

AR[T](#page-0-0)ICLE

On the Ramsey numbers of daisies II

Marcelo Sale[s](https://orcid.org/0000-0001-7561-8073)^{to}

Department of Mathematics, University of California, Irvine, CA, USA Email: mtsosales@gmail.com

(Received 21 November 2022; revised 15 April 2024; accepted 13 May 2024; first published online 18 September 2024)

Abstract

A $(k + r)$ -uniform hypergraph *H* on $(k + m)$ vertices is an (r, m, k) -daisy if there exists a partition of the vertices $V(H) = K \cup M$ with $|K| = k$, $|M| = m$ such that the set of edges of *H* is all the $(k + r)$ -tuples $K \cup P$, where *P* is an *r*-tuple of *M*. We obtain an (*r* − 2)-iterated exponential lower bound to the Ramsey number of an (*r*, *m*, *k*)-daisy for 2-colours. This matches the order of magnitude of the best lower bounds for the Ramsey number of a complete *r*-graph.

Keywords: Ramsey theory; hypergraphs; stepping-up lemma **2020 MSC Codes:** Primary: 05D10; Secondary: 05C65

1. Introduction

For a natural number *N*, we set $[N] = \{1, \ldots, N\}$. Given a set *X*, we denote by $X^{(r)}$ the set of *r*-tuples of *X*. For two sets *X*, *Y* we say that $X < Y$ if max $(X) < \min(Y)$. Unless stated otherwise, the elements of a set *X* will be always displayed in increasing order. That is, if $X = \{x_1, \ldots, x_t\}$, then $x_1 < \ldots < x_t$.

 $A (k + r)$ -uniform hypergraph *H* on $k + m$ vertices is an (r, m, k) -daisy if there exists a partition of the vertices $V(H) = K \cup M$ with $|K| = k$ and $|M| = m$ such that

$$
H = \{ K \cup P : P \in M^{(r)} \}
$$

We say that the set *K* is the kernel of *H*, the elements of $M^{(r)}$ are the petals of *H* and *M* is the universe of petals. We will often refer to an edge of *H* by *X* and its correspondent petal by *P*.

Daisies were first introduced by Bollobás, Leader, and Malvenuto in [1]. They were interested in Turán-type questions related to (r, m, k) -daisies, i.e., the maximum number of edges that an $(r +$ *k*)-graph has with no copy of an (*r*, *m*, *k*)-daisy. In this paper we will study the Ramsey number $D_r(m, k)$ of an (r, m, k) -daisy. The number $D_r(m, k)$ is defined as the minimum integer *N* such that any 2-colouring of the complete hypergraph [*N*] (*k*+*r*) contains a monochromatic (*r*, *m*, *k*)-daisy.

Those numbers were already studied in [5]. Although the main focus of their paper is on daisies with kernel of non fixed size, they noted that

$$
R_{r-k}(\lceil m/(k+1)\rceil - k) \leqslant D_r(m,k) \leqslant R_r(m) + k,\tag{1}
$$

where $R_r(m)$ is the Ramsey number of the complete graph $K_m^{(r)}$, i.e., the minimum integer N such that any 2-colouring of $[N]^{(r)}$ contains a monochromatic set *X* of size *m*.

[∗]The author was supported by NSF grant DMS 1764385 and US Air Force grant FA9550-23-1-0298.

^C The Author(s), 2024. Published by Cambridge University Press.

A natural question raised in [5] is whether $D_r(m, k)$ behaves similarly $R_r(m)$. Erdős, Hajnal, and Rado (see $[3, 4]$) and Conlon, Fox, and Sudakov $[2]$ showed that there exists absolute constants *c*1, *c*² such that for sufficiently large *m*,

$$
t_{r-2}(c_1 m^2) \le R_r(m) \le t_{r-1}(c_2 m),
$$
\n(2)

where $t_i(x)$ is the tower function defined by $t_0(x) = x$ and $t_{i+1}(x) = 2^{t_i(x)}$. In this paper, we provide for $k \geq 1$ a lower bound of $D_r(m, k)$ in the same order of magnitude as the best current bounds of the Ramsey number $R_r(m)$ for sufficiently large *m*. We remark here that for $k = 0$, the problem is equivalent to the Ramsey number, since an $(r, m, 0)$ -daisy is just the complete graph $K_m^{(r)}$.

Theorem 1.1. Let $r \geq 3$ and $k \geq 1$ be integers. There exist integer $m_0 = m_0(r, k)$ and absolute *constant c such that*

$$
D_r(m,k) \geq t_{r-2}(ck^{-2}m^{2^{4-r}})
$$

holds for m $\geq m_0$ *.*

In order to prove Theorem [1.1](#page-1-0) we will actually study the Ramsey number of a subfamily of daisies. We say that a hypergraph *H* is a *simple* (*r*, *m*, *k*)*-daisy* if *H* is an (*r*, *m*, *k*)-daisy and its kernel *K* can be partitioned into $K = K_0 \cup K_1$ such that $K_0 < M < K_1$. We define the Ramsey number of simple (r, m, k) -daisies $D_r^{\text{emp}}(m, k)$ as the minimum integer N such that any 2-colouring of the complete hypergraph [*N*] (*k*+*r*) yields a monochromatic copy of a simple (*r*, *m*, *k*)-daisy.

In [5], the authors observed that the Ramsey number of daisies can be bounded from below by the Ramsey number of simple daisies.

Proposition 1.2 ([5], Proposition 5.3). $D_r(m, k) \geqslant D_r^{\text{smp}}\left(\lceil m/(k+1) \rceil, k\right)$.

Our main technical result is an $(r - 2)$ -iterated exponential lower bound for the Ramsey number of simple (*r*, *m*, *k*)-daisies. Note that Theorem [1.1](#page-1-0) is a corollary from Proposition [1.2](#page-1-1) and Theorem [1.3.](#page-1-2)

Theorem 1.3. Let $r \geq 3$ and $k \geq 1$ be integers. There exist integer $m_0 = m_0(r, k)$ and absolute *positive constant c such that*

$$
D_r^{smp}(m,k) \geq t_{r-2}(ck^{2^{4-r}-2}m^{2^{4-r}})
$$

holds for $m \ge m_0$ *.*

Our proof is a variant of the stepping-up lemma of Erdős, Hajnal and Rado $[3, 4]$. There are $k+1$ distinct simple (r, m, k) -daisies depending on the sizes of K_0 and K_1 . While it is not hard to construct a colouring avoiding a monochromatic copy of one of these simple daisies, the main challenge is to define a colouring that avoids all $k + 1$ simple (r, m, k) -daisies simultaneously. To this end, we will introduce in Section [2](#page-1-3) some auxiliary trees using the vertices of our ground set. A big portion of the paper consists on the study of those trees and how to use them to obtain a stepping-up lemma.

The paper is organized as follows. We introduce some auxiliary trees and most of the terminology in Section [2.](#page-1-3) Section [3](#page-5-0) is devoted to give a general overview of the proof. We briefly describe the stepping-up lemma in [3, 4] with our setup and later describe the colouring of the variant. Sections [4](#page-9-0) and [5](#page-10-0) are the heart of the proof. We prove a key lemma (Lemma [5.1\)](#page-10-1) that allows us to identify an important auxiliary tree containing the petal of an edge and then show how to reduce the stepping-up argument to this tree. We finish the proof of the stepping-up lemma and Theorem [1.3](#page-1-2) in Section [6.](#page-19-0)

Figure 1. An example of a binary tree $T_{[23]}$ with its 4 levels.

Figure 2. The auxiliary tree T_X for $X = \{2, 3, 7\}$.

2. Auxiliary trees

Given an integer *N*, we construct a binary tree $T_{[2^N]}$ of height *N* with $2^{N+1} - 1$ vertices and identify its leaves with the set $[2^N]$. We also identify each level of the tree with the set $[N+1]$, where the root is at level 1, while the leaves are at level $N + 1$ (see Figure [1\)](#page-2-0). For a vertex $u \in T_{\lceil 2^N \rceil}$ we denote its level by $\pi(u)$.

Given two vertices *u*, *v* in $T_{[2^N]}$, we say that *u* is an *ancestor* of *v* if $\pi(u) < \pi(v)$ and there is a path $u = x_1, x_2, \ldots, x_\ell = v$ in $\dot{T}_{[2^N]}$ such that $\pi(x_i) \neq \pi(x_j)$ for every $1 \leqslant i, j \leqslant \ell$. For two vertices *x*, *y* ∈ [2^{*N*}] we define the *greatest common ancestor a*(*x*, *y*) of *x* and *y* as the vertex of *T*_{[2}*N*_] of highest level that is an ancestor of both *x* and *y*. Also define

$$
\delta(x, y) = \pi(a(x, y)).
$$

Let $X = \{x_1, \ldots, x_t\} \subseteq [2^N]$ with $x_1 < \ldots < x_t$ be a subset of the leaves of our binary tree. We define the *auxiliary tree T_X* of *X* as the subtree of $T_{[2N]}$ whose vertices are *X* and all their common ancestors. That is,

$$
T_X = X \cup \{a(x_i, x_{i+1}) : 1 \leq i \leq t-1\}.
$$

Note that T_X is a tree of $2t - 1$ vertices (see Figure [2\)](#page-2-1). Moreover, we denote the set of non-leaves by $a(X)$ and its projection by $\delta(X)$, i.e.,

$$
a(X) = \{a(x_i, x_{i+1}) : 1 \le i \le t - 1\}
$$

$$
\delta(X) = \{\delta(x_i, x_{i+1}) : 1 \le i \le t - 1\}.
$$

Since the auxiliary tree T_X is uniquely determined by its ground set X , sometimes we will denote *TX* by *X*.

Given a vertex $u \in a(X)$, we can define the set $X(u)$ of *descendants* of *u* as the leaves of T_X that have *u* as an ancestor. That is,

$$
X(u) = \{x \in X : u \text{ is an ancestor of } x\}.
$$

The set of descendants of *u* can be partitioned into the left descendants and right descendants as follows: Since T_X is a binary tree, the vertex *u* has two children u^L and u^R . Let u^L be the left

Figure 3. The interval {2, 3, 4} is closed, since $X(u) = \{2, 3, 4\}$ for $u = a(2, 4)$. The interval {4, 5} is not closed, since $X(v) =$ ${1, 2, 3, 4, 5} \neq {4, 5}$ for $v = a(4, 5)$.

children of *u* and u^R be the right children of *u*. Then we define the left descendants of *u* by

$$
X_L(u) = \begin{cases} u^L & \text{if } u^L \in X, \\ X(u^L) & \text{if } u^L \in a(X), \end{cases}
$$

and the right descendants of *u* by

$$
X_R(u) = \begin{cases} u^R & \text{if } u^R \in X, \\ X(u^R) & \text{if } u^R \in a(X), \end{cases}
$$

Note that by this definition $X_L(u)$, $X_R(u) \neq \emptyset$ and max $X_L(u) < \min X_R(u)$.

Although an auxiliary tree is not uniquely determined by its ancestors, we can at least determine the "shape" of the tree T_X by looking at $a(X)$. In a more precise way, the following can be proved by a simple induction.

Fact 2.1. If X and Y are subsets of $[2^N]$ such that $a(X) = a(Y)$, then $|X| = |Y|$ *. Moreover, if* $X =$ ${x_1, \ldots, x_t}$ *and* $Y = {y_1, \ldots, y_t}$ *, then* $a(x_i, x_{i+1}) = a(y_i, y_{i+1})$ *for every* $1 \le i \le t - 1$ *.*

Now we devote the rest of the section on classifying our auxiliary trees.

Definition 2.2. *Given* $X = \{x_1, \ldots, x_t\}$ ⊆ $[2^N]$. *We say that an interval* $I = \{x_p, \ldots, x_q\}$ ⊆ *X for* some $1 \leqslant p \leqslant q \leqslant t$ is closed in X if the following condition holds: $(\star) I = X(a(x_p, x_q)).$

In Figure [3,](#page-3-0) one can see examples of a closed interval and a not closed one. Alternatively, one can replace (\star) by the useful equivalent condition:

(★★) For every vertex *y* ∈ *X* \ *I*, the vertex *a*(x_p , x_q) is not an ancestor of *y*.

The following proposition shows that closed intervals cannot have proper intersections.

Proposition 2.3. Let I_1 , I_2 be two intervals in X with $|I_1| \leq |I_2|$. If I_1 and I_2 are closed, then either $I_1 \cap I_2 = \emptyset$ *or* $I_1 \subseteq I_2$.

Proof. Suppose that $I_1 \cap I_2$ is a proper intersection. That is, $I_1 \cap I_2 \neq \emptyset$, $I_1 \setminus I_2 \neq \emptyset$ and $I_2 \setminus I_1 \neq \emptyset$. Write $X = \{x_1, \ldots, x_t\}$ and $I_1 = \{x_{p_1}, x_{p_1+1}, \ldots, x_{q_1}\}, I_2 = \{x_{p_2}, x_{p_2+1}, \ldots, x_{q_2}\}$ for $1 \leq p_1 < p_2 \leq$ $q_1 < q_2 \leq t$. Let $u = a(x_{p_1}, x_{q_1})$ and $v = a(x_{p_2}, x_{q_2})$. We claim that either *u* is an ancestor of *v* or *v* is an ancestor of *u*. Let $z \in I_1 \cap I_2$. By definition, both *u* and *v* are ancestors of *z*. This means that there exists descending paths connecting *z* to *u* and *z* to *v* in T_X with vertices in different levels. However, every vertex in T_X has at most one father. Therefore, either the path z to u contains the path *z* to *v* or vice-versa. If the path *z* to *u* contains the path *z* to *v*, then *u* is an ancestor of *v*. Hence *u* is an ancestor of $I_2 \setminus I_1$, which contradicts the fact that I_1 is closed (Condition $(\star \star)$) of Definition \Box [2.2\)](#page-3-1). The other case is analogous.

