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DIFFUSION APPROXIMATION FOR A KNUDSEN GAS IN A THIN
DOMAIN WITH REFLEXIVE CHAOTIC LAW

CHRISTIAN D O G B E

This paper treats a rarefied Knudsen gas flow between two infinite plates, with bound-
ary reflexion ruled by a reflexive chaotic law called "Arnold's cat map". It is shown
that the limiting behaviour, when the distance between the plates goes to 0, is de-
scribed by an (anisotropic) diffusion equation in the norm topology.

1. INTRODUCTION AND MAIN RESULTS

This paper is concerned with a rarefied Knudsen gas flow model, that is, for a
gas with no interparticle collisions between two infinite plates, with boundary reflexion
ruled by a 2-torus hyperbolic automorphism. We extend previous work of Bardos et al.
[2], deriving an irreversible asymptotic diffusion limit (the heat semigroup) for a simple
reversible dynamic described by a continuous unitary group of L2. We investigate in
detail the spectral measure of such a flow. The general framework of this problem is
detailed in [l]. The reason for the existence of a diffusion limit is a consequence of the
ergodic theory of Anosov's system, using a Markov partition and symbolic dynamics (see
Sinai [5]). Our goal is to produce a proof which involves no ergodic theory and which
in the present case uses only elementary techniques such as a Fourier series expansion
instead of a Markov partition for coding.

Starting with a rescaled kinetic model of the form

(11) dtfe + ^a(cj) • Vx/£ + ^Afe = 0,

(1-2) /£,t=o = t(x),

where A is an operator acting on the dependence in w of fe, two different asymptotical
regimes can be observed as follows.
CASE 1. A is positive, self-adjoint and Fredholm. In fact A is the orthogonal projection
on the functions of mean-value 0. Furthermore, we assume that a(w)_LKer A In this
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498 C. Dogbe [2]

case, it is shown (see [1]) that fe converges strongly to / = f(t, x) which is the solution
of the diffusion equation

(1.3) dtf = ±

with the diffusion coefficient D given by

(1.4) D =

Here the notation (• | •) is prescribed by

(f\g)=f
J XxY

CASE 2. A is skew-adjoint, with eigenvalue 0 included in the continuous spectrum of A.
With ergodicity of the group generated by A, we assume again that Ker A is reduced on
the functions of mean-value 0 (in the variable w) and that a(w)±Ker A. In this case ip
does not exist, as A is not Fredholm, but we can show that the formula which gives D
has mathematical meaning. To do this, we regularise (1.1) by introducing a parameter
A > 0 via

(1.5) 9J£
A + -a(cj) • Vxf? + -2 [Aft + X(f£

x - n/£
A)] = 0,

where n denotes the orthogonal projection on Ker A. For A > 0 fixed, we make a formal
multi-scale expansion in e and show that /e

A converges for e -> 0 to the solution of a
diffusion equation of type (1.3) and D\ is the diffusion coefficient, depending on A. We
now investigate the conditions under which D\ has a finite positive limit. We expand
f*(t,x,uj), the solution of (1.5), in powers of e as

(1.6) f*(t,x,uj) = fZ(t,x) + ert(t,x,uj) + e2ti(t,x,u>) + ... .

The terms of order \/e2 vanish, since /Q is independent of w. The terms of order 1/e give

(1.7) fttt,x^) = -4X(u)Vxfo\t,x),

where
(1.8) (\ + A)i!>x = a{uj).

Let E be the spectral resolution of the identity associated with A and assume that

(1.9) E{-ia) = E{ia); E{ia) = 6a=0U + p(o)da,

where p is a continuous function in a neighbourhood of a — 0 with orthogonal projection
values. The solution of (1.8) is given by
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[3] Diffusion approximation 499

This expression has no limit when A —• 0.

Formally, if we project (1.5) on the kernel of A, we get

(1.11) ft/o - Vx • [(aM</>A | l )V x / 0 ] = 0,

which is a diffusion equation with diffusion matrix

a(wj) _ r X(dE(ia)a(uJ) | o(qj

J
r (dE(i<j)a(u>) | a(wj) _ r

D ~ k X + ia ~ JR

as may be seen by changing a into — a and averaging the two integrals. Since A/(A2 4- a2)

converges to 7r<$ff=o when A —> 0 and p is continuous near a- = 0, we have

(1.13) Dx -> TT(P(0)O(W) ! a{u)).

