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Abstract
Fast radio bursts (FRBs) are millisecond-duration radio waves from the Universe. Even thoughmore than 50 physical models have been pro-
posed, the origin and physical mechanism of FRB emissions are still unknown. The classification of FRBs is one of the primary approaches
to understanding their mechanisms, but previous studies classified conventionally using only a few observational parameters, such as flu-
ence and duration, which might be incomplete. To overcome this problem, we use an unsupervised machine-learning model, the Uniform
Manifold Approximation and Projection to handle seven parameters simultaneously, including amplitude, linear temporal drift, time dura-
tion, central frequency, bandwidth, scaled energy, and fluence. We test the method for homogeneous 977 sub-bursts of FRB 20121102A
detected by the Arecibo telescope. Our machine-learning analysis identified five distinct clusters, suggesting the possible existence of multi-
ple different physical mechanisms responsible for the observed FRBs from the FRB 20121102A source. The geometry of the emission region
and the propagation effect of FRB signals could also make such distinct clusters. This research will be a benchmark for future FRB classifi-
cations when dedicated radio telescopes such as the square kilometer array or Bustling Universe Radio Survey Telescope in Taiwan discover
more FRBs than before.
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1. Introduction

Fast radio bursts (FRBs) are a type of highly energetic astro-
physical transient that last only a few milliseconds (e.g. Lorimer
et al. 2007). Many FRBs have dispersion measures (DMs) that
exceed the expected maximum of the Galactic electron density,
indicating their extragalactic origins. DM represents the column
density of free electrons traversed along the propagation path of
an FRB. Despite their discovery over a decade ago (Lorimer et al.
2007), the origin of FRBs remains a mystery. Recently, the detec-
tion of repeating FRBs (e.g., Spitler et al. 2014; Niu et al. 2022)
has opened up new avenues of research into the origin of these
phenomena.

With the emergence of a large number of FRBs samples in
recent years, repeated FRBs (referred to as ‘repeating bursts’ for
simplicity) have also been noticed by astronomers, especially FRB
20121102A, which has been observed to have a very high burst
rate (e.g., Li et al. 2021; Jahns et al. 2022). FRB 20121102A is the
first-discovered repeating FRB source (Scholz et al. 2016). This
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source was first recorded in 2012 and was detected again in the
same spatial location in 2015 with the same dispersion measure
(Scholz et al. 2016). In subsequent observations, FRB 20121102A
exhibited an extremely high repetition rate compared to other
FRBs (e.g., Li et al. 2021; Jahns et al. 2022) and became the first
repeating burst to be localized (Chatterjee et al. 2017).

Given the large sample size of recent FRB detections (e.g., Li
et al. 2021), machine-learning approaches have been becoming
important. Applying deep learning to single-pulse classification
was proposed in a pioneering paper by Connor & van Leeuwen
(2018). They trained a deep neural network using single pulses and
false-positive triggers from real telescopes to develop a framework
for ranking events. The ranking was ordered by their probabil-
ity of being astrophysical transients with high accuracy, recall,
and quick computational time, indicating the power of deep
learning.

Since then, unsupervised machine learning has been applied to
the Canadian Hydrogen Intensity Mapping Experiment (CHIME)
data (e.g., Chen et al. 2022; Zhu-Ge, Luo, & Zhang 2023). Chen
et al. (2022) and Zhu-Ge, Luo, & Zhang (2023) found distinct
physical properties (i.e. the ratio of the highest frequency to the
peak frequency by Chen et al. 2023, brightness temperature and
rest-frame frequency bandwidth by Zhu-Ge, Luo, & Zhang 2023)
between repeaters and one-off events, which allows the machine
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to predict the repetitiveness of FRBs. Based on the unsupervised
machine learning approaches, both studies identified some poten-
tially repeating FRBs currently reported as one-off FRBs. A few
active repeaters, including FRB 20201124A (Chen et al. 2023) and
FRB 20121102A (Raquel et al. 2023), were also classified by unsu-
pervised machine algorithm. Some distinct clusters were com-
monly identified for these active repeating FRB sources, suggesting
multiple radiation mechanisms of active repeaters or distinct
physical environments of emission regions. These approaches to
the FRB classification used catalogs, including measured physical
properties of individual FRBs. In addition to such catalog-based
classifications, the UMAP algorithm was used for the image data
(i.e. waterfall) of the CHIME FRBs (Yang et al. 2023). They found
that the UMAP algorithm using image data produced more accu-
rate results in predicting the repetitiveness.

