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Patterns among square roots of the 2 × 2 identity matrix

HOWARD SPORN

1.  The problem and its solution

The  identity matrix, , has an infinite number of

square roots.  The purpose of this paper is to show some interesting patterns
that appear among these square roots.  In the process, we will take a brief
tour of some topics in number theory, including Pythagorean triples,
Eisenstein triples, Fibonacci numbers, Pell numbers and Diophantine triples.

2 × 2 I2 = ( )1 0
0 1

For this paper, we will only consider matrices whose entries are integers
or rational numbers.

Finding the general form of the square roots is straightforward. We have

, so .( )2

= I
p q
r s ( ) = ( )p2 + qr q (p + s)

r (p + s) s2 + qr
1 0
0 1

Since  it follows that  or  or both.q (p + s) = 0 q = 0 p + s = 0

Similarly, since , it follows that , or  or
both. Note that 

r (p + s) = 0 r = 0 p + s = 0

p2 + qr = 1. (1)

Case 1:  and , so  could be 0 but does not have to be.
Since  we have , and we get four matrices:

q = 0 r = 0 p + s
p2 + qr = s2 + qr = 1 p2 = s2 = 1

I = ( ) ,  − I = ( ) ,  ( ) ,  ( ) .1 0
0 1

−1 0
0 −1

1 0
0 −1

−1 0
0 1

  
Case 2: ,  and . In that case we have  and

 so we get  and , where  is any rational

number other than 0.

q = 0 p + s = 0 r ≠ 0 s = −p

p2 = s2 = 1 ( )1 0
r −1 ( )−1 0

r 1
r

Case 3: ,  and . In that case we have  and

, so we get  and  where  is any rational

number other than 0.

r = 0 p + s = 0 q ≠ 0 s = −p

p2 = s2 = 1 ( )1 q
0 −1 ( )−1 q

0 1
q

Case 4: ,  and . By (1) we have  and so we

get  where  is any rational number other than 0.  This includes the

matrices  and .

r ≠ 0 q ≠ 0 p = s = 0 qr = 1

( )0 q
1
q 0

q

( )0 1
1 0 ( )0 −1

−1 0
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Case 5:  but none of the matrix elements is 0.  By (1) we have

. We get  where . That is, we get

p + s = 0

r =
1 − p2

q ( )p q
r −p

r =
1 − p2

q

( ) . (2)
p q

1 − p2

q −p

This is the interesting case.
Remember that ,  and  are rational numbers. Define  to be the least

common denominator of ,  and . Then define ,  and  by

 and . Then from (1) we get the quadratic equation

p q r t
p q r x y z

p =
x
t
, q =

y
t

r =
z
t

x2 + yz = t2, (3)
and the matrix

( ) (4)
x
t

y
t

z
t −x

t

is a square root of .I2

2.  Variations

If  is a square root of , then we can construct other square

roots by negating the diagonal elements, negating the off-diagonal elements,
negating all the elements, and by taking the transpose in each case.  We thus
construct the following matrices which are also square roots of :

( )p q
r −p

I2

I2

( ), ( ), ( ), ( ), ( ), ( ), ( ).  (5)
−p q
r p

p −q
−r −p

−p −q
−r p

p r
q −p

−p r
q p

p −r
−q −p

−p −r
−q p

Furthermore, we can rewrite  as , which is of
the form (3), and use (4) to generate 8 more square roots of :

p2 + qr = 1 12 + (−q) r = p2

I2

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ). (6)
1
p

−q
p

r
p

−1
p

−1
p

−q
p

r
p

1
p

1
p

q
p

−r
p

−1
p

−1
p

q
p

−r
p

1
p

1
p

r
p

−q
p

−1
p

−1
p

r
p

−q
p

1
p

1
p

−r
p

q
p

−1
p

−1
p

−r
p

q
p

1
p

Thus for any matrix in this Article which is a square root of  of the form
(2), we can generate 15 others using (5) and (6).