The existence of a solution to (1.8) is more or less equivalent to the convergence
of the integral (1.10). Therefore, to find an approximation when (1.8) has no solution
(while 0 is in the spectra because Al — 0), it is natural to consider the integral (1.12)
which may converge even if (1.10) does not. In fact, with sufficiently strong regularity on
the spectral measure S(a) = d(E(ia)a(u)) ® a(w)) of the operator A, namely that S{a)
is continuous near zero, it can be proved that fE converges to the solution of

. dtf - V ( 5 ( 0 ) V x / ) = 0,

weakly if 5(0) ^ 0 and strongly if 5(0) = 0. The integral (1.12) is an abstract version of
the so-called Einstein-Kubo formula, which appears in many deterministic and stochastic
diffusion approximations.

As an example showing the importance of the preceeding discussion, a diffusion
approximation of a Knudsen gas flow model will be constructed. The mathematical
model is as follows.

A family of particles evolves as a Knudsen gas between two horizontal plates. The
vertical components of the particle velocities are all assumed to have modulus c > 0. The
horizontal components of their velocities ca(u>) axe parametrised by T2 = K 2 / ( 2 T T Z ) 2 .

Whenever a particle hits the top or bottom plate, its vertical velocity is reversed while
the horizontal velocity is modified by the right action of a hyperbolic automorphism of
T2 (see Figure 1).
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Figure 1.

The position of a particle is denoted by (x, z) e Rd x (0, h) and the vertical component of
its velocity by ±c. The horizontal component of this velocity is given by ca(w), to € T2,
where a : T2 —> Rd denotes a smooth zero-mean vector field.

The nonnegative function f+(t,x,z,u) (respectively, f~(t,x,z.w)) represents the
density number of the particles which at time t occupy position (x, z) and move with
wave vector w (with horizontal velocity (ca{u)),+c) (respectively, (ca(w), -c))) . The
densities / * satisfy the Liouville (Knudsen gas) system of equations

(1.14) a t /
± + a ( w ) - \

with boundary conditions

(1.15)

(1.16)

0<z<h, w € T2,

f+(t,x,0,Lo)=r(t,x,0,Tw)

f-(t,x,h,w)=f+(t,x,h,Tuj),

on the plates, exhibiting a change of wave number on each line. Their values at t = 0 are

given by
(1.17) f±(0,x,z,w) = <f>{x),

which is compatible with an approximation by a horizontal diffusion as h -> 0 and which

precludes the appearance of an initial layer in the limiting process. This asymptotic limit,

leading to a horizontal diffusion, is obtained by letting h tend to zero and observing the

system at large positive times. If a small parameter e > 0 is introduced, with t replaced

by t/e, the problem of interest becomes

(1.18) ± ^ = 0 .
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[5] Diffusion approximation 501

Here e is the mean free path, that is, the mean free-flight distance of a particle. It is clear
that these scalings do not induce any modification in the boundary conditions, namely
ff- still satisfy (1.15)—(1.16). We prescribe an initial condition

(1.19) / * (O , i , z ,w) = 0(a;)

which is compatible with the expected asymptotic dynamics.

Bardos-Colonna-Golse [2] show that there exists a positive matrix D(a), such that

for 4> € C°°\M.dJ and for any r > 0, the functions f*t which are the solutions of Equations

(1.20)—(1.15)—(1.16), converge in C°{[0,T),W' - L°°(Rd x T 2 ) ) , to the solution of the
diffusion equation

dtf = \hcVx(D(a)Vj), f(0,x) = 4>(x),

as e —>• 0, with the diffusion coefficient D(a) given by

1 i / / i " - 1 \®2\

(1.20) D(a) = i<a2) + £<aoTfc®a) = ^ i n ^ ( ^ £ a o T * J J> 0.<

The series £ II(a °Tk ® a)\\ < +00 for any norm II • II on Md(R), where
jb^i" N

Here A ® B := Al.B and A®2 denotes the r x r symmetric matrix A® A.

