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1. Introduction. The nonabelian tensor square G ® G of a group G is generated
by the symbols g ® h, g, h € G, subject to the relations

g ®h=C¢@h(g®h and g =(@g@h(ga"n),

for all g, g, h, ' € G, where ¢g’ = gg’g~". The nonabelian tensor square is a special
case of the nonabelian tensor product which has its origins in homotopy theory. It
was introduced by R. Brown and J.-L. Loday in [4] and [5], extending ideas of
J.H.C. Whitehead in [10]. The topic of this paper is the classification of 2-generator
2-groups of class two up to isomorphism and the determination of nonabelian ten-
sor squares for these groups.

In [3], R. Brown, D.L. Johnson, and E.F. Robertson start the investigation of
nonabelian tensor squares as group theoretical objects. One of their main goals is
the explicit computation of nonabelian tensor squares. Since then many other papers
have appeared on the computation of nonabelian tensor squares. For a complete
overview of nonabelian tensor squares which have been determined we refer to [8].
In our context, D.L. Johnson’s result on the nonabelian tensor square of a finite
split metacyclic group is of interest.

THEOREM 1.1. [7] Let G be a split metacyclic group given by

G=(x,y| " =x"=1,xyx"" =)/, I" =1 mod n).

Then GQ G is the abelian group with generators y @ y, X ® x, (x ® »)(y ® x),
X ® y and relations

0y =00 N=xex)"=x®)" =lg,
(x@nre) = (xenrex) " = (&) "
(x® y)HH'"HWI -0 y)(lfl)zm(mfl)/4.

= lg,

To determine the nonabelian tensor squares of 2-generator 2-groups of class two we
need first a classification of these groups. Trebenko in [9] attempts to classify all 2-
generator groups of class two. Our exposition follows along the lines of [9] and at
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the same time corrects some of the errors of that paper. In [2], also based on [9], 2-
generator p-groups of class two, p an odd prime, were classified and their tensor
squares determined.

As expected, the case p = 2 is more complex since the groups in question are not
regular and not necessarily split extensions. As a consequence we need to consider
additional subcases when computing the nonabelian tensor squares of these groups.

In [2, Proposition 3.1] it was shown that the tensor square for a group of class
two is abelian. As in [2], this fact helps us in using the concept of crossed pairing in
our computations. We define it here in the case relevant for nonabelian tensor
squares. For the general case of a nonabelian tensor product we refer to [3].

DEeFINITION 1.2. Let G and L be groups. A function ¢ : G x G — L is called a
crossed pairing if

P(gg', h) = p(g . (g, h), (1.2.1)

$g, hit') = pg, Mp("g," '), (1.2.2)

forall g,g',h, W € G.
Crossed pairings allow us to determine homomorphic images of G ® G as follows.

ProposITION 1.3. [3] A crossed pairing ¢ : G x G — L determines a unique
homomorphism of groups ¢*: G® G — L such that ¢*(g Q@ h) = ¢(g, h) for all
g, hed.

If G is a finite nilpotent group, then it follows from [3, Proposition 11] that
G ® G is the direct product of the tensor squares of the Sylow subgroups of G. Thus
the nonabelian tensor square of a finite 2-generator group of nilpotency class two is
just the direct product of the nonabelian tensor squares of p-groups determined here
and in [2], and some abelian tensors in case of abelian Sylow components.

In conclusion, we should mention here a paper by Hartl [6]. Extending ideas
from [1], he develops a method to compute nonabelian tensor squares for groups of
nilpotency class two and calculates some of them for 2-generator 2-groups using this
method.

2. The classification. In this section we classify all 2-generator 2-groups of nil-
potency class two. First we state the familiar expansion formulae for groups of class

two.
LeEmMMA 2.1. Let G be a group of nilpotency class two. Then for x,y,z € G and
nelr
[x,yz] =[x, yllx,z] and [xp,z] =[x, ][y, z]; (2.1.1)
[l =[x =[x 0T and ()" =¥y, 410, (2.12)
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In the next two lemmas we state several elementary properties of 2-generator
groups of nilpotency class two which are immediate corollaries of Lemma 2.1.

LEMMA 2.2. Let G = (a, b) be a group of nilpotency class two. Then

(i) G = ([a, b]);
(i) if G’ is finite of order m, then {(a) N Z(G) = {(d"") and (b) N Z(G) = (b").

LemMma 2.3. Let G = {(a, b) be a p-group of nilpotency class two.

W) If G Nnia) = (a”A) and |G'| = p¥, then k > y.
(1) If lal = p*, a > 2, |[a, b]| = p" and [a, b] € (a), then a > 2y.

Due to the following lemma, the cases p odd and p = 2 have to be handled dif-
ferently in the classification.

LEMMA 2.4. Let G be a nonabelian 2-generator p-group of nilpotency class two.
Furthermore, let b € G be of minimal order but not in ®(G), the Frattini subgroup of
G, and let a be an element of minimal order such that (a,b) = G. If {(a) N (b) # (1),
then p = 2.

