Bull. Aust. Math. Soc. **111** (2025), 93–106 doi:10.1017/S0004972724000583

THEOREM OF WARD ON SYMMETRIES OF ELLIPTIC NETS

L. DEWAGHE

(Received 16 March 2024; accepted 29 May 2024; first published online 4 October 2024)

Abstract

We present a new version of a generalisation to elliptic nets of a theorem of Ward ['Memoir on elliptic divisibility sequences', *Amer. J. Math.* **70** (1948), 31–74] on symmetry of elliptic divisibility sequences. Our results cover all that is known today.

2020 Mathematics subject classification: primary 14H52; secondary 11B50, 11B83, 11G05.

Keywords and phrases: elliptic curve, elliptic divisibility sequences, division polynomials, elliptic nets.

1. Introduction

This paper concerns a generalisation of a theorem of Ward [7] on symmetry of elliptic sequences to the case of nondegenerate elliptic nets of rank d ($d \in \mathbb{N}$) associated to an elliptic curve E and points on E. In our opinion, it is the most comprehensive form that we can hope to achieve.

Symmetries of such elliptic nets written explicitly in a form similar to Ward's theorem [7] are only known for the cases d = 1 [6] and d = 2 [4, 6]. To get the right shape for all d, an essential point of our demonstration consists of showing that appropriate quotients of two elliptic nets follow a geometric progression. This new approach allows us to obtain a simple proof of the generalisation of the symmetry theorem in Ward's form. In this way, we unify all the results known to date: for d = 1, Ward [7, Theorem 8.1], Stange [4, Theorem 10.2.2] and [6, Theorem 4], and the author [2, Theorem 1]; for d = 2, [4, Lemma 10.2.5] and [6, Theorem 5]; and for d > 2, [4, Theorem 10.2.3] and Akbary *et al.* [1, Theorems 1.12 and 1.13].

Let *E* be an elliptic curve over a field \mathbb{K} (see [3]). To simplify, we assume that the characteristic is different from 2 and 3. Then

$$E(\mathbb{K}) = \{ [X : Y : Z] \in \mathbb{P}^2(\mathbb{K}) \mid \mathcal{F}(X, Y, Z) = 0 \} = \{ (x, y) \in \mathbb{K}^2 \mid \mathcal{F}(x, y, 1) = 0 \} \cup \{ 0_E \},\$$

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

with $\mathcal{F}(X, Y, Z) = Y^2 Z - (X^3 + aXZ^2 + bZ^3)$, $a, b \in \mathbb{K}$ such that $4a^3 + 27b^2 \neq 0$ and 0_E the unique point at infinity of the curve. The group structure of $E(\mathbb{K})$ is defined by the chord and tangent method with the neutral element 0_E .

We introduce division polynomials $\psi_m(x, y), m \in \mathbb{Z}$, of an elliptic curve *E* over the field \mathbb{K} with an affine equation $y^2 = x^3 + ax + b$ (see [8]) by

$$\psi_0(x, y) = 0, \quad \psi_1(x, y) = 1, \quad \psi_2(x, y) = 2y \quad \psi_3(x, y) = 3x^4 + 6ax^2 + 12bx - a^2,$$

$$\psi_4(x, y) = 4y(x^6 + 5ax^4 + 20bx^3 - 5a^2x^2 - 4abx - 8b^2 - a^3),$$

and for *n* a natural integer, $\psi_{-n} = -\psi_n$. Then, for all (m, n) in \mathbb{Z}^2 ,

$$\psi_{m+n}\psi_{m-n} = \psi_{m+1}\psi_{m-1}\psi_n^2 - \psi_{n+1}\psi_{n-1}\psi_m^2.$$
(1.1)

This equality can be used for the product $\psi_i \psi_j$ when the integers *i* and *j* have the same parity. Any solution over an arbitrary integral domain of (1.1) is called an *elliptic sequence*. Also,

$$\psi_{2n+1} = \psi_{n+2}\psi_n^3 - \psi_{n+1}^3\psi_{n-1}$$
 and $\psi_{2n}\psi_2 = \psi_n(\psi_{n+2}\psi_{n-1}^2 - \psi_{n-2}\psi_{n+1}^2)$

for *n* in \mathbb{Z} . Note also Stephen Nelson's form (see [4, page 22]): for all $(\alpha, \beta, \gamma, \delta) \in \mathbb{Z}^4$,

$$\psi_{\alpha+\beta}\psi_{\alpha-\beta}\psi_{\gamma+\delta}\psi_{\gamma-\delta} + \psi_{\alpha+\gamma}\psi_{\alpha-\gamma}\psi_{\delta+\beta}\psi_{\delta-\beta} + \psi_{\alpha+\delta}\psi_{\alpha-\delta}\psi_{\beta+\gamma}\psi_{\beta-\gamma} = 0.$$
(1.2)

Division polynomials have partial periodicity, called symmetry.

THEOREM 1.1 [2]. Let \mathbb{F}_q be a finite field, let E/\mathbb{F}_q be an elliptic curve and let $P \in E(\overline{\mathbb{F}}_q)$ be a point of exact order $u \ge 2$. Then there exists $\omega \in \overline{\mathbb{F}}_q$, depending on P, such that the following hold.