We now present a simpler proof of [2, Theorem 3].

The model examined in [2] is purely non-collisional. In this paper we take into
account the rare collisions between molecules, which have a regularising effect for the
approximation. We start with the model of [2], with an additional collision operator.
The time variable is rescaled as t -» t/e and the problem of interest, posed in its scaled
form, becomes

with boundary conditions (1.15)—(1.16) and initial data (1.19), where ((•)) is given by

(w,z),
4TT2 JT>x[0,h]

Here A is a positive constant representing the inverse of the average collision time.

The following asymptotical regime is observed.

For all A > 0, the densities /*A converge strongly to the solution of the diffusion

equation dtf\ = D\&f\, not uniformly (a priori) in A. The following two questions are

obviously interesting.
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(Ql ) Does D\-* D as A -4 0?

(Q2) Do /*A -> f* as t -* 0, uniformly in A?

The preceeding discussions show that to obtain the diffusion approximation, we have

to study the resolution of the identity of the operator A.

The first main result of this paper is the following.

THEOREM 1 . 1 . 1. T i e spectrum of the operator A lies on the imaginary axis

iR.

2. Let (afc)*eZ2\{o} be a family of complex numbers satisfying

(1.22) aM2k = ake
2iX

and define M = I I. Tien t i e family ($+,</>_] defined by

(1.23) 0A(z,w) =

and
(1.24) 4>X-{z,w)

is a generalised eigenvector of A for the element of the spectrum iX, X € K.

3. T ie family (0+>7, 0-,7) indexed by the orbits 7 of I? \ {0} under t i e action by
multiplication on the left by M2, de&ned by

and

(1.26) tf_i7(z, w) = A £ e-iX2+2iXn+iM2"k'W-»,

is a family of a generalised eigenvectors of A for the element of the spectrum iX.

4. T ie decomposition of the identity associated with the operator A is

(1.27) dE{iX) - <5A=0 + dX £ P7,A,
7£M2\Z2\{0}

wiere

with the notation

The reader can refer, for example, to [4] for a precise and yet elementary presentation
of the notion of generalised eigenvectors.

The second main result of this paper is the following.
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[7] Diffusion approximation 503

THEOREM 1 . 2 . 1. Let a : T2 -> Rd be in t i e class C3(T2) with mean value
(a) = 0 and initial data <j) € C°°(Rd) . Tien for all X > 0 t i e solutions f*x of the system
(1.21)—(1.15)—(1.16)—(1-19) converge strongly to the solution of the diffusion equation

(1.29) dtfx-DxAzfx=0, t€R+, x€Rd

(1.30) fo(O,x) = <j>(x), xeRd.

Furthermore

2. Let $ € C°°(]Rd) be initiai data independent of the variables z and u>. Then
the solutions /*A of t i e system (1.21)—(1.15)—(1.16)—(1.19) and t i e solution f of the
diffusion equation
(1.32) dtf - DAxf = 0, t e R+, x € Rd

(1.33) /o(O,x)=^(a;), a: €

satisfy
(1-34) lim H/A- /H / N = 0 .

(A,£:)-t(O,O) ' f'A L~(iRxR''x(0A)xT2J

The problem (1.21) is well-posed for every e, both for t > 0 and for t < 0. Therefore,
it is reversible in this sense. This is of course not true for the diffusion equation (1.29).
However, the fact that the operator A is positive causes a difference between positive
and negative time and this difference is magnified by the presence of the factor e~l.

Therefore, we can associate a genuinely reversible problem at the "macroscopic limit"
with an irreversible one.

In this work we shall not dwell on the existence and uniqueness proof of a solution for
the Cauchy problem (1.21)—(1.15)—(1.16)—(1.19). A proof can be achieved by standard
semigroup methods or by a characteristics method as in [2].