I2

3.  Pythagorean triples 
Recall that a Pythagorean triple is a triple of positive integers

satisfying . Using (2), it is easy to try various values of  and
, and then to look for patterns.  One such pattern is that if we let

then the left-hand column of the resulting matrix is suggestive of a

(a, b, c)
a2 + b2 + c2 p

q q = 2
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Pythagorean triple.  Two examples are  and . We will

negate the off-diagonal elements so that the left-hand column elements are
both positive.  We have:

( )3 2
−4 −3 ( )5 2

−12 −5

( ) , ( ) , ( ) , ( ) , ( ) , …3 −2
4 −3

5 −2
12 −5

7 −2
24 −7

9 −2
40 −9

11 −2
60 −11

Thus if the upper right-hand element is , then the left-hand column
contains the legs, i.e. the  and  elements, of a Pythagorean triple .
The triples here are 

−2
a b (a, b, c)

(3,  4,  5) , (5,  12,  13) , (7,  24,  25) , (9,  40,  41) , (11,  60,  61) , … .
Triples of this form are known as the Pythagorean family of Pythagorean
triples [1]. They are of the form  where ,
and . Then it is easy to show that . This is of

the form (3), and so from (4) we get that  is a square root of .

(a, b, c) a = 2n + 1 b = 2n(n + 1)
c = b + 1 a2 + (−2) b = 1

( )a −2
b −a

I2

In general, from (2), the matrix we get is . The left-

hand column elements give us the Pythagorean triple
with integer entries if  is odd.

( )p −2
1
2 (p2 − 1) −p

(p, 1
2 (p2 − 1), 1

2 (p2 + 1))
p

If the upper right-hand element of the matrix is not  but some other
non-zero integer, we can still use the left-hand column entries to generate

quickly a Pythagorean triple.  From (1) and (2), our matrix is ,

where . This latter can be written .

±2

( )p q
r −p

p2 + qr = 1 −qr = p2 − 1
If we multiply the upper left-hand entry by 2, and the lower left-hand

entry by  then the entries on the left-hand column become  and
. If  is an odd number, we get the Pythagorean triple

 which is equivalent to the Pythagorean family mentioned
above.  If  is even, we get triples of the form .
Triples of this form belong to what is known as the Platonic family of
Pythagorean triples [1].

−q 2p
−qr = p2 − 1 p
(2p,  p2 − 1,  p2 + 1)

p (4n, 4n2 − 1, 4n2 + 1)

Example

In (2), let . We get  We will choose  values

such that  is an integer.  Thus , and so either
 or .  We get the matrices

q = −3 ( ) .
p −3

1
3 (p2 − 1) −p

p

1
3 (p2 − 1) p2 = 1 mod 3

p = 1 mod 3 p = 2 mod 3

( ) , ( ) , ( ) , ( ) , ( ) , … .2 −3
1 −2

4 −3
5 −4

5 −3
8 −5

7 −3
16 −7

8 −3
21 −8
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Multiplying the upper left-hand entries by 2 and the lower left-hand entries
by 3 gives the Pythagorean triples

(4, 3, 5) , (8, 15, 17) , (10, 24, 26) , (14, 48, 50) , (16, 63, 65) , … .
An interesting question to ask is: using  can we construct a

matrix which is a square root of  and which is associated with any
Pythagorean triple we name?  The answer is yes.  Suppose we want to build
a matrix which is associated with the Pythagorean triple . That
means the left-hand column of the matrix must consist of elements  and ,
or multiples of  and .  Then the matrix is of the form 

q = −2
I2

(a, b, c)
a b

a b

( ) = ( ) , (7)
a
k −2
b
k −a

k

a
k −2k

k

b
k −a

k

where  is a positive constant to be determined.  We compare (7) with (4),
and (3) becomes .  We thus get the quadratic equation

 where  is the unknown.  Using the quadratic formula,
we have . Since
is positive, we get 

k
a2 − 2kb = k2

k2 + 2bk − a2 = 0 k
k = 1

2 (−2b ± 4b2 + 4a2) = 1
2 (−2b ± 2 b2 + a2) = −b ± c2 k

k = c − b. (8)
 

Example
Let us take the Pythagorean triple . By (8), we have

 and so by (7) we get the matrix
(20, 21, 29)

k = 29 − 21 = 8

( ) = ( ) .
20
8 −2
21
8 −20

8

5
2 −2
21
8 −5

2

There is another way to connect Pythagorean triples with square roots of
. This method was presented by Douglas W. Mitchell in [2].  For the triple

 we have  and this is of the form (3). Then (4)

becomes the matrix , and this is a square root of , as desired.  We

can also exchange  and  to get the triple  and use that to construct

the matrix . Using (6), we can use these matrices to construct

 and .