Proof. Choose a and b as in the hypothesis. Let (d) = (a) N (b). Then there exist
u, v € N such that d = ¢“ = b". Since G is not cyclic, we have u = sp’, v = tp/, with
i,jeN, and (s, p) = (t,p) = 1. Now |b| < |a| implies j < i. Consider by = a~*""'b".
Since (¢, p) = 1, it follows that (b;, a) = G. Now by (2.1.2) and the choice of b, we
obtain

o = a5 a ) = (0,6, (2.4.1)

Silnce b" =d+# 1, then |b| > p/ , and by the choice of b, |bi| > |b|. This implies
B} # 1. On the other hand, [a, ] = [a*', b] = [b"”', b] = 1. Suppose now p # 2. For

the right side of (2.4.1) we obtain [a, b]j"p';/(';) = [a, b7~/ = 1, a contradiction.
Thus we must have p = 2 if (a) N (b) # 1. O

Now we are ready to classify 2-generator 2-groups of class two. Replacing the
prime 2 by p, an odd prime, in (2.5.1)—(2.5.3) below and deleting o + 8 > 3 in (2.5.2)
yield exactly the classification of 2-generator p-groups, p odd, of nilpotency class
two as given in (2.4.1)—(2.4.3) of [2]. We add the condition & + 8 > 3 in (2.5.2) so the
dihedral group of order 8 is not included in both (2.5.1) and (2.5.2). Finally, we note
that the condition @ > 8 in (2.4.2) and (2.4.3) of [2] should be deleted. It appears
there in error.

THEOREM 2.5. Let G be a finite nonabelian 2-generator 2-group of nilpotency class
two. Then G is isomorphic to exactly one group of the following four types:

(2.5.1) G=({c) x {a)) x (b), where [a,bl=c, [a,cl=[b,c]=1, |a]=2%
bl =2, 1cl =2", 0, B,y eN,a = B> y;
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(2.5.2) G = (a) » (b), where [a,b] = a* ", |a| =2%, |b| =2, |[a,b]| =27, a, B,
yeN ,a>2y,B>y,a+B>3;

(2.5.3) G = ((¢) x {(a)) x (b}, where [a,b] = a® ¢, [¢,b] = a2 >, |a] = 2,
6] =28, lc| =2°, |[a,b]] =27, a, B, y, 0 €N, B>y >0, a+0>2y;

(2.5.4) G=((c) x (a)(b), where |a|=1|b] =2, |la, b]| =2", |c|]=2V"",
[a, b] = d*c, [e, bl =a~*c2, a® =b¥, y e N.

The groups in the above list are pairwise nonisomorphic and have nilpotency class
two precisely.

Proof. Let G be a finite 2-generator 2-group of nilpotency class two. Let

= {x € G — &(G); x has minimal order}.

Then there are two cases:

Case 1. There exist y € G, x € T such that G = (x, y) and (x) N (y) = 1. Among
all x € T for which there is such a y with (x) N (y) = (1), choose x = b; such that
»y = ay is of minimal order.

Case 11. For all x € T and all y € G with (x,y) = G, (x) N (y) # 1. Among all
x € T choose x = by such that y = ¢; has minimal order.

From now on let G = (ay, b;), where a; and b, are as specified above in Case |
and II, and let |a;| = 2%, |b;| =2# and |G| = 2.

Now we look at both cases separately. We first turn to Case I and consider the
following five subcases:

(a)NG =(1), (b)NG =(1); (2.5.5)
b)yNG =(1), (a)NG =G (2.5.6)
(b1)NG =(1), (I)#(a)NG CG; (2.5.7)
(@)nG =(1), (h)NG =G, (2.5.8)
(@)ynG =), (I)#{hB)NG cCG. (2.5.9)

Suppose (2.5.5) holds. Set b = b; and a = a;. Now « > B follows by choice of a
and b, and |b| = 2# implies 1 = [a, b*'] = [a, ]2/3 Thus B > y. This together Wlth
G’ # (1) yields o > B> y > 1. Then it is easy to see that G = ({[«, b]) x (a)) x (b),
and G is of type (2.5.1).

Next consider (2.5.6). We have [ay, 1] = ¢ for some odd integer r. Setting
a=a; and b = b with rs = 1 (mod 27), we obtain [a, b] = ai**"" = a* . It is easy to
see that G is of type (2.5.2).