- (1) If $u \ge 3$, then for all k and v in \mathbb{Z} :
 - *if* u = 2m, we have $\psi_{ku+v}(P) = (-\omega^m)^{k^2} \omega^{kv} \psi_v(P)$;
 - if u = 2m + 1, we have $\psi_{ku+v}(P) = (-\omega^{2m+1})^{k^2} (\omega^2)^{kv} \psi_v(P)$.
- (2) If u = 2, then for all $k \in \mathbb{Z}$,

$$\psi_{4k+1}(P) = (-1)^k \psi_3^{k(2k+1)}, \quad \psi_{4k+3}(P) = (-1)^k \psi_3^{(k+1)(2k+1)}.$$

Note that the proof works for any field \mathbb{K} and that $\psi_u(P) = 0$. Furthermore, if u = 2m, then $\omega = (\psi_{m+1}/\psi_{m-1})(P)$; otherwise $\omega = (\psi_{m+1}/\psi_m)(P)$. This result will become a particular case of our generalisation and is already a precision of Ward's symmetry theorem for the elliptic sequence (ψ_n) .

THEOREM 1.2 [7]. Let W be an integer elliptic sequence such that W(1) = 1 and $W(2) \mid W(4)$. Let p be an odd prime and suppose that $W(2)W(3) \not\equiv 0 \mod p$. Let u be the rank of apparition of W with respect to p (that is, $W(u) \equiv 0$ and $W(m) \not\equiv 0$ for any $m \mid u$). Then there exist integers \mathcal{A} and C such that

$$W(ku+v) = \mathcal{R}^{kv} \mathcal{C}^{k^2} W(v) \quad \text{for all } k, v \in \mathbb{N}.$$
(1.3)

Symmetries of elliptic nets

We usually call the smallest positive index of a vanishing term the *rank* of zero-apparition. If we consider the elliptic sequence $W = \psi(P)$, the rank of zero-apparition is the order of P on E.

In [5], Stange generalised the concept of an elliptic sequence to a *d*-dimensional array, called an elliptic net. An elliptic net in this article is a map $W : \mathbb{Z}^d \to \mathbb{K}$ such that, for all $\mathbf{p}, \mathbf{q}, \mathbf{r}, \mathbf{s}$ in \mathbb{Z}^d ,

$$W(\mathbf{p} + \mathbf{q} + \mathbf{s})W(\mathbf{p} - \mathbf{q})W(\mathbf{r} + \mathbf{s})W(\mathbf{r}) + W(\mathbf{q} + \mathbf{r} + \mathbf{s})W(\mathbf{q} - \mathbf{r})W(\mathbf{p} + \mathbf{s})W(\mathbf{p})$$
$$+ W(\mathbf{r} + \mathbf{p} + \mathbf{s})W(\mathbf{r} - \mathbf{p})W(\mathbf{q} + \mathbf{s})W(\mathbf{q}) = 0. (1.4)$$

We have $W(\mathbf{0}) = 0$, where **0** is the additive identity element of \mathbb{Z}^d , since char(\mathbb{K}) $\neq 3$. Stange proved that we can compute $W(\mathbf{v})$ for all \mathbf{v} in \mathbb{Z}^d from (1.4) and initial values $W(\mathbf{v})$ with $\mathbf{v} = \mathbf{e}_i$, $\mathbf{v} = 2\mathbf{e}_i$, $\mathbf{v} = \mathbf{e}_i + \mathbf{e}_j$ and $\mathbf{v} = 2\mathbf{e}_i + \mathbf{e}_j$ with $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d\}$ the standard basis of \mathbb{Z}^d . For $\mathbf{s} = \mathbf{0}$, we deduce that

$$W(\mathbf{p}+\mathbf{q})W(\mathbf{p}-\mathbf{q})W(\mathbf{r})^{2} = W(\mathbf{p}+\mathbf{r})W(\mathbf{p}-\mathbf{r})W(\mathbf{q})^{2} - W(\mathbf{q}+\mathbf{r})W(\mathbf{q}-\mathbf{r})W(\mathbf{p})^{2}.$$
(1.5)

An elliptic net *W* is called degenerate if one of the terms $W(\mathbf{e}_i)$, $W(2\mathbf{e}_i)$, $W(\mathbf{e}_i \pm \mathbf{e}_j)$ (where $i \neq j$) is zero, and $W(3\mathbf{e}_1)$ is zero if d = 1. As shown in [5], we can define an elliptic net $W = W_{E,\mathbf{P}}$ associated to the elliptic curve *E* and a *d*-tuple of fixed points $\mathbf{P} = (P_1, P_2, \dots, P_d)$ on E^d with $P_i = (x_i, y_i) \neq 0_E$ for $1 \le i \le d$ and $P_i \pm P_j \neq 0_E$ for $i \neq j$, using the recurrence relation (1.4) and initial values

$$\mathcal{W}(\mathbf{e}_i) = 1, \quad \mathcal{W}(2\mathbf{e}_i) = 2y_i, \quad \mathcal{W}(\mathbf{e}_i + \mathbf{e}_j) = 1, \quad \mathcal{W}(2\mathbf{e}_i + \mathbf{e}_j) = 2x_i + x_j - \left(\frac{y_j - y_i}{x_j - x_i}\right).$$

From [1, Example 2.4], $W(\mathbf{e}_i - \mathbf{e}_j) = W(\mathbf{e}_i + 2\mathbf{e}_j) - W(2\mathbf{e}_i + \mathbf{e}_j)$, so $W(\mathbf{e}_i - \mathbf{e}_j) = x_j - x_i$. The nondegenerate case therefore reduces to $W(2\mathbf{e}_i) \neq 0$ $(1 \le i \le d)$ with $W(3\mathbf{e}_1) \neq 0$ when d = 1.

From (1.5) with $\mathbf{r} = \mathbf{e}_r$, we obtain (1.1) when d = 1 (note that, in general, $W_1 = 1$ [7, Ch. VII]). Therefore, elliptic nets are effectively a generalisation of elliptic sequences.

Even though it is not essential for our purpose, we take the opportunity to show the converse, that is, that (1.1) implies (1.4) for d = 1, by giving the missing elementary proof reported in [4, Ch. 3, page 22].