We classify the closed intervals of *X* by three classes: left combs, right combs, and broken combs (see also Figure [4\)](#page-4-0).

Definition 2.4. *Given a closed interval I in X we say that*

Figure 4. An example of a left, right, and broken comb, respectively.

Figure 5. A left and right 1-comb.

- *(a) I is a* ℓ *-left comb if* ℓ *is the least positive integer such that there exists a partition* $I = A \cup B$ *with* $|A| = \ell$ *and* $B \neq \emptyset$ *and*
	- $(a1)$ $A < B$.
	- *(a2) A is a closed interval in X*
	- *(a3) If* $z = \max(A)$ *and* $B = \{b_1, \ldots, b_s\}$, *then* $\delta(z, b_1) > \delta(b_1, b_2) > \ldots > \delta(b_{s-1}, b_s)$.
- *(b)* I is a ℓ -right comb if ℓ is the least positive integer such that there exists a partition $I = A \cup B$ *with* $|A| = \ell$ *and* $B \neq \emptyset$ *and*
	- $(b1)$ $B < A$.
	- *(b2) A is a closed interval in X*
- *(b3) If* $z = min(A)$ *and* $B = \{b_1, \ldots, b_s\}$, *then* $\delta(b_1, b_2) < \ldots < \delta(b_{s-1}, b_s) < \delta(b_t, z)$.
- *(c) I is a broken comb if it is neither a left or right comb.*

We will use the convention that an ℓ -left/right comb will be described by its partition $I = A \cup B$ with $|A| = \ell$ that verifies the condition on Definition [2.4.](#page-3-2) As we can see in the picture above, the set *A* should be thought as the "handle" of the comb, while the set *B* should be thought as the "teeth" of the comb. For broken combs we will adopt the same convention by assuming that $B = \emptyset$.

One may remove the use of the projection $\delta(b_i, b_{i+1})$ in conditions (a3) and (b3) of the right/left comb by using the following equivalent alternative conditions:

(a3*) If $B = \{b_1, \ldots, b_s\}$, then the intervals $A \cup \{b_1, \ldots, b_i\}$ are closed in *X* for every $1 \leq i \leq s$ (b3*) If $B = \{b_1, \ldots, b_s\}$, then the intervals $\{b_i, \ldots, b_s\} \cup A$ are closed in *X* for every $1 \leq i \leq s$.

Those conditions have the advantage of describing a comb only using closed intervals. This will be useful later in the proof.

Example 2.5. *A important type of comb in the stepping-up lemma [3, 4] is the* 1*-left/right comb (see Figure [5\)](#page-4-1). Those are the combs* $I = \{y_1, \ldots, y_t\}$ *satisfying that the sequence* $\{\delta(y_i, y_{i+1})\}_{1 \leq i \leq t}$ *is monotone. Indeed, the interval I is a 1-left comb if* $\delta(y_1, y_2) > ... > \delta(y_{t-1}, y_t)$, *while it is a 1-right comb if* $\delta(y_1, y_2) < ... < \delta(y_{t-1}, y_t)$.

Figure 6. An example of a maximal left, right, and broken comb, respectively.

For the proof of Theorem [1.3](#page-1-2) we will be interested in maximal comb structures inside our auxiliary trees.

Definition 2.6. *Given* $X = \{x_1, ..., x_t\} \subseteq [2^N]$, *a interval* $I = \{x_p, ..., x_q\}$ *is a*

- *(a)* Maximal left comb in *X* if *I* is a left comb and *I*∪{ x_{q+1} } *is not a closed interval in X*.
- *(b) Maximal right comb in X if I is a right comb and I* ∪ {*xp*[−]1} *is not a closed interval in X*.
- *(c) Maximal broken comb in X if I is a broken comb and neither I* ∪ {*xp*[−]1} *or I* ∪ {*xq*⁺1} *are closed.*

Figure [6](#page-5-1) illustrates Definition [2.6.](#page-5-2) The next proposition shows that given two maximal combs they are either disjoint or one is contained in the "handle" of the other.

Proposition 2.7. *Given a closed inteval I*₁ *and a maximal comb I*₂ = $A_2 \cup B_2$ *with* $|I_1| \leq |I_2|$ *in a set* $X \subseteq [2^N]$, *then one of the following holds:*

1. $I_1 \cap I_2 = \emptyset$

$$
2. I_1 \subseteq A_2.
$$

3. *I*₁ = $A_2 \cup B_1$ *for some initial segment* $B_1 \subseteq B_2$

*Moreover, condition (3) only holds if I*¹ *is not a maximal comb.*

Proof. By Proposition [2.3](#page-3-3) we obtain that either $I_1 \cap I_2 = \emptyset$ or $I_1 \subseteq I_2$. If the first case happens, then *I*₁ and *I*₂ satisfy condition (1) and we are done. Hence, we may assume that $I_1 \subseteq I_2$. If I_2 is a broken comb, then by definition $A_2 = I_2$. Thus in this case $I_1 \subseteq A_2$, satsifying condition (2). Now suppose without loss of generality that $I_2 = A_2 \cup B_2$ is a left maximal comb and write $A_2 = \{x_1, \ldots, x_\ell\}$, $B_2 = \{y_1, \ldots, y_s\}$. If $I_1 \cap B_2 = \emptyset$, then $I_1 \subseteq A_2$ and again condition (2) holds.

At last, it remains to deal with the case that $I_1 \cap B_2 \neq \emptyset$. Since I_1 is an interval of *X* and $I_1 \subseteq I_2$, then in particular *I*₁ is an interval of *I*₂. Write $I_1 = \{x_p, \ldots, x_\ell\} \cup \{y_1, \ldots, y_q\}$ for $1 \leqslant p \leqslant \ell$ and 1 - *q* - *s*. By condition (a3∗) of Definition [2.4,](#page-3-2) the set *A*² ∪ {*y*1, ... , *yq*[−]1} is closed. Therefore for any $z \in A_2 \cup \{y_1, \ldots, y_{q-1}\}\$ the greatest ancestor $a(z, y_q)$ of *z* and y_q is the same as the greatest ancestor of $a(x_1, y_q)$. In particular, this implies that $a(x_p, y_q)$ is an ancestor for the entire set A_2 . Hence $A_2 \subseteq I_1$ and consequently $I_1 = A_1 \cup B_1$ is a left comb satisfying condition (3), because $A_1 =$ *A*₂ and *B*₁ is an initial segment of *B*₂. Note that *I*₁ is not maximal in this case, since the set *I*₁ ∪ $\{y_{q+1}\}\$ is also a left comb. Thus if I_1 is a maximal comb, then it either satisfies (1) or (2).

3. Stepping-up lemma and our colouring

3.1 Erdos–Hajnal–Rado stepping-up lemma ˝

For instructional purposes, we will briefly go over the stepping-up lemma in $[3, 4]$ using our notation. For $k \geqslant 4$, let $N = R_{k-1}((n-k+4)/2) - 1$ and $\varphi : [N]^{(k-1)} \to \{0, 1\}$ be a colouring of the $(k-1)$ -tuples in [*N*] with no monochromatic subset of size $(n-k+4)/2$. Our goal is to find a colouring $\psi:[2^N]^{(k)}\to\{0,1\}$ with no monochromatic subset of size *n*. This will give us that $R_k(n) > 2^N = 2^{R_{k-1}((n-k+4)/2)-1}.$

Fix an edge $X = \{x_1, \ldots, x_k\} \in [2^N]^{(k)}$ and let $\delta_i = \delta(x_i, x_{i+1})$. We describe the colouring ψ by the structure of T_X and the colouring of the vertical projection φ of [N] in the following way

$$
\psi(X) = \begin{cases}\n0, & \text{if } \delta_{k-3} > \delta_{k-2} < \delta_{k-1} \\
1, & \text{if } \delta_{k-3} < \delta_{k-2} > \delta_{k-1} \\
\varphi(\{\delta_1, \ldots, \delta_{k-1}\}), & \text{otherwise if } |\delta(X)| = k - 1 \\
0, & \text{otherwise if } |\delta(X)| < k - 1.\n\end{cases}
$$

Suppose by contradiction that ψ contains a monochromatic subset $Y \subset [2^N]$ of size *n*. We can use the structure of *Y* to find a large 1-comb.

Proposition 3.1. *There exists an interval I of Y with* $|I| \geq (n - k + 6)/2$ *such that I is a 1-comb*

Proof. We may assume without loss of generality that *Y* is monochromatic of colour 0. Write $Y = \{y_1, \ldots, y_n\}$ and let $\delta_i^Y = \delta(y_i, y_{i+1})$ for $1 \leq i \leq n - 1$. Since all edges in *Y* are of colour 0, then for any edge $X = \{x_1, \ldots, x_k\} \in Y^{(k)}$ we do not have that

$$
\delta(x_{k-3}, x_{k-2}) < \delta(x_{k-2}, x_{k-1}) > \delta(x_{k-1}, x_k). \tag{3}
$$

In particular, by taking the edge $\{y_{\ell-k+1}, \ldots, y_{\ell}\}$, inequality [\(3\)](#page-6-0) implies that $\delta_{\ell-3}^Y < \delta_{\ell-2}^Y > \delta_{\ell-1}^Y$ does not hold fore every $k \leq \ell \leq n$. Hence, the sequence $\{\delta_i^Y\}_{i=k-3}^{n-1}$ has no local maximum.

A standard calculus argument says that between two local minimums there is always a local maximum. Therefore, the sequence $\{\delta_i^Y\}_{i=k-3}^{n-1}$ has at most one local minimum, which means that there exists an interval $[p, q]$ of size $(n - k + 4)/2$ such that $\{\delta_i^Y\}_{i \in [p,q]}$ is monotone. Thus by definition the interval $I = \{x_p, x_{p+1}, \ldots, x_{q+1}\}$ is a 1-comb of size $(n - k + 6)/2$.

Let $I = \{z_1, \ldots, z_t\}$ be the 1-comb of *Y* obtained by Proposition [3.1](#page-6-1) and denote $\delta_i^I = \delta(z_i, z_{i+1})$ for $1 \leq i \leq i-1$. Note that because $\{\delta_i^I\}_{i=1}^{t-1}$ is a monotone sequence, every edge $X \in I^{(k)}$ will be also a 1-comb. Moreover, for every $(k-1)$ -tuple $Z \in \delta(I)$ there exists an edge $X \in I^{(k)}$ such that $\delta(X) = Z$.

Finally, by the definition of the colouring ψ , if *X* is a 1-comb, then $\psi(X) = \varphi(\delta(X))$. Thus if *I*^(*k*) coloured by $ψ$ is monochromatic, then $δ(I)^{(k-1)}$ coloured by $φ$ is also monochromatic. This implies that [*N*] has a monochromatic set of size $(n - k + 4)/2$, which contradicts our assumption on ϕ.

3.2 Overview of the proof

In order to obtain a lower bound for simple daisies, we will define a variant of the steppingup lemma described in the previous subsection. Suppose for a moment that our goal is to avoid a monochromatic simple (r, m, k) -daisy with in $[2^N]$ with $|K_0| = k_0$ and $|K_1| = k_1$ fixed. Then for every edge $X = \{x_1, \ldots, x_{k+r}\}\$ of the daisy, we know that the petal of size *r* of *X* is $P = \{x_{k_0+1}, \ldots, x_{k_0+r}\}.$ That is, we know the exact location of the petal prior defining the colouring in our stepping-up lemma. In this case a natural way to define the colouring would be to just assign for every edge *X* with petal $P \subseteq X$ the colour $\chi(X) = \psi(P)$, where $\psi(P)$ is exactly the stepping-up colouring defined in the previous subsection. Since the petal is the only part of the edge changing when we run through all edges, a similar proof as in the previous subsection works.

Unfortunately, in the original problem we want to avoid all possible monochromatic simple (*r*, *m*, *k*)-daisies, which means that we need to avoid simple daisies for all the values of |*K*0| and |*K*1|. The obstruction now is that the location of the petal within the edge is no longer clear to us.

To fix that we are going to pre-process our potentially monochromatic simple daisy (Lemma [5.1\)](#page-10-1) to satisfy the following property: Every petal *P* of an edge *X* is either a closed interval in *X* or is in the "teeth" of a maximal comb in *X*. This gives us partial information about the location of the petal. A good strategy then is to define an auxiliary colouring χ_0 for every maximal comb in *X* and use those colourings to define a colouring for *X*. This is the content of Section [3.3.](#page-7-0)

Some technical challenges remain. By Proposition [2.7,](#page-5-3) the maximal combs in *X* do not need to be disjoint. Therefore, it might happen that for the colouring χ different maximal combs interfere with each other. To solve that we need to construct a careful colouring taking the issue into consideration. In Section [4](#page-9-0) we provide an analysis showing that distinct maximal combs do not interfere with each other in our colouring. Section [5](#page-10-0) is devoted to the pre-processing described in the last paragraph. One of the consequences of the section is that for an edge *X* the colouring χ (*X*) is essentially determined by a unique maximal comb inside of it. Finally, we finish the proof in Section [6,](#page-19-0) by showing, similarly as in Subsection [3.1,](#page-5-4) that a monochromatic simple daisy in $[2^N]$ corresponds to a monochromatic simple daisy in the vertical colouring of [*N*].

3.3 A variant of the stepping-up lemma

Let $N = \min_{0 \le t \le k-1} \left\{ D_{r-1}^{\text{sup}}(c_k \sqrt{m}, t) - 1 \right\}$ for $r \ge 4$ and c_k some constant depending on *k* to be defined later and let $\{\varphi_i\}_{r-1\leqslant i\leqslant k+r-1}$ be a family of colourings such that $\varphi_i:[N]^{(i)}\to\{0,1\}$ is a defined fater and let $\{ \psi_i \}_{i=1}^{i} \leq k \leq k+r-1$ be a faintly of colourings such that ψ_i . $\lfloor N \rfloor$ \rightarrow \rightarrow $\{0, 1\}$ is a 2-colouring of the *i*-tuples without a monochromatic simple $(r-1, c_k \sqrt{m}, i-r+1)$ -daisy. Not that by the choice of *N* is always possible to find such a family.

