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Abstract

We recover Reidemeister’s theorem using C∞ functions and transversality.
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1. Reidemeister’s theorem

Reidemeister’s theorem is the main (if not only!) tool in a knot theorist’s toolbox. Knot
theorists deal with knots—a piece of rope, knotted, with both ends glued together.
Such a knot can be moved around, but one cannot cut the rope. The basic question is
to determine if a knot can be untied to recover a loop of rope or, more generally, if two
given knots are actually the same up to deformation. See for example Figure 1, where
all three knots are genuinely different, although that might not be that easy to see.

In a more mathematical language, the definition of a knot would be rephrased as an
embedding of a circle in R3, considered up to ambient isotopy. The precise meaning
we want to give to embedding will matter a little, but we ignore it for the moment.
Such a knot in 3-space can be represented by its projection onto R2, by forgetting, for
example, the third (vertical) coordinate. If every time that pieces of the curve overlap,
one remembers which one was above the other, then one can reconstruct the original
knot. We will call such a projection with the over/under information a knot diagram,
and consider that it is made of planar curves and crossings, as in Figure 2.

Unfortunately, the same knot gives rise to several diagrams that are not related to
each other by planar isotopies (see Figure 2). This is where Reidemeister’s theorem
comes into play. It is interesting to note that this theorem appeared in two papers
at about the same time: Reidemeister proved it in 1927 [15], and Alexander and his
student Briggs did so as well in the same year [1]. Alexander and Brigg’s paper refers
to Reidemeister’s one, which was written in January 1926 while theirs was received
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FIGURE 1. Three knots: left- and right-handed trefoil, trivial knot.

FIGURE 2. Three diagrams for the trivial knot.

FIGURE 3. The three Reidemeister moves.

in April 1927. Reidemeister’s paper contains pictures that are more easily readable
than those in Alexander and Brigg’s paper. All of this might explain the name of the
theorem, and also perhaps illustrate the importance of the pictures in our papers.

THEOREM 1.1 (Reidemeister’s theorem). Two diagrams represent the same knot if and
only if they are related by a sequence of planar isotopies and elementary moves, as
shown in Figure 3.

This theorem allows us to define invariants of knots from their diagrams and check
that they really are invariant by verifying only the three moves. An easy example is
to check that the number of 3-colourings of a knot is indeed an invariant (see the
Wikipedia page on Fox n-colorings).

The three moves listed above are local: if two diagrams differ by one of these
moves in a little area and are equal elsewhere, then they represent the same knot.
For example, in Figure 2, one passes from the diagram in the middle to the one on the
left by undoing a curl, which is Reidemeister’s first move. The fact that these moves
do produce equivalent knots is rather easy to observe: in the first case, if one just pulls
on both ends of the right-hand-side rope, then the curl disappears. In the second case,
having two parallel ropes, one can pull one of the two over the other one. The last case
is the effect of passing a piece of rope between two other ones that cross.

The harder part of the theorem is the converse direction: two diagrams that represent
the same knot can always be related by a sequence of moves. In both papers, the proofs
seem to follow the same lines, which, if you ever attended a knot theory class, are
probably the ones you have in mind—and that I want to complain about.
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[3] Reidemeister’s theorem using transversality 3

FIGURE 4. Wikipedia illustration for the Reidemeister moves (Image credit: Parcly Taxel.).

The Wikipedia illustration for the Reidemeister moves (see Figure 4) is representa-
tive of the method: the knot diagram is replaced by a broken line diagram, and then
a combinatorial argument is run to claim that the moves are enough to relate any two
broken line arrangements. I never liked that proof, because this is the kind of argument
that I can never get right. In such combinatorial arguments, I always forget one or
another sub-case. Hence, the purpose of this article is to present another, more modern
proof, which I find more illuminating.