PROPOSITION 1.3. For all $(p, q, r, s) \in \mathbb{Z}^4$,

$$\psi_{p+q+s}\psi_{p-q}\psi_{r+s}\psi_r + \psi_{q+r+s}\psi_{q-r}\psi_{p+s}\psi_p + \psi_{r+p+s}\psi_{r-p}\psi_{q+s}\psi_q = 0.$$
(1.6)

PROOF. For any $(\alpha, \beta) \in \mathbb{Z}^2$, the integers $\alpha + \beta + 1$ and $\alpha - \beta$ have different parities. Thus, we obtain $\psi_{\alpha+\beta+1}\psi_{\alpha-\beta}\psi_2\psi_1 = \psi_{\beta+2}\psi_{\beta-1}\psi_{\alpha+1}\psi_\alpha - \psi_{\alpha+2}\psi_{\alpha-1}\psi_{\beta+1}\psi_\beta$ from the expressions for $\psi_{2k+1}\psi_1$ and $\psi_{2k'}\psi_2$ for the left-hand side and from (1.1) for the right-hand side, since the terms on each side of the subtraction can be coupled in pairs of products $\psi_1\psi_1$ whose indexes have the same parity, which can be written in terms of

k and *k'*. Accordingly, we deduce a modified version of Stephen Nelson's form: for all $(\alpha, \beta, \gamma, \delta) \in \mathbb{Z}^4$,

$$\psi_{\alpha+\beta+1}\psi_{\alpha-\beta}\psi_{\gamma+\delta+1}\psi_{\gamma-\delta} + \psi_{\alpha+\gamma+1}\psi_{\alpha-\gamma}\psi_{\delta+\beta+1}\psi_{\delta-\beta} + \psi_{\alpha+\delta+1}\psi_{\alpha-\delta}\psi_{\beta+\gamma+1}\psi_{\beta-\gamma} = 0.$$
(1.7)

The equality (1.6) follows by setting $r = \beta - \alpha$, $p = \gamma - \alpha$, $q = \delta - \alpha$ and, according to the parity, $s = 2\alpha$ in (1.2) or $s = 2\alpha + 1$ in (1.7).

For the symmetries, for the case d = 1 [4, Theorem 10.2.2], with W(u) = 0 ($u \in \mathbb{Z}$) at a point *P* of *E*, we have, for all $k \in \mathbb{Z}$,

$$\mathcal{W}(ku+v) = \mathcal{A}^{kv} \mathcal{C}^{k^2} \mathcal{W}(v)$$
 with $\mathcal{A} = \frac{\mathcal{W}(u+2)}{\mathcal{W}(u+1)\mathcal{W}(2)}$ and $\mathcal{C} = \frac{\mathcal{W}(u+1)}{\mathcal{A}}$.

For the case d = 2 [4, Lemma 10.2.5], with $\mathcal{W}(\mathbf{u}) = \mathcal{W}(u_1, u_2) = 0$ ($\mathbf{u} = (u_1, u_2) \in \mathbb{Z}^2$), $\mathbf{P} = (P_1, P_2) \in E^2$ and $\mathbf{v} = (v_1, v_2) \in \mathbb{Z}^2$, we have, for all $k \in \mathbb{Z}$,

$$\mathcal{W}(k\mathbf{u} + \mathbf{v}) = \mathcal{A}_{1}^{kv_{1}} \mathcal{A}_{2}^{kv_{2}} C^{k^{2}} \mathcal{W}(\mathbf{v}) \quad \text{with } \mathcal{A}_{1} = \frac{\mathcal{W}(u_{1} + 2, u_{2})}{\mathcal{W}(u_{1} + 1, u_{2}) \mathcal{W}(2, 0)},$$
$$\mathcal{A}_{2} = \frac{\mathcal{W}(u_{1}, u_{2} + 2)}{\mathcal{W}(u_{1}, u_{2} + 1) \mathcal{W}(0, 2)}, C = \frac{\mathcal{W}(u_{1} + 1, u_{2} + 1)}{\mathcal{A}_{1} \mathcal{A}_{2} \mathcal{W}(1, 1)}.$$

There are some general results in the literature [4, Theorem 10.2.3] and [1, Theorem 1.13] for any natural integer d, presented as a generalisation of Ward's theorem (1.3), which we give here in a succinct form to avoid overloading the presentation. For the version ([4], [1, Theorem 1.12]), which deals with nondegenerate elliptic nets associated with an elliptic curve and a d-tuple of points on it,

$$\mathcal{W}(\mathbf{u} + \mathbf{v}) = \delta(\mathbf{u}, \mathbf{v}) \mathcal{W}(\mathbf{v}) \quad \text{for all } \mathbf{v} \in \mathbb{Z}^d, \tag{1.8}$$

where $W(\mathbf{u}) = 0$ and δ is a quadratic function that is linear in the second factor. Stange's version has a rather complicated proof [4, Theorem 10.2.3, page 62] and a simplified version of its proof with 'general' elliptic nets W can be found in [1, Theorem 1.13] with a factorised form of δ into linear and quadratic forms: that is,

$$W(\mathbf{u} + \mathbf{v}) = \xi(\mathbf{u})\chi(\mathbf{u}, \mathbf{v})W(\mathbf{v}) \quad \text{for all } \mathbf{v} \in \mathbb{Z}^d.$$
(1.9)

To obtain their results, Ward and Stange use complex analysis, which requires the nondegeneracy hypothesis. The authors in [1] use the recurrence (1.4), which allows them to remove the nondegeneracy condition and deal with elliptic nets that do not necessarily come from elliptic curves but with the property that $\Lambda = W^{-1}(0)$ is a subgroup of \mathbb{Z}^d and $|\mathbb{Z}^d/\Lambda| \ge 4$. The result (1.9) is presented as a generalisation of (1.3) by letting $\mathcal{A} = \chi(v, 1)$ and $C = \xi(u)$ (see [1] for more details).