Given an $(k + r)$ -tuple $X \in [2^N]^{(k+r)}$ we define

$$
\mathcal{I}_X = \{I \subseteq X : I \text{ is a maximal comb in } X\}
$$

as the set of maximal combs of *X*. We will construct now an auxiliary colouring $\chi_0 : \mathcal{I}_X \to \{0, 1\}$ depending on the structure of T_X and in the family of colourings $\{\varphi_t\}_{0\leq t\leq k}$. The colouring is divided in several cases depending on the type of the maximal comb *I*.

Remember that a maximal ℓ -comb is always identified with the partition $I = A \cup B$, where $|A| = \ell$ is the handle and *B* is the set of teeth of the comb. Also write $I = \{x_1, \ldots, x_s\}$ and let $\delta_i^I = \delta(x_i, x_{i+1})$ for $1 \leq i \leq s - 1$. Aiming to simplify the discussion, we will only describe χ_0 for left and broken maximal combs. We define χ_0 for right combs by symmetry. Some Figures are provided to illustrate some of the types (see Figures [7](#page-8-0)[–9\)](#page-8-1).

Type 1: *I* is broken or left comb, $|I| = r$ and there is no maximal comb $I' = A' \cup B'$ such that $I = A'$.

$$
\chi_0(I) = \begin{cases}\n0, & \text{if } \delta_{r-3}^I > \delta_{r-2}^I < \delta_{r-1}^I \\
1, & \text{if } \delta_{r-3}^I < \delta_{r-2}^I > \delta_{r-1}^I \\
\varphi_{|\delta(I)|}(\{\delta_1^I, \ldots, \delta_{r-1}^I\}), & \text{otherwise if } |\delta(I)| = r - 1 \\
0, & \text{otherwise if } |\delta(I)| < r - 1\n\end{cases}
$$

Type 2: *I* is left comb, $|I| = r$ and there exists a maximal comb $I' = A' \cup B'$ such that $I = A'$

$$
\chi_0(I)=0
$$

Type 3: *I* is left comb, $\ell = |A| \leq r$ and $r + 1 \leq |I| \leq 2r - 2$.

$$
\chi_0(I) = \begin{cases}\n0, & \text{if } \delta_{r-3}^I > \delta_{r-2}^I < \delta_{r-1}^I \\
1, & \text{if } \delta_{r-3}^I < \delta_{r-2}^I > \delta_{r-1}^I \\
\varphi_{|\delta(I)|}(\{\delta_1^I, \ldots, \delta_{s-1}^I\}), & \text{otherwise if } |\delta(I)| \ge r-1 \\
0, & \text{otherwise if } |\delta(I)| < r-1\n\end{cases}
$$

Figure 7. An example of left comb of type 2.

Figure 8. A left comb of Type 4 and its projections.

Figure 9. A left comb of Type 5 and its projections.

Type 4: *I* is left comb,
$$
\ell = |A| \le r
$$
 and $|I| \ge 2r - 1$.
\n
$$
\chi_0(I) = \begin{cases} \varphi_{s-r}(\{\delta_r^I, \dots, \delta_{s-1}^I\}), & \text{if } \delta_{r-3}^I > \delta_{r-2}^I < \delta_{r-1}^I \\ 1 - \varphi_{s-r}(\{\delta_r^I, \dots, \delta_{s-1}^I\}), & \text{if } \delta_{r-3}^I < \delta_{r-2}^I > \delta_{r-1}^I \\ \varphi_{|\delta(I)|}(\{\delta_1^I, \dots, \delta_{s-1}^I\}), & \text{otherwise} \end{cases}
$$

Type 5: *I* is left comb, $\ell = |A| > r$ and $|B| \ge r$.

$$
\chi_0(I) = \varphi_{|B|}(\delta_{\ell}^I, \ldots, \delta_{s-1}^I)
$$

Type 6: All other broken or left maximal combs.

$$
\chi_0(I)=0
$$

Finally, the auxiliary colouring χ_0 define a colouring $\chi : [2^N]^{(k+r)} \to \{0, 1\}$ as follows:

$$
\chi(X) = \sum_{I \in \mathcal{I}_X} \chi_0(I) \pmod{2}
$$

4. Colouring data

Given an edge *X* and a maximal comb $I \subseteq X$, one can determine the colour $\chi_0(I)$ by looking at the type of the maximal comb *I*. Some of the types do not use information on the ancestors to determine its colouring. For instance, if I is of type 2, then its colour will be always 0. The projection of the ancestors δ_i^I has no influence in defining $\chi_0(I)$. However, if *I* is of type 1, then the colour crucially depends on the projection of the ancestors.

This observation suggests the following definition. Given an edge $X \in [2^N]^{(k+r)}$ and a maximal comb *I* \subseteq *X*, let the *colouring data* $F(I)$ of *I* be defined as the ordered set of ancestors whose projection determine the colouring $\chi_0(I)$. More explicitly, we can define directly the colouring data of *I* by looking its types. We may assume here that $I = \{x_1, \ldots, x_s\}$ is a broken or left maximal comb.

- Type 1,3 and 4: $F(I) = \{a(x_i, x_{i+1})\}_{1 \leq i \leq s-1}$
- Type 2 and 6: $F(I) = \emptyset$
- Type 5: $F(I) = \{a(x_i, x_{i+1})\}_{\ell \le i \le s-1}$

Our first observation is that maximal combs with same data have same colour. We say that two combs have the same *orientation* if they are of the same class (e.g., both are left combs).

Proposition 4.1. Let X, $X' \in [2^N]^{(k+r)}$ be two edges. If I and I' are maximal combs of same type and orientation in X and X', respectively, such that $F(I) = F(I'),$ then $\chi_0(I) = \chi_0(I').$

Proof. The proof basically consists of checking the consistency of our definition. If $F(I) = F(I')$ Ø, then *I* and *I'* are either of type 2 or 6. In both cases $\chi_0(I) = \chi_0(I') = 0$.

If $I = \{x_1, \ldots, x_s\}$ and $I' = \{x'_1, \ldots, x'_{s'}\}$ are of type 1, 3 or 4, then since $a(I) = F(I) = F(I') =$ *a*(*I'*) we obtain by Fact [2.1](#page-3-4) that $s = s'$ and $a(x_i, x_{i+1}) = a(x'_i, x'_{i+1})$ for every $1 \leq i \leq s$. Therefore $\delta(x_i, x_{i+1}) = \delta(x_i', x_{i+1}')$ for every $1 \leq i \leq s$ and by the colouring defined in Section [3.3,](#page-7-0) it follows that $\chi_0(I) = \chi_0(I')$.

The last case that we need to check is when $I = A \cup B = \{x_1, \ldots, x_s\}$ and $I' = A' \cup B' =$ $\{x'_1, \ldots, x'_{s'}\}$ are of type 5, where $|A| = \ell$ and $|A'| = \ell'$. As usual, we assume that *I* and *I'* are left combs. Since $a({x_{\ell}, ..., x_{s}}) = F(I) = F(I') = a({x'_{\ell'}, ..., x'_{s'}})$, it follows again by Fact [2.1](#page-3-4) that *s* − ℓ = |*B*| = |*B'*| = *s'* − ℓ' and *a*(*x_i*, *x_{i+1}*) = *a*(*x'_i*, *x'_{i+1}*) for $\ell \le i \le s$ − 1. Thus $\delta(x_i, x_{i+1})$ = $\delta(x', x'_{i+1})$ for $\ell \leq i \leq s-1$ and by the colouring of type 5 we obtain that $\chi_0(I) = \chi_0(I')$.

Although maximal combs in the same edge do not need to be disjoint, the next result shows that they do not share the same colouring data.

Proposition 4.2. Let $X \in [2^N]^{(k+r)}$ be an edge. If $I = A \cup B$ and $I' = A' \cup B'$ are maximal combs *in* \overline{X} *, then* $F(I) \cap F(I') = \emptyset$ *.*

Figure 10. A picture of *I* and $\{a(x_i, x_{i+1})\}_{\ell' \leq i \leq s-1}$.

Proof. Suppose without loss of generality that $|I| \leq |I'|$. By Proposition [2.7](#page-5-3) either $I \cap I' = \emptyset$ or *I* ⊆ *A'*. If $I \cap I' = \emptyset$, then by the fact that *I*, *I'* are closed we obtain that $a(I) \cap a(I') = \emptyset$. Since *F*(*I*) \subseteq *a*(*I*) by definition, it follows that *F*(*I*) \cap *F*(*I'*) = Ø.

Now suppose that $I \subseteq A'$. We may assume that $F(I), F(I') \neq \emptyset$ and consequently that *I*, *I'* are of type 1, 3, 4 or 5. Since maximal combs of types 1, 3, 4 and 5 have size at least *r*, our assumption implies that $|I'| \ge |I| \ge r$.

We claim that $|A'| > r$. Suppose that $|A'| = r$. Since $r \leqslant |I| \leqslant |A'|$ we obtain that $I = A'$ and $|I| = r$. The maximality of *I* implies that it is either a left or right maximal comb (otherwise we could extend the comb to $I \cup B$). However, in this case *I* is of type 2. Thus $F(I) = \emptyset$, which contradicts our assumption on *I*. Therefore, $|A'| > r$ and consequently *I'* is of type 5. Write $I' = \{x'_{1}, \ldots, x'_{s'}\}$ with $|A'| = \ell'$ and assume that *I'* is a left comb. Then by definition

$$
F(I') = \{a(x'_i, x'_{i+1})\}_{\ell' \leq i \leq s'-1}.
$$

Since $I \subseteq A'$ we obtain that $F(I) \subseteq a(A')$. By the structure of a left comb (see Figure [10\)](#page-10-2) we have that

$$
\delta(x'_1, x'_{\ell'}) > \delta(x'_{\ell'}, x'_{\ell+1}) > \delta(x'_{\ell'+1}, x'_{\ell'+2}) > \ldots > \delta(x'_{s'-1}, x'_{s'}).
$$

Thus $a(I) \cap \{a(x'_i, x'_{i+1})\}_{\ell' \le i \le s'-1} = \emptyset$ and consequently $F(I) \cap F(I') = \emptyset$.

5. Pre-processing

As discussed in Subsection [3.2,](#page-6-2) we now turn our focus to show that a simple daisy *H* can be preprocessed in a smaller simple subdaisy *H'* with the property that for every edge *X* with petal *P* we have that either *P* is a closed interval in *X* or is part of the "teeth" of a maximal comb in *X*.

Lemma 5.1. *For any simple* (r, m, k) *-daisy H with vertex set* $V(H) \subseteq [2^N]$ *,* $K_0 < M < K_1$ *,* $|K_0 \cup K_1|$ $K_1| = k$ and $|M| = m$, there exists a subset $M' \subseteq M$ of size $|M'| = \frac{1}{2}k^{-1/2}m^{1/2}$ such that the simple $(r, \frac{1}{2}k^{-1/2}m^{1/2}, k)$ -daisy $H' = H[K_0 \cup M' \cup K_1]$ satisfies one of the following (see Figure [11\)](#page-11-0):

- 1. M' is a closed interval in $V(H')$.
- *2.* There exists a maximal comb $I = A \cup B$ in $V(H')$ such that $M' \subseteq B$.

Proof. Let $V := V(H)$. Given a closed interval $I \subseteq V$, by condition (ii) of Definition [2.2](#page-3-1) there exists a vertex $u \in a(I)$ such that $I = V(u)$. Consider the partition of *I* given by $I = I^L \cup I^R$, where $I^L = V_L(u)$ are the left descendants of *u* and $I^R = V_R(u)$ are the right descendants of *u*. Let u^L be

Figure 11. An example of *H'* satisfying statement (1) and (2).

Figure 12. Partition of a closed interval into two other closed intervals.

the left child of *u* and u^R be the right child. Hence, $I^L = V(u^L)$ and $I^R = V(u^R)$ and consequently $I = I^L \cup I^R$ is a partition of a closed interval in *V* into two non empty closed intervals in *V* (see Figure [12\)](#page-11-1).

We will construct our set *M'* iteratively. This is done in two stages. In the first stage we start with the closed interval $Y_0 = V$ and proceed recursively as follows: For a closed interval $Y_i \subseteq V$, let $Y_i = Y_i^L \cup Y_i^R$ be the partition described above in two closed intervals. The choice of Y_{i+1} is determined by the conditions below

- (Y^L_1) Set $Y_{i+1} := Y^L_i$ if $|Y^L_i \cap M| \geq |Y^R_i \cap M|$.
- (P2) Set $Y_{i+1} := Y_i^R$ if $|Y_i^L \cap M| < |Y_i^R \cap M|$.

We stop the process whenever $Y_i \cap K_0 = \emptyset$ or $Y_i \cap K_1 = \emptyset$. Note that since Y_i^L and Y_i^R are non empty, at each iteration of the process the size of $|(K_0 \cup K_1) \cap Y_i|$ reduces at least by one. Thus, in a finite amount of time the process terminates. Let *Y* be the closed interval obtained in the end. We may assume without loss of generality that *Y* ∩ $K_1 = \emptyset$. Write *Y* = $K_Y \cup M_Y$, where $K_Y \subseteq K_0$ and $M_Y \subseteq M$. It is not hard to check by the construction that $|M_Y| \ge m/2$.

