalues
of T consist of 0, along with the eigenvalues of the (n − 1) × (n − 1) matrix VU =

[
0 e⊺1

T11 T2
] . Observe that since the first n − 3 rows of T1 are (0, 1) with at most one

1 in each row, T11 is necessarily (0, 1) in its first n − 3 positions. Observe also that
K(T) =K(UV) = 1 +K(VU).

Note that the induction hypothesis applies to VU , and in particular that in the
directed graph of T , vertices 1 and 2 of T (which correspond to vertex 1 of VU) are
at the same distance from n. Applying the induction hypothesis to VU , we find that
K(VU) = n − 2 − ∑

d−1
j=0 j( j+1)r̃ j

2∑d−1
j=0( j+1)r̃ j

. The expression for K(T) now follows. ∎

From Proposition 4.2, in order to minimize Kemeny’s constant when one row of P
is specified, we would like to maximize ∑

d−1
j=0 j( j+1)r̃ j

∑d−1
j=0( j+1)r̃ j

over the various choices of d and
the subsets A1 , . . . , Ad−1 . The next result is useful in that regard.

Lemma 4.3 Suppose that d < n and that we have the partition A0 , A1 , . . . , Ad−1 ,
where ∣A j0 ∣ ≥ 2, say with � ∈ A j0 . Consider the partition A′j , j = 0, . . . , d with A′j =

A j , j ∈ {0, . . . , d − 1} ∖ { j0}, A′j0
= A j0 ∖ {�}, A′d = {�}. Let g = ∑

d−1
j=0 j( j+1)r̃ j

∑d−1
j=0( j+1)r̃ j

be associ-

ated with the original partition A0 , A1 , . . . , Ad−1 , and let h = ∑
d
j=0 j( j+1)r̃′j
∑d

j=0( j+1)r̃′j
be associated

with the modified partition A′0 , . . . , A′d . Then h ≥ g .
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Proof Observe that r̃′j = r̃ j for j = 0, . . . , d − 1, j ≠ j0 , while r̃′j0
= r̃ j0 − r� , r̃d = r� . It

now follows that h can be written as h = ∑
d−1
j=0 j( j+1)r̃ j+(d− j0)(d+ j0+1)r�
∑d−1

j=0( j+1)r̃ j+(d− j0)r�
. A computation

now reveals that h − g has the same sign as r�(d − j0)((d + j0 + 1)∑d−1
j=0( j + 1)r̃ j −

∑d−1
j=0 j( j + 1)r̃ j) = r�(d − j0)∑d−1

j=0( j + 1)r̃ j(d + j0 + 1 − j), which is clearly nonnega-
tive. ∎

Remark 4.4 From Lemma 4.3, we see that in order to maximize ∑
d−1
j=0 j( j+1)r̃ j

∑d−1
j=0( j+1)r̃ j

, it
suffices to consider the case that d = n, and that each A j consists of a single index.
It follows that the corresponding stochastic matrices are of the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0 0
0 0 1 0 . . . 0
⋮ ⋱ ⋮
0 0 . . . 0 1 0
0 0 . . . 0 0 1

rσ(n−1) rσ(n−2) . . . rσ(2) rσ(1) r0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for permutations σ ∈ Sn−1 .

Here is one of the main results in this section.

Theorem 4.5 Suppose that P is an n × n partial stochastic matrix where row n has
been specified as pn , j = rn− j , j = 1, . . . , n, and all remaining entries are unspecified.
Then

m(P) = min
⎧⎪⎪⎨⎪⎪⎩

n − 2
2

+ 1
1 − r0

, n − 1 −
∑n−1

j=1 j( j + 1)rσ( j)

2(1 +∑n−1
j=1 jrσ( j))

⎫⎪⎪⎬⎪⎪⎭
,

where the minimum is taken over all permutations σ of {1, . . . , n − 1}.

Proof Adopting the notation of Proposition 4.2, it follows from Lemma 4.3 that
in order to maximize ∑

d−1
j=0 j( j+1)r̃ j

∑d−1
j=0( j+1)r̃ j

, it suffices to consider d = n, A0 = {n}, and A j =
{σ( j)} for some permutation σ of {1, . . . , n − 1}. From the fact that (r̃0 =)r0 = 1 −
∑n−1

k=1 rσ(k), it follows that ∑
n−1
j=0 j( j+1)r̃ j

∑n−1
j=0( j+1)r̃ j

= ∑
n−1
j=1 j( j+1)rσ( j)

(1+∑n−1
j=1 jrσ( j))

. The conclusion now follows
from Propositions 4.1 and 4.2. ∎

Remark 4.6 In the case that r0 ≥ n−2
n , we have n−2

2 + 1
1−r0

≥ n − 1. In that case, the

expression for m(P) simplifies to minσ∈Sn−1 {n − 1 − ∑
n−1
j=1 j( j+1)rσ( j)

2(1+∑n−1
j=1 jrσ( j))

} .