Now suppose (2.5.7) holds. Set ¢; = [a;, b ] We have (¢?") = (a;) N G’ for some
o € N, and o is minimal such that 1 # clA = al2 for s, k € Nand (s, 2) = 1. It follows
o < y. Furthermore, 2" = |¢}'| = |a? | = 2% k. This implies k = « — y + o. By (i)
of Lemma 2.3 we obtain o +0o > 2y. Set a =da} and ¢ = cja 2" — ¢1a®”, thus

= 1. This together with the minimality of o implies |¢| = 27 and |G’ N {(a)| = 2V “,
It can be shown that {(c) N (a) = (1), and thus (¢}, a) = (¢, a) = (¢} X {(a).
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Set by = b. We claim (c) N (h) = (1). Suppose the contrary. Since ¢ € ([a, b],
a7y, this would mean that there exist integers 4, u > 0 such that a2 = p?
mod G’ for some reN with (r,2) = 1. Suppose a?"" #£1 mod G'. Setting
i=a—k+o—i—1,wehave a2 """ = a2 Thus a2 has order 2. Since
k<a—1,a*" €G. Therefore 1 # b"2”+ € (@) NG, and hence (a) N (b) # (1), a
contradiction to the choice of ¢ and b. If already a‘2A ™ =1 mod G, we arrive at
the same contradiction. Thus we conclude that (¢) N (b) = (1). It can be shown that
G is of type (2.5.3).

The cases (2.5.8) and (2.5.9) are similar to (2.5.6) and (2.5.7) where the roles of a
and b are just interchanged. Specifically, suppose (2.5.8) or (2.5.9) hold and
G = {(ay, b)). Here we set a = by and b = aj for a suitable odd integer s and arrive at
a group of type (2.5.2) or (2.5.3), respectively.

Finally, we consider Case 11, i.e for all x € T and all y € G with G = (x, ) w
have (x) N (y) # (1). There exist odd integers s, z, such that a bﬁz, for k,le N
Since |b| < |a;|, we have [ < k. We claim that k = y. Let bo —a(ﬂ bt Since
(¢,2) = 1, it follows that (by, a;) = G, and (2.4.1) yields

B3 = fay, by D, (2.5.10)

By the choice of by and |bg| > |b)| > 2/, we obtain b2 # 1. Thus [a;, b,]*  # 1. Since
s and 7 are odd, [a, b ] [aszl byl =B, by] = 1 This implies k = y.

We will show [= as well. Note that by (2.1.2) we obtain
[a1, b1]? = [a1, b’lzl] = [a1, a‘}ﬂ] = 1. Hence /> y. However, by the above and our
choice of by, we have / < k = y, and the conclusion follows.

Now we claim that |bg| = |b1| = |a1] = 2"T'. >From (2.5.10) and the above it
follows b3 # 1 and b3 = [ay, bi1* ¥~V = 1. Hence |ho| = 27" Thls together with
|bo| = |b1| > 27 yields |b;| = 27*!. Since k = /, we have ay® = boby’, and therefore by

y+1
2.1.2), (@) =1a b 0% Z 1 This implies @] < 27!, But by the above
lai| > 27. We conclude |a;| = 2t

Since |bg| = |b1| and (bo,al) (b1, a1), we have by € T. We set b = by and
a=ay;, and thus obtain ¢ =5H*. By (i) of Lemma 22, we have
"y =()NZ(G) DG N(b)#1. Since |b*|=2, this and the above yield
YNNG = (a)NG = (b¥). It can be easily verified that Z(G) =

First let y = 1. Then |a| = |b| = 22, a*> = b> =[a, b], and G i is the group of qua-
termons of order 8 For y > 1, set ¢ = a 2[a, b]. Since [a, b = a?, we obtain
& = (@ a, b)Y = & a, b]zy = 1. This together with (a) N G’ = (a*") implies
le| =271, We claim (a) N (c¢) = (1). Let (d) = (a) N (c). Then there exist integers
n, m such that ¢" = ¢ = d, and therefore a"+*" = [a, b]". Since G’ N (a) = (a*), this
yields m = 27! (mod 27). Since |¢| = 2"~!, we obtain 1 = ¢” = d. Thus (a) N (¢) = (1)
and (a, ¢) = (a) x {c¢). To construct the group G, consider H = ({w) x (u)) x (v), a
group of type (2.5.3) with « = 8 =y + 1. Since v*’,v*" € Z(H), (¥ v¥') < H. Con-
sider G = H/(u”'v*"). It can be shown that G is of type (2.5.4).

It is easy to verify that all groups in the above list have nilpotency class two. It is
straightforward but lengthy to show that they are all pairwise nonisomorphic. [J

3. The tensor square of groups of class 2. In this section we include some general
results about nonabelian tensor squares, from here on referred to as tensor squares,
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as well as a few results specific to groups of nilpotency class two. We also include a
number theoretic lemma. These results will be used in the next section.

PROPOSITION 3.1. Let G, H, K, L be groups with w: H— G an epimorphism,
¢ : K— L ahomomorphism, and I' : H x H — K a crossed pairing. If I'(ker w, H) and
I'(H, ker i) are contained in ker @, then there exists a crossed pairing 4 : G x G — L
for which the following diagram commutes:

HxH—L K

(r.m) | Lo

GXGLL

Proof. Since 7 is an epimorphism we have i : G — H/ker m is an isomorphism.