The paper is organised as follows. Section 2, containing the proof of Theorem 1.1,
relies on spectral analysis of the operator A. The proof of Theorem 1.2 is carried out
in Section 3 and a diffusion approximation obtained. The latter is a consequence of the
different mixing properties inherited from the mapping T. The basic mixing properties
of the map T are given in the Appendix.

2. SPECTRAL ANALYSIS AND THE P R O O F OF T H E O R E M l . l .

The hyperbolic automorphism T of the torus (Arnold's cat map) defined by

,,1, T: f^f,
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will be the only case treated here, though the method applies to any hyperbolic automor-
phism of T". The map T is C°° and one-to-one and preserves the measure d
Its inverse, also a C°° map, is given by

We denote by A the unbounded operator on I? x L2((0,/i) x T2) defined by

with domain

(2.4) D(A) = j ( / + , / ' ) 6 L2 x L2((0,ft) x T2) | Af e L2 x L2((0,/i) x T2) and

(2.5) / + (0 ,w) = r ( 0 , T w ) , f-(h,Lj) = f+(h,Tij), u , e T 2 ,

In what follows, we illustrate the technique for finding the spectrum of the operator
A.

P R O O F OF THEOREM 1.1: The proof amounts to investigating the functions <f>

in the variable z € [0, h], with values in tempered distributions in the variable w, not
necessarily belonging to D(A) but satisfying the boundary conditions prescribed in D{A)

such t h a t A(j> = X<j>.

The first statement follows from the fact that A is skew-adjoint in L2 xL2 ((0, h) xT 2 ) .

The second part is obtained by an easy computation. In order to prove this, note
first that, since the Fourier series of the function / € «S'f[O, h] x T2) converges, we shall
write / * in the form

(2.6) f±(z,uj)= E4We i i u ,

where (a*)tez
2\{o} is a family of complex numbers. Since from (2.1) we have the relations

(2.7) eikTa = eikMu

_ iMk-u— c ,

the condition /+(0,w) = /~ (0 ,Tu) , implies

(2.8) X:afc(0)eiA:w=

whence
(2.9) <£(0) = afcfc(0).

Similarly the condition f~(h,w) = f+(h,Tu), implies

(2.10) £ a;(h)eik» = £ at(h)eiMk»
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and
(2.11) at(h)=a-Mk(h).

On the other hand, the equation
(2.12) dj+ = A/+

implies

(2.13)

and from the equation
(2.14)

we get

(2.15)

From (2.8) we deduce that

(2.16)

Since (2.10) implies
(2.17)

we get from (2.12) that

(2.18)

Hence, from (2.16) and (2.17),

(2.19)

a+(h) = eA/laj*"(0)

dzf~ = -Xf~

afc-(/i) = e-%-(0).

aj;(h) = e-»attk{0).

ak{h) = a^-ik{h),

we have

„+ fn\ + /n\^—2Aft

Thus
(2.20) at(O) =

Note that the coefficients ak of the function / do not grow exponentially for every k if and
only if / € 5 '([0,/ i]xT2). From this we deduce that A € zR. Thus, if we denote by a {A),

(respectively, cre(y4)) the spectrum (respectively, essential spectrum) of the operator A,

we have a {A) = ae(A) = iR.

For the third statement, we reorganise (1-23)—(1.24) so that the sums over k €
Z2 \ {0} are given by summing on the orbits on Z2 of the cyclic group generated by M2.

This enables us to eliminate the constraint (1-22) on the family (ak).

Let 0 < z < h, and <52O be the distribution in the variable zQ; A = i£, £ e M, z0 6

(0,/i). From (1.23)—(I-24). w e ge t

(2.21) / j

~'Zz° V^ p~^z n, pik<J —
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We now need to characterise the points on the orbits 7. In order to do so, we proceed as
follows.

Let 7 = {M2nk I n G Z }be an orbit of Z 2 \ {0}. We choose a particular exponent
n on 7 in the following way: there exists a unique n, such that k = M2n'k(-y). Indeed,
observe that the matrix M is hyperbolic with two real and distinct eigenvalues given by

(2.23) , A _ = A ; \ with 0 =

and that the corresponding eigenvectors (related to the unstable and stable manifold) are

(2.24) e+ = ,
1

-6

with n = (1 + 92) . The vectors (e+, e_) define an orthonormal basis. In this basis M
is written in the form

(2.25) «

The expansion of k € Z \{0} in the basis (e+, e_) gives k = (k.e+)e+ + (fc.e_)e_ and

(2.26) M2nk = A+n(fc • e+)e+ + Ain(ifc • e_)e_.