In this paper, we revisit the repeating FRB 20121102A using
Arecibo samples (Jahns et al. 2022) with a machine-learning clas-
sification, being free of human bias, an approach to understanding
its properties and origin. The uniform manifold approxima-
tion and Projection (UMAP) (McInnes, Healy, & Melville 2018;
McInnes et al. 2018) is an algorithm that utilizesmanifold learning
techniques and incorporates concepts from topological data anal-
ysis to achieve dimension reduction. It offers a versatile framework
for approaching manifold learning and dimension reduction, pro-
viding both a broad scope and specific practical implementations.
This paper aims to explain the practical workings of the UMAP
algorithm. UMAP is useful because it allows the two-dimensional
projection of higher-dimensional data points, which can be han-
dled easily. Previous studies demonstrate the effectiveness of
UMAP and the practical usage of a follow-up science case. Kim
et al. (2022), Chen et al. (2022)

After the classification, we make a comparison between this
work and the previous machine learning classification result using
Five hundred meter Aperture Spherical Telescope (FAST) data
(Raquel et al. 2023) to mitigate a possible observational bias. We
note that the Arecibo samples include relatively brighter FRB pop-
ulations (�0.095 Jy ms; Jahns et al. 2022) than those in the FAST
samples (�0.02 Jy ms; Li et al. 2021), making this work inde-
pendent of Raquel et al. (2023). We investigate whether there are
groups with common features between the FAST and Arecibo data
so that we can corroborate the previous classification result with
conjectures about the origin.

2. Data pre-processing

We use the FRB catalogue detected in the Arecibo archival data
(Jahns et al. 2022). The catalogue includes a total of 849 FRBs
from the identical source of FRB 20121102A. Each FRB can con-
tain multiple sub-bursts. There are 988 sub-bursts in total in
the catalogue (classified by visual inspection). In this work, we
treat sub-bursts independently, following Raquel et al. (2023). To
ensure adherence to physical principles, all data points with nega-
tive amplitudes were removed, resulting in the final samples of 977
FRB sub-bursts. The catalogue contains the following parameters:

• Time of arrival (ms)
• Amplitude (A)
• Bandwidth (sig_nu) (MHz)
• Central frequency (nu_0) (MHz)
• Dispersion Measure (pc · cm−3)

• Linear temporal drift (d) (ms · MHz−1)
• Fluence (Jy · ms)
• Time duration (sig_t) (ms)
• Scaled energy (erg).

We exclude the time of arrival in this work because it can only
convey the sequence of arrival of various FRBs, and its correla-
tion with physical properties is limited. In other words, the time of
arrival alone would not be closely related to the distinct physical
characteristics of each FRB.

Equation (2) in (Jahns et al. 2022) fits two-dimensional, ellip-
tical Gaussians to each sub-burst in the burst spectra. The exact
form depending on time t and radio frequency ν is

G2D(t, ν)=A exp
(

− (t − t0 − dt(ν − ν0))2

2σt2
− (ν − ν0)2

2σν
2

)
. (1)

The variable A represents the amplitude of the fitting function.
Following Raquel et al. (2023), we also exclude DM from the

classification process since the repeating FRBs from the FRB
20121102A source have almost the same DMs. In other words,
each burst in FRB 20121102A exhibits an almost identical DM.
Therefore, including it in the classification process would not
provide significant and meaningful information. The fluence is
a readily quantifiable property of a transient that remains less
affected by the time resolution of the observation (e.g., Macquart
& Ekers 2018; Hashimoto et al. 2022). Therefore, we use fluences
provided by Jahns et al. (2022) rather than using flux densities.

In summary, we utilise seven parameters (Jahns et al. 2022),
including: Amplitude (corresponding to the fitting relation, as
seen in Equation 1), Linear temporal drift (temporal change of the
peak frequency), Time duration (temporal burst width), Central
frequency (spectral peak), Bandwidth (width in the frequency
domain), Scaled energy (the isotropic equivalent energy that is
scaled from the fluence and the 2D Gaussian fits), Fluence (the
flux of FRBs integrated over the time duration).

These parameters collectively contribute to the analysis pre-
sented in this study.

3. Data processing/methodology

3.1 Unsupervisedmachine learning

UMAP is an innovative manifold learning technique used for
dimension reduction. It is built on a theoretical foundation rooted
in Riemannian geometry and algebraic topology (McInnes, Healy,
& Melville 2018; McInnes et al. 2018). After pre-processing, our
data consists of 977 rows and 7 columns. To facilitate data visual-
ization and conduct unsupervised learning, we employ the UMAP
algorithm. Here are our processing steps:

1. Embedding the data with the following hyperparameter of
n_neighbors. Embedding refers to the process of map-
ping high-dimensional data points to a lower-dimensional
space while preserving certain structural relationships and
patterns present in the data. The goal of embedding is
to represent complex and high-dimensional data in a
more visually interpretable form, typically in two or three
dimensions, without losing important information (e.g.,
McInnes, Healy, & Melville 2018; McInnes et al. 2018;
Chen et al. 2022). n_neighbors is one of UMAP’s basic
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hyperparameters, which significantly affect the resulting
embedding of the data (e.g., Raquel et al. 2023).