We define a mapping A': H/kerm x H/kerm — L by A'(hkerw, h'kerm) =

o(L(h, 1)), where h, ' € H. We claim that A’ is a crossed pairing. First we show 4’ is

well-defined. Note that for hy, iy, i’ € H we have I'(hahi!', i) = T'(hy'(" hn), i), and
hence

T(hohi', W) = T(ha, i) - T(hy, n)=L. (3.1.1)

Now suppose hy, hy € H so that & ker w = &, ker w. Then, since I'(kerz, H) C ker ¢
and hhi! e kerm, (3.1.1) yields 17 = o(I'(hahi!, 1)) = o(I'(hy, 1)) - (I'(hy, ).
Therefore o(I'(hy, 1)) = ¢(I'(hy, #')). Similarly, it follows @(I'(/, hy)) = o(I'(H, hy)).
We conclude that A4’ is well-defined. It can be easily verified that A4’ is a crossed
pairing.

For A = A"o(i,i) the diagram commutes. This can be seen as follows. Let
h, W € H. Then 4 o (7, w)(h, )= A((h), n(W)=¢(['(h, ')). So Ao (m,m)=¢o . []

The following 3 lemmas summarize results about tensor squares of nilpotent
groups of class two. They, together with their proofs, can be found in [2].

LeEmMMA 3.2. [2] Let G be a group of nilpotency class two, then for any x,y € G and
mnel2z,

Y@y =(x®n" e )Ox ek ).
For a 2-generator group of class two we have the following expansion formula.

LemMa 3.3. [2] Let G = {(a,b) be a group of class two, and g,h € G with
g=a"b'z" and h = a"'b"z"", where m,m',n,n', 1,1’ € Z, and z = [a, b]. Then

gRh=(a®a)"(b®b)*(a®b)*(b®a)*(@® )" (b2,

where
ap =mm', oy =nn', az =mn', ay =nn’,

_ [, (M _ m' (0
as=ml"—m'l+n 2) n<2)+mm(n n),

o =nl’ — n/l+m<’;> — m/(;)
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In case of the Heisenberg group H, the free group of class two and rank two, the
above expansion leads to a crossed pairing.

LeEMMA 3.4. [2] Let H = F>/y3(F>) = (x,y) and g, h € H with g = x"y"z" and

h=x"y"Z'", where m,m' ,n,n',1,l' €Z, and z=I[x,y]. Then the mapping
W H x H — Z°, defined componentwise as (g, h) = (x1(g, h), ..., x¢(g, h)), where

xi(g, W) =mm', xy(g,h)=nn', x3(g,h)=mn', x4(g, h)=nn,

xs(g, h) =ml" —m'l + n/@) a n("; ) + mm' (0’ — n),

/ / n/ / n
x¢(g, h) = nl —nl+m<2) —m (2>,

is a crossed pairing.
Finally, we will need the following number theoretic lemma in the next section.

LeEmMA 3.5. Let a, B, y € N such that 2y < o,y < B. For n € N denote by [n], the
highest power of 2 dividing n. Then

(2” — %Y + 1)2‘3 =1 (mod 20[), (351)
261 k B+1, ifa=2andy=1
o AHa—y | , — —1,
|:k2(;(2 b :|2_ {,31 otherwise. (3.5.2)

The verification of (3.5.1) and (3.5.2) is straightforward and will be omitted here.

4. Computation of the tensor squares. In this section we determine the tensor
squares of the groups classified in Section 2. According to Theorem 2.5, we have to
deal with four different cases. We start with groups of type (2.5.2). Such groups are
split cyclic extensions, and thus we can use Theorem 1.1 to compute the tensor
square.

THEOREM 4.1. Let G be a group of type (2.5.2), that is G = (a) x (b), where
[a.b]=a*", |a|=2% 1|b|=2F, [[a.b]|=2", a.B,yeN with a>2y, B>y,
o+ B> 3. Then

GRG Zza—y+l X Zzﬁ X szin(nfy,ﬁ) X szin(a,,e;.
Proof. Let G be a group of type (2.5.2). Obviously, G is a metacylic split exten-
sion generated by a, b, subject to the defining relations * = b’ =1, and

bab~' = ¢*~2"+1 By (3.5.1) we have (2% — 2¢=7 + 1)* = 1 (mod 2%). Thus G satisfies
the conditions of Theorem 1.1 with x=5b, y=a m=2f n=2% and
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[=2%—=2*7 4 1. Therefore G ® G is the abelian group generated by a ® a, b ® b,
b®a)a®b), and bR a Wlth relations as given in Theorem 1.1; in particular
bRaYN(a®a) =((a® a)Xy, where k= }—1(1 — 1’m(m —1). We will show that
(a®a) = lg under our assumption that « + 8> 3. By Theorem 1.1 we have
(a® a7V = lg. To prove our claim it suffices to show that (/ — 1)m = 0 (mod 2°).
We observe [(/ — 1)m], =a+ B —y. By (2.5.2) we have o > 2y and B > y. [f o > 2y
or B>y, then clearly « + 8 —y>3. If « =2y and =1y, then o+ 8 —y =2y.
Since o+ 8>3, this implies o+ 88—y >3. Thus 2(/—1) divides k and
(a®a)k =1lg. By Theorem 1.1 we have now GG =(a®a) x (b® b)x
(b®a)a®Db)) x (b®a).