The purpose of this article is to prove the following result that unifies [7, Theorem 9.2], [2, Theorem 1], [4, Theorem 10.2.3] and [1, Theorem 1.13].

THEOREM 1.4. For a nondegenerate elliptic net $\mathcal{W} = W_{E,\mathbf{P}}$ associated to an elliptic curve *E* and a *d*-tuple of fixed points $\mathbf{P} = (P_1, P_2, \dots, P_d)$ on E^d such that $\mathcal{W}(\mathbf{u}) = 0$ with $\mathbf{u} \in (\mathbb{Z}^*)^d$ $(d \in \mathbb{N})$, we have, for all $k \in \mathbb{Z}$ and $\mathbf{v} = (v_1, v_2, \dots, v_d) \in \mathbb{Z}^d$,

$$\mathcal{W}(k\mathbf{u} + \mathbf{v}) = C^{k^2} \left(\prod_{r=1}^d \mathcal{R}_r^{v_r}\right)^k \times \mathcal{W}(\mathbf{v})$$
(1.10)

with

$$\mathcal{A}_r = \frac{\mathcal{W}(\mathbf{u} + 2\mathbf{e}_r)}{\mathcal{W}(\mathbf{u} + \mathbf{e}_r)\mathcal{W}(2\mathbf{e}_r)} \quad \text{for all } r \in \{1, 2, \dots, d\},$$
$$C = \begin{cases} \frac{\mathcal{W}(\mathbf{u} + 1)}{\mathcal{W}(1) \times \prod_{r=1}^d \mathcal{A}_r} & \text{if } \mathbf{u} \neq 1, \\ -\mathcal{A}_s \mathcal{W}(\mathbf{u} - \mathbf{e}_s) & (s \in \{1, 2, \dots, d\}) & \text{if } \mathbf{u} = \pm 1. \end{cases}$$

We limit ourselves to elliptic nets of the form \mathcal{W} . Indeed, Ward [7] showed that almost all elliptic divisibility sequences are of the form $\mathcal{W} = W_{E,P} = \psi_n(P)$ and Stange [6] reports that 'nearly all elliptic nets arise in this way', and are hence of the form $\mathcal{W} = W_{E,P}$. On the other hand, in [1], to ensure that Λ is a group, the authors use the hypothesis that each elliptic sequence $W(ne_i)$ ($n \in \{1, 2, ..., d\}$) has a unique rank of zero-apparition. In our context, this means that all points P_i are of finite order on E, which seems to be very restrictive in a field of characteristic different from zero.

Note that, from [5, Corollary 5.2], we have the equivalence between $\mathcal{W}(\mathbf{u}) = 0$ and $\mathbf{u}.\mathbf{P} = 0_E$. The zeros of an elliptic net then appear as a sublattice of \mathbb{Z}^d , called the lattice of zero-apparition [6, Definition 3].

2. Periodicity

2.1. Generalities. In this paragraph, we consider, for d in $\mathbb{N}_{\geq 2}$ and $\boldsymbol{\ell} = (\ell_1, \ell_2, \dots, \ell_d)$ in \mathbb{Z}^d , a multi-index sequence denoted by $G_{\boldsymbol{\ell}} = G_{\ell_1, \ell_2, \dots, \ell_d}$ of elements in the field \mathbb{K} . We say that the sequence $G_{\boldsymbol{\ell}}$ is \mathbb{Z} -geometric if, for all k fixed in $\{1, 2, \dots, d\}$ and $\boldsymbol{\ell}$ fixed in \mathbb{Z}^d , the sequence $G_{\ell_1, \ell_2, \dots, \ell_d, \ell_d} = \mathcal{G}_\ell$ is geometric. To be more explicit, for all k in $\{1, 2, \dots, d\}$ we set $\boldsymbol{\ell}_k = (\ell_1, \ell_2, \dots, \ell_{d-1}, \ell_{k+1}, \dots, \ell_d)$ in \mathbb{Z}^{d-1} and define the ratios $q_{\boldsymbol{\ell}_k}^{(k)}$ in \mathbb{K} such that $G_{\boldsymbol{\ell}+\mathbf{e}_k} = q_{\boldsymbol{\ell}_k}^{(k)} G_{\boldsymbol{\ell}}$.

We prove the following lemma, which is useful for obtaining our final result.

LEMMA 2.1. Consider a \mathbb{Z} -geometric sequence $(G_{\ell})_{\ell \in \mathbb{Z}^d}$ of elements in the field \mathbb{K} such that

for all
$$u \neq v \in \{1, 2, \dots, d\}$$
, $G_{\ell + \mathbf{e}_u + \mathbf{e}_v} G_{\ell} = G_{\ell + \mathbf{e}_u} G_{\ell + \mathbf{e}_v}$

Then, the sequence G_{ℓ} is geometric in each direction \mathbf{e}_k for $k \in \{1, 2, \dots, d\}$, namely,

for all $k \in \{1, 2, ..., d\}$ there exists $q_k \in \mathbb{K}$, $G_{\ell+\mathbf{e}_k} = q_k G_{\ell}$.

PROOF. We show this result by induction on the integer *d*.