2. Clustering analysis with Hierarchical Density-
Based Spatial Clustering of Applications with Noise
(HDBSCAN) (Campello, Moulavi, & Sander 2013) to
identify a group(s) in the embedded data.

3. Testing the processes 1 and 2 with different values
of n_neighbors. We investigate n_neighbors=5,6,7,8,
and 9 in this work. The embedding and cluster-
ing results of n_neighbors=5,6,7, and 9 are pre-
sented in APPENDIX A (Fig. A1), whereas we adopt
n_neighbors=8 as the fiducial result (see Section 3.2 for
details).

4. Determining the optimised n_neighbors, which max-
imizes the ‘rand score’. The concept of the rand score
is introduced in the next section, which delves into the
evaluation of similarities among different n_neighbors
outcomes. This evaluation aims to identify which results
exhibit the highest degree of agreement with others.

5. Parameter colouring and histograms to investigate the
characteristics of each cluster based on the optimised
n_neighbors.

3.2 Rand score for clustering performance

Because this is an unsupervised ML, we need Rand Score to
make the comparison. A clustering performance metric, namely
the Rand Index (Hubert & Arabie 1985), and its adjusted form
provide us with a Rand score and Adjusted Rand score for each
pair of compared different n_neighbors clustering results. A
high score indicates that the two clustering results are in excel-
lent agreement (e.g., Hubert & Arabie 1985; Raquel et al. 2023).
A higher Rand score indicates a greater similarity with the clas-
sification results of other n_neighbors values, i.e. a high Rand
Score (high agreement) agrees with another result. To find the
most suitable n_neighbors, we need to find the rand score of
each pair of n_neighbors. In Fig. 1, the adjusted rand score is
compared with the rand score with each point annotated with the
pair of n_neighbors. In this work, we choose n_neighbors =
8, which has the highest rand score comparedwith the other values
of n_neighbors, and is included in the 2nd highest rand score.
This way, even by considering only one of these results for dis-
cussion, we could extract the common groups for the different
values of n_neighbors. The details of n_neighbors and rand
score arguments are presented in Chen et al. (2022) and Raquel
et al. (2023), respectively.

3.3 Hyperparameters

There are two sets of hyperparameters in this study. The first set
is of the UMAP and the second set is the HDBSCAN. UMAP
hyperparameters that are considered in this study are min_dist,
metric, n_components, and n_neighbours.

min_dist controls the clumping of the embedded data points
which means that the smaller the value we assign to this hyperpa-
rameter the clumpier the resulting embedding would be. Thus, in
this study, we set min_dist = 0.01.

metric is essentially the way distance is defined on the result-
ing embedding. Since using other metrics is not intuitive or
straightforward, we set metric = Euclidean.

Figure 1. Adjusted Rand Score as a function of Rand Score. Higher values of Adjusted
Rand Score and Rand Score indicate a greater similarity of the classification results
between the pair of n_neighbors values. The pair of n_neighbors = 8 and 5 shows
the highest Adjusted Rand Score and Rand Score, indicating that n_neighbors =
8 clustering result is most similar to that of n_neighbors= 5. n_neighbors = 8 is
commonly included in the two highest cases.

n_components dictates the spatial dimension of the resulting
embedding. Thus, for simplicity and ease of visualization, we set
n_components = 2.

n_neighbours is the most important hyperparameter in this
stage. This hyperparameter estimates the manifold structure by
controlling the size of the local neighborhood. This suggests that a
lower value would emphasize the regional structure compared to
a higher value which then emphasizes the global structure. Thus
in this study, we set n_neighbors = 8 (see also Section 3.2 for
details).