All that remains to be done is to calculate the orders of the factors explicitly.
The orders of the first and the second factors are (n,2(/ — 1)) =2%7*+! and 27,
respectively. The order of the third factor is (n,/— 1,1+ [+ ...+ """, while the
order of the fourth factor is (n, 1 + /4 ...+ /""). First suppose « =2 and y = 1.
Then by (3.52) we obtain (n,/—1,1+/4 ..+ =2%2,2)=2 and
(m, 1414 ...+ 1" = (22,2/+") = 22. We conclude G ® G = 7%, x Z x 7, in this
case. But «=2 and y=1 implies 2=a—y+1, 1=min{e —y, B}, and
2 = min{w, B}. So we get the desired result. Now suppose otherwise. By (3.5.2),
we have (n,/—1,14[4 ... +0I"") =22 2% —297 2) = min{2*7,2f} and
(n, 1 +14 ...+ "1 = (2% 28) = min{2%, 28}, the desired result. ]

Next we compute the nonabelian tensor square of a group of type (2.5.1). The
proof follows along the lines of [2, Theorem 4.3], addressing the corresponding case
for p # 2. However, we have to deal with one exception for p = 2.

THEOREM 4.2. Let G be a group of type (2.5.1), that is G =2 ({c) X {(a)) x (b),
where [a,b] =c, [a,c] =[b,c] =1, |a| =2%,1b| =28, |c| =27, 0, B,y eN,a > B> y.
Then

Zra X Zzﬁ X Zzy, if B>y,

GRG
® { Zzu X Zzy X Z2y+1 X Zzy X Zz:uiﬂ(a{fl,y) X Zzy—l s lfﬂ =Y.

Proof. Let G be a group of type (2.5.1). We have two cases, namely 8 > y and
B = y. The first case follows from [2, Theorem 4.3], setting p = 2 and 8 > y. So we
omit the details.

Now let 8 = y. From Lemma 3.3 it follows that

G®G=(aQRa,b®b,a®b,(a®@b)b®a),(a®b)*(a®:c),(a®b*b®:c).

With this generating set we show G ® G has at most the order in question. Direct
expansion yields (¢ ® a)* = (b ® b)* = lg. For the next two generators expansion
using Lemma 32 yields lg=(a® Y = ((a® b)*¥ (b ® ) Y =@eb?.
b® ) =@® p?", and 1® =@ ®a) = (a @b b (hoa).

b® c)’ C=(@® b)(b R a))* . lNext consider (a ® 11)) (a®c). By Lemma 3.2,
1®_a ®b_(a®b) “(a® ) _((a®b) (a® o) and 1®_(a®b2m)
@®)=@®b’ @®c” =(a®bXa® ). 'Hence l(a ® b)*(a® ¢

< pminfe=ly} Finally, in a similar fashion using Lemma 3.2, lg=a® b =
(@a®b2(b @) . Thus |G ® G| < 2e+4r+mina—1.y),
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Let H = F/y3(F>) = (x,y). Define w:H — G by m(h) =a"b"c for he™H,
where h = x"y"z!,m,n, [ € Z, z = [x, y]. It follows that 7 is a homomorphism onto G.
Next set L = Zpue X Zyr X Loyt X Loy X Lominie—1.n X L1 and 7° = (X1) X ... X {Xg).
Define ¢:7%— L by 9 =pol, where 1:7°%— Z° is given by A(x;) =x; for
i=1,2,4,56, Ax3) =x3x;7'x52x2, and w:Z° — L reduces the generators of
7° modulo the appropriate powers. Clearly 4 is an automorphism and p is a
homomorphism, so ¢ is a homomorphism with ¢(x;)=¢;, i=1,...,6, where
€ =(1,0,0,0,0,0),....6 = (0,0,0,0,0,1) € L.

Now let I' = ¥ be the crossed pairing of Lemma 3.4 with v : H x H — Z° and
7 the epimorphism of H onto G. By Proposition 3.1, there exists a crossed pairing
A:G x G— L provided

o(Y(ker r, H)) = p(¥(H, ker r)) = 1. (4.2.1)

We will now establish (4.2.1). Let / = (I, ..., ls) € L, and h, i’ € H with h = x"y"Z/,
W =x"y"zZ" where m,m',n,n',1,l' €Z. By Lemma 3.4 and the definition of

@ we obtain @ o W(h )=(xi(h, i), ..., xe(h, )= (@(x1(h, 1)), ., o(x6(h, ') =
(h(h, 1), ..., lg(h, 1)), where

Li(h, ') = mm' (mod 2%),
L(h, K'Y = ni' (mod 27),

Lh, W) =mn' —m'n — 2<n/(’;) - n(r; ) + 0 = nymm’ +ml’ — m’l)