I2
(a, b, c) a2 + b2 = c2

( )a
c

b
c

b
c −a

c

I2

a b (b, a, c)

( )b
c

a
c

a
c −b

c

( )c
a −b

a

b
c −c

a
( )c

b −a
b

a
b −c

b

Example
For the Pythagorean triples  and  we obtain the

matrices ,  and .

(3,  4,  5) (4,  3,  5)

( ) ,  ( )3
5

4
5

4
5 −3

5

4
5

3
5

3
5 −4

5
( )5

3 −4
3

4
3 −5

3
( )5

4 −3
4

3
4 −5

4
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4.  Consecutive integers
The identity  is of the form (3). Then

from (4) we get that the matrix  is a square root of .

And so we get matrices of the form  where ,  and  are

consecutive integers.

n2 + [− (n − 1)] (n + 1) = 1

( )n − (n − 1)
n + 1 −n

I2

( )p q
r −p

−q p r

The following matrices are all square roots of :I2

( ) , ( ) , ( ) , ( ) , … .2 −1
3 −2

3 −2
4 −3

4 −3
5 −4

5 −4
6 −5

5.  120-degree triples and Eisenstein triples
If a triangle contains an interior angle of 120 degrees, and the lengths of

its sides are positive integers  where  lies opposite the 120-degree
angle, then  and  is called a 120-degree triple,
[3].  Some 120-degree triples are ,  and .

(a, b, c) c
a2 + b2 + ab = c2 (a, b, c)

(3, 5, 7) (7,  8,  13) (5, 16, 19)
Similarly, if a triangle contains an interior angle of 60 degrees, and the

lengths of its sides are positive integers  where  lies opposite the
60-degree angle, then  and  is called an
Eisenstein triple, also called a 60-degree triple, [3].  Furthermore, it is easy
to show that if  is a 120-degree triple, and  then
and  are Eisenstein triples.

(a, b, c) c
a2 + b2 − ab = c2 (a, b, c)

(a, b, c) d = a + b (a, d, c)
(b, d, c)
Given the 120-degree triple  and/or the Eisenstein triples

  and , where , it is easy to show that
,  and . Then from (3) and (4),

the following matrices are square roots of :

(a, b, c)
(a, d, c) (b, d, c) d = a + b
a2 + bd = c2 b2 + ad = c2 c2 + ab = d2

I2

( ) , ( ) , ( ) .
a
c

b
c

d
c −a

c

b
c

a
c

d
c −b

c

c
d

a
d

b
d −c

d

For instance, for the 120-degree triple  we have Eisenstein triples
 and   These allow us to construct the following square

roots of :

(3,  5,  7)
(3,  8,  7) (5,  8,  7) .

I2

( ) , ( ) , ( ) .
3
7

5
7

8
7 −3

7

5
7

3
7

8
7 −5

7

7
8

3
8

5
8 −7

8

6.  Double-angle triples
If, in triangle , one interior angle  is twice the measure of

another interior angle  and the lengths of the sides are positive integers
 then , [4, 5].  Some of these double-angle triples are

ABC ∠C
∠A

(a, b, c) a2 + ab = c2
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, , , . The equation  is
of the form (3), and so from (4) we can set up a matrix which is a square

root of . So, for the double-angle triples listed, we have 

(4,  5,  6) (9,  7,  12) (9,  16,  15) (16,  9,  20) a2 + ab = c2

I2 : ( )a
c

a
c

b
c −a

c

( ) , ( ) , ( ) , ( ) .
4
6

4
6

5
6 −4

6

9
12

9
12

7
12 − 9

12

9
15

9
15

16
15 − 9

15

16
20

16
20

9
20 −16

20

7.  Lord triples
Nick Lord [6] showed that given a triangle  with obtuse angle

and with integer sides  if a perpendicular is dropped from  to
extended to , the foot of the perpendicular, then  if, and
only if,  [7].  In honour of Lord, we can call triples
satisfying this condition Lord triples.  Some examples are , ,

 and ,

ABC ∠C
(a, b, c) B AC⎯

P ∠CAB = 2∠CBP
a2 + bc = c2 (a, b, c)

(2, 3, 4) (3, 8, 9)
(6, 5, 9) (4, 15, 16)

The equation  is of the form (3), and so we can use (4) to

construct a matrix which is a square root of .