HDBSCAN compared to UMAP has a larger number of
hyperparameters, however only four major parameters signifi-
cantly affect the resulting clustering. These hyperparameters are
min_cluster_size, min_samples,

cluster_selection_epsilon, and alpha.
min_cluster_size is the size of the grouping that can be

considered a cluster. This in return affects the number of clus-
ters that can be identified by HDBSCAN. In this study the value
of min_cluster_size = 80 because after numerous trials with
different values ranging between 30 and 100, we found that setting
min_cluster_size = 80 resulted in more significant differences
between the parameters of the clusters. Also, it can be classified
clearly between clusters and noises.

min_samples is also an important hyperparameter and should
be considered depending on the resulting embedding. When a
large value is used for this hyperparameter, a large number of
points will then be considered Noise. Thus, the researchers set
a conservative value of min_samples = 15 since the default set-
ting of min_samples was found to be the most appropriate
value after thorough examinations. This process involved check-
ing whether some data points weremistakenly considered as noise,
despite their values and errors conforming to reasonable physical
interpretations.

https://doi.org/10.1017/pasa.2024.90 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2024.90


4 L.Y.L. Lin et al.

Figure 2. Two-dimensional UMAP embedding for n_neighbors=8. The 977 FRB data
are classified into five clusters with n_neighbors=8. After ‘projection’, HDBSCAN
(Campello, Moulavi, & Sander 2013) is utilised to identify individual groups.

cluster_selection_epsilon controls the merging of
microclusters located in high-concentration regions when tuned
correctly. However, adjusting this hyperparameter to merge
microclusters will not provide further insight into the clustering
aside from the fact that they are considered a group or a cluster.
Therefore, we set cluster_selection_epsilon = 0 which is its
default value.

alpha is a hyperparameter that is rarely adjusted, if not
avoided, and only acts as a last resort when tuning min_samples
or cluster_selection_epsilon, which does not provide any
useful changes to the clustering. This hyperparameter is used to
determine how conservative the clustering will become but since
its adjustment is not necessary, we set it to its default value of
alpha = 1.0.

4. Results

4.1 Embedding and clustering results

The embedding result with n_neighbors = 8 is shown as Fig. 2.
Fig. 2 shows distinct data distributions, indicating the existence of
multiple clusters in the data. The clustering algorithm described
in Section 3.1 is applied to Fig. 2 to identify clusters. The embed-
ded data are classified into five clusters as shown in Fig. 2.
The clusters are clearly separated from each other, demonstrat-
ing the distinct distribution of each cluster. Distinct clusters are
assigned unique colours to represent groups of data points (Fig. 2).
The distinct characteristics of these clusters are elaborated in
Section 4.2.

4.2 Identifying characteristic properties of each cluster

Because there are seven parameters in our analysis, we show seven
plots of embedded data with colouring for each of the seven

parameters in Figs. 3 and 4. These colouring plots allow us to infer
the distinct characteristics of each cluster.

To validate the characteristics of clusters, we construct his-
tograms, followed by analysis and summarization in the form of
tables, Tables 1 and 2. In the histograms provided in Fig. 5, we
conducted an examination of the Amplitude Fig. 5a, Bandwidth
Fig. 5b, Central Frequency Fig. 5c, Linear Temporal Drift Fig. 5d,
Fluence Fig. 6a, Scaled Energy Fig. 6b, and Time Duration
Fig. 6c histograms. Notably, the bandwidth distributions exhib-
ited unique patterns in all clusters, supporting that the resulting
clusters are significantly different.

We combine the results of histograms and colouring fig-
ures for discussion. Some parameters clearly show distinct dif-
ferences among each cluster, especially central frequency and
bandwidth. While others may appear less distinguishable, we
carefully examine their distribution patterns, noting some are
wider in the frequency domain while others are narrower.
This allows us to identify the unique characteristics of each
cluster.

The result of the analysis is summarized in Tables 1 and 2.
As shown in Table 2, each cluster encompasses a distinct
set of attributes, as illustrated in the Appendix (Amplitude
Fig. A2, Bandwidth Fig. A3, Central Frequency Fig. A4, Fluence
Fig. A5, Scaled Energy Fig. A6, and Time Duration Fig. A7).
Even with varying n_neighbor values, each cluster exhibits
similar distributions, as seen in Table 2. We might refer to
these attributes as ‘invariant’ cluster properties. Although these
attributes do not immediately pin point us to specific physi-
cal mechanisms, the classyfying is an important step advance,
because now we can try to theoretically understand each clus-
ter one by one, instead of understanding them all at once while
mixed.

5. Discussion

5.1 Relationships between different variables

After performing dimensionality reduction on the clusters, we
aimed to map these clusters onto joint distribution plots of the
variables. To identify significant differences, we selected physical
parameters that showed notable variations between clusters. We
will discuss these differences following the analysis of histograms
(Figs. 5, 6) and tables (Tables 1 and 2). We observe that Fluence
and Bandwidth exhibit the most significant differences among
clusters, as shown in the histograms in Figs. 5 and 6, and the data
in Tables 1 and 2. To further analyze these parameters, we com-
bined and mapped them into a distribution plot (Fig. 7). In Fig. 7,
the distribution of Fluence in Cluster 1 appears more concen-
trated compared to the other clusters, and so does the distribution
of Bandwidth, indicating that most of the FRBs in Cluster 1 are
similar.