_ " o n o y+1
2<m<2> m(2>+nl nl)(modZ ),

Iy(h, W) = nm’ (mod 27),

Is(h, 1) = (’;) - n<”2“) 4 (1 = mymmd + ml’ — 'l (mod 2minte=1.71),

l(h, ) = m(Z) - m(;) +nl’ — 'l (mod 2771,

Suppose now / € ker i, then m = 0 (mod 2%) and n = / = 0 (mod 2%). In such a case,
since @ > y, [}, b, I4, [s, and [y are obviously all trivial in L. As for /3, the terms can
be rearranged as

41
Iy(h, ) = 2m(mn — mind — 1) + 2n((m 2+ ) - 1) 42U + 1)

— m*n’ 4+ nn*m’ (mod 2"+,

Since >y, we havem = n = [ = 0 (mod 27). Therefore 2m = 2n = 2/ = 0 (mod 27+1),
and m? =n? =0 (mod 2*!). Thus /4 is trivial in L. So ¢(¥(kerm, H))=1. In a
similar manner we can show ¢(y(H, ker )) = 1. Hence (4.2.1) is established.

Since the diagram of Proposition 3.1 commutes for 4 and ¢ o ¢ is onto, we
conclude that 4 is onto. Thus by Proposition 1.3, 4 lifts to a homomorphism A4* of
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G ® G onto L, and thus |G ® G| > |L|. Since |G ® G| < |L|, it follows that A4* is an
isomorphism, and G ® G = L as claimed. O

In the next theorem we determine the tensor square for a group of type (2.5.3).
We first prove a lemma establishing order bounds for the generators of the tensor
square.

LEMMA 4.3. Let G be a group of type (2.5.3). Then G ® G is generated by a ® a
b@b, (a®b), @@b)(b®a), (a®a)" (a@[a b)) and (a®@b)* (a®[a, b~
(b ® [a, b]). For the orders of the generators the following estimates hold:

i

beb <2¢, |(a®a)* (a®][a b)) <27,
la® b (a®[a, b)) > (b ® [a, b])| <2°, and |(a ® b)(b ® a)| < 2minla=y+opl,

Furthermore,
aminte B} if >y +20r B>y +1
< ’ < —_ _ ?
|a®b|_{2y+1, ifao=y+1land B=v,
la®al < ettt ifazy+20r By +1,
=2, ifa=y+land B=1y.

Proof. Our first claim that G ® G is generated by the elements in question is an
immediate consequence of Lemma 3.3. Next we turn to the estimate for the orders of
these generators. If we set z = [a, b], then ¢ = za=>"" by (2.5.3). For h® b we have
lg = b ®b = (b®b)”, the desired estimate.

Next we turn to (¢ ® a)*  (a ® [a, b]). Expanding ¢’ ® a by Lemma 3.2 yields

2 2erte

le=c ®a=@®a)” (z®a)* = ((a®a)2d7y(z®a)_l)_2g. 4.3.1)

However by [2, Lemma 3.3],
(la,b] @ @) = a®]a, b]. (4.3.2)
This together with (4.3.1) gives the desired estimate for this case.

Similarly, expanding ¢* ® b we obtain

o

lg=c& @b= ((a @b a0 be z))f : 4.3.3)

providing the desired estimate for the order of (¢ ® b)* (e ®2) 2" (b ®2).
We turn now to (a ® b)(b ® a). Expansion of » ® ¢** using Lemma 3.2 leads to

2a—y+n—1

le=b®F =b®a) > "(a®z)" b®z). (4.3.4)

Qa—y+o

By multiplying (4.3.3) and (4.3.4), we obtain ((¢ ® b)(b ® a)) = lg, providing
one bound on the order of (¢ ® b)(b ® a). To obtain the second bound, we multiply
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the expansions of 1® a®b? and lg = b ®aas given by Lemma 3.2. This yields
le = (a®b)(b® a)).

Next we establish the estimate for the order of ¢ ® b. Since « > y, expansion of
a® ® b using Lemma 3.2 yields 1g = (¢ ® b) = (¢ ® b)*. This proves our claim if
a=y+1 and B =y, and establishes one estimate of the order in the remaining
cases, i.e. B > Y +1o0 (r<jz > y + 2. By expanding ¢ ® 24 using Lemma 3.2, we obtain
le = (a® b)* (b )\ If B>y +1, this leads to 1g = (¢ ® b) the desired sec-
ond bound for the order of ¢ ® b.

In the remaining case, i.e. $ = y and « > y + 2, we proceed as follows Ralsmg
(4.3.3) to the power of 2"°~! and inverting yields lg = (¢ ® b)2 (a®z2)~>
(b®z)* . Observing ¢ ® z| < 2! and

le=@®b)=@eb?@e:)?", (4.3.5)
together with the above, lead to lg = (¢ ® b)> @D, where 227! + 1 is odd
since @ > y + 2. This is the required second bound for 8 =y and a > y + 2.