a2 + cb = c2

I2 : ( )a
c 1
b
c −a

c

For the triples listed, we get 

( ) , ( ) , ( ) , ( ) .
2
4 1
3
4 −2

4

3
9 1
8
9 −3

9

6
9 1
5
9 −6

9

4
16 1
15
16 − 4

16

8.  Sequences defined recursively
We will now consider some matrices involving recursively-defined

sequences.  Suppose we have a sequence  such that  and  are constants,
and for all  we have

xn x0 x1
n ≥ 1

xn + 1 = αxn + βxn − 1 (9)
where  and  are non-zero constants.  Then it follows thatα β

x2
n − xn + 1xn − 1 = (−β)n − 1 (x2

1 − x2x0) . (10)
This can be proved by mathematical induction.  First, it is obviously true 
for . Next, using (9) and some algebra, we obtain n = 1

x2
n − xn + 1xn − 1 = −

1
β

(x2
n + 1 − xnxn + 2) ,

and (10) follows immediately.
Equation (10) is a generalisation of Cassini's Identity for Fibonacci

numbers  [8].F2
m − Fm + 1Fm − 1 = (−1)m − 1

If we replace  with , (10) becomes n 2n + 1

x2
2n + 1 − x2n + 2x2n = (−β)2n (x2

1 − x2x0) .
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For the case in which  and  this becomes x0 = 0 x1 = 1

x2
2n + 1 − x2n + 2x2n = β2n. (11)

It follows from (3) and (4) that

( ) (12)
x2n + 1

βn −x2n
βn

x2n + 2
βn −x2n + 1

βn

is a square root of .I2

For the case in which ,  and , (11) becomes
, and so 

x0 = 0 x1 = 1 β = ±1
x2

2n + 1 − x2n + 2x2n = 1

( ) (13)
x2n + 1 −x2n

x2n + 2 −x2n − 1

is a square root of .I2

9.  Fibonacci numbers

By trial and error, it is easy to find the matrices ,  and

. We recognise the absolute values of the entries as Fibonacci

numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 

( )2 −1
3 −2 ( )5 −3

8 −5

( )3 −1
8 −3

… .
The Fibonacci sequence is defined recursively by ,

where  and . By (9), we have . We can therefore use

(13), and so  is always a square root of .  and

 are of this form.

Fn = Fn − 1 + Fn − 2
F0 = 0 F1 = 1 β = 1

( )F2n + 1 −F2n

F2n + 2 −F2n + 1
I2 ( )2 −1

3 −2

( )5 −3
8 −5

The other matrix we had was  which is of the form

, where  is a positive integer.  To show that this is always

a square root of , we need to show that . Since
, and writing

, we have ,  and . Then from
(10) it follows that , as desired.

( )3 −1
8 −3

( )F2n + 2 −F2n

F2n + 4 −F2n + 2
n

I2 F2
2n + 2 − F2n + 4F2n = 1

F2n + 2 = F2n + 1 + F2n = 2F2n + F2n − 1 = 3F2n − F2n − 2
xn = F2n x0 = 0 x1 = 1 xn + 1 = 3xn − xn − 1

x2
n + 1 − xn + 2xn = 1

10.  Golden triples
Golden triples have been defined [9] as triples of integers

satisfying 
(a, b, c)

a2 − b2 + ab = c2. (14)
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If  is fixed at one of some special values, then the  and  values are terms
of at least one Fibonacci-like sequence, i.e. a sequence satisfying

. For instance, if we let  then some golden
triples are , , , ,
and . We can use the  and  values to construct two Fibonacci-
like sequences:

c a b

Gn = Gn − 1 + Gn − 2 c = 11
(10, 3, 11) (13, 16, 11) (29, 45, 11) (10, 7, 11) (17, 24, 11)

(41,  65, 11) a b

10,  3,  13,  16,  29,  45, …  and  10, 7, 17,  24, 41, 65, … .
For each of the two sequences, we define the term 10 to be the first term .
More generally,  is chosen so that  but from that point on the
sequence is increasing. Then golden triples are of the form

G1
G1 G2 ≤ G1

(G2n − 1, G2n, c) . (15)
From (14) and (15), we have . This can be
written as  or .
From this, using (3) and (4) we can construct a matrix which is a square root

of : , or, in terms of golden triples, .