In the case d = 2, for $i \neq j$ in {1, 2}, from $G_{\ell+\mathbf{e}_j}G_{\ell-\mathbf{e}_j} = G_{\ell}^2$ since G_{ℓ} is \mathbb{Z} -geometric, we deduce that $q_{\ell_j+1}^{(i)}G_{\ell-\mathbf{e}_i+\mathbf{e}_j}q_{\ell_j-1}^{(i)}G_{\ell-\mathbf{e}_i-\mathbf{e}_j} = (q_{\ell_j}^{(i)}G_{\ell-\mathbf{e}_i})^2$ so $q_{\ell_j}^{(i)}$ is a geometric sequence whose ratio is denoted r_j . So, we have $q_{\ell_j}^{(i)} = r_j^{\ell_j}q_0^{(i)}$. Expressing $G_{1,1}$ in terms of $G_{0,0}$ gives $r_1 = r_2$ and, from $G_{1,1}G_{0,0} = G_{1,0}G_{0,1}$, we find that $r_1 = r_2 = 1$. Finally, we obtain $G_{\ell+\mathbf{e}_i} = q_{\ell_j}^{(i)}G_{\ell} = r_j^{\ell_j}q_0^{(i)}G_{\ell} = q_iG_{\ell}$ with $q_0^{(i)} = q_i$.

For the case d > 2, in the same way, we deduce, for k in $\{1, 2, ..., d\}$, that $q_{\ell_k}^{(k)}$ is \mathbb{Z} -geometric. On the other hand, for $u \neq v$, $q_{\ell_k}^{(k)}$ satisfies $q_{\ell_k+\mathbf{e}_u+\mathbf{e}_v}^{(k)}q_{\ell_k}^{(k)} = q_{\ell_k+\mathbf{e}_u}^{(k)}q_{\ell_k+\mathbf{e}_v}^{(k)}$. Therefore, by the inductive hypothesis,

for all $k \in \{1, 2, \dots, d\}$ and for all $j \neq k$, there exists $r_{k,j} \in \mathbb{K}$, $q_{\ell_k + \bar{\mathbf{e}}_j}^{(k)} = r_{k,j} q_{\ell_k}^{(k)}$,

where $\mathbf{\bar{e}}_j$ is the projection of \mathbf{e}_j over $\operatorname{span}_{\mathbb{Z}}(\mathbf{e}_1, \dots, \mathbf{e}_{k-1}, \mathbf{e}_{k+1}, \dots, \mathbf{e}_d)$. It follows that $q_{\ell_k}^{(k)} = \prod_{1 \le j \le d, j \ne k} r_{k,j}^{\ell_j} q_{\mathbf{0}_{d-1}}^{(k)}$ with $\mathbf{0}_{d-1} = (0, 0, \dots, 0)$ in \mathbb{Z}^{d-1} and thus we have $G_{\boldsymbol{\ell}+\mathbf{e}_k} = \prod_{1 \le j \le d, j \ne k} r_{k,j}^{\ell_j} q_{\mathbf{0}_{d-1}}^{(k)} G_{\boldsymbol{\ell}}$. So, for $u \ne v$ in $\{1, 2, \dots, d\}$, we can write $G_{\mathbf{e}_u+\mathbf{e}_v} = r_{v,u} q_{\mathbf{0}_{d-1}}^{(v)} q_{\mathbf{0}_{d-1}}^{(u)} G_{\mathbf{0}} = G_{\mathbf{e}_v+\mathbf{e}_u}$. Hence, $r_{u,v} = r_{v,u}$. Finally, from $G_{\mathbf{e}_u+\mathbf{e}_v} G_{\mathbf{0}} = G_{\mathbf{e}_u} G_{\mathbf{e}_v}$, we obtain $r_{u,v} = 1$ and so, for all k in $\{1, 2, \dots, d\}$, we have $G_{\boldsymbol{\ell}+\mathbf{e}_k} = q_{\mathbf{0}_{d-1}}^{(k)} G_{\boldsymbol{\ell}} = q_k G_{\boldsymbol{\ell}}$.

2.2. Geometric sequence of quotient of elliptic nets. We consider a nondegenerate elliptic net $\mathcal{W} = W_{E,\mathbf{P}}$ associated to the elliptic curve *E* and the *d*-tuple of fixed points $\mathbf{P} = (P_1, P_2, \dots, P_d)$ on E^d . We assume that there is $\mathbf{u} = (u_1, \dots, u_d)$ in \mathbb{Z}^d with $\mathcal{W}(\mathbf{u}) = \mathcal{W}_{E,\mathbf{P}} = 0$. In other words, $\mathbf{u}.\mathbf{P} = u_1P_1 + \dots + u_dP_d = 0_E$ [5, Corollary 5.2].

In equation (1.5), we set $\mathbf{r} = \mathbf{e}_r$ $(r \in \{1, 2, ..., d\})$, $\mathbf{p} = \mathbf{i} - \boldsymbol{\ell}$ and $\mathbf{q} = \mathbf{j} + \boldsymbol{\ell}$ with $\boldsymbol{\ell}, \mathbf{i}, \mathbf{j} \in \mathbb{Z}^d$ and we consider $\mathbf{i} + \mathbf{j} = \mathbf{u}$. We obtain, for all r in $\{1, 2, ..., d\}$,

$$\mathcal{W}(\mathbf{i}-\boldsymbol{\ell}+\mathbf{e}_r)\mathcal{W}(\mathbf{i}-\boldsymbol{\ell}-\mathbf{e}_r)\mathcal{W}(\mathbf{j}+\boldsymbol{\ell})^2 - \mathcal{W}(\mathbf{j}+\boldsymbol{\ell}+\mathbf{e}_r)\mathcal{W}(\mathbf{j}+\boldsymbol{\ell}-\mathbf{e}_r)\mathcal{W}(\mathbf{i}-\boldsymbol{\ell})^2 = 0.$$
(2.1)