Finally, we turn to the estimate for the order of ¢ ® a. Lemma 3.2 gives

le=a® =@® a)_zaiw(a Q2. (4.3.6)

Equating (4.3.1) and (4.3.6) yields (a(X)z)ZU+l = lg. Thus squaring (4.3.1) leads to

(a® a)* e = lg, which is the desired estimate for « > y+2 or 8 > y+ 1. Now
leta=y+land B=y. Then y >0 >2y—a=y—1, 1mply1ng o=y —1 From
(4.3.3) we obtain in this case after inversion 1@ (a® b) "(a® z)2 (b ® z) . . This
together with (4.3.5) leads to 1® =@®by’ @® z)2 " However, (a®b)” =lg
by the above. Therefore (a® z)2 - = 1g. Observing (4.3.2), we obtain by (4.3.1) that
lg = (@ ® a)” in the final case. O

THEOREM 4.4. Let G be a group of type (2.5.3), that is G = ({¢) x {(a)) x (b),
where [a,b] =da* "¢, [c,b] = a e ol =29, |b| =25, || = 29 |[a, b]] = 27,
witho, 8, y,0 e N,a+0 > 2y,8>y > 0. Then

Z%, X Loy X Loy XZ;_I, ifo=y+land B=1,

GG
® {Zzay+o+l X Zzﬁ X szin(n,ﬁ) X Zzp X Z%U, lfa > )/-‘r 2 or ﬂ > Y + 1,

where p = min{a — y + o, B}.

Proof. Let G be a group of type (2.5.3). First notice all cases are covered. If
a<y+2thena=y+1,sincey+2>a>2y—oc>y+1.

Let H = F>/y3(F,). Define w: H — G by n(h) = d™b™c!, where h = x™ "™/
with my, ms, 1€ Z, v =x">"[x,y], and a, b, c € G as in the theorem. It follows 7 is
an epimorphism with /& € ker 7 if and only if m; = 0 (mod 2%), m, = 0 (mod 2#), and
[ =0 (mod 2°). Next, let

[ 75, X Zyyer X Ly X T34, ifa=y+1and =y,
Zowyionr X Lop X Lominiosy X Lo x T3,, fa>y+20rB>y+1,
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where p = min{e — y + o, 8}, and 7% = (x1) x ... x (x¢). Define @ 7° > L by
g=pok where A1:7°—7° is given by A(x)=xxs2. xg2
) = xaxg ' x5 27, Axs)=xsx2, and  A(x)=x; for i=2,4,6, while
w:Z% — L reduces the generators A(x;) modulo the appropriate 2-powers. Specifi-
cally, (x;) = ¢, i =1, ..., 6 where ¢, = (1,0,0,0,0,0), ..., = (0,0,0,0,0,1) € L. It
follows that A is an automorphism of Z° and y is a homomorphism of Z° onto L.

Let h KW eH with h=x"y"y and K =x"y™V', where as before,
v = x"¥""[x, y]. Setting u = [x, y], we obtain alternative presentations for 4 and /' as
h=x"y"u" and W = x’”/y”/uk/, where m=my —[2°77, m' =m| =127, n=my,
n=m, k=1I and kK'=/". By Lemma 3.4, there exists a crossed pairing
¥ :H x H — Z° where in terms of the original presentation

xi(h, I') = (my — 12°77)(my = 1'2%77),  xa2(h, I') = mond),

x3(h, Wy = (my =12y, xa(h, B') = (m) — 127 )my,

L (my —12%7Y m, — 12477 s
xs<h,h’>=mz<l 2 )"”2(1 2 )“’”“’2 S BRCERY

— (= 12+ (my — my)(my — 1 2°77)(m, — 1'2%77),

/

xe(h, W) = (my — 12%77) (’ZZ> — (m — 1/2‘)‘-?)(”;2) +mal’ — .

We will apply now Proposition 3.1 with G as given in (2.5.3), H="H, K = Z°, and L
as defined earlier in this proof. For the mappings, let ¢ = o A and I' = ¢, both as
given above, and 7 : H — G. By Proposition 3.1, there exists a crossed pairing
A:Gx G— L, provided ¢(y(kerz, H)) = p(¥(H, ker 7)) = 1. We will next show
this is the case. Suppose &, /' € H where h = x"™ "y and i = x"y"2v'". Writing
poy:H xH— Lcomponentwise as ¢ o Y(h, ') = (li(h, I), ..., l¢(h, i), we obtain
in terms of x;(h, /') as given by (4.4.1):

Li(h 1) = x1(h, 1) — 2°7Vxs(h, i) — 2@ xq(h, i) (mod 27),

where/ =y, ifa=y+1land B=1y, andj = o — y + 0 + 1, otherwise;
L(h, i) = x3(h, ') (mod 2%);
Li(h, ') = x3(h, h') — x4(h, h') — 2%V x6(h, I') (mod %),

where j=y+ 1, ifa =y+1and 8 =y, and j = min{e, B}, otherwise;
ls(h, I') = x4(h, i) (mod 2minte—r+o.Bly.
Is(h, i) = xs5(h, ') 4+ 27" xg(h, k') (mod 2°);
le(h, ") = xg(h, i) (mod 27).