Additionally, there is a subtle secondary peak beside the main
peak in the distribution curve of Cluster 1. This raises an interest-
ing question: could there be a physical mechanism that generates
two extremums of Fluence, unlike other mechanisms that result in
a single peak, as observed in the other Clusters?

As for the Bandwidth of each cluster, there are noticeable dif-
ferences between their peaks, especially between Cluster 1 and
Cluster 4. There is also something interesting that the Bandwidth
distribution of Cluster 3 has two significant peaks. It would be
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Table 1. Average value of each parameter in each cluster with n_neighbors=8. The errors include two significant figures. For the purpose of comparing with the
Critical Temperature (Xiao & Dai 2022), we computed the Brightness Temperature (BT) using the average values of each parameter, as presented in the last row.

Average value of each
parameter in each Cluster

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Noise

Amplitude 0.8± 2.2 0.7± 2.0 1.1± 3.3 0.5± 1.5 1.5± 6.9 1 000± 11 000

Bandwidth (MHz) 146± 62 118± 40 96± 20 102± 32 110± 65 190± 220

Central Frequency (MHz) 1 676± 96 1 519± 30 1 441± 17 1 355± 30 1 180± 160 1 660± 930

Linear temporal drift
(ms MHz−1)

−0.0090± 0.0056 −0.0104± 0.0071 −0.0099± 0.0055 −0.0141± 0.0094 −0.017± 0.012 −0.0142± 0.0091

Fluence (Jy ms) 0.24± 0.61 0.5± 1.9 0.7± 2.1 0.4± 1.3 0.5± 1.8 0.33± 0.85

Scaled Energy (log10 erg) 37.66± 0.40 37.73± 0.39 37.76± 0.46 37.73± 0.37 37.74± 0.39 37.71± 0.38

Time Duration (ms) 1.10± 0.47 1.32± 0.67 1.33± 0.78 1.49± 0.69 1.73± 0.72 1.52± 0.67

BT (K) 3.3× 1033 5.1× 1033 6.9× 1033 3.2× 1033 3.4× 1033 1.7× 1033

±3.9× 1033 ±3.3× 1033 ±3.5× 1033 ±2.6× 1033 ±2.2× 1033 ±3.2× 1033

Figure 3. Parameter colouring of the clustering result for n_neighbors = 8. From (a) to (d), the amplitude, bandwidth, central frequency, and linear temporal drift are shown,
respectively. For amplitude (a), the colour is shown in the logarithmic scale for visualization purposes.
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Table 2.Cluster properties that remain constantwithn_neighbors=8. The qualitative description of the clusters
is based on the range of values for each parameter of a given cluster.

Invariant Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Noise

cluster

Properties

Amplitude Low Low Low Low Low High

Bandwidth Wide Wide Narrow Medium Medium Diverse

Central frequency High High Medium Medium Low Diverse

Linear temporal drift Uniform Uniform Uniform Diverse Diverse Diverse

Fluence Uniform Uniform Uniform Diverse Diverse Diverse

Scaled energy Uniform Diverse Diverse Uniform Diverse Diverse

Time duration Very Short Short Short Long Very Long Long

Figure 4. Parameter colouring of the clustering result for n_neighbors = 8. From (a) to (c), the fluence, scaled energy, and time duration are shown, respectively.
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Figure 5. Histograms for each parameter with n_neighbors = 8.

valuable to explore what causes these significant differences in
future work.

5.2 Comparison with the classification by the previous work

We compare our classification with another classification result
of FRB 20121102A using the FAST data (Raquel et al. 2023). Our
result, presented in Fig. 8a, shows five clusters, while Fig. 8b from
Raquel et al. (2023) shows three clusters. Noises are also plotted in
the figures.

Figs. 9 and 10 compare the colouring results between Raquel
et al. (2023) and this work for parameters commonly used in
both studies. Figs. 10a and b are the energy (Raquel et al. 2023)
and scaled energy (this work) colouring of the clustering results,
respectively. The scaled energy represents the isotropic equiva-
lent energy, derived by scaling the fluence and the 2D Gaussian
fits using Equation 2 in Jahns et al. (2022). In Fig. 9, both Cluster
2 in Raquel et al. (2023) and Cluster 1 in this work show higher
Bandwidths than the other clusters. These clusters also include
FRBs with high Fluence (Fig. 9c and d) and high Energy/Scaled
Energy (Fig. 10a and b). Therefore, we speculate that Cluster 2

in Raquel et al. (2023) is a similar population to Cluster 1 in this
work.