2. Transversality

The strategy is based on the following observation. Take a representative of a knot,
place it under a light and observe the shade on the floor. Almost surely, what you will
see is a knot diagram: it is unlikely, for example, that three pieces of rope overlap,
and if that is the case, a bit of wiggling will take them apart. Now, make the knot
move: pull on some bit, turn it around and curl some other bit. All of this translates in
a motion of diagrams, except that, sometimes, one briefly sees something that is not
a diagram: typically, three strands can overlap in the projection, but this is a singular
event that does not last. This motion is made of planar isotopies (when no such singular
event happens) and isolated times when one passes through projections that are not
diagrams. A closer analysis will yield the three Reidemeister moves, and this heuristic
will be formally justified by using transversality arguments.

Transversality goes back to Thom [17, 18] (see also [9] for a gentle introduction to
the topic), and although Thom’s results are very famous, I must confess that I know
very little about them. One thing I know that transversality aims at saying is that one
can assume that, in general, objects that cannot avoid each other intersect in a standard
way—and by standard, we mean transverse. For example, it is clear that a road joining
Adelaide to Darwin could not avoid crossing a road joining Perth to Cairns. However
one could hope that there is a single crossing, and that at the crossing, the roads form
a genuine cross. (A quick look at an Australian road map seems to indicate that the
reality does not meet the theory, as routes from Perth to Cairns seem to merge with
the South–North road for part of the journey.) In a more formal language, we will
say that two submanifolds intersect transversally if the tangent spaces at any point of
intersection span the tangent space of the ambient manifold at that point. In particular,
if the dimensions of the submanifolds add up to strictly less than the ambient manifold,
then they will not intersect at all (or equivalently, if the codimension of one is strictly
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Transverse Not transverse

FIGURE 5. Curves in the plane.

larger than the dimension of the other one). In the case of two curves in the plane, the
tangent vectors at intersection points should not be collinear (see Figure 5).

The transversality result we will be using is due to Mather [11], and a good account
of the multijet theory can be found in the book by Golubitsky and Guillemin [7]. The
idea of using transversality arguments for knot theory is not new either and appeared
for example in a paper by Roseman [16]. It is also worth noting that the proof of the
Reidemeister theorem presented in the book by Ozsváth et al. [13, Appendix B.1] relies
on a theorem of Whitney that can be proved using multijet transversality.

Here is a quick account of the setup we will want to use. Let X and Y be smooth
manifolds. Later on, X will be a circle S1 and Y the 3-space. Note that topologists
rarely work in the smooth setting—but it is quite useful here.

Informally, we will want to record a map from X to Y by its first derivatives at a
given point. How many derivatives we want to retain depends on the precision we
need. More precisely, let us denote by Jk(X, Y)p,q the set of equivalence classes for
mappings f : X → Y with f (p) = q, where the equivalence relation is that f ∼k g if f
has kth-order contact with g at p. This property is inductively defined as follows:

• if k = 1, (d f )p = (dg)p;
• if k > 1, (d f )p and (dg)p have (k − 1)st-order contact at every point in TpX, the

tangent space of X at the point p.

This amounts to asking that all partial derivatives of order up to k agree (notice that in
the case where k > 1, one ends up comparing higher differentials). Then one can form

Jk(X, Y) =
⋃

(p,q)∈X×Y

Jk(X, Y)p,q,

the elements of which are called k-jets from X to Y. The set Jk(X, Y) can be given the
structure of a finite-dimensional smooth manifold in a natural way. This will be our
ambient manifold later on.

Given f : X → Y , there is an associated k-jet jk f : X → Jk(X, Y). This can be
thought of as the graph of f, except that one also retains derivatives.

Now, consider the s-fold product space Xs and the subspace X(s) formed by distinct
points, as follows:

Xs = X × · · · × X and X(s) = {(x1, . . . , xs) ∈ Xs | for all i, j, xi � xj}.
One has source maps

α : Jk(X, Y) �→ X, αs : (Jk(X, Y))s �→ Xs
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[5] Reidemeister’s theorem using transversality 5

and one can form the s-fold k-jet bundle

Jk
s (X, Y) = (αs)−1(X(s)).

As before, given a mapping f : X → Y , there is an associated s-fold k-jet map
jks f : X(s) → Jk

s (X, Y). All of this is a way to formalise the fact that the map jks f
describes the behaviour of f up to order k at s distinct points of X.