This equation does not provide any information in certain cases, for example, for $\ell = \mathbf{i} \pm \mathbf{e}_r$, **i**. We now define

$$G_{\boldsymbol{\ell}} = \frac{\mathcal{W}(\mathbf{j} + \boldsymbol{\ell})}{\mathcal{W}(\mathbf{i} - \boldsymbol{\ell})},$$

which depends on **i** and **j** but we will fix them later. Note also that G_{ℓ} is not defined for some ℓ , for example, for $\ell = \mathbf{i}, \ell = -\mathbf{j}$. From (2.1),

for all
$$r \in \{1, 2, \dots, d\}$$
, $G_{\ell + \mathbf{e}_r} \times G_{\ell - \mathbf{e}_r} = G_{\ell}^2$. (2.2)

Again, (2.2) does not make sense for some values of ℓ . We will come back later to all these problematic cases (see Section 2.3) and we provisionally assume that G_{ℓ} is well defined for all ℓ in \mathbb{Z}^d .

So, the sequence G_{ℓ} is \mathbb{Z} -geometric. Furthermore, from (1.4) with $\mathbf{p} = -\mathbf{e}_u$, $\mathbf{q} = \mathbf{j} + \boldsymbol{\ell} + \mathbf{e}_v$, $\mathbf{r} = \mathbf{i} - \boldsymbol{\ell} - \mathbf{e}_u$ and $\mathbf{s} = \mathbf{e}_u - \mathbf{e}_v$, we obtain

for all
$$u \neq v \in \{1, 2, \dots, d\}$$
, $G_{\ell + \mathbf{e}_u + \mathbf{e}_v} G_{\ell} = G_{\ell + \mathbf{e}_u} G_{\ell + \mathbf{e}_v}$

From the previous section, with $q_r = G_{\mathbf{e}_r}/G_{\mathbf{0}}$, we deduce that

for all
$$r \in \{1, \ldots, d\}$$
, there exists $q_r \in \mathbb{K}$, $G_{\ell+\mathbf{e}_r} = q_r G_{\ell}$.

Finally,

for all
$$\boldsymbol{\ell} = (\ell_1, \ell_2, \dots, \ell_d) \in \mathbb{Z}^d$$
, $G_{\boldsymbol{\ell}} = \prod_{r=1}^d q_r^{\ell_r} G_{\boldsymbol{0}}.$ (2.3)

However, this result omits the problematic cases mentioned, which does not guarantee the existence of G_{ℓ} for some ℓ in \mathbb{Z}^d . Thus, we do not know whether we are keeping the same ratio through certain points of \mathbb{Z}^d in a given direction. We deal with these questions in the following section.

Before doing so, we fix **i** and **j** with $\mathbf{u} = \mathbf{i} + \mathbf{j}$. For that, for all r in $\{1, 2, ..., d\}$, if $u_r = 2w_r$ ($\overline{u_r} \equiv u_r \mod 2 = 0$), we set $i_r = w_r - 1$; but if $u_r = 2w_r + 1$ ($\overline{u_r} = 1$), we set $i_r = w_r$ and, in all cases, $j_r = w_r + 1$. Thus, if $\mathbf{i} = (i_1, i_2, ..., i_d)$ and $\mathbf{j} = (j_1, j_2, ..., j_d)$, writing $\mathbf{\bar{u}} \equiv \mathbf{u} \mod 2$ and $\mathbf{1} = (1, 1, ..., 1)$ in \mathbb{Z}^d , we have

$$\mathbf{i} = \frac{\mathbf{u} + \bar{\mathbf{u}}}{2} - 1$$
 and $\mathbf{j} = \frac{\mathbf{u} - \bar{\mathbf{u}}}{2} + 1$.

It can be observed that $G'_{\ell} = G^{-1}_{\ell}$ with $\ell' = \bar{\mathbf{u}} - 2 \times \mathbf{1} - \ell$.

2.3. Problematic cases. First, if $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$ in \mathbb{Z}^d with $\mathcal{W}_{\mathbf{u}} = 0$, then $\mathcal{W}_{\mathbf{u}_1} = 0 \Leftrightarrow \mathcal{W}_{\mathbf{u}_2} = 0$. Thus, the quantities G_{ℓ} do not cancel, but are not defined at some points of \mathbb{Z}^d . Moreover, the nondegeneracy hypothesis tells us that a problematic case can only occur on one of three (four if d = 1) consecutive terms of the sequence G_{ℓ} in one direction. We will come back to the special cases of points of order two or three in Section 2.6. On the other hand, if G_{ℓ} and G'_{ℓ} are not defined, then $(\ell - \ell') \cdot \mathbf{P} = 0_E$. We deduce that, if G_{ℓ} is not defined, then this is not the case for the $G_{\ell+\delta \mathbf{e}_r}$ such that δ is in $\{\pm 1, \pm 2\}$ for r in $\{1, 2, \ldots, d\}$ or even for $G_{\ell \pm \mathbf{e}_r \pm \mathbf{e}_r}$ ($r \neq s$).