Cluster 3 in Raquel et al. (2023) includes FRBs with two dis-
tinct properties with low and high values of Bandwidth (Fig. 9a),
Fluence (Fig. 9c), Energy (Fig. 10a), and Time Width (Fig. 10c).
These properties of Cluster 3 in Raquel et al. (2023) would cor-
respond to a combination of Cluster 4 and 5 in this work. The
remaining Cluster 1 in Raquel et al. (2023) shows similar physi-
cal properties to a combination of Cluster 2 and 3 in this work in
terms of Bandwidth/sig_nu, Fluence, Energy/Scaled Energy, and
Time Width/sig_t (Figs. 9 and 10). Therefore, we circle borders
with similar colours and shapes to individual clusters that might
correspond to each other (e.g. their Cluster 2 might correspond
to our Cluster 1. Therefore, we encircle Cluster 1 with a yellow
dashed line, just as they encircled their Cluster 2 with a yellow
dashed line).

We found five clusters with noise, each of which possesses dis-
tinct physical properties. This suggests that FRBs might involve
multiple different physical mechanisms, leading to individual sets
of radio emissions with unique characteristics. The geometry of

https://doi.org/10.1017/pasa.2024.90 Published online by Cambridge University Press

https://doi.org/10.1017/pasa.2024.90


8 L.Y.L. Lin et al.

Figure 6. Parameter colouring of the clustering result for n_neighbors = 8.

the emission region and the propagation effect of FRB signals
could also make such distinct clusters. However, the previous
analysis by Raquel et al. (2023) identified three different clusters,
whereas our result includes five. We speculate the following rea-
sons for the different numbers of clusters between Raquel et al.
(2023) and this work:

1. Their analysis yielded three clusters (Raquel et al. 2023),
but this does not necessarily mean there are only three
distinct groups. FAST telescope is larger and more sen-
sitive than Arecibo. Therefore, their data are domi-
nated by fainter bursts than ours. This may have led
them to miss clusters dominated by brighter bursts.
For example, our cluster 1 and 4 include brighter
bursts.

2. Differences in the parameters used in our study com-
pared to theirs (Raquel et al. 2023) may lead to
variations in the machine learning outcomes. One contri-

buting factor may be the omission of noise during their
analysis.

5.3 Critical Temperature

The Critical Temperature serves as a criterion for distinguish-
ing between Classical and Atypical bursts proposed by Xiao
& Dai (2022) using FAST data of FRB 20121102A. Following
Xiao & Dai (2022), we investigate the Critical Temperature of
the Arecibo data (Jahns et al. 2022) in this work. We compute
the average Brightness Temperature (BT) values for each clus-
ter, which are presented as the bottom row in Table 1. BTs of
Cluster 2, 3, and 5 exceed the Critical BT of 1033 K proposed
by Xiao & Dai (2022). The errors of BTs in Cluster 1, 4, and
Noise are too large to determine whether their BTs exceed the
Critical BT. The average BT in Cluster 3 is significantly higher than
1033 K. This is probably because Xiao & Dai (2022) used FAST
to detect fainter populations of FRBs, whereas we use Arecibo
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Figure 7. Mapping plot of Bandwidth and Fluence with n_neighbors=8. Different colors correspond to different clusters. The histograms on the vertical and horizontal axes
represent the data distributions of Bandwidth and Fluence, respectively.

data, which include relatively brighter populations than those of
FAST.

When we calculated the BT for each cluster using the aver-
age parameter values, we found that most clusters either aligned
with or exceeded the Critical Temperature. However, it is worth
noting that applying the Critical Brightness Temperature (Xiao &
Dai 2022) may not be entirely suitable for interpreting Arecibo
data, given that the Critical Temperature was empirically pro-
posed by using properties of FAST FRBs derived by a partic-
ular pulse-fitting algorithm (Li et al. 2021). We note that, as
shown in Table 1, the errors associated with BTs are significantly
large, making it challenging to discern the distinctive BT of each
cluster. The Critical Temperature criterion proposed by Xiao &
Dai (2022) may not be a suitable approach for identifying the
underlying physical mechanisms in this work. However, classifica-
tion is an important step forward in theoretically modeling FRB
physical mechanisms, because it allows us to tackle the mecha-
nisms one by one, rather than mixed mechanisms at the same
time.