Given an orbit 7, we have the relation

v ; \Mnk-e.\ + |Jt-e_|

Take fc € 7 and define n.(A;,7) as the smallest integer n £ Z such that

(2.28) ^"n-Tl > 1-

Finally, put fc*(7) =
7 (see Figure 2).

, which is independent of the point k chosen on the orbit

Figure 2
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The distance between 7 and the origin is achieved at a unique point A;* (7) of 7. Hence if
fj.^ is a family of scalars indexed by M 2 \Z 2 — {0}, we can write

(2.29) <f+(ZtU) = J >
47

and
(2.30) 0*(Z)W) = _ L Y, M7 E e~Xz e2X"heiM2n

4 ? r M2\Z2-{0}97 neZ

Consequently a basis of generalised eigenfunctions takes the form

(2.31) ft 7(z,u) = - ^

and
(2.32) 0 i ,(*, w) = J -

47r

where A € a(A) c iR, a spectrum with infinite multiplicity, and 7 e M 2 \Z 2 \ {0}.
The proof of Statement 4 is nothing but the decomposition of f± on the family of

functions (6ze'ku>) 2 followed by an application of the Plancherel formula.

First we write (j>± in the form of all Fourier modes which allows us to obtain expan-
sions of all orbits. Take an orbit 7 € M 2 \Z 2 - {0} and set

(2-33) f+(z,co) = - L /*£ /+ (£ ,* ) 8((z)

and
(2.34) f~{z,u) ••

'*'" ' • / 0 t ^ o

Integrating the functions ^ 7 over the spectrum a(A) C iM leads to

(2.35) I eiX^x
+n(z, cu)dt =±-2Y,5{£,-z + 2nh) e

neZ

and
(2.36) JeiA<0i,7(z, W)df = - i , J 3 <5(̂  - z + 2nh) ei

neZ

where 2 € (0, ft), f € (0, ft), implying (f - 2) € (-ft, ft).
The cases £ e (0, ft) and £ € (mft, (m + l)ft), m E Z , have to be treated separately.

T H E CASE. £ e (0, ft): Write <5({-J+2T,/I) = <5z-2n/i(O and observe that z - 2nh € (O.ft)
implies n — 0. Then relations (1.25)-(1.26) for ^ are given by

(2-37) 4^2 E *K - * + 2nft) eiMto+I**W- = ± 6,® eiMk'^,
neZ

(2.38) - L 53 *(€ - 2 + 2nft) eiM2"*-W" = - L ^ y * * ™ " ,
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but this case does not give all Fourier modes.

T H E CASE. £ e (mh, (m + l)/i): Observe that (z - 2nh) e (mh, (m + l)/i) entails
2n + m = 0. It follows that the relations

(2-39) n E ^ " z + 2n/i) e"'1-*1**™*' = - L <yz(£) e«M
4TT2

 € Z 4TT2

and
0) ^ £(2-40) ^ £ *K " * + 2n/i) e

i

give us all Fourier modes.

We can therefore write down the spectral measure of the operator A. Since £ € (0, h)

and f - z € (-/ i , A) imply n = 0 for all 2 € (0, h), we get

V - L ^ 6(0 eiMk'
4TT2 4TT2 ^

and
-^<5(^ - ^ + 2nh) ei L
4TT^

Finally we obtain

(2.41)

and

(2.42)

This proves statement 4. and completes the proof of Theorem 1.1. D

3. T H E P R O O F OF THEOREM 1.2.

The proof of Theorem 1.2 is based on the following fundamental lemma.