For the second stage, let $Z_0 = Y$. Given a closed interval $Z_i \subseteq V$, let $Z_i = Z_i^L \cup Z_i^R$ be the partition into two non empty closed intervals. By definition we have that $Z_i^L < Z_i^R$. We say that a partition $Z_i^L \cup Z_i^R$ is of type A if $Z_i^R \cap K_0 = \emptyset$ and of type B if $Z_i^R \cap K_0 \neq \emptyset$. The choice of Z_{i+1} will depend on the type of partition as follows: Type A: $Z_i^R \cap K_0 = \emptyset$.

-
- (A1) Set $Z_{i+1} := Z_i^L$ if $|Z_i^R| < \frac{1}{2}k^{-1/2}m^{1/2}$.
- (A2) Set $Z_{i+1} := Z_i^R$ if $|Z_i^R| \ge \frac{1}{2} k^{-1/2} m^{1/2}$ and stop the process.

Figure 13. Sequence of closed intervals Z_j^R , ..., $Z_{j+m'-1}^R$.

Type B: $Z_i^R \cap K_0 \neq \emptyset$.

(B) Set $Z_{i+1} := Z_i^R$.

We terminate the process if we either reach condition $(A2)$ or if Z_{i+1} is a singleton. Since $|Z_{i+1}| < |Z_i|$, the process is finite. Let *Z* be the closed interval obtained at the end. We split into two cases.

If the process terminates after some instance of condition (A2), then it means that $Z = Z_i^R$ is a closed interval in *V* with $|Z| \ge \frac{1}{2}k^{-1/2}m^{1/2}$ for some index *i*. Because we are in a partition of type *A* we also obtain that *Z* ⊆ *M*. Thus, if we set *M'* = *Z* the simple subdaisy *H*[*K*₀ ∪ *M'* ∪ *K*₁] satisfies condition (1) of the statement.

Now suppose that the process terminates with $|Z| = 1$. Then it means that for every partition of type A we had an instance of condition (A1). If Z_{i+1} is a set obtained after condition (A1), then $|Z_{i+1} \cap M| > |Z_i \cap M| - \frac{1}{2} k^{-1/2} m^{1/2}$ and $|Z_{i+1} \cap K_0| = |Z_{i+1} \cap K_0|$. That is, condition (A1) removes less than $\frac{1}{2}k^{-1/2}m^{1/2}$ element of *M* from *Z_i* and no elements of *K*₀ from it. Moreover, if *Z*_{*i*+1} is obtained after condition (B), then $|Z_{i+1} \cap M| = |Z_i \cap M|$ and $|Z_{i+1} \cap K_0| < |Z_i \cap K_0|$. That is, *M* remains unaffected, but K_0 loses at least one element from K_i to K_{i+1} .

Consider the sequence of operations applied to Z_0 in order to obtain Z . Since we start with a set $Z_0 = Y$ with $|Z_0 \cap M| = |M_Y| \ge m/2$, we obtain that during our process we had at least

$$
\frac{\frac{m}{2}}{\frac{1}{2}k^{-1/2}m^{1/2}} = k^{1/2}m^{1/2}
$$

instances of condition (A1) in the sequence. Similarly, since $|Z_0 \cap K_0| = |K_Y| \leq k$, we obtain that we had at most *k* instances of condition (B) in the sequence. Hence, by the pigeonhole principle there exists a sequence of consecutive applications of condition (A1) of length at least $m' = k^{1/2}m^{1/2}/(k+1) \geq \frac{1}{2}k^{-1/2}m^{1/2}.$

Let $Z_j, Z_{j+1}, \ldots, Z_{j+m'}$ be the closed intervals involved in the sequence. That is, Z_{i+1} is obtained from Z_i by a condition (A1) for every $j \leq i \leq j + m' - 1$. By the algorithm, we obtain closed intervals $Z_j^R, \ldots, Z_{j+m'-1}^R \subseteq M$ all of them with size less than $\frac{1}{2}k^{-1/2}m^{1/2}$ (Figure [13\)](#page-12-0). For every $j \leq i \leq j + m' - 1$, choose a point $z_i \in Z_i^R$.

Set $M' = \{z_j, \ldots, z_{j+m'-1}\}\$. We claim that M' is a set satisfying condition (2) of the statement. Let $H' = H[K_0 \cup M' \cup K_1]$ and $V' = V(H')$. To see that condition (2) is satisfied we just need to find a maximal comb *I* = $A \cup B \subseteq V'$ such that $M' \subseteq B$. Let $K' = K_0 \cap Z_{j+m'}$ and consider the interval *I'* = *K'* ∪ *M'* in *V'*. By construction, the intervals *K'* and *K'* ∪ { $z_{j+i}, \ldots, z_{j+m'-1}$ } are

closed in *V'* for every $0 \leqslant i \leqslant m' - 1$. Therefore, by condition (a3*) of Definition [2.4,](#page-3-2) the interval *I'* = $A' \cup B'$ is a left comb and $M' \subseteq B'$. Since every comb can be extended to a maximal one, there exists a maximal left comb $I = A \cup B$ with $A = A'$ and $B' \subseteq B$ such that $M' \subseteq B$ and we are done.

One of the main consequences of our pre-processing is that it allows us to identify certain closed and non-closed intervals in an arbitrary edge of *H* . To be more precise, given an edge *X* ∈ *E*(*H*^{\prime}) with petal *P* and *V*^{\prime} = *V*(*H*^{\prime}), let

 $\mathcal{C}_{V',M'} = \{I : I \text{ is an interval in } V' \text{ and either } M' \subseteq I \text{ or } M' \cap I = \emptyset\}$

 $C_{X,P} = \{I : I \text{ is an interval in } X \text{ and either } P \subseteq I \text{ or } P \cap I = \emptyset\}$

be the set of intervals in *V* and *X* such that the intervals either contain or are disjoint of *M* and *P*, respectively. The next proposition shows that there is a one-to-one correspondence between $\mathcal{C}_{V^{'},M^{'}}$ and $\mathcal{C}_{X,P}$ preserving the property of being closed.

Proposition 5.2. *For a given edge* $X \in E(H')$ *with petal P, there exists a bijection* Ψ : $C_{V',M'} \to C_{X,F}$ *given by*

$$
\Psi(I) = I \cap X
$$

such that I is a closed interval in V' if and only if $\Psi(I)$ *is a closed interval in X.*

Proof. If $I \in C_{V',M'}$ is such that $I \cap M' = \emptyset$, then either $I \subseteq K_0$ or $I \subseteq K_1$. Since $X = K_0 \cup P \cup K_1$ for some $P \in M'^{(r)}$, we obtain that $\Psi(I) = I \cap X = I$. This shows that Ψ is a bijection from the intervals of V' disjoint of M' to the intervals of X disjoint of P .

Now suppose that $I \in C_{V',M'}$ is such that $M' \subseteq I$. Then I can be written as $I = K_I \cup M'$ with $K_I \subseteq I$ *K*₀ ∪ *K*₁. Thus Ψ (*I*) = *I* ∩ *X* = *K_I* ∪ *P*. Since *K_I* ≠ *K_I*^{*f*} for *I* ≠ *I'*, we obtain that Ψ is an injection from the intervals of V' containing M' to the intervals of X containing P . To check surjectivity, just notice that $K_I \cup P$ is an interval if and only if $K_I \cup M'$ is an interval.

It remains to prove that *I* is closed if and only if $\Psi(I)$ is closed. Throughout the rest of the proof, for a set *S* \subseteq *V* we define

$$
x_S = \min(S), \quad y_S = \max(S), \quad u_S = a(x_S, y_S).
$$

Note that the backwards direction is straightforward from the definition of being closed.

Proposition 5.3. *If I is closed in V'*, *then* $I \cap X$ *is closed in* X *.*

Proof. Suppose by contradiction that $I \cap X$ is not closed in *X*. Then by condition ($\star\star$) of Definition [2.2,](#page-3-1) there exists $y \in X \setminus I$ such that $u_{I \cap X}$ is an ancestor of *y*. Since $I \cap X \subseteq I$, we have that *u_I* is an ancestor of *u_{I∩}X*. Therefore, *y* ∈ *X* \ *I* ⊆ *V'* \ *I* is an ancestor of *u_I* which contradicts the fact that *I* is closed in *V'* the fact that *I* is closed in *V* .

The following observation will be useful for the rest of the proof.

Fact 5.4. *Let* $W = V(u_W)$ *be a closed interval in V. If x and y are two vertices such that* $x \in W$ *and* $y \notin W$, then $a(x, y) = a(y, u_W)$ (see Figure [14\)](#page-14-0).

In particular, Fact [5.4](#page-13-0) applied to $W = M'$ says that an element $y \notin M'$ have the same common ancestor with any $x \in M'$. We split the proof of the forward implication depending on the structure of *H'* given by Lemma [5.1.](#page-10-1)

Case $1: M'$ is a closed interval in V' .

The proof of Case 1 is slightly different depending on the location of the interval *I* in *V* .

Case 1.1: $I \in \mathcal{C}_{V',M'}$ such that $I \cap M' = \emptyset$.

As seen before, we have that $\Psi(I) = I$. By condition $(\star \star)$ of Definition [2.2](#page-3-1) there is no vertex *x* ∈ *X* \ *I* such that *u_I* is an ancestor of *x*. If there is a descendant of *u_I* in *V'* \ *I*, then the descendant

Figure 14. A picture of Fact [5.4.](#page-13-0)

is in the set $V' \setminus X = M' \setminus P$. Since $I \cap M' = \emptyset$, Fact [5.4,](#page-13-0) applied to the closed interval M', implies that for every $y \in I'$ and $x \in M'$ we have $a(x, y) = a(y, u_{M'})$. Thus, if u_I is an ancestor of some $x \in M'$, then *u_I* is an ancestor of *u_M*. This implies that *u_I* is an ancestor for the entire set *M'* and in particular of *P*, which contradicts the fact that *I* is closed in *X*. Therefore, *I* is a closed interval in *V* .

Case 1.2: $I \in \mathcal{C}_{V',M'}$ such that $M' \subseteq I$.

Suppose that $\widetilde{I} = K_I \cup M'$ is a interval in V' containing M' . We need to prove that $I = K_I \cup M'$ is closed in *V*' if $\Psi(I) = I \cap X = K_I \cup P$ is closed in *X*. If $K_I = \emptyset$, then $I = M'$ which is by assumption closed in *V'*. Otherwise, we claim that $u_I = u_{\Psi(I)}$. That is *I* and $\Psi(I)$ have the same common ancestor.

The assumption that $K_I \neq \emptyset$ gives us that either $x_I < \min(M')$ or $y_I > \max(M')$. Assume without loss of generality that $y_I > \max(M')$. Thus, $y_I \in K_I$ and we have that $y_I = y_{\Psi(I)} = \max(K_I)$. If $x_I \notin M'$, then similarly we have $x_I = x_{\Psi(I)}$ and consequently $u_I = a(x_I, y_I) = a(x_{\Psi(I)}, y_{\Psi(I)}) = a(x_I, y_I)$ $u_{\Psi(I)}$. Now if $x_I \in M'$, then $x_I \notin K_I$. This implies that $x_{\Psi(I)} \in P \subseteq M'$. Since both $x_I, x_{\Psi(I)} \in P$ *M'* and $y_I = y_{\Psi(I)} \notin M'$, by Fact [5.4](#page-13-0) we obtain that $u_I = a(x_I, y_I) = a(u_{M'}, y_I) = a(u_{M'}, y_{\Psi(I)}) =$ $a(x_{\Psi(I)}, y_{\Psi(I)}) = u_{\Psi(I)}$. Hence, $I = K_I \cup M'$ and $\Psi(I) = K_I \cup P$ have the same common ancestor.

To finish the proof note that by condition $(\star \star)$ of Definition [2.2](#page-3-1) there are no descendants of $u_{\Psi(I)}$ in $X \setminus \Psi(I)$. Since $u_I = u_{\Psi(I)}$ and $V \setminus I' = K \setminus K_I = X \setminus \Psi(I)$, we conclude that there are no descendants of u_I in $V' \setminus I$ and consequently *I* is closed in V' .

Case 2: $M' \subseteq Q$ for some maximal comb $Q = A^Q \cup B^Q$ in V' with $M' \subseteq B^Q$.

We may assume without loss of generality that *Q* is a maximal left comb. Let $K_0^Q = K_0 \cap Q$ and $K_1^Q = K_1 \cap Q$. Clearly, $Q = K_0^Q \cup M' \cup K_1^Q$ with $K_0^Q < M' < K_1^Q$. Moreover, $Q = A^Q \cup B^Q$ with *A*^Q < *B*^Q and *M'* ⊆ *B*^Q (Figure [15\)](#page-15-0). Thus, *A*^Q ⊆ *K*₀^Q and by condition (a3∗) of Definition [2.4,](#page-3-2) we obtain that K_0^Q is closed in V' . As in the first case, we split into two cases depending on the type of the interval.

Case 2.1: $I \in \mathcal{C}_{V',M'}$ such that $I \cap M' = \emptyset$.

Suppose that *I* is a closed interval in *X*. We claim that $V'(u_I) \cap M' = \emptyset$, i.e., the descendants of u_I are disjoint of M'. Applying Proposition [2.3](#page-3-3) to the closed interval $V'(u_I)$ and maximal comb *Q* gives us that either $V'(u_I) \cap Q = \emptyset$, $V'(u_I) \subseteq Q$ or $Q \subseteq V'(u_I)$. If $V'(u_I) \cap Q = \emptyset$, then we immediately obtain that $V'(u_I) \cap M' = \emptyset$, since $M' \subseteq Q$. If $Q \subseteq V'(u_I)$, then $M' \subseteq V'(u_I)$ and consequently *P* = *M*^{\prime} ∩ *X* ⊆ *V*^{\prime}(*u_I*) ∩ *X* = *X*(*u_I*). This implies that *X*(*u_I*) ≠ *I*, which contradicts *I* being closed in *X*.