5.4 Physical interpretation of clusters

The geometry of the emission region could make the distinct
clusters identified in this work. For instance, the concept of radius-
frequencymapping (e.g., Manchester & Taylor 1977; Phillips 1992)
is broadly discussed in pulsar search, where higher-frequency
radio is emitted at a shorter distance to the progenitor, corre-
sponding to a shorter pulse duration. Clusters 1 and 5 show higher
and lower frequencies with shorter and longer pulse durations,
respectively (see Table 1). Therefore, Clusters 1 and 5 might have
different emission radii from the progenitors. The pulse duration
could be affected by propagation effects, including scattering. The
line-broadening effect by scattering is proportional to ν−4 (e.g.,

Cordes, Ocker, & Chatterjee 2022). Because Cluster 1 shows higher
frequency than Cluster 5, Cluster 1 should be less affected by the
scattering effect. Therefore, scattering might make the pulse dura-
tion of Cluster 1 shorter than that of Cluster 5, making distinct
clusters.

Li et al. (2021) found that a two-component fit was required
to describe the energy distribution of FRB 20121102A, suggesting
more than one radiation mechanism or emitting region. Xiao &
Dai (2022) found double components in the distribution of bright-
ness temperature of FRB 20121102A bursts. They suggested two
different radiation mechanisms corresponding to the double com-
ponents. In this context, the different clusters identified in this
workmight be attributed to different radiationmechanisms. There
are two major scenarios of the FRB progenitor models, pulsar-like
and gamma-ray burst-like (GRB-like) models (e.g., Cordes, Ocker,
& Chatterjee 2022).

One of the major emission mechanisms of the pulsar-like
model is curvature radiation by bunches (e.g.,Wang,Wang, & Han
2012). The bunches, particles that are clustered in both position
and momentum spaces, slide along the magnetic field lines in a
curved trajectory. This can emit coherent radio pulses, including
FRBs. In general, the curvature radiation shows a broad spec-
trum (e.g., Yang & Zhang 2018), whereas all of the clusters in
this work show narrow spectra confined within <200 MHz. Such
narrow spectra could be explained by spatially separated bunches
(e.g., Yang et al. 2020). Therefore, the broader and narrower band-
widths of Cluster 1 and 3 (see Table 1 and Fig. 7), respectively,
might be due to different spatial distributions of the emitting
regions.

Cherenkov radiation might be another candidate for the
pulsar-like model (e.g., Lyutikov, Blandford, & Machabeli 1999).
However, Lu & Kumar (2018) argued that they might not be
favored for the FRB scenario because the required condition
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Figure 8. The comparison of the clustering of our result (a) and Raquel et al. (2023) (b).

cannot be satisfied or the growth rate of the instability is too
slow to explain FRBs. Therefore, we leave this subject for future
work.

One of the major emission mechanisms of the GRB-like model
is the maser radiation by external shocks (e.g., Metzger, Margalit,
& Sironi 2019). An ejecta from the central engine, e.g., magne-
tar, can interact with the ambient medium, invoking relativistic
shocks. As the relativistic shocks propagate, particles coherently
gyrate aroundmagnetic field lines to generate coherent radio emis-
sions, including FRBs. This scenario is characterized by a bulk
Lorentz factor (�) of charged particles. The observed frequency
corresponds to the gyration frequency boosted by � (e.g., Zhang
2023). The bulk Lorentz factor also governs the pulse duration
which is inversely proportional to �2 (e.g., Zhang 2023). In this

framework, the higher frequency and shorter pulse duration of
Cluster 1 might be qualitatively explained by a larger � value. The
smaller � might be the case for Cluster 5 with lower frequency and
longer duration.

5.5 Advantage of the machine-learning approach

The classification of Classical and Atypical bursts based solely
on the BT might be an arbitrary choice. In contrast, we simul-
taneously treat seven parameters, which include ones used to
compute the BT. This is where the potential advantages of ML
come into play. ML models possess the capability to process vast
amounts of data and discern complex patterns that may elude
human bias. This could potentially lead to a more comprehensive
understanding of the classification of FRBs.

Our utilization of UMAP effectively categorized FRBs into
five distinct clusters, alongside noise, hinting at the possibility of
multiple physical mechanisms responsible for generating FRBs,
though not exclusively (Jahns et al. 2022). To mitigate the poten-
tial impact of telescope bias, we corroborated our findings with an
alternative ML classification method utilizing FAST data (Raquel
et al. 2023). The striking alignment between these two approaches
provides intriguing insights for future investigations.

While machine learning can significantly reduce human bias
in the analysis process, a complete elimination of human bias
remains challenging when interpreting and comprehending the
results. Nevertheless, machine learning methods tend to intro-
duce far less human bias compared to traditional manual analysis
techniques.

6. Conclusions

With the above underpinnings, this paper concludes the following:

• Using machine learning classification methods,we identi-
fied five clusters among the seven parameters. Each cluster
exhibits distinct characteristics in histograms and param-
eter colouring, which might suggest the existence of mul-
tiple mechanisms of FRB emissions. The geometry of the
emission region and the propagation effect of FRB signals
could also make such distinct clusters.