On its face, Theorem 4.5 leaves us in the position of evaluating (n − 1)! + 1
expressions, then choosing the minimum. Our next task is to reduce the number of
permutations to be considered in Theorem 4.5. The following result is useful in that
regard.
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Proposition 4.7 Suppose that 1 ≤ j1 < j2 ≤ n − 1. Form the sequence r̂1 , r̂2 , . . . , r̂n−1

from r1 , r2 , . . . , rn−1 by exchanging r j1 and r j2 . Then ∑
n−1
j=0 j( j+1)r̂ j

∑n−1
j=0( j+1)r̂ j

− ∑
n−1
j=0 j( j+1)r j

∑n−1
j=0( j+1)r j

is pos-

itive, zero, or negative according as (r j1 − r j2) ( j1 + j2 + 1 − ∑
n−1
j=0 j( j+1)r j

∑n−1
j=0( j+1)r j

) is positive,
zero, or negative.

Proof Observe that

∑n−1
j=0 j( j + 1)r̂ j

∑n−1
j=0( j + 1)r̂ j

=
∑n−1

j=0 j( j + 1)r j + (r j1 − r j2)( j2 − j1)( j1 + j2 + 1)
∑n−1

j=0( j + 1)r j + (r j1 − r j2)( j2 − j1)
.

A computation reveals that

∑n−1
j=0 j( j + 1)r̂ j

∑n−1
j=0( j + 1)r̂ j

−
∑n−1

j=0 j( j + 1)r j

∑n−1
j=0( j + 1)r j

=

(r j1 − r j2)( j2 − j1)∑n−1
j=0( j + 1)r j( j1 + j2 + 1 − j)

∑n−1
j=0( j + 1)r̂ j ∑n−1

j=0( j + 1)r j
.

The conclusion follows. ∎

We always have ∑
n−1
j=1 j( j+1)r j

1+∑n−1
j=1 jr j

≤ n − 1, with equality if and only if rn−1 = 1, r j = 0,
j = 0, . . . , n − 1. That case is excluded from consideration in the following result.

Proposition 4.8 Suppose that r0 , r1 , . . . , rn−1 ≥ 0,∑n−1
j=0 r j = 1 and that γ ≡ ∑

n−1
j=1 j( j+1)r j

1+∑n−1
j=1 jr j

maximizes ∑
n−1
j=1 j( j+1)rσ( j)

1+∑n−1
j=1 jrσ( j)

over all permutations σ of {1, . . . , n − 1}. Let ρ j , j = 1, . . . , n −
1 denote the sequence r1 , . . . , rn−1 written in nondecreasing order. Assume that γ < n − 1.

(a) If γ < 4, then r j = ρ j , j = 1, . . . , n − 1.
(b) If γ ∉ N, γ > 4, let k = ⌊γ⌋. Then

r j = ρk−2 j , j = 1, . . . , ⌊ k − 1
2

⌋ ; r j = ρ2 j−k+1 , j = ⌈ k
2
⌉ , . . . , k − 2;

r j = ρ j , j = k − 1, . . . , n − 1.(4.1)

(c) If γ = k ∈ N for some k = 4, . . . , n − 2, set � = ⌊ k
2 ⌋. The ordering given by (4.1)

maximizes ∑
n−1
j=1 j( j+1)rσ( j)

1+∑n−1
j=1 jrσ( j)

. The other maximizing orderings can be obtained from (4.1)
by choosing a subset { j1 , . . . , jm} ⊆ {1, . . . , � − 1} and exchanging r j i and rk−1− j i ,
i = 1, . . . , m.

Proof The key observation is that from Proposition 4.7, it must be the case that for
indices 1 ≤ j1 < j2 ≤ n − 1, (r j1 − r j2)( j1 + j2 + 1 − γ) ≤ 0.

(a) If γ < 4, then j1 + j2 + 1 − γ > 0, and the conclusion follows.
(b) Since γ ∉ N, k < γ < k + 1. From Proposition 4.7, we find that r j ≥ rk− j−1 for

j = 1, . . . , ⌊ k−2
2 ⌋, r j ≤ rk− j for j = 1, . . . , ⌊ k−1

2 ⌋, and r j ≤ r j+1 for j ≥ ⌊ k−1
2 ⌋.
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Suppose that k is odd, with k = 2� + 1. Then r2�− j+1 ≥ r j ≥ r2�− j , j = 1, . . . , � − 1
and r j ≤ r j+1 , j ≥ �. It now follows that r j = ρ2�−2 j+1 , j = 1, . . . , �, r j = ρ2 j−2� , j = � +
1, . . . , 2� − 1, and r j = ρ j , j ≥ 2�. A similar argument applies if k is even, and we may
then express the odd and even cases in unified form as (4.1).