Thus, we may assume that $V'(u_I) \subseteq Q$ and $M' \nsubseteq V'(u_I)$. Then, by Proposition [2.7,](#page-5-3) we have that $V'(u_I) = A^{V'(u_I)} \cup B^{V'(u_I)}$ where either $V'(u_I) \subseteq A^Q$ or $A^{V'(u_i)} = A^Q$ and $B^{V'(u_I)} \subseteq B^Q$. For the first case, note that $A^Q \cap M' = \emptyset$ and therefore $V'(u_I) \cap M' = \emptyset$. For the second case, note that since $M' \nsubseteq V'(u_I)$, then $M' \nsubseteq B^{V'(u_I)}$. This implies that $V'(u_I) \subseteq K_0 \cup M'$. Together with the

Figure 15. Maximal comb Q and sets κ_0^Q and κ_1^Q .

fact that $I \cap M' = ∅$ *and* $I \subseteq V'(u_I)$ *, we obtain that* $I \subseteq K_0^Q$ *. Since* K_0^Q *is closed in* V' *, we have that* the common ancestor $u_{K_Q^Q} = a(\min(K_Q^Q), \max(K_Q^Q))$ is an ancestor of the entire *I* and therefore of *u_I*. Hence, $V'(u_I) \subseteq K_0^Q$, which implies that $V'(u_I) \cap M' = \emptyset$. The fact that *I* is closed in V' now follows because $V'(u_I) = X(u_I) = I$.

Case 2.2: $I \in \mathcal{C}_{V',M'}$ such that $M' \subseteq I$.

Let $I = K_0^I \cup M' \cup K_1^I$ be an interval in V' containing M' with $K_0^I \subseteq K_0$ and $K_1^I \subseteq K_1$. Suppose that $\psi(I) = K_0^I \cup P \cup K_1^I$ is closed in *X*. Since $K_0^Q \cup M'$ is closed, by the same argument of Case 1.2 (by considering $K_0^Q \cup M'$ instead of *M'*), we can show that if $x_I < \min(K_0^Q)$ or $y_I > \max(M')$, then $u_I = a(x_I, y_I) = a(x_{\Psi(I)}, y_{\Psi(I)}) = u_{\Psi(I)}$ and consequently *I* is closed in V' .

Now suppose that $\min(K_0^Q) \leq x_I \leq \min(M')$ and $y_I = \max(M')$. Since both M' and P are not closed intervals in their respective ground sets, we have that $x_I \neq min(M')$ and consequently $x\psi(I) = x_I$ and $y\psi(I) = \max(I)$. Hence, in this case, $K_0^I \subseteq K_0^Q$ and $K_I = \emptyset$, which implies that *I* = K_0^I ∪ *M'* and $\Psi(I) = K_0^I$ ∪ *P*. Because *Q* is a maximal left comb with *M'* ⊆ *Q*, then both sets *K*^Q and *K*^Q ∪ *M* are closed in *V*[']. Therefore, by Proposition [5.3](#page-13-1) the intervals *K*₀^Q and *K*₀^Q ∪ *P* are closed in *X*. Fact [5.4](#page-13-0) applied to K_0^Q gives us that $a(z, y_{\Psi(I)}) = a(z', y_{\Psi(I)})$ for every $z, z' \in K_0^Q$. This implies that $u_{\Psi(I)} = a(x_{\Psi(I)}, y_{\Psi(I)}) = a(\min(K_0^Q), y_{\Psi(I)}),$ i.e., $K_0^Q \cup P$ and $\Psi(I) = K_0^I \cup P$ have $u_{\Psi(I)}$ as the same common ancestor. Since $K_0^Q\cup P$ and $K_0^I\cup P$ are both closed in *X*, we obtain that $K_0^Q = K_0^I$. Thus $I = K_0^Q \cup M'$, which is closed in *V'*.

The next result shows that we can always find in an edge the location of the maximal comb with colouring data containing $a(P)$. This will be extremely important, since the comb will be the only maximal comb such that colouring data changes while we run through different edges of *H* .

Proposition 5.5. *Let H be a fixed pre-processed daisy obtained by Lemma [5.1](#page-10-1)*. *There exists a unique interval J* ⊆ [k + *r*] *such that for every edge* $X = K_0 ∪ P ∪ K_1 = {x_1, ..., x_{k+r}}$ *in H'*, *the interval* $X_I = \{x_i\}_{i \in I}$ *is a maximal comb of type depending only on H' with*

 $a(P)$ ⊂ $F(X_I)$.

Moreover, writing $X_I = A^{X_I} \cup B^{X_I}$ *we have one of the following:*

- 1. If H' satisfies statement (1) of Lemma [5.1](#page-10-1), then $A^{X_J} \subseteq P$ and X_I is the smallest maximal *comb containing P with non-empty colouring data.*
- 2. *If* H' satisfies statement (2) of Lemma [5.1](#page-10-1), then $X_J = I \cap X$, where $I = A \cup B$ is the maximal *comb in V' such that M'* \subseteq *B*, *and X_I satisfies* $P \subseteq B^{X_J}$.

Proof. The idea of the proof is to identify certain maximal combs in V' with maximal combs in an edge *X*. Because the structure of those maximal combs in *V'* only depends on *H'*, we will obtain the same for the corresponding combs in *X*. Proposition [5.2](#page-13-2) will be useful here, since by condition (a3∗) and (b3∗) of Definition [2.4](#page-3-2) a comb can be defined by looking at certain closed subintervals. The proof is split into cases depending on the structure of the tree T_{V}

Case 1: M' is a closed interval in V' .

We will construct a maximal comb in *X* by looking at a maximal comb in *V'* containing *M'*. Write $K_0 = \{x_1, \ldots, x_{k_0}\}, M' = \{y_1, \ldots, y_{m'}\}$ and $K_1 = \{z_1, \ldots, z_{k_1}\}.$ There are two possibilities here:

Case 1.1: Either $M' \cup \{z_1\}$ is a closed interval in *V'* or $M' \cup \{x_{k_0}\}$ is a closed interval in *V'*.

Suppose without loss of generality that $M' \cup \{z_1\}$ is closed in *V'*. In this case $M' \cup \{z_1\}$ is a left comb. Let $M' \cup \{z_1, \ldots, z_t\}$ be the maximal left comb obtained by extending $M' \cup \{z_1\}$. We will assume during the entire proof that $t < k_1$. For $t = k_1$, the same proof work by removing any claims and sets involving *zt*+1. By condition (a3∗) of Definition [2.4](#page-3-2) and Definition [2.6,](#page-5-2) $M' \cup \{z_1, \ldots, z_t\}$ being a maximal left comb is the same as saying that the intervals *M'* and $M'\cup\{z_1,\ldots,z_i\}$ are closed for every $1\leqslant i\leqslant t,$ but the interval $M'\cup\{z_1,\ldots,z_{t+1}\}$ is not closed.

Set $J = \{k_0 + 1, \ldots, k_0 + r + t\}$. Let *X* be an edge of *H'* with petal *P*. We claim that X_I is a maximal left comb in *X* with $A^{X_J} \subseteq P$. To see that consider the intervals

$$
J_i = \{k_0 + 1, \dots, k_0 + r + i\}, \quad 0 \leq i \leq t + 1.
$$

In particular $J_t = J$. Note that $X_{J_0} = M' \cap X = P$ and $X_{J_i} = (M' \cap \{z_1, \ldots, z_i\}) \cap X$ for $1 \le i \le t + 1$. Thus, by applying Proposition [5.2](#page-13-2) with *I* = *M*^{*i*} and *I* = *M*^{*i*} ∪ {*z*₁, ..., *z_i*}, we obtain that X_{J_i} is closed in X for $0 \leq i \leq t$ and $X_{J_{t+1}}$ is not closed in X . Hence, by condition (a3∗) of Definition [2.4](#page-3-2) and Definition [2.6,](#page-5-2) we have that $X_I = X_I$ is a maximal left comb. Since $P = X_{I_0} \subseteq X_{I_1} \subseteq \ldots \subseteq X_{I_t} = X_I$ are all closed intervals, we have that $A^{X_J} \subseteq P$. Thus, $|A^{X_J}| \leq |P| = r$ and we have that either X_J is a maximal comb of type 3 or type 4 depending on the size of $|X_J| = r + t$. Because *t* is a parameter that depends on the size of the maximal comb in *V'*, i.e., on the structure of *H* , we conclude that the type of *XJ* is independent of our choice of edge *X*.

It remains to show that $a(P) \subseteq F(X_I)$ and X_I is the smallest maximal comb containing *P* with non-empty data colouring. For the first, note that $F(X_I) = a(X_I)$ because X_I is of type 3 or 4. Thus, $a(P) \subseteq a(X_I) = F(X_I)$. For the latter, note that the only potential maximal comb smaller than X_I containing *P* is *P* itself. However, if *P* is a maximal comb, then it is a comb of type 2 and therefore $F(P) = \emptyset$. Hence, X_I is the smallest maximal comb containing *P* with non-empty colouring data.

Case 1.2: Both $M' \cup \{z_1\}$ and $M' \cup \{x_{k_0}\}$ are not closed in *V'*.

By Definition [2.6,](#page-5-2) *M'* is a maximal comb. Set $J = \{k_0 + 1, \ldots, k_0 + r\}$. Note that $X_J = P$. By Proposition [5.2,](#page-13-2) the set $P = M' \cap X$ is closed in *X* and $P \cup \{z_1\} = (M' \cup \{z_1\}) \cap X$ and $P \cup \{x_{k_0}\} =$ $(M' \cup \{x_{k_0}\}) \cap X$ are not closed in *X*. Thus, *P* is a maximal comb in *X*. It is clear that $A^{X_J} \subseteq X_J = P$. Since $|P| = r$ and $P \cup \{z_1\}$, $P \cup \{x_{k_0}\}$ are not closed, we have that $X_I = P$ is of type 1. Therefore, the type of X_I does not depend on *X*. Moreover, the fact that X_I is of type 1 gives us that $a(P)$ = $a(X_J) = F(X_J)$. The minimality of X_J is immediate from the fact that all combs with non-empty data has size at least *r*.

Case 2: $M' \subseteq B$ for a maximal comb $I = A \cup B$ in V' .

Suppose without loss of generality that $I = A \cup B$ is a maximal left comb. Let $A =$ ${x_{k_0-p-\ell+1}, \ldots, x_{k_0-p}}$, $B \cap K_0 = {x_{k_0-p+1}, \ldots, x_{k_0}}$ and $B \cap K_1 = {z_1, \ldots, z_t}$. Set $J = {k_0 - p - z_1}$ $\ell + 1, \ldots, k_0 + r + t$. Let *X* be an edge of *H'* with petal *P* (see Figure [16\)](#page-17-0). Clearly, $X_J = I \cap X$. We claim that *X_J* is a maximal left comb with $P \subseteq B^{X_J}$. By Definition [2.4](#page-3-2) and [2.6](#page-5-2) we have that *A* is a

Figure 16. Case 2 of Proposition [5.5.](#page-15-1)

closed interval in $V', A \setminus \{x_{k_0-p}\}$ and $I \cup \{z_{t+1}\}$ are not closed in V' and

$$
\delta(x_{k_0-p}, x_{k_0-p+1}) > \ldots > \delta(x_{k_0-1}, x_{k_0}) > \delta(x_{k_0}, y_1) > \delta(y_1, y_2) > \ldots > \delta(y_{m'-1}, y_{m'})
$$

> $\delta(y_{m'}, z_1) > \delta(z_1, z_2) > \ldots > \delta(z_{t-1}, z_t).$

Let $P = \{y_i, \ldots, y_i\}$. By Proposition [5.2,](#page-13-2) the set $A = A \cap X$ is closed in *X* and the sets *A* \ { $x_{k_0−p}$ } = (*A* \ { $x_{k_0−p}$ }) ∩ *X* and $X_I \cup \{z_{t_1}\}$ = ($I \cup \{z_{t+1}\}$) ∩ *X* are not closed in *X*. Moreover, since $P \subseteq M'$, we have that

$$
\delta(x_{k_0-p}, x_{k_0-p+1}) > \ldots > \delta(x_{k_0-1}, x_{k_0}) > \delta(x_{k_0}, y_{i_1}) > \delta(y_{i_1}, y_{i_2}) > \ldots > \delta(y_{i_{r-1}}, y_{i_r}) > \delta(y_{i_r}, z_1) > \delta(z_1, z_2) > \ldots > \delta(z_{t-1}, z_t).
$$

Thus, by Definition [2.4](#page-3-2) and Definition [2.6,](#page-5-2) the interval X_I is a maximal left comb in *X* with A^{X_J} = *A* and $|B^{Xj}| = r + t + p$. Since $A \subseteq K_0$, we obtain that $P \subseteq B^{Xj}$. Note that to determine the type of X_I we need to know the sizes of X_I , A^{X_J} and B^{X_J} . None of this parameters depends on the choice of *X*. Hence, the type of *X_I* is independent of *X*. Finally, because $|B^{Xj}| \ge |P| \ge r$, we obtain that |*XJ*| *r* + 1 and consequently the comb *XJ* is of type 3, 4 or 5. If it is of type 3 or 4, then $a(P) \subseteq a(X_I) = F(X_I)$. If it is of type 5, then $a(P) \subseteq a(\max(A^{X_I}) \cup B^{X_I}) = F(X_I)$.

To finish the section we prove that the maximal comb determined by the set *J* is the comb that essentially determines the colour of the entire edge.

Proposition 5.6. Let $X = \{x_1, \ldots, x_{k+r}\}, X' = \{x'_1, \ldots, x'_{k+r}\}$ be two edges in H' and let $X_J =$ ${x_j}_{j \in J}$, $X'_{J} = {x'_{j}}_{j \in J}$. If $\chi(X) = \chi(X')$, then $\chi_0(X_{J}) = \chi_0(X'_{J})$.