Now suppose k€ ker . Then m; = 0 (mod 2%), m, = 0 (mod 2#) and / = 0 (mod 2°).
It follows directly from the definition of x;(h, /') that [;(h, /') =0 for i =2,4,5,6.
We now consider Is3(h, /). Noting that m; =2%, my, =2fs and /=2t for
some r,s,t€Z, we substitute the explicit values for x3, x4 and x4 into
I3 = x3 — x4 — 2% ¥ x¢. After simplification we obtain
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/ 2,3‘ /
L(h, b = mh2% — m|2Ps — <n;2>2"“”2"‘r + m| ( 29)2"‘}’ + (n;) pu=2y+one;
2%
_ J/22a=y)
()

This leads to
, /B (2P 291\ L 1a2(a—y) )
L(h, By = —m|2Ps + m) ) 277 — ) 127977 (mod 2).
Expanding the binomial coefficients and collecting 2-powers give
Lh, ) = m)s?22Pre vt gl s(1 4 22777128 — 17r(2%r — 1)2°*727! (mod 2)).

Since 28+« —y+ 1 > jand 3o — 2y — 1 > j in both cases, this yields

L(h, i) = —ms(1 4+ 2°77"1)2F (mod 2).

Nowifa >y 4+ 1or 8> y,clearly 5 = 0 (mod %). However if« =y 4+ 1 and 8 =y,
then i3(h, /') = —mys(1 + 1)2¥ = 0 (mod 2). In either case 5(h, #') =0. A similar
argument shows /1(h, /') = 0. Thus g(¥(ker m, H)) = 1, as claimed. Similarly, it can
be shown that (y(H, ker 7)) = 1. Thus 4 is a crossed pairing.

Finally, since the diagram of Proposition 3.1 commutes for 4 and v o ¢ is onto,
we conclude that 4 is onto. Thus by Proposition 1.3, 4 lifts to a homomorphism A4*
of G® G onto L, and thus |G ® G| > |L|. However by Lemma 4.3, |G ® G| < |L|.
We conclude A4* is an isomorphism, and G ® G = L as claimed. ]

It should be mentioned here that the group given in [2, Theorem 4.4] as the
tensor square of the p-group, p odd, corresponding to a group of type (2.5.3) for
p = 2, is only a homomorphic image of the actual tensor square, namely

2 2
GRG an,yﬂ, X Zpﬂ X mein(a,ﬂ) X Zpa.

This is the same result as in the preceding theorem, where p = 2 and « > y + 2. The
derivation follows in a similar manner.

In our final theorem we compute the tensor squares of groups of type (2.5.4). As
these groups are homomorphic images of groups of type (2.5.3), we will obtain their
tensor squares as homomorphic images of the tensor squares of the respective
groups in (2.5.3).

THEOREM 4.5. Let G be a group of type (2.5.4), that is G = ({¢) x {a)){b), where
la| = |b| =21, |la,b]| =27, |c|=2""", [a,b]=d’c, [c,b]=a*c2, o =b",
y € N. Then

75 < 73, fory =1,

GG
Zgy X Loy X Z%y_], fory =12.
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Proof. Let y=1. Then G is the group of quaternions of order 8 and
GRG= Z% X Zi by [3]. Now let G be a group of type (2.5.4) with y > 2 and
H = ({(w) x (u)) x (v) be a group of type (2.5.3) withae=g=y+1lando =y —1,
that is |u] = |v] = 2", |w| = 2¥~! and |[u, v]| = 27. Then, by the proof of Theorem
2.5, Y:H— G defined by y(wWu'v')=ca*h is an epimorphism with
ker ¢ = (¥ v¥'). It follows from [3, Proposition 1] that there is an epimorphism
VYy: HRH — G®G. However, ker ¢ is central in H, since [u”v?", h]
W v, lP)u, h =1 for all he H. So, by [3, Proposition 9], ker (¥ ® ¥)
W v @u, ¥ vV @ v,u@uF v, v @ uF v¥).

By Lemma 4.3 and Theorem 4.4 we have [u®v| =2""" and |(u®v).
(v® u)| = 2. Hence

IRl

wev =0veu?”. (4.5.1)
Expanding the generators of ker(y ® 1), and using (4.5.1) we obtain
v Qu= u® u)zy(v ® u)zy =ue® u)zy(u ® v)zy =u®u* v,
and similarly,
W v=we )V ey =0veu vy =veur.
Thus ker(¥ ® ¥) = (u @ u)* @ v)*, (v ® v)* (u ® v)*'), and therefore
GRG=H®H/(u®u udv)”, (v’ ue ). (4.5.2)

Replacing the generators u®u and v®v of H® H by (u®u)(u®v) and
(v ® v)(u ® v), respectively, and observing H ® H = Z%m X Ly X Z%V,l, it follows by
(4.5.2) that G ® G = 73, x Zyy11 X Za» X 73,1, the desired result. ]
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