We can at last state the following theorem of Mather (see [11, Proposition 3.3])
generalising Thom’s transversality theorems [17, 18].

THEOREM 2.1 (Multijet transversality theorem; [7, Theorem 4.13]). Let W be a
submanifold of Jk

s (X, Y). Let

TW = { f ∈ C∞(X, Y) | jks f �̄W}.
Then, TW is a residual subset of C∞(X, Y). Moreover, if W is compact, then TW is open.

The symbol �̄ is the notation for transverse intersection and residual means that it
is the countable intersection of open dense subsets. In the case of a Baire space (which
C∞(X, Y) is), this implies that it is dense.

Our strategy to prove Reidemeister’s theorem will be as follows: each rule for being
a diagram (no triple points, no nontransverse double points, no cusps) corresponds
to a submanifold W that we wish to avoid. Given a knot, we will make sure that its
associated jet can be assumed to avoid each of these submanifolds W. Then, given
an isotopy of a knot as a 1-parameter (time) family of knots, transversality will show
that one cannot have a diagram at all time, but failures will be isolated, and their
neighbourhoods can be controlled: these are the three Reidemeister moves.

3. Proving the theorem of Reidemeister

Let us now try to prove Reidemeister’s theorem.

3.1. Diagrams. First, we need to agree on what a knot diagram is. Let f : S1 �→ R3

be a smooth injective map that represents a knot, denote by (x, y, z) the coordinates in
R

3 and consider p : R3 �→ R2 the projection that forgets the z coordinate. We will say
that p ◦ f is a diagram if:

(1) p ◦ f ′ never vanishes;
(2) the only multiple points are double points;
(3) double points are transverse.

Here and in what follows, we often neglect the over/under information at crossings, and
thus consider diagrams as singular curves. This over/under information is controlled
by the third coordinate, determining which of the two preimages at an intersection has
the highest z-coordinate.

Before moving any further, let us make sure that injective maps from S1 �→ R3 are
generic. This will be the first application of the transversality techniques. Since we
want to study double points, we will look at the images under f of two points on
S

1: m1 = f (u1), m2 = f (u2). Such quadruples (u1, u2, m1, m2) are values at a point of
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jets in J0
2(S1,R3). The situation we wish to avoid is when m1 = m2. So let us consider

the following submanifold of J0
2(S1,R3):

W = {(u1, u2, m1, m2) | m1 = m2}.

Asking that m1 = m2 means that the three coordinates of m2 ∈ R3 are determined by
those of m1. This means that W has codimension 3. Since we have two points u1 and
u2 moving on the circle, (u1, u2, f (u1), f (u2)) draws a jet of dimension 2. As 2 < 3,
generically, a jet does not meet W. So generically, one can assume it never happens
that f (u1) = f (u2) with u1 � u2, which means that injectivity is a generic condition.

Now let us run the same sanity checks to see that knots do generically admit
diagrams. Consider (1): we want to show that a generic function f will never have a
derivative whose two-dimensional projection vanishes. Here we care about one point at
a time, but we want to control both f and its derivative: we will thus work in J1

1(S1,R3).
Points in J1

1(S1,R3) are triples (u, m, D) with u ∈ S1, m ∈ R3 and D ∈ M3,1(R) a 3 by 1
real matrix representing the derivative of f at a point. The singular situation we want to
avoid is when this derivative has vanishing x and y coordinates, since then it projects
to zero in R2. This motivates introducing the following submanifold of J1

1(S1,R3):

W =

⎧⎪⎪⎨⎪⎪⎩(u, m, D) | u ∈ S1, m ∈ R3, D =

⎛⎜⎜⎜⎜⎜⎝00
z

⎞⎟⎟⎟⎟⎟⎠ ∈ M3,1(R)

⎫⎪⎪⎬⎪⎪⎭ .