LEMMA 3 . 1 . Tie diffusion coefficient D\ defined in Theorem 1.2 has the form

(3.1) DA

where xpx is the solution of the equation (XI — All + A)tp\ + a(a>) — 0. Futhermore

(3.2) £>A -> D as X -> 0.
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P R O O F OF LEMMA 3.1: To prove (3.1), we seek the solution as an expansion of the

form

(3.3) fCiX(t, x, z, w) = fo(t, x, z) + eh (t, x, z, u) + e2f2(t, x, z, w) + rc(t, x, z, w)

as in [3], where fc = fi(t,x, z,u) are functions defined on R+ x Rd x (0, h) x T2 that we
substitute into (1.21). The identification of successive powers of e leads to

(3.4) e-2: Af0 + A(/o - «/o») = 0,

(3.5) e-1: a(u) • Vxf0 + Afr + A(/, - ((/,») = 0,

(3.6) e°: ft/o + o ( w ) - V x / 1 + X / 2 +

The first equation is solved by taking / 0 = fo(t, x) independent of z and w. This suggests
looking for / i in the form

(3.7) fi{t,x,2,w) = apx(z,w) • Vz/ 0 ( t ,x) ,

where the function tpx satisfies the equation

(3.8) (XI - An + A)tl>x + o(w) = 0.

Observe now that An is compact, as a finite rank projector (of dimension 1). We have that
XI + A is invertible and (a) = 0. This implies that the solution rpx = -(XI + A)~la(uj)

is admissible. Thus (3.8) possesses a unique solution ipx such that

(3.9) ipx = -(XI - XU + A)~la(u).

Observe next that (3.6) can be solved for f2 if and only if dtfo + a(uj) • Vx/ i is orthogonal
to Ker A , that is, to constants, so the solution f0 must satisfy

(3.10) dtfo + c2 — ((a(uj)ipx(z,'w)yf)—^- = 0.

Assume that f0 satisfies the initial data and boundary conditions (1.15)—(1.16). We
substitute for rpx in (3.10) to get

(3.11) dtfo + c2((a{oj)(XI - An + Ay'^Afo = 0.

Substituting (3.9) into (3.10) provides the diffusion coefficient

(3.12) Dx = ((a(w)(A7 - An + ^)~1a

Limit of Dx when A -+ 0: The proof applies the Fourier inversion theorem con-
nected with the function e~A'Il. Observe that, since

L
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the Fourier inversion formula gives

e~A|1' = *L A ^ T ^ dz = * L A ^ T ^ dz-
Denote by dE the spectral measure of the operator A and write

(3.13) *

Set

(3.14) dn(z) = (dE(iz)a(w),a(uj))

to obtain

(3-15) Dx = [
where 9ie(z) denotes the real part of z. Set

Using Plancherel's Theorem and the Fourier inversion theorem gives

(3.16) Dx=

Since T is a mixing transformation (as detailed in the Appendix), taking the limit as A

tends to 0 yields

(3.17) l

Finally, applying Wiener's lemma to Dx in a neighbourhood of 0 and letting A tend to
zero yields

<318» B »

The proof of the Lemma 3.1 is now complete. D

We are now ready for the proof of Theorem 1.2. Set

(3.l9)rc>x{t,x,z,Lj) = fE,x(t,x,z,u) - fo(t,x,z,u>) - £fi(t,x,z,u) - e2f2{t,x,z,uj)

and substitute (3.19) into (1.21). Taking into account the hierarchy of (3.4)—(3.6), we

get

(3.20) dtre + ia(w) • Vxr£ - ^cdzr€ + -^(1 - U)rc = -edj, + a(«) • V x / 2 + edtf2 ,

(3.21)

= £/i(0, x, z, LJ) - e/2(0, x, z, ui).
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Since 0 is a regular function, the right-hand sides of (3.20) and (3.21) are continuous.
In particular, we have

(3.22) \\dth + a(w) • Vxf2 + £dtf2\Lx ^ Cx, and | |r£(0,x, z,w)| ^ Ce,

where C\ is a constant depending on ipx (through fx) and on the initial data <p{x). By
the Maximum Principle

\\\a{u)
AH V

(3-23)

which tends to oo when A tends to 0. From (3.7) it follows that

(3-24) ll/ill

Moreover the inequality

(3.25) ||A,A - fo\\L

holds. This yields

Since D\ -4 D, we can also estimate f\ — f for A
(1.29) from (1.32) yields

(3-27) - /) = DxA(fx -

0. We proceed as follows: subtracting

(Dx - D)Af.