• With parameter colouring,we have determined the
invariant properties of each cluster regardless of the
n_neighbors value, which demonstrates that describing
FRB subtypes without relying on the n_neighbors
setting facilitates comparison with other studies aimed at
classifying FRBs.

• Classifying and confirming the actual physical mech-
anisms of the clusters in this work are challenging.
Consequently, the Critical Temperature criterion may not
be applicable to this work.

• Nevertheless, a certain degree of agreement with other
results (e.g., being able to recover the FRB classification
used by Raquel et al. 2023) exhibits consistency and foun-
dation on physical parameters of the clusters.

Looking ahead, we expect even more promising outcomes in
the future, thanks to enhanced telescope capabilities provided
by future projects like the Square Kilometre Array (SKA) (e.g.,
Dewdney et al. 2009; Hashimoto et al. 2020) and the Bustling
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Figure 9. (Left) Classification results from FAST data (Raquel et al. 2023), there are three clusters, Cluster 2 has the highest value of Bandwidth, same as Fluence, Cluster 2 has the
higher value in general, and so does Cluster 3. (Right) Classification results from this work. While our result shows that there are five clusters, Fluence looks more uniform in each
cluster. As for Bandwidth(sig_nu), same as Cluster 2 in another classification result (Raquel et al. 2023), our Cluster 1 has the highest value in general.

Universe Radio Survey Telescope in Taiwan (BURSTT) (e.g., Lin
et al. 2022; Ho et al. 2023). We maintain optimism that these
advancements will unveil the enigmatic nature of FRBs. This
research serves as a benchmark for future FRB classifications,
particularly as dedicated radio telescopes like SKA and BURSTT
continue to detect a growing number of FRBs.
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Figure 10. (Left) Classification results from FAST data (Raquel et al. 2023), there are three clusters, both Cluster 2 and Cluster 3 have the higher values of Energy, Cluster 1 has
the lowest, most of the data points show most of the values lower than 1.225× 1038 erg. On the other hand, Cluster 3 has the longest time width (also duration), most of them
are longer than 5.0 ms according to (c). (Right) Classification results from this work. While our result shows that there are five clusters, Scaled Energy looks more uniform to each
cluster, however, Cluster 4 and Cluster 5 seem to have higher values of data points. As for Time Duration (sig_t), Cluster 4 and Cluster 5 have the longer time duration, followed by
Cluster 2 and Cluster 3.
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Here, we present embedding, clustering, and colouring results
with different assumptions on n_neighbors values.
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Figure A1. HDBSCAN Clustering result for (a) n_neighbors = 5, (b) n_neighbors = 6, (c) n_neighbors = 7, and (d) n_neighbors = 9.
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Figure A2. Amplitude colouring of the clustering results for (a) n_neighbors = 5, (b) n_neighbors = 6, (c) n_neighbors = 7, and (d) n_neighbors = 9.
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Figure A3. Bandwidth colouring of the clustering results for (a) n_neighbors = 5, (b) n_neighbors = 6, (c) n_neighbors = 7, and (d) n_neighbors = 9.
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Figure A4. Central Frequency colouring of the clustering results for (a) n_neighbors = 5, (b) n_neighbors = 6, (c) n_neighbors = 7, and (d) n_neighbors = 9.
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Figure A5. Linear Temporal Drift colouring of the clustering results for (a) n_neighbors = 5, (b) n_neighbors = 6, (c) n_neighbors = 7, and (d) n_neighbors = 9.
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Figure A6. Fluence colouring of the clustering results for (a) n_neighbors = 5, (b) n_neighbors = 6, (c) n_neighbors = 7, and (d) n_neighbors = 9.
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Figure A7. Scaled Energy colouring of the clustering results for (a) n_neighbors = 5, (b) n_neighbors = 6, (c) n_neighbors = 7, and (d) n_neighbors = 9.
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Figure A8. Time Duration colouring of the clustering results for (a) n_neighbors = 5, (b) n_neighbors = 6, (c) n_neighbors = 7, and (d) n_neighbors = 9.
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Figure A9. Histograms for Amplitude with different n_neighbors.
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Figure A10. Histograms for Bandwidth with different n_neighbors.
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Figure A11. Histograms for Central frequency with different n_neighbors.
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Figure A12. Histograms for Linear temporal drift with different n_neighbors.
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Figure A13. Histograms for Fluence with different n_neighbors.
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Figure A14. Histograms for Scaled energy with different n_neighbors.
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Figure A15. Histograms for Time duration with different n_neighbors.
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