Now W is a submanifold of dimension 5 (1 for u, 3 for m, 1 for z) in a space of
dimension 7. Thus, it has codimension 7 − 5 = 2. Given f, it has a 1-jet

{(u, f (u), f ′(u)) | u ∈ S1}

of dimension 1. Since 1 < 2, transverse intersections between the 1-jet of f and W are
empty. Up to small deformation of f, one can assume that p ◦ f ′ never vanishes.

Let us run the same game with (2). Asking that multiple points have multiplicity 2
at worst amounts to asking that there are no points of multiplicity 3 or higher in the
projection. In this case, one considers W ⊂ J0

3(S1,R3):

W = {(u1, u2, u3, m1, m2, m3) | ui ∈ S1, mi ∈ R3, p(m1) = p(m2) = p(m3)}.

Here, W has codimension 4: u1, u2, u3 and m1 can be freely chosen, but the x and
y coordinates of m2 and m3 are fixed. Fixing 4 parameters means that we are in
codimension 4. The graph {(u1, u2, u3, f (u1), f (u2), f (u3))} however has dimension 3.
Since 3 < 4, one can assume generically that there are no triple (or higher order)
intersections.

Let us now move to (3). We work in J1
2(S1,R3), with

W =
{
(u1, u2, m1, m2, D1, D2)

∣∣∣∣∣ ui ∈ S1, mi ∈ R3, Di ∈ M3,1(R),
p(m1) = p(m2), p(D1) ∧ p(D2) = 0

}
.

The condition p(D1) ∧ p(D2) = 0 asserts that D1 and D2 should have proportional x
and y coordinates. Indeed, the local picture to have in mind is that two lines intersect
at a point (see Figure 5). The intersection is transverse if the tangent vectors span a

https://doi.org/10.1017/S0004972724000844 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000844


[7] Reidemeister’s theorem using transversality 7

FIGURE 6. Local model for knot diagrams.

plane. If not, they are proportional. This is a codimension 1 condition, and asking
furthermore that p(m1) = p(m2) is a codimension 2 condition. Altogether, we have a
codimension 3 submanifold W and a dimension 2 graph. Again, generically, double
points can be assumed to be transverse.

We have thus just proven that (1)–(3) are generic for a knot. Let us now take
a look at what a knot diagram actually looks like. From the above discussion,
projections are either points of multiplicity one with nonvanishing tangent, or points
of multiplicity 2 that are transverse intersections. Notice that for double points, the
singular submanifold uses p(m1) = p(m2), so is of codimension 2 for a graph of
dimension 2. One cannot avoid such situations, but transverse intersections when
codimension and dimension agree consist of isolated points.

Consider u0 ∈ S1 so that p( f (u0)) has f (u0) as the only pre-image. Then, running a
Taylor expansion, one can write

p ◦ f (u0 + δ) = p ◦ f (u0) + δ(p ◦ f ′(u0)) + o(δ).

Locally, the knot diagram looks like a line segment that passes through p ◦ f (u0) and
has direction p ◦ f ′(u0) which we have assumed is nonzero: see the left picture in
Figure 6, where we have added the tangent vector in red.

In the case of a double point, one has two points u1, u2 ∈ S1 such that p ◦ f (u1) =
p ◦ f (u2). Focusing on neighbourhoods of u1 and u2, one obtains line segments passing
through p ◦ f (u1) with directions respectively p ◦ f ′(u1) and p ◦ f ′(u2). We have
assumed these two vectors to be not collinear. Locally, the picture looks like the one
on the right-hand side of Figure 6.

At this point, we have proven that a knot generically admits a projection made of
elementary pieces that are either segments of curves, or transverse intersections of two
curves—in other words, crossings. We usually also record over/under information to
remember which of the two strands passes over the other one in three dimensions.

3.2. Isotopies. Now, let us move to the more serious part of Reidemeister’s theorem.
We first need to make sense of knot isotopies.