(c) From Proposition 4.7, we find that r j ≥ rk− j−2 , j = 1, . . . , ⌊ k−3
2 ⌋, r j ≤ rk− j , j =

1, . . . , ⌊ k−1
2 ⌋, and r j ≤ r j+1 , j ≥ ⌊ k−1

2 ⌋. Note also from Proposition 4.7 that for j =
1, . . . , ⌊ k−3

2 ⌋, we have rk− j ≥ rk− j−1 ≥ rk− j−2 .
If k = 2� + 1 is odd, we then have r j ≥ r2�− j−1 , j = 1, . . . , � − 1, r j ≤ r2�− j+1 , j =

1, . . . , �, r j ≤ r j+1 , j ≥ �. We also have r2�− j+1 ≥ r2�− j ≥ r2�− j−1 , j = 1, . . . , � − 1. In
particular, r2�− j+1 ≥ r j , r2�− j ≥ r2�− j−1 , j = 1, . . . , � − 1 and r j ≤ r j+1 , j ≥ �. If it happens
to be the case that r j ≥ r2�− j for each j = 1, . . . , � − 1, then we recover the ordering
(4.1). On the other hand, if there are indices j1 , . . . , jm ∈ {1, . . . , � − 1} for which
r j i < r2�− j i , i = 1, . . . , m, we may perform a sequence of m switches that exchange
the entries r j i and r2�− j i , i = 1, . . . , m. According to Proposition 4.7, those exchanges
leave the value of the objective function unchanged. We deduce that any maximizing
ordering can be constructed by starting with the ordering in (4.1), then possibly
exchanging r j i and r2�− j i , i = 1, . . . , m for indices j1 , . . . , jm ∈ {1, . . . , � − 1}.

If k = 2� is even, then as above we find that r j ≥ r2�− j−2 , j = 1, . . . , � − 2, r j ≤
r2�− j , j = 1, . . . , � − 1, r j ≤ r j+1 , j ≥ � − 1, and r2�− j ≥ r2�− j−1 ≥ r2�− j−2 , j = 1, . . . , � − 2.
If it happens to be the case that r j ≥ r2�− j−1 , j = 1, . . . , � − 1, then we generate the
ordering (4.1). On the other hand, if there are indices j1 , . . . , jm ∈ {1, . . . , � − 1} for
which r j i < r2�− j i−1 , i = 1, . . . , m, we may perform a sequence of m switches that
exchange r j i and r2�− j i−1 , i = 1, . . . , m. From Proposition 4.7, those exchanges leave
the value of the objective function unchanged. We deduce that any maximizing
ordering can be constructed by starting with (4.1), then possibly exchanging r j i and
r2�− j i−1 , i = 1, . . . , m for indices j1 , . . . , jm ∈ {1, . . . , � − 1}. ∎

Remark 4.9 We emphasize that the ordering in (4.1) depends on the specific value
of k.

Corollary 4.10 Suppose that P is an n × n partial stochastic matrix where row n
has been specified as pn , j = rn− j , j = 1, . . . , n, and all remaining entries are unspecified.
Suppose further that r j < 1, j = 0, . . . , n − 1. Let ρ j , j = 1, . . . , n − 1 denote the sequence
r1 , . . . , rn−1 written in nondecreasing order. For each k = 4, . . . , n − 2, let r(k)

j denote the
ordering of (4.1) associated with k. Then

m(P) = min
⎧⎪⎪⎨⎪⎪⎩

n − 2
2

+ 1
1 − r0

, n − 1 −
∑n−1

j=1 j( j + 1)ρ j

2(1 +∑n−1
j=1 jρ j)

,

n − 1 −
∑n−1

j=1 j( j + 1)r(4)j

2(1 +∑n−1
j=1 jr(4)j )

, . . . , n − 1 −
∑n−1

j=1 j( j + 1)r(n−2)
j

2(1 +∑n−1
j=1 jr(n−2)

j )

⎫⎪⎪⎬⎪⎪⎭
.

Corollary 4.11 Suppose that 3 ≤ n ≤ 5. Then

m(P) = min
⎧⎪⎪⎨⎪⎪⎩

n − 2
2

+ 1
1 − r0

, n − 1 −
∑n−1

j=0 j( j + 1)ρ j

2∑n−1
j=0( j + 1)ρ j

⎫⎪⎪⎬⎪⎪⎭
.

https://doi.org/10.4153/S0008439524000419 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000419


Completion problems and sparsity for Kemeny’s constant 17

Remark 4.12 In this remark, we show how, for each k = 4, . . . , n − 2, there is a
sequence r0 , r1 , . . . , rn−1 such that the optimal ordering corresponds to that given by
(4.1) for the parameter k. Fix such a k and suppose that γ ∈ [k, k + 1).