Proof. Let *P*, $P' \subseteq M'$ be the petals of *X* and *X'*, respectively. By definition, $\chi(X) = \chi(X')$ implies that

$$
\sum_{I \in \mathcal{I}_X} \chi_0(I) = \sum_{I' \in \mathcal{I}_{X'}} \chi_0(I') \pmod{2}.
$$

By the definition of colouring data, if $F(I) = \emptyset$, then $\chi_0(I) = 0$. Thus, we may rewrite the equality above as

$$
\sum_{I \in \mathcal{I}_X} \chi_0(I) = \sum_{I' \in \mathcal{I}_{X'}} \chi_0(I) \pmod{2}.
$$
\n(4)

We claim that if $I = A \cup B$ is a maximal comb of *X* with $F(I) \neq \emptyset$, then either $I \cap P = \emptyset$ or $P \subseteq I$. Note that, in the colouring defined in Subsection [3.3,](#page-7-0) whenever $F(I) = \emptyset$, we have that $|I| \geq |P| = r$. By Lemma [5.1,](#page-10-1) the daisy H' satisfies one of the following conditions: Either M' is a closed interval in *V*' := *V*(*H*') or there exists a maximal comb $Q = A^{\overline{Q}} \cup B^Q$ such that $M' \subseteq B^Q$. If *M'* is closed in *V'*, then by Proposition [5.2](#page-13-2) the petal *P* = *M'* ∩ *X* is a closed interval in *X*. Thus, Proposition [2.3](#page-3-3) applied to the closed intervals *I* and *P* gives the desired result that either $I \cap P = \emptyset$ or $P \subseteq I$. Now suppose that we are in Condition (2) of Lemma [5.1.](#page-10-1) By Proposition [5.5,](#page-15-1) we have that $P \subseteq B^{X_f}$, where B^{X_J} is the "teeth" part of the comb $X_I = A^{X_J} \cup B^{X_J}$. Thus, Proposition [2.7](#page-5-3) applied to the maximal combs *I* and X_I implies that $I \cap X_I = \emptyset$, $I \subseteq A^{X_I}$ or $X_I \subseteq A \subseteq I$. In the first two cases we obtain *I* ∩ *P* = \emptyset , while in the latter we have *P* ⊆ *I*.

The idea of the proof of Proposition [5.6](#page-17-1) is to show that there exists a bijection between ${I \in \mathbb{R}^d}$ $\mathcal{I}_X: F(I) \neq \emptyset$ and $\{I' \in \mathcal{I}_{X'}: F(I') \neq \emptyset\}$ such that X_J is sent to X'_{J} and every $I \neq X_J$ is sent to an $I' \neq I$ *X'_J* with $\chi_0(I) = \chi_0(I')$. Hence, after some cancellation, we obtain from equation [\(4\)](#page-17-2) that $\chi_0(X_I)$ $\chi_0(X')$. Based on the last paragraph, we construct such a bijection by splitting {*I* ∈ *I*_X : *F*(*I*) $\neq \emptyset$ } into two parts:

Case 1: $I \in \mathcal{I}_X$ is a maximal comb of *X* with $F(I) \neq \emptyset$ and $I \cap P = \emptyset$.

We claim that *I* ∈ $\mathcal{I}_{X'}$ is a maximal comb in *X'* of the same type and consequently $\chi_0(I)$ is the same in *X* and *X'*. Assume without loss of generality that $I \subseteq K_0$. Let *x* be the element preceding min (*I*) in *X* (In the case that such *x* does not exists, we simply take $x = \min(I)$). Let *y* be the element after max (*I*) in *X*. Similarly, define x' as the element before min (*I*) in *X'* and y' as the element after max (*I*) in *X'*. Since $I \subseteq K_0$, clearly $x = x'$. However, *y* and y' are not necessarily the same. By conditions (a3*) and (b3*) of Definition [2.4](#page-3-2) and Definition [2.6,](#page-5-2) to prove that $I \in \mathcal{I}_{x'}$ is enough to check that $I\cup\{x\}$, $L\subseteq I$, $I\cup\{y\}$ are closed intervals in X if and only if $I\cup\{x'\}$, $L\subseteq I$ and $I \cup \{y'\}$ are closed intervals in *X'*, respectively. Since $F(I) = \neq \emptyset$, we have that *I* is of type 1, 3, 4 or 5. Note that one can distinguish between this types by determining the size of the "handle" and 'teeth" of *I*. Thus, by checking the properties above, we also obtain that *I* have the same type in X and X' .

For an interval $L \subseteq I$, by Proposition [5.2](#page-13-2) we have that $L = L \cap X$ is a closed interval in X if and only if it is a closed interval in V ^{\dot{I}}. Another application of Proposition [5.2](#page-13-2) gives us that $L = L \cap X'$ is a closed interval if it is closed in *V* . Hence, *L* is closed in *X* if and only if it is closed in *X* . Similarly, the same argument works for *I* ∪ {*x*} and *I* ∪ {*x'*}, because *x* = *x'* ∉ *M'*. Moreover, if *y* ∈ *K*₀, then *y*' = *y* ∉ *M*' and we also obtain that *I* ∪ {*y*} is closed in *X* if and only if *I* ∪ {*y*'} is closed in *X'*. Hence, the only case remaining is when $y \notin K_0$, i,e, $y = \min(P)$ and $y' = \min(P')$.

We split the argument into two cases depending on the structure given by Lemma [5.1.](#page-10-1) Suppose that *M'* is closed in *V'* and let $u = a(\min(M'), \max(M'))$ be the common ancestor of M' . By Fact [5.4,](#page-13-0) we have that $a(z, y) = a(z, y') = a(z, u)$ for every $z \in I$. Therefore, the entire set *M'* is descendant of the common ancestors of $I \cup \{y\}$ and $I \cup \{y'\}$, which by condition (ii $*$) of Definition [2.2](#page-3-1) implies that both sets are not closed. Now suppose that $M' \subseteq B^Q$ for some maximal comb $Q = A^Q \cup B^Q$. Since *I* is a closed interval in *X*, then by Proposition [5.2](#page-13-2) it is a closed interval in *V* . Thus, by Proposition [2.3,](#page-3-3) applied to *I* and the maximal comb *Q*, one of the following three possibilities holds: $I \cap Q = \emptyset$, $I \subseteq Q$ or $Q \subseteq I$. Clearly, the last possibility cannot hold, since $P \subseteq Q$ and *I* ∩ *P* = Ø. Suppose that *I* ∩ *Q* = Ø. By Proposition [5.2,](#page-13-2) the interval *Q* ∩ *X* is a closed interval in *X*. Since $(I \cup \{y\}) \cap (Q \cap X) = \{y\} \neq \emptyset$ and $\{y\} \neq Q \cap X$, we obtain by Proposition [2.3](#page-3-3) that $I \cup \{y\}$ is not closed in *X*. Similarly, $I \cup \{y'\}$ is not closed in *X'*.

Now we handle with the case that *I* ⊆ *Q*. By Proposition [2.7,](#page-5-3) either *I* ⊆ A^Q or *I* = $A \cup B$ is a comb with $A = A^Q$ and $B \subseteq B^Q$. Since $I \subseteq K_0$, we have that *Q* is a maximal left comb. Let $K_0^Q = K_0 \cap Q$, $B^Q = \{z_1, \ldots, z_b\}$ and let $Q_{z_i} = A^Q \cup \{z_1, \ldots, z_i\}$ be the subcomb of *Q* ending in *z_i*. By condition (a3*) of Definition [2.4,](#page-3-2) we have that A^{Q} and Q_{z} are closed in *V'* for every $z \in B^Q$. Moreover, note that min (*I*) $\in A^Q$. Let $v = a(\min(A^Q), \max(A^Q))$ and $w = a(\min(I), v)$ be the common ancestor of A^Q and $I \cup \{y\}$, respectively. By Fact [5.4](#page-13-0) applied to A^Q , we have that $a(\min(I), x) = a(v, x) = a(\min(A^Q), x)$ for every $x \in M'$. Thus, $X(w) = V'(w) \cap X = Q_y \cap X =$ $K_0^Q \cup \{y\}$, which implies that $I \cup \{y\}$ is a closed interval in *X* if and only if $I = K_0^Q$. Similarly, $I \cup \{y'\}$ is a closed interval in *X'* if and only if *I* = K_0^Q . Hence, *I* ∪ {*y*} is closed in *X* if and only if *I* ∪ {*y'*} is closed in *X* .

Case 2: *I* ∈ \mathcal{I}_X is a maximal comb of *X* with $F(I) \neq \emptyset$, $P \subseteq I$ and $I \neq X_I$.

In this case, by Proposition [4.2](#page-9-1) and Proposition [5.5,](#page-15-1) we have that $F(I) \cap a(P) = \emptyset$ and consequently $F(I) \neq a(I)$. Thus, by our colouring, we obtain that *I* is of type 5, i.e., $I = A \cup B$ is a maximal left/right comb with $|A| > r$ and $|B| \ge r$. We may assume that *I* is a maximal left comb. Hence, $F(I) = a({max (A)} \cup B)$ and the fact that $F(I) \cap a(P) = \emptyset$ implies that $P \subseteq A$. Write *A* = *K_A* ∪ *P* with *K_A* ⊆ *K*₀ ∪ *K*₁. We claim that *I'* = *K_A* ∪ *P'* ∪ *B* is a maximal comb of type 5 with set of "teeth" $B' = B$ and "handle" $A' = K_A \cup P'$.

Write $B = \{y_1, \ldots, y_t\}$. Let $x = \max(A), x' = \max(A')$ and let *z* be the element coming after *B* in *V'* (In case that such element does note exist, we take $z = \max(B)$). By condition (a3*) of Definition [2.4](#page-3-2) and Definition [2.6](#page-5-2) to prove that $I = A' \cup B'$ is a maximal comb of type 5 with $A' =$ $K_A\cup P$ and $B'=B$ it is enough to prove that A' and $A'\cup \{y_1,\ldots,y_i\}$ are closed in X' for every $1\leqslant$ *i* ≤ *t*, *A'* \setminus {*x'*} is not closed in *X'* and *A'* ∪ {*y*₁, ..., *y*_{*t*}, *z*} is closed if and only if *A* ∪ {*y*₁, ..., *y*_{*t*}, *z*} is closed in *X*. Applying Proposition [5.2](#page-13-2) with *X* and *V'* and then *V'* and *X'* gives us that *A*, *A* ∪ ${y_1, \ldots, y_i}$ and $\overline{A} \cup \{y_1, \ldots, y_t, z\}$ are closed in *X* if and only if A' , $A' \cup \{y_1, \ldots, y_i\}$ and $A' \cup$ ${y_1, \ldots, y_t, z}$ are closed in *X*['], respectively. Since *I* is a maximal comb in *X*, this implies that *A*['], $A' \cup \{y_1, \ldots, y_i\}$ are closed in X' for $1 \leq i \leq t$. If $x \notin P$, then $x = x'$ and by the same argument $A' \setminus \{x'\}$ is not closed in X' .

It remains to deal with the case that $x \in P$, i.e., $x = \max(P)$ and $x' = \max(P')$. The proof is split into two cases depending on the structure of *H* given by Lemma [5.1.](#page-10-1) If *M* is a closed interval in *V*['], then by Proposition [5.2](#page-13-2) the interval *P*['] is closed in *X*[']. The intersection *A'* \ {*x'*} is proper since $|A'| = |A| > r = |P'|$ and $x' \in P'$. Therefore, by Proposition [2.3,](#page-3-3) we have that $A' \setminus \{x'\}$ is not closed in *X* .

Now suppose that $M' \subseteq B^Q$ for some maximal comb $Q = A^Q \cup B^Q$. By Proposition [5.5,](#page-15-1) the maximal combs X_J and X'_J satisfies $P \subseteq B^{X_J}$ and $P' \subseteq B^{X'J}$. Applying Proposition [2.7](#page-5-3) to the maximal combs *I* and *X_J* gives us that either $I \subseteq A^{X_J}$ or $X_J \subseteq A$. Since $P \cap A^{X_J} = \emptyset$, it follows that $X_I \subseteq A$. Because $x = \max(A) \in P$, we have that $\max(K_A) < \min(P)$. This implies that X_I is a maximal left comb. Hence, by Proposition [5.5](#page-15-1) both *Q* and *X ^J* are maximal left combs.

We claim that $A' \setminus \{x'\} \cap X'_{J}$ is a proper intersection. Since $|X'_{J}| = |X_{J}| \leq |A| = |A'|$, by Proposition [2.3](#page-3-3) applied to *A'* and X'_{J} , we have that $X'_{J} \subseteq A'$. Note that we already proved for $1 ≤ i ≤ t$ that *A'* and $A' ∪ {y_1, …, y_i}$ are closed in *X'*. Hence, by the maximality of X' _{*J*} we have that $A' \neq X'$ _{*J*} (otherwise we could extend to the left comb X' _{*J*} ∪ *B*). Thus, X' _{*J*} is strictly contained in *A'*, which implies that $K_A \setminus X'_J \neq \emptyset$. This concludes that $A' \setminus \{x'\} \cap X'_J$ is proper and by Proposition [2.3](#page-3-3) the interval $A \setminus \{x\}$ is not closed in X' .

Therefore, the interval $I' = A' \cup B'$ is a maximal left comb in X' of type 5 with $A' = K_A \cup P'$ and $B' = B$. It is not difficult to check (by Proposition [5.2\)](#page-13-2) that the correspondence between *I* and *I'* is a bijection. Moreover, since $A = K_A \cup P$ is closed in *X*, we obtain by Proposition [5.2](#page-13-2) that $K_A \cup M'$ is closed in *V'*. It follows by Fact [5.4](#page-13-0) that $a(x, y_1) = a(x', y_1)$ and consequently than $F(I) = a(B \cup \{x\}) = a(B' \cup \{x'\}) = F(I')$. Hence, by Proposition [4.1](#page-9-2) we have $\chi_0(I) = \chi_0(I')$.