Let us consider a smooth 1-parameter family ft : S1 �→ R3 of knots, for t ∈ [0, 1].
We will run the same kind of analysis as before, but this time, the functions used are
2-parameter functions:

S
2 × [0, 1] → R

3

(x, t) → f (x, t).
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Remember that knots correspond to injective maps: we demand that there are no
multiple points. Now that transversality holds no secret from us, let us consider the
singular locus for the failure of injectivity:

W = {(u1, t1, u2, t2, m1, m2) | t1 = t2, m1 = m2} ⊂ J0
2(S1 × [0, 1],R3).

This is a codimension 4 submanifold, when the graph is also of dimension 4. Here
comes a surprise: generically, when moving a knot, one cannot avoid having strands
cross. On second thought, this is not that surprising: this is akin to saying that two
roads cannot always avoid crossing. However, such crossings occur at isolated points,
and thus one can define an isotopy to be a 1-parameter family of smooth maps with no
such double (or higher-order, for that matter) points.

The easiest of the situations is when ft is a knot with generic projection; then writing
a zero-order Taylor expansion:

p ◦ ft0+δ(u) = p ◦ ft0 (u) + O(δ)

shows that locally, the projection remains an admissible diagram (it is just moved
around by a small deformation).

Now, let us revisit what happens with (1)–(3) through time. We will see that these
conditions can fail, but each time, this will only occur at isolated points and then
we will be able to give a local model for the isotopy (which will precisely recover
the Reidemeister moves). We will give a detailed treatment to the first one, and only
indicate the main ideas for the other two. The first one is the most elegant one, in any
case.

3.3. First condition. Adding the time parameter, (1) now gets assigned as the
singular locus of the submanifold W of J1

1(S1 × [0, 1],R3):

W =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(u, t, m, D)
∣∣∣∣∣ u ∈ S1, t ∈ [0, 1], m ∈ R3, D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 ∗
0 ∗
∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Here, D represents (∂ f /∂u, ∂ f /∂t). To make the notation a bit lighter, we will
sometimes keep using the notation f ′t0 for the u derivative. The submanifold W is
of codimension 2 just like it used to be, but the difference is that now the graph
{(u, t, ft(u), D fu,t)} is of dimension 2: one can only reduce the locus to isolated points
where the condition is not met, but cannot rule it out completely.

Let us thus fix (u0, t0) such that f ′t0 (u0) is supported in the �z direction. Suppose

f ′t0 (u0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
az

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

We may assume that az � 0. Indeed, requiring in W that the z coordinate also vanishes
would increase the codimension by 1, and generically there would be no intersection.
A similar argument (which requires us to go to J2

1) shows that one may assume that
p ◦ f ′′t0 (u0) is nonzero. Up to applying a rotation in the (x, y) plane, one may reduce to
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FIGURE 7. The cusp at δ = 0.

p ◦ f ′′t0 (u0) =
(
bx
0

)
, bx > 0.

Then, again by use of transversality arguments, the y-coordinate cy in f ′′′t0 (u0) as
well as the y-coordinate ey of (∂2 f /∂u∂t) at (t0, u0) are not zero. We will also be
using the coordinates dx and dy of (∂ f /∂t)t0 (u0). Running a Taylor expansion at point
(t0 + δ, u0 + ε) yields

p ◦ ft0+δ(u0 + ε) ∼ p ◦ ft0 (u0) +
(

bxε
2 + dxδ

eyεδ + cyε
3 + dyδ

)
.

The terms purely in δ are just causing a global drift of the picture and can be ignored.
Assume that cy > 0 (the case cy < 0 would be very similar). At δ = 0, this draws a
cusp. For example, at cy = bx = 1, this is the cusp shown in Figure 7.

We now want to understand the behaviour of this curve as the time evolves. Up to
changing t to −t, one can assume that ey > 0. Then for small positive values of δ, we
have an additional component eyεδ in the y direction that pushes up the part of the
curve with ε > 0 and pushes down the part of the curve with ε < 0; this has the result
of smoothing the cusp.