G2
2n − 1 − G2

2n + G2n − 1G2n = c2

G2
2n − 1 − G2n (G2n − G2n − 1) = c2 G2

2n − 1 − G2nG2n − 2 = c2

I2 ( )G2n − 1
c −G2n − 2

c

G2n
c −G2n − 1

c
( )a

c
a − b

c

b
c −a

c

For the case of  we have c = 11

( ), ( ), ( ), … and ( ), ( ), ( ), … .
10
11

7
11

3
11 −10

11

13
11 − 3

11

16
11 −13

11

29
11 −16

11

45
11 −29

11

10
11

3
11

7
11 −10

11

17
11 − 7

11

24
11 −17

11

41
11 −24

11

65
11 −41

11

11.  Pell numbers
Pell numbers, like Fibonacci numbers, are defined recursively. The

definition is

Pn = 2Pn − 1 + Pn − 2, (16)
where  and . The first few Pell numbers are 0, 1, 2, 5, 12, 29,
70, . . .

P0 = 0 P1 = 1

We have the conditions necessary to use (13), and so the matrix

 is a square root of .  Some examples are ,

 and .

( )P2n + 1 −P2n

P2n + 2 −P2n + 1
I2 ( )1 0

2 −1

( )5 −2
12 −5 ( )29 −12

70 −29
We can ask what happens if we change the coefficient in (16) from 2 to 3:

. Then we get the sequence 0, 1, 3, 10, 33, 109, 360, .An = 3An −1 + An −2 …
We can then construct these matrices, and they are square roots of :I2

( ) , ( ) , ( ) .1 0
3 −1

10 −3
33 −10

109 −33
360 −109
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12.  Jacobsthal numbers
Jacobsthal numbers, like Fibonacci numbers and Pell numbers, are

defined recursively.  The definition is , where
and . The first few Jacobsthal numbers are 0, 1, 1, 3, 5, 11, 21, 43,
85, . .

Jn = Jn − 1 + 2Jn − 2 J0 = 0
J1 = 1
…
Note that for Jacobsthal numbers, the coefficient  in (9) is 2, not 1, so

we cannot use (13).  We can, however, use (12), and so

is a square root of .

β

( )1
2nJ2n + 1 − 1

2nJ2n

1
2nJ2n + 2 − 1

2nJ2n + 1

I2

Some examples are: 

( ) , ( ) , ( ) .
3
2 −1

2

5
2 −3

2

11
4 −5

4

21
4 −11

4

43
8 −21

5

85
8 −43

8

13.  Diophantine triples
A Diophantine triple is a set of three positive integers such that the

product of any two of them is 1 less than a perfect square [10].  A
Diophantine quadruple is a set of four positive integers having the same
property.  An example of a Diophantine quadruple is . Of
course, from that we can extract four distinct Diophantine triples.  Some
other Diophantine triples are 

{1,  3,  8,  120}

{1,  8,  15}, {2,  4,  12}, {2,  12,  24}, {3,  8,  21}, {3,  5,  16}, {5,  16,  39}.
It is easy to see that we can use Diophantine triples and quadruples to
construct square roots of . Specifically, if  and  are two elements of a
Diophantine triple or quadruple, then  is an integer and, using

 along with (3) and (4),

is a square root of . For instance, from  we  can construct

, , , ,  and .

From  we can construct  and , as well as

, which we already had from .

I2 a b
ab + 1

( ab + 1)2 + (−a) ·b = 1 ( )ab + 1 −a
b − ab + 1

I2 {1,  3,  8,  120}

( )2 −1
3 −2 ( )3 −1

8 −3 ( )5 −3
8 −5 ( )11 −1

120 −11 ( )19 −3
120 −19 ( )31 −8

120 −31

{3,  8,  21} ( )8 −3
21 −8 ( )13 −8

21 −13

( )5 −3
8 −5

{1,  3,  8,  120}

Note that several of these matrices are of the form  or

, which we had above in the section on Fibonacci numbers.

This indicates a close connection between Fibonacci numbers and at least
some Diophantine triples.

( )F2n + 1 −F2n

F2n + 2 −F2n + 1

( )F2n + 2 −F2n

F2n + 4 −F2n + 2
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Some of the matrix families we have discussed overlap.  For instance,

the matrix  appeared above in the section on Pythagorean triples, it

appeared in the section on Pell numbers, and we can also construct it from
the 2 and the 12 in the Diophantine triples  and .

( )5 −2
12 −5

{2,  4,  12} {2,  12,  24}

Further research
It would be interesting to consider square roots of  that contain

irrational and complex number elements, as well as square roots of higher-
rank identity matrices such as .
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