We show that we keep the same ratio q_r $(r \in \{1, 2, ..., d\})$ through a problematic case of index ℓ in the direction \mathbf{e}_r . This means that $W(\mathbf{j} + \ell) = W(\mathbf{i} - \ell) = 0$. We define the value of G_ℓ by the expression $G_{\ell-\mathbf{e}_r}^2/G_{\ell-2\mathbf{e}_r} = q_r G_{\ell-\mathbf{e}_r}$. Then, from the addition formula on an elliptic curve expressing $x((\mathbf{r} + \mathbf{s}).\mathbf{P})$ and $x((\mathbf{r} - \mathbf{s}).\mathbf{P})$ for $\mathbf{r} \neq \mathbf{s}$ in $(\mathbb{Z}^d)^*$ such that $x(\mathbf{r}.\mathbf{P}) \neq x(\mathbf{s}.\mathbf{P})$ and [5, Lemma 4.2], we obtain $W(2\mathbf{r})^W(2\mathbf{s}) = 4y(\mathbf{r}.\mathbf{P})y(\mathbf{s}.\mathbf{P})W(\mathbf{r})^4W(\mathbf{s})^4$. Hence, if $\mathbf{s} = \mathbf{e}_s$ for $s \neq r$ in $\{1, 2, ..., d\}$ with $x(\mathbf{r}.\mathbf{P}) \neq x(\mathbf{P}_s)$, we deduce that

$$\mathcal{W}(2\mathbf{r}) = 2y(\mathbf{r}.\mathbf{P})\mathcal{W}(\mathbf{r})^4, \qquad (2.4)$$

for r in $\{1, 2, ..., d\}$. With $\mathbf{r} = \mathbf{j} + \boldsymbol{\ell} - \mathbf{e}_r$, so that $y(\mathbf{r}.\mathbf{P}) = -y_r$ in (2.4), we obtain $\mathcal{W}(2(\mathbf{j} + \boldsymbol{\ell} - \mathbf{e}_r)) = -\mathcal{W}(2\mathbf{e}_r)\mathcal{W}(\mathbf{j} + \boldsymbol{\ell} - \mathbf{e}_r)^4$. Combining this with (1.5) for $\mathbf{p} = \mathbf{j} + \boldsymbol{\ell}$, $\mathbf{q} = \mathbf{j} + \boldsymbol{\ell} - 2\mathbf{e}_r$ and $\mathbf{r} = \mathbf{e}_r$ gives

$$\mathcal{W}(\mathbf{j}+\boldsymbol{\ell}+\mathbf{e}_r)\mathcal{W}(\mathbf{j}+\boldsymbol{\ell}-2\mathbf{e}_r)^2 = -\mathcal{W}(2\mathbf{e}_r)^2\mathcal{W}(\mathbf{j}+\boldsymbol{\ell}-\mathbf{e}_r)^3.$$
(2.5)

In the same way, with $\mathbf{r} = \mathbf{i} - \boldsymbol{\ell} + \mathbf{e}_r$ in (2.4) and $\mathbf{p} = \mathbf{i} - \boldsymbol{\ell}$, $\mathbf{q} = \mathbf{i} - \boldsymbol{\ell} + 2\mathbf{e}_r$ and $\mathbf{r} = \mathbf{e}_r$ in (1.5), we obtain

$$\mathcal{W}(\mathbf{i}-\boldsymbol{\ell}-\mathbf{e}_r)\mathcal{W}(\mathbf{i}-\boldsymbol{\ell}+2\mathbf{e}_r)^2 = -\mathcal{W}(2\mathbf{e}_r)^2\mathcal{W}(\mathbf{i}-\boldsymbol{\ell}+\mathbf{e}_r)^3.$$
(2.6)

[8]

From (2.5) and (2.6), we deduce that

$$\mathcal{W}(\mathbf{j}+\boldsymbol{\ell}+\mathbf{e}_r)\mathcal{W}(\mathbf{j}+\boldsymbol{\ell}-2\mathbf{e}_r)^2\mathcal{W}(\mathbf{i}-\boldsymbol{\ell}+\mathbf{e}_r)^3$$

= $\mathcal{W}(\mathbf{i}-\boldsymbol{\ell}-\mathbf{e}_r)\mathcal{W}(\mathbf{i}-\boldsymbol{\ell}+2\mathbf{e}_r)^2\mathcal{W}(\mathbf{j}+\boldsymbol{\ell}-\mathbf{e}_r)^3,$

and, therefore, $G_{\ell+\mathbf{e}_r} = G_{\ell}^2/G_{\ell-\mathbf{e}_r} = q_r G_{\ell}$ with the new definition of G_{ℓ} .

Next, for all λ and μ in \mathbb{Z}^* , we set $\mathbf{p} = \mathbf{i} - \boldsymbol{\ell} + \lambda \mathbf{e}_r$, $\mathbf{q} = \lambda \mathbf{e}_r + \mu \mathbf{e}_r$, $\mathbf{r} = \mathbf{j} + \boldsymbol{\ell} + \lambda \mathbf{e}_r$ and $\mathbf{s} = -2\lambda \mathbf{e}_r$ with $r \in \{1, 2, ..., d\}$ in (1.4). We obtain $G_{\boldsymbol{\ell}+\lambda\mathbf{e}_r}G_{\boldsymbol{\ell}-\lambda\mathbf{e}_r} = G_{\boldsymbol{\ell}+\mu\mathbf{e}_r}G_{\boldsymbol{\ell}+\mu\mathbf{e}_r}$, and, therefore, $G_{\boldsymbol{\ell}+2\mathbf{e}_r}/G_{\boldsymbol{\ell}+\mathbf{e}_r} = G_{\boldsymbol{\ell}-\mathbf{e}_r}/G_{\boldsymbol{\ell}-2\mathbf{e}_r} = q_r$.