Suppose that ε ∈ (0, 1
2 ) and select a vector c ∈ Rn−2 with c j ≥ 0, j = 1, . . . , n − 2 and

∑n−2
j=1 c j = 1. Now set r̂ j = εc j , j = 1, . . . , n − 2, and r̂n−1 = 1 − ε. Fix a k with 4 ≤ k ≤

n − 2 and assume that r̂1 , . . . , r̂n−1 has the ordering given by (4.1) corresponding to k.
Fix γ ∈ [k, k + 1), define r0 via

1 − r0 =
γ

(1 − ε)(n − 1)(n − γ) + ε∑n−2
j=1 jc j( j + 1 − γ)

and set r j = (1 − r0)r̂ j , j = 1, . . . , n − 1. (We note that r0 ∈ (0, 1) for all sufficiently
small ε > 0.) For notational convenience, we suppress the dependence on ε and
γ. It is straightforward to determine that ∑

n−1
j=0 j( j+1)r j

∑n−1
j=0( j+1)r j

= γ. Observe also that for all

sufficiently small ε > 0 and any permutation σ of {1, . . . , n − 1}, ∑
n−1
j=1 j( j+1)rσ( j)

r0+∑
n−1
j=1 ( j+1)rσ( j)

=

γ + O(ε). In particular, for any such ε and σ , ∑
n−1
j=1 j( j+1)rσ( j)

r0+∑
n−1
j=1 ( j+1)rσ( j)

< k + 1. We deduce that

max
⎧⎪⎪⎨⎪⎪⎩

∑
n−1
j=1 j( j+1)rσ( j)

r0+∑
n−1
j=1 ( j+1)rσ( j)

???????????
σ ∈ Sn−1

⎫⎪⎪⎬⎪⎪⎭
∈ [γ, k + 1). If k < γ, then Proposition 4.8(b) applies,

and hence the unique ordering of r1 , . . . , rn−1 that yields the maximum is in fact given
by (4.1).

Suppose now that γ = k. If it were the case that

max
⎧⎪⎪⎨⎪⎪⎩

∑n−1
j=1 j( j + 1)rσ( j)

r0 +∑n−1
j=1 ( j + 1)rσ( j)

???????????
σ ∈ Sn−1

⎫⎪⎪⎬⎪⎪⎭
> γ,

then Proposition 4.8(b) would necessitate that the ordering (4.1) yields the maximum
value, a contradiction (since that ordering yields the value γ). Consequently, we find

that max
⎧⎪⎪⎨⎪⎪⎩

∑
n−1
j=1 j( j+1)rσ( j)

r0+∑
n−1
j=1 ( j+1)rσ( j)

???????????
σ ∈ Sn−1

⎫⎪⎪⎬⎪⎪⎭
= k.

Finally, we note that for this sequence, and sufficiently small ε > 0, we have n
2 +

1
1−r0

= n
2 + (n−1)(n−γ)

γ + O(ε), while the ordering given by (4.1) corresponds to n − 1 −
γ
2 . It now follows that n

2 + 1
1−r0

is strictly greater than the minimum value of Kemeny’s
constant.

We close the paper with a brief example.

Example 4.13 Suppose that n = 6, r0 = 0, and 0 ≤ a ≤ 1
2 . Consider the values

1−a
2 , 1−a

2 , a
2 , a

2 , 0 as the remaining specified entries in last row of the partial stochastic
matrix P. From Corollary 4.10, it suffices to consider r1 , r2 , r3 , r4 , r5 in one of the
following two orders: 0, a

2 , a
2 , 1−a

2 , a
2 ; a

2 , 0, a
2 , 1−a

2 , a
2 . The first ordering yields K1(a) ≡

30−4a
11−4a for Kemeny’s constant, while the second ordering yields K2(a) = 30−7a

11−5a for
Kemeny’s constant, so that by Corollary 4.10, m(P) = min{3,K1(a),K2(a)}. A few
computations show that K2(a) <K1(a) < 3 for 0 < a < 3

8 and 3 <K1(a) <K2(a)
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for 3
8 < a ≤ 1

2 . We deduce that m(P) =K2(a) for a ∈ [0, 3
8 ], while m(P) = 3 for

a ∈ [ 3
8 , 1

2 ].
By contrast, we note that some orderings of r1 , r2 , r3 , r4 , r5 yield values of Kemeny’s

constant that are well separated from m(P). For example, if r1 , r2 , r3 , r4 , r5 are ordered
as 1−a

2 , 1−a
2 , a

2 , a
2 , 0, the corresponding value of Kemeny’s constant is 8a+21

4a+5 , which lies
in the interval [ 25

7 , 21
5 ] when 0 ≤ a ≤ 1

2 .
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