6. Main proof

The proof of Theorem [1.3](#page-1-2) follows by a simple induction of the following stepping up theorem.

Theorem 6.1. *Let* $m \ge 100kr^2$, $N = \min_{0 \le j \le k} \{D_{r-1}^{smp}(\frac{1}{5}k^{-1/2}m^{1/2}, j)\}$ *be integers and let* ${φ_i}_{r−1≤i≤k+r−1}}$ *be a family of colourings* $φ_i: [N]$ ^(*i*) → {0, 1} *without a monochromatic copy* *of a simple* $(r-1, \frac{1}{5}k^{-1/2}m^{1/2}, i-r+1)$ *-daisy. Then, the colouring* $\chi : [2^N]^{(k+r)} \to \{0, 1\}$ *described in Subsection [3.3](#page-7-0) does not contain a monochromatic simple* (*r*, *m*, *k*)*-daisy.*

Proof. Suppose by contradiction that there exists a monochromatic simple (*r*, *m*, *k*)-daisy *H* in $[2^N]^{(k+r)}$ with kernel $K = K_0 \cup K_1$ of size *k*, universe of petals *M* of size *m* and $K_0 < M < K_1$. By Lemma [5.1,](#page-10-1) we obtain a monochromatic simple $(r, \frac{1}{2}k^{-1/2}m^{1/2}, k)$ -daisy *H'* with same kernel and universe of petals $M' = \{y_1, \ldots, y_{m'}\} \subseteq M$ of size $m' = \frac{1}{2}k^{-1/2}m^{1/2}$ satisfying that either *M'* is a closed interval in $V' = V(H')$ or $\overline{M'}$ is part of the "teeth["] of a maximal comb $I = A \cup B$, i.e., $M' ⊂ B$.

Note that every edge $X \in H'$ can be written in the form $X = K_0 \cup P \cup K_1$ where $P \in (M')^{(r)}$ is a petal of *H'*. Since *H'* is monochromatic, we have that

$$
\chi(X) = \sum_{I \subseteq \mathcal{I}_X} \chi_0(I) \pmod{2}
$$

is constant, for every $X \in H'$. Thus, by Propositions [5.5](#page-15-1) and [5.6,](#page-17-1) there exists a unique interval *J* ⊆ $[k + r]$ such that for every *X* ∈ *E*(*H*[']) the interval *X_J* = {*x_j*}_{*j*∈*J*} is maximal comb with colour $\chi_0(X_I)$ constant.

As in the proof give in Subsection [3.1,](#page-5-4) our goal is to use the fact that the combs X_I are monochromatic with respect to χ_0 to find a large 1-comb. Let $t = |J| - r$ and let G be the simple $(r, \frac{1}{2}k^{-1/2}m^{1/2}, t)$ -daisy constructed by taking as edges the combs *X_J* for every edge *X* ∈ *H'*. To be more precise, let K_I be the subset of *t* vertices of $K_0 \cup K_1$ in the interval *J*. Note that every comb *X_I* can be partitioned into *X_I* = *K_I* ∪ *P*, where *P* ⊆ *M'* is the petal of *X*. We define *G* as the simple $(r, \frac{1}{2}k^{-1/2}m^{1/2}, t)$ -daisy given by

$$
V(G) = K_J \cup M'
$$

$$
G = \{X_J : X \in H'\}
$$

As discussed in the last paragraph the $(t + r)$ -graph *G* is monochromatic under the colouring χ_0 . The following lemma is a variant of Proposition [3.1](#page-6-1) for simple daisies.

Proposition 6.2. *If M is a closed interval in V*(*H*) *and G is monochromatic with respect to the colouring* χ_0 , then there exists an interval $M'' \subseteq M'$ of size $|M''| \geq (|M'| - r + 6)/2$ such that M'' *is a* 1*-comb in V* .

Proof. By Proposition [5.5,](#page-15-1) all the edges X_I of *G* are combs of the same type. Thus we may assume without loss of generality that X_I is either a broken comb or a ℓ -left comb in *X*. Since *M'* is closed, by the same proposition we obtain that $A^{X_J} \subseteq P$ and consequently $K_J \subseteq B^{X_J}$ for every edge $X \in H'$. Therefore, we either have $K_I = \emptyset$ (and X_I is a broken comb) or $P < K_I$ for every X, which implies that $K_J \subseteq K_1$, i.e., $M' < K_J$. Moreover, if X_J is an ℓ -left comb, then $A^{X_J} \subseteq P$ implies that $\ell \leq r$. This implies that X_I is either of type 1, 3 or 4.

We split the proof into two cases according to the size of $t = |K_J|$. Write $M' = \{y_1, \ldots, y_{m'}\}$, $K_J = \{y_{m'+1}, \ldots, y_{m'+t}\}\$ (if $K_J \neq \emptyset$) and $\delta_i^G = \delta(y_i, y_{i+1})$ for $1 \leq i \leq m' + t - 1$.

Case 1: $0 \leq t \leq r - 2$.

Since $|X_J| = r + t \le 2r - 2$, we obtain that X_J is either of type 1 or 3. The proof follow the same lines of the proof of Proposition [3.1.](#page-6-1) Write $P = \{y_{i_1}, \ldots, y_{i_r}\} \subseteq M'$ for indices $1 \leq i_1 < \ldots < i_r$ $i_r \leq m'$. Suppose without loss of generality that *G* is monochromatic of colour 0, i.e., $\chi_0(X_f) = 0$ for every $X_I \in G$. Thus, by the definition of χ_0 for combs of type 1 and 3, we do not have that $\delta_{i_{r-3}}^G < \delta_{i_{r-2}}^G > \delta_{i_{r-1}}^G$. In particular, because *X_J* is arbitrary, this implies that there are no indices *r* − 3 ≤ *p* < *q* < *s* ≤ *m'* − 1 such that δ_p^G < δ_q^G > δ_s^G . That is, the sequence $\{\delta_i^G\}_{i=r-3}^{m'-1}$ has no local maximum.

Now the same argument as in Proposition [3.1](#page-6-1) gives that there exists an interval $M'' =$ ${y_p, \ldots, y_q}$ ⊆ *M'* such that ${\delta_i^G}_{i}^{q-1}_{i=p}$ is monotone and $|M''|$ ≥ ($|M'|$ − *r* + 6)/2. By the definition given in Example [2.5,](#page-4-2) it follows that M'' is a 1-comb.

Case 2: *t* ≥ *r* − 1.

In this case X_I is a left comb of type 4 for every $X_I \in G$, since $|X_I| = |P| + |K_I| = r + t \geq 0$ 2*r* − 1. Suppose without loss of generality that *G* is monochromatic of colour 0 and that $\varphi_t({\delta}_{m'}^G, \ldots, {\delta}_{m'+t-1}^G) = 0$. Let $u = a(\min(M'), \max(M'))$. Fact [5.4](#page-13-0) applied to *M'* gives us that $\delta(z, y_{m'+1}) = \delta(u, y_{m'+1})$ for every $z \in M'$. In particular, this implies that $\delta(z, y_{m'+1}) = \delta_{m'}^G$ for every $z \in M'$.

Write $P = \{y_{i_1}, \ldots, y_{i_r}\} \subseteq M'$ with $1 \leq i_1 < \ldots < i_r \leq m'$ and $X_J = P \cup K_J =$ $\{y_{i_1}, \ldots, y_{i_r}, y_{m'}, \ldots, y_{m'+t-1}\}$. Since $\chi_0(X_j) = 0$, $\delta(y_{i_j}, y_{m'+1}) = \delta_{m'}^G$ for every $1 \leq j \leq r$ and $\varphi_t({\{\delta_{m'}^G,\ldots,\delta_{m'+t-1}^G\}})+1=1$ we obtain by the definition of χ_0 for combs of type 4 that the inequality $\delta_{i_{r-3}}^G < \delta_{i_{r-2}}^G > \delta_{i_{r-1}}^G$ cannot hold. Because X_J is arbitrary, we have that there are no indices $r-3\leqslant p < q < s \leqslant m'-1$ such that $\delta_p^G<\delta_q^G>\delta_s^G.$ Hence, similarly as in Case 1 we find an interval $M'' \subseteq M'$ of size at least $(|M'| - r + 6)/2$ such that M'' is a 1-comb in V' .

To finish the proof of Theorem [1.3](#page-1-2) we are going to show now that if *G* is monochromatic with respect to χ_0 , then there exists a monochromatic simple $(r-1, \frac{1}{5}k^{-1/2}m^{1/2}, j)$ -daisy in $\delta(G) \subseteq [N]$ with respect to some colouring φ_{i+r-1} . The proof is split into several cases depending on the structure of H' given by Lemma [5.1](#page-10-1) and on the possible types of X_I .

Case $1: M'$ is a closed interval in V' .

As usual, we may assume that an edge of *G* is either a broken comb or a left comb. By Proposition [6.2,](#page-20-0) there exists an interval $\tilde{M}'' \subseteq M'$ of size $h = (|M'| - r + 6)/2$ such that M'' is a 1-comb. Consider the colouring χ_0 over the monochromatic subdaisy $G' := G[K_I \cup M''] \subseteq G$. As in the proof of Proposition [6.2,](#page-20-0) we have that either X_I is a broken comb and $t = |K_I| = 0$ or X_I is an ℓ -left comb with $\ell \leq r$ and $M' < K_J$. Write $M'' = (\gamma_{i_1}, \ldots, \gamma_{i_h})$ with $1 \leq i_1 < \ldots < i_h < m'$, $K_J = \{y_{m'+1}, \ldots, y_{m'+t}\}$ (if $K_J \neq \emptyset$) and $\delta_i^G = \delta(y_i, y_{i+1})$.

Let $X_J = P \cup K_J = \{x_1, \ldots, x_r\} \cup \{y_{m'+1}, \ldots, y_{m'+t}\}\$ be an arbitrary edge from *G'* with $P \subseteq$ $(M'')^{(r)}$. Note that since *M''* is a 1-comb, then $\delta(x_{r-3}, x_{r-2})$, $\delta(x_{r-2}, x_{r-1})$, $\delta(x_{r-1}, x_r)$ forms a monotone sequence. Moreover, as discussed in Proposition [6.2,](#page-20-0) the comb *XJ* is of type 1, 3 or 4. Thus, by the colouring defined in Subsection [3.3,](#page-7-0) we have $\chi_0(X_I) = \varphi_{r+t-1}(\delta(X_I))$, i.e., the colour of *XJ* is determined by its full projection on the levels [*N*].

Let $u = a(\min(M'), \max(M'))$. Note that since M' is closed, by Fact [5.4](#page-13-0) we have that $a(x_r, y_{m'+1}) = a(u, y_{m'+1}) = a(y_{m'}, y_{m'+1})$. Consequently, we have that $\delta(x_r, y_{m'+1}) = \delta_{m'}^G$, which implies that $\delta(X_J) = {\delta(x_1, x_2), \ldots, \delta(x_{r-1}, x_r)} \cup {\delta^G_{m'}, \ldots, \delta^G_{m'+t-1}}$. Therefore the projection of all the edges of X_J forms a simple $(r-1, h-1, t)$ -daisy $D \subseteq [N]$ with universe of petals $\delta(M'')$ an kernel $K_D = {\delta_{m'}^G, \ldots, \delta_{m'+t-1}^G}$ satisfying $K_D < \delta(M'')$ (see Figure [17\)](#page-22-0). By the fact that *G'* is monochromatic with respect to χ_0 , we have that *D* is a monochromatic simple $(r-1, h-1, t)$ -daisy with respect to the colouring φ_{r+t-1} . This leads to a contradiction since *h* − 1 ≥ $(m' - r + 4)/2$ ≥ $\frac{1}{5}k^{-1/2}m^{1/2}$ for m ≥ 100 kr^2 and φ_{r+t-1} has no monochromatic simple (*r* − 1, ¹ ⁵ *^k*−1/2*m*1/2, *^t*)-daisy.

Case 2: There exists a maximal comb *I* = $A \cup B$ in *V*(*H*^{\prime}) such that $M' \subseteq B$

We may assume without loss of generality that $I = A \cup B$ is a left comb. Write $A =$ $\{y_1, \ldots, y_\ell\}, B_0 = B \cap K_0 = \{y_{\ell+1}, \ldots, y_{\ell+p}\}, M' = \{y_{\ell+p+1}, \ldots, y_{\ell+p+m'}\}$ and $B_1 = B \cap K_1 =$ $\{y_{\ell+p+m'+1}, \ldots, y_{\ell+p+m'+t}\}\$ (as in Figure [18\)](#page-22-1). By Proposition [5.5,](#page-15-1) $\dot{V}(G) = I$ and all the edges $X_J = A^{X_J} \cup B^{X_J} \in G$ are maximal left comb of same type with $A^{X_J} = A$, $B^{X_J} = B_0 \cup P \cup B_1$ and

Figure 17. Case 1 of Theorem [6.1.](#page-19-1)

Figure 18. Auxiliary tree of *G* in Case 2.

 $A < B_0 < P < B_1$. In particular, this implies that $|B^{X_J}| \geqslant r$ and X_J is of type 3, 4 or 5. We split the cases depending on the type of X_j . Let $\delta_i^G = \delta(y_i, y_{i+1})$ for $1 \leq i \leq \ell + p + m' + t - 1$. For an arbitrary edge $X_j \in G$, write $X_j = \{x_1, \ldots, x_{\ell+p+r+t}\}$ with $x_i = y_i$ for $1 \leq i \leq \ell+p$, $P =$ $\{x_{\ell+p+1}, \ldots, x_{\ell+p+r}\} \subseteq M'$ and $x_{\ell+p+r+i} = y_{\ell+p+m'+i}$ for $1 \leq i \leq t$ and let $\delta_i^{X_j} = \delta(x_i, x_{i+1})$ for $1 \leq i \leq \ell + p + r + t - 1.$

Case 2.1: X_I is of type 3.