It follows from (3.2) that (D\ - D)Af -+ 0. Equation (3.26) is then integrated with
respect to time and the Maximum Principle yields

(3.28) \\DX PA{fx-f)ds\\
" Jo W J' "

=O(X).

We deduce that /*A converge strongly to fx. Let x € C Q ° ( K + X Rd) be a test func-
tion and f{t,x) the weak limit of a subsequence of the family /*A in LCC(R+ X KdV
(For work with differential equations it is convenient to restrict the term test func-
tion to functions x(x) which are continuous, have continuous derivatives of all or-
ders and vanish identically outside some finite interval. For example, the function
x(x) — e x p ( - z ~ 2 ) e x p f - ( x — a ) j , 0 ^ x < a; x(x) = 0, i < 0 or a $ i , is a
test function.) This subsequence satisfies

(3.29)
t'x) H t'x) dxdt\

+
t'x) H t'x) dxdt
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for all e > 0. Using (1.31) yields

(3.30)

By letting A tend to 0 in the second term of (3.29) and using Lemma 3.1, we derive

(3.31)
R+xR<*

(fx-f) x{t,x)dtdx -> 0 as A -> 0.

We may proceed as in [2, Theorem 3] to estimate the third term of the right-hand
side of (3.29) and let e -> 0. The convergence of jfx to f\ (uniformly in A) is obtained
by observing that for fixed e > e0

± _ x±

(3.32)

since

The proof of Theorem 1.2. is complete.

The diagram

strong convergence

ft : > h

= CX £0,

(3.34) strong convergence
A-X)

£->0

weak convergence

e-tO

summarises the proof of Theorem 1.2. The upper horizontal arrow shows that, with an
additional collision operator in the system (1.21)—(1.15)—(1.16)—(119), the densities
of particles /*A converge uniformly in A to a solution f\ to (1.29). The vertical arrow
indicates that the diffusion coefficient D\ —¥ D as A —> 0, so f\ converges to / , a solution
of the diffusion equation (1.32). The lower horizontal arrow is a result of [2, Theorem 3].

4. APPENDIX

It is illuminating to see some basic mixing properties of the map T.

be a decreasing positive function tending toPROPOSITION 4 . 1 . Let 0

0 as R tends to infinity. Introduce the class of functions

(4.1) Hx = If GL2(T2) such that £ |/(*)|2 < x(R)2\\f\\l) •
I |iti|,|fc2|>« >
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Then for any pair (/, g) € Hx with mean value (/) = {g) - 0, we have

(4.2) , with Co =
V2

P R O O F OF PROPOSITION 4.1: From the Plancherel formula we have

(4-3)

for any pair (/,g) € L2(T2) with mean values (/) = (g) = 0. For any R > 0 decompose

the above sum in two parts corresponding to KR and KR, with KR (see Figure 3) given

by

KR = Ik € Z2 such that sup(|&i|, |Jfc2|) ^ B.\ .

Since g belongs to the class Hx, the Cauchy-Schwartz inequality yields the estimate

£ f(M-nk)g(-k)(4.4)

If p and q are two integers such that (p, q) = 1 and 6 is defined by (2.22), we have

1
(4.5) inf e-p-

Indeed, the minimal polynomial of 9 over Q is P(X) = X2-X-1 = (X- 8)(X + 0"1)
and

(4.6)

For k € KR, introduce the decomposition k = (k • e+)e+ + (k • e_)e_. With (4.5) we get

\k • e.\ 2 O-1^-1 > (V2R6)~\

whence
\M~nk\ ^

y/2R6'

Since f € Hx and x is nonincreasing, this implies

(4.7)
k£KR-{0)

f(M-nk)g(-k)

Relation (4.2) is obtained by choosing R = A"'2 in (4.4) and 4.7). This proves in particular
that the series £ (a o Tk ® a) in the definition of D(a) is absolutely convergent.

k>\
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Figure 3
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