The effect of the transformation for δ < 0 goes in the other direction: the upper part
of the curve is pushed down and the bottom part is pushed up. For small enough values
of ε, then, εδ � ε3 and the term in εδ dominates in the y coordinate. At larger ε, we
go back to the first picture, as ε3 dominates εδ. We illustrate in Figure 8 how to pass
from the δ = 0 picture in the centre to negative and positive δ. The picture on the left
has parameters ey = 1, δ = −1, and the one on the right has ey = 1, δ = 1.

The value of az will then control which of the two strands passes over the other one
at the crossing. We thus have just described the first Reidemeister move.

3.4. Second condition. Let us now consider (2), asking that there are no points of
multiplicity 3 or higher in the projection. As before, adding the time parameter means
that we cannot avoid points of multiplicity 3, but they arise at isolated points and
all further conditions we want to assume on higher derivatives are generic. Consider
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FIGURE 8. Finding RI .

FIGURE 9. A line drifting across the intersection of two lines.

u1, u2, u3 ∈ S1 and t0 ∈ [0, 1], so that p ◦ ft0 (ui) = m ∈ R2 (same m) for i = 1, 2, 3. The
local picture is that we have three line segments intersecting at point m, with directions
�v1, �v2 and �v3 that can be assumed to not be pairwise collinear. Denote by �wi the time
derivative at (t0, ui). One has

ft0+δ(ui + ε) ∼ m + δ �wi + ε�vi.

Again, the vectors �wi can be assumed not to be pairwise collinear. Up to a global
translation move, we can fix the intersection point between the first two lines, and
the situation is then one of three line segments, two of them fixed and the third one
drifting at constant speed along a direction that is not parallel to the directions of the
first two line segments. A bit of handwaving or a few lines of equations bring us to the
situation shown in Figure 9. It only remains to analyse differences in height to obtain
Reidemeister’s third move.

3.5. Third condition. The failure of (3) will yield Reidemeister’s second move.
To see this, one considers a double point where both derivatives have collinear
projections in the (x, y) plane. First, one can write the corresponding singular
submanifold of J1

2(S1 × [0, 1],R3) and check that such situations happen at isolated
points. Up to symmetry, one may assume that both derivatives are supported in the x
direction. Then at the singular time t0, the two pieces of curves in the (x, y) plane are
each described by a parametric equation of the kind (aiε, biε

2), meaning that we have
two parabolas, as shown in Figure 10.

Now through time, each of the two curves will evolve according to the time
derivatives at the double point that can be assumed to be linearly independent. This
yields the second Reidemeister move.
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FIGURE 10. Illustrations of parabolas.

3.6. Anything else? We have thus recovered all three moves. Let us make sure that
we have considered all singular situations. Let us first look at multiple points. What
we have seen is that double and triple points cannot be avoided, but one can easily see
that no higher order multiple points will occur. For triple points, we have completely
described their neighbourhood. For double points, if (2) is fulfilled, then locally
through time the crossing is just transported and this amounts to a planar isotopy.
If not, then we are in the situation analysed previously. For simple points, then either
(1) holds and one again locally has a planar isotopy, or it does not, and we have argued
that this yields the first Reidemeister move. This exhausts all possible situations.

4. Reidemeister-like theorems

Reidemeister’s theorem has seen several extensions over the years. Framed versions
of links have been considered, where the first move RI is replaced by another move R′I .
Versions for graphs also exist [8]. Other kinds of diagrams, like those for Heegaard
splittings of 3-manifolds, can also be considered (see [10] for a transversality-based
proof by François Laudenbach). My personal reason for revisiting these questions,
with the organising principle of transversality, is because I care about similar questions
one dimension higher. One can indeed look at embedded surfaces in R4 and their
isotopies. This is the central question of a book by Carter and Saito [5], based on
their original research work with Rieger [3, 4], as well as work of Fischer [6] and
Baez and Langford [2]. See also [12] for recent developments related to transversality.
My own interest in the topic lies in the extension from surfaces to a kind of singular
surface called foams (see the recent paper [14] of Kevin Walker and references therein).
Having such theorems at hand, the use is then always the same one: prove that some
function (in my case, Khovanov homology) defined on a choice of a diagram does not
depend on the specific diagram, but only on the knot it represents.
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