Recall that if X_j is of type 3, then $|A^{X_j}| \leq r$ and $r \leq |X_j| = |A^{X_j}| + |B^{X_j}| \leq 2r - 2$. Because $|B^{Xj}| \geq r$, we obtain that $|A^{Xj}| \leq r-2$. This implies that $\{x_{r-1}, x_r\} \subseteq B^{Xj}$ and consequently $\delta_{r-3}^{X_J} > \delta_{r-2}^{X_J} > \delta_{r-1}^{X_J}$. Therefore, by the fact that $|\delta(X_J)| \geq |\delta(\{x_\ell, \ldots, x_{\ell+p+r+t}\})| = p + r + t \geq r$, we obtain that $\chi_0(X_I) = \varphi_{\delta(X_I)}(\delta(X_I)).$

Note that

$$
\delta(X_J) = \{\delta_1^G, \dots, \delta_{\ell+p-1}^G\} \cup \{\delta_{\ell+p}^{X_J}, \dots, \delta_{\ell+p+r-1}^{X_J}\} \cup \{\delta_{\ell+p+m'}^G, \dots, \delta_{\ell+p+m'+t-1}^G\}
$$

= $\delta(A \cup B_0) \cup \{\delta_{\ell+p}^{X_J}, \dots, \delta_{\ell+p+r-1}^{X_J}\} \cup \delta(\{y_{\ell+p+m'}\} \cup B_1).$

Hence, the projection of the edges of *G* is a simple $(r, m', |\delta(A \cup B_0)| + t)$ -daisy with kernel $\delta(A \cup B_0) \cup \delta({y_{\ell+p+m'}} \cup B_1)$ (as in Figure [19\)](#page-23-0). Since *G* is monochromatic with respect to χ_0 , we obtain that $\delta(G) \subseteq [N]$ is monochromatic with respect to the projection colouring, which is

Figure 19. Case 2.1 of Theorem [6.1.](#page-19-1)

a contradiction because any simple $(r, m', |\delta(A \cup B_0)| + t)$ -daisy contains a simple $(r - 1, m' - t)$ 1, $|\delta(A \cup B_0)| + t + 1$)-subdaisy and $m' - 1 \ge \frac{1}{5}k^{-1/2}m^{1/2}$.

Case 2.2: X_I is of type 4.

If X_J is of type 4, then $|A^{X_J}| \leq r$ and $|X_J| = |A^{X_J}| + |B^{X_J}| \geq 2r - 1$. We split the proof into two subcases depending on the sequence formed by $\{\delta_{r-3}^{X_J}, \delta_{r-2}^{X_J}, \delta_{r-1}^{X_J}\}$:

Case 2.2.a: Either $\delta_{r-3}^{X_J} > \delta_{r-2}^{X_J} < \delta_{r-1}^{X_J}$ or $\delta_{r-3}^{X_J} < \delta_{r-2}^{X_J} > \delta_{r-1}^{X_J}$.

Suppose without loss of generality that $\delta_{r-3}^{X_J} > \delta_{r-2}^{X_J} < \delta_{r-1}^{X_J}$. Hence, by the colouring definition, we have $\chi_0(X_J) = \varphi_{\ell+p+t}(\{\delta_r^{X_J}, \ldots, \delta_{\ell+p+r+t-1}^{X_J}\})$. Thus, we just need to look at the projection $\{\delta_r^{X_J},\ldots,\delta_{\ell+p+r+t-1}^{X_J}\}$ for every $X_J \in G$. Note that $\delta_{r-3}^{X_J} > \delta_{r-2}^{X_J} < \delta_{r-1}^{X_J}$ implies that $|A^{X_J}| \geq r-1$. Indeed, by the same argument made in Case 2.1, if $|A^{X_J}|\leqslant r-2$, then $\delta_{r-3}^{X_J}>\delta_{r-2}^{X_J}>\delta_{r-1}^{X_J}$, which is a contradiction. So, it follows that $r - 1 \leqslant |A^{X_f}| = \ell \leqslant r$.

Suppose that $|A^{X_j}| = r - 1$ and $B_0 = \emptyset$, i.e., $\ell = r - 1$, $p = 0$ and $M' = \{y_r, \ldots, y_{r+m'-1}\}$. Then the projection of the relevant part of an edge X_I can be written as

$$
\{\delta_r^{X_J}, \dots, \delta_{\ell+p+r+t-1}^{X_J}\} = \{\delta_r^{X_J}, \dots, \delta_{2r-2}^{X_J}\} \cup \{\delta_{r+m'-1}^G, \dots, \delta_{r+m'+t-2}^G\} = \delta(P) \cup \{\delta_{r+m'-1}^G, \dots, \delta_{r+m'+t-2}^G\},
$$

since $\delta_{2r-1+i}^{X_J} = \delta_{\ell+p+r+i}^{X_J} = \delta_{\ell+p+m'+i}^G = \delta_{2r+m'-1+i}^G$ for $0 \leqslant i \leqslant t-1$. Therefore, the projection of the edges *X_J* is a simple $(r-1, m'-1, t)$ -daisy with kernel $\{\delta_{r+m'-1}^G, \ldots, \delta_{r+m'+t-2}^G\}$ (see Figure [20\)](#page-24-0). Because *G* is monochromatic under χ_0 , the projection is also monochromatic under φ_{r+t-1} , which is a contradiction.

Now suppose that $|A^{X_j} \cup B_0| = \ell + p \ge r$. The relevant projection of X_j in this case would be

$$
\{\delta_r^{X_J}, \dots, \delta_{\ell+p+r+t-1}^{X_J}\} = \{\delta_r^G, \dots, \delta_{\ell+p-1}^G\} \cup \{\delta_{\ell+p}^{X_J}, \dots, \delta_{\ell+p+r-1}^{X_J}\} \cup \{\delta_{\ell+p+m'}^G, \dots, \delta_{\ell+p+m'+t-1}^G\},
$$

where the set $\{\delta^G_r,\ldots,\delta^G_{\ell+p-1}\}$ is empty for $\ell+p=r.$ Since $\{\delta^{X_J}_{\ell+p},\ldots,\delta^{X_J}_{\ell+p+r-1}\}=\delta(\{\gamma_{\ell+p}\}\cup P),$ we obtain that the projection of all edges X_J is a simple $(r, m', \ell + p + t - r)$ -daisy with kernel $\{\delta_r^G, \ldots, \delta_{\ell+p-1}^G\} \cup \{\delta_{\ell+p+m'}^G, \ldots, \delta_{\ell+p+m'+t-1}^G\}$. Because every simple $(r, m', \ell+p+t-r)$ -daisy contains an $(r-1, m' - 1, \ell + p + t - r + 1)$ -daisy and the projection is monochromatic with

Figure 20. Case 2.2 of Theorem [6.1](#page-19-1) when $|A| = r - 1$.

Figure 21. Case 2.3 of Theorem [6.1.](#page-19-1)

respect to $\varphi_{\ell+p+t-1}$, we obtain a monochromatic simple $(r-1, \frac{1}{5}k^{-1/2}m^{1/2}, \ell+p+t-r+$ 1)-daisy, which is a contradiction.

Case 2.2.b: Either $\delta_{r-3}^{X_J} < \delta_{r-2}^{X_J} < \delta_{r-1}^{X_J}$ or $\delta_{r-3}^{X_J} > \delta_{r-2}^{X_J} > \delta_{r-1}^{X_J}$.

In this case we obtain that $\chi_0(X_J) = \varphi_{|\delta(X_J)|}(\delta(X_J))$, i.e., the colouring of χ_0 is just the colouring of the projection of *XJ*. The proof now follows similarly as in Case 2.1.

Case 2.3: X_I is of type 5.

If X_J is of type 5, then $|A^{X_J}| > r$ and $|B^{X_J}| = p + r + t \geq r$. By the colouring definition, we have $\chi_0(X_J) = \varphi_{p+r+t}(\{\delta_\ell^{X_J}, \ldots, \delta_{\ell+p+r+t-1}^{X_J}\})$. The projection here can be rewritten as

$$
\{\delta_{\ell}^{X_f}, \dots, \delta_{\ell+p+r+t-1}^{X_f}\} = \{\delta_{\ell}^{G}, \dots, \delta_{\ell+p-1}^{G}\} \cup \{\delta(\{y_{\ell+p}\} \cup P) \cup \{\delta_{\ell+p+m'}, \dots, \delta_{\ell+p+m'+t-1}^{G}\} \cup \{\delta_{\ell+p+m'}^{G}\} \cup \{\delta_{\ell+p+m'}^{G}\}.
$$

Thus, the relevant projection over all edges X_J is a simple $(r, m', p + t)$ -daisy with kernel $\{\delta^G_\ell, \ldots, \delta^G_{\ell+p-1}\} \cup \{\delta^G_{\ell+p+m'}, \ldots, \delta^G_{\ell+p+m'+t-1}\}$ (see Figure [21\)](#page-24-1). Therefore, by the same argument did in the previous cases, we reach a contradiction since there is no monochromatic simple $(r-1, \frac{1}{5}k^{-1/2}m^{1/2}, p+t+1)$ -daisy in the colouring φ_{p+r+t} . □ **Proof of Theorem** [1.3.](#page-1-2) We will prove by induction on the size of *r* that there exists an absolute positive constants c and c' not depending on k and r such that

$$
D_r^{\text{smp}}(m,k) = t_{r-2}(c'(5\sqrt{k})^{2^{5-r}-4}m^{2^{4-r}}) \geq t_{r-2}(ck^{2^{4-r}-2}m^{2^{4-r}})
$$

holds for $k \geqslant 1$ and $m \geqslant (25k)^{2^r-1}$. For $r = 3$, the result follows by the next proposition given in [5].

Proposition 6.3 ([5], Proposition 1.2). *There exists a positive constant c not depending on k such that*

$$
D_3(m,k) \geqslant 2^{c'm^2}
$$

holds for $m > 3$ *.*

Now suppose that $r \ge 4$ and that for any integer $\ell < r$ the induction hypothesis is satisfied, i.e.,

$$
D_{\ell}^{\text{sup}}(m,k) \geq t_{\ell-2}(c'(5\sqrt{k})^{2^{5-\ell}-4}m^{2^{4-\ell}})
$$

for $m \geq (25k)^{2^{\ell}-1}$ and $k \geq 1$. Let $N = \min_{0 \leq i \leq k-1} D^{\text{sup}}_{r-1}(\frac{1}{5}k^{-1/2}m^{1/2}, i)$. For $i = 0$, by equation [\(2\)](#page-1-4) we have that

$$
D_{r-1}^{\text{sup}}\left(\frac{1}{5}k^{-1/2}m^{1/2},0\right) \ge R_{r-1}\left(\frac{1}{5}k^{-1/2}m^{1/2}\right) \ge t_{r-2}(c_1k^{-1}m)
$$

for a positive constant c_1 . Since $m \geqslant (25k)^{2^r-1}$, we obtain that $\frac{1}{5}k^{-1/2}m^{1/2} \geqslant (25k)^{2^{r-1}-1}$. Thus, by induction hypothesis we also have that

$$
D_{r-1}^{\text{sup}}\left(\frac{1}{5}k^{-1/2}m^{1/2},i\right) \geq t_{r-3}\left(c'(5\sqrt{i})^{2^{6-r}-4}\left(\frac{1}{5}k^{-1/2}m^{1/2}\right)^{2^{5-r}}\right),
$$

for $i \geqslant 1$. Therefore,

$$
N \geqslant \min\left\{t_{r-2}(c_1k^{-1}m), \min_{1 \leqslant i \leqslant k} \left\{t_{r-3}\left(c'(5\sqrt{i})^{2^{6-r}-4}\left(\frac{1}{5}k^{-1/2}m^{1/2}\right)^{2^{5-r}}\right)\right\}\right\}
$$

$$
\geqslant t_{r-3}(c'(5\sqrt{k})^{2^{5-r}-4}m^{2^{4-r}}).
$$

Finally, Theorem [6.1,](#page-19-1) applied to $m\geqslant (25k)^{2^r-1}\geqslant 100kr^2,$ gives us that

$$
D_r^{\text{sup}}(m,k) \geq 2^N \geq t^{r-2} (c'(5\sqrt{k})^{2^{5-r}-4} m^{2^{4-r}}).
$$

 \Box

Acknowledgements

The author thanks Pavel Pudlák and Vojtech Rödl for their comments on earlier versions of the manuscript.

References

- [1] Bollobás, B., Leader, I. and Malvenuto, C. (2011) Daisies and other Turán problems. *Combin. Probab. Comput.* **20**(5) 743–747.
- [2] Conlon, D., Fox, J. and Sudakov, B. (2013) An improved bound for the stepping-up lemma. *Discrete Appl. Math.* **161**(9) 1191–1196.
- [3] Erdős, P., Hajnal, A. and Rado, R. (1965) Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 93–196.

768 M. Sales

- [4] Graham, R. L., Rothschild, B. L. and Spencer, J. H. (2013) *Ramsey Theory*, Wiley Series in Discrete Mathematics and Optimization. Hoboken, NJ: John Wiley & Sons, Inc., Paperback edition of the second, 1990 edition [MR1044995].
- [5] Pudlák, P., Rödl, V. and Sales, M. (2024) On the Ramsey number of daisies I. doi: [10.1017/S0963548324000221.](https://doi.org/10.1017/S0963548324000221)

Cite this article: Sales M (2024). On the Ramsey numbers of daisies II. *Combinatorics, Probability and Computing* **33**, 742– 768. <https://doi.org/10.1017/S0963548324000208>