Finally, we show that the definition of G_{ℓ} in the direction \mathbf{e}_r is consistent with that in another direction \mathbf{e}_s , which we denote by \widetilde{G}_{ℓ} . For that, we set $\mathbf{p} = \mathbf{j} + \ell - \mathbf{e}_r - \mathbf{e}_s$, $\mathbf{q} = \mathbf{i} - \ell + \mathbf{e}_r + \mathbf{e}_s$ and $\mathbf{r} = \mathbf{e}_r - \mathbf{e}_s$ in (1.5) to obtain $G_{\ell-\mathbf{e}_r-\mathbf{e}_s}^2 = G_{\ell-2\mathbf{e}_s}G_{\ell-2\mathbf{e}_r}$, and so $G_{\ell-\mathbf{e}_r}^2 G_{\ell-2\mathbf{e}_s} = G_{\ell-2\mathbf{e}_s}^2 G_{\ell-2\mathbf{e}_r}$, that is, $G_{\ell} = \widetilde{G}_{\ell}$. So, for a problematic index ℓ , we can set $G_{\ell} = q_r G_{\ell-\mathbf{e}_r}$ to ensure that G_{ℓ} is geometric in each direction.

EXAMPLE 2.2. For the curve $y^2 = x^3 + 2x - 4$ over \mathbb{F}_{73} and the points $P_1 = (36, 71)$, $P_2 = (51, 53)$, $P_3 = (7, 34)$, we have U = (3, 5, 7) and $(q_1, q_2, q_3) = (22, 71, 58)$. The values G_i and G_{-j} are not defined. We set $G_i = q_r G_{i-e_r} = 47$ and $G_{-j} = q_r G_{-j-e_r} = 14$. The values of G_{i+ke_r} ($k \in \{-3, 3\}$) are, for r = 1, 2, 3 successively,

 $\{61, 28, 32, 47, 12, 45, 45\}, \{58, 30, 13, 47, 52, 42, 62\}, \{23, 20, 65, 47, 25, 63, 4\},$ and for G_{-j+ke_r} ,

 $\{57, 13, 67, 14, 16, 60, 6\}, \{53, 40, 66, 14, 45, 56, 34\}, \{55, 51, 38, 14, 9, 11, 54\}.$

We can give a harmonious formulation of the ratios q_r in terms of G and, therefore, of W, if the quantities involved are well defined. Indeed, from (2.2) for $\ell = \mathbf{e}_r - \mathbf{1}$, we obtain $G_{2\mathbf{e}_r-1}G_{-1} = G_{\mathbf{e}_r-1}^2$ for all r in $\{1, 2, ..., d\}$. With $G_{2\mathbf{e}_r-1} = q_r G_{\mathbf{e}_r-1}$ and $G_{-1} = G_{\overline{\mathbf{n}}-1}^{-1}$, we deduce that

for all
$$r \in \{1, 2, \dots, d\}$$
, $q_r = G_{\bar{\mathbf{u}}-1} \times G_{\mathbf{e}_r-1} = \frac{\mathcal{W}(\frac{\mathbf{u}+\bar{\mathbf{u}}}{2})}{\mathcal{W}(\frac{\mathbf{u}-\bar{\mathbf{u}}}{2})} \times \frac{\mathcal{W}(\frac{\mathbf{u}-\bar{\mathbf{u}}}{2}+\mathbf{e}_r)}{\mathcal{W}(\frac{\mathbf{u}+\bar{\mathbf{u}}}{2}-\mathbf{e}_r)}.$ (2.7)

EXAMPLE 2.3. For the curve $y^2 = x^3 + x + 1$ over \mathbb{F}_{11} , we consider the points of order seven, that is, $P_1 = (6,5)$ and $P_2 = (3,3)$. We have $3P_1 + P_2 = 0_E = 2P_1 + 3P_2 = 5P_1 + 4P_2$, so $\mathbf{u} = (5,4) = (3,1) + (2,3) = \mathbf{u}_1 + \mathbf{u}_2$. In this case, $G_{(-1,0)}$ and $G_{(0,-2)}$ are not defined since $W_{2,3} = W_{3,1} = 0$ and so q_2 is not defined. We define $G_{(0,-2)} = q_1G_{(-1,-2)} = 4 * 5 = 9$ and $G_{(-1,0)} = G_{(0,0)}/q_1 = 9/4 = 5 = 9^{-1}$. We also set $q_2 = G_{(0,-1)}G_{(-1,0)} = 2 * 5 = 10$. Note that, at the end of the article, we show that $q_r(\mathbf{u}) = q_r(\mathbf{u}_1) * q_r(\mathbf{u}_2)$ ($r \in \{1, 2\}$). Indeed, $q(\mathbf{u}) = (4, 10)$, $q(\mathbf{u}_1) = (6, 6)$ and $q(\mathbf{u}_2) = (8, 9)$.

100

If we now consider $\mathbf{u} = 2(3, 1) = (6, 2)$, then G_{-1} is not defined, nor are the quantities q_1 and q_2 . We have $q_1 = G_{(1,0)}/G_{(0,0)} = 3$, $q_2 = G_{(0,1)}/G_{(0,0)} = 3$ and $G_{(-1,-1)} = G_{(0,0)}/(q_1q_2) = -1$. Once again, we see that $q_r(2\mathbf{u}) = q_r(\mathbf{u})^2$. Indeed, q((6,2)) = (3,3); q((3,1)) = (6,6).

For the case $\mathbf{u} = \mathbf{1}$, the quantities G_{-1} , G_0 , and thus the ratios q_k , are not defined. But, we can set

for all
$$k \in \{1, 2, \dots, n\}$$
, $q_k \stackrel{k' \neq k}{=} \frac{G_{\mathbf{e}_{k'}}}{G_{\mathbf{e}_{k'}-\mathbf{e}_k}}$

and $G_{-1} = G_{-1+e_k}/q_k$, $G_0 = q_k G_{-e_k}$.

For the curve $y^2 = x^3 + 17x - 53$ over \mathbb{F}_{229} , we consider the points $P_1 = (217, 63)$, $P_2 = (153, 59)$, $P_3 = (42, 211)$, $P_4 = (40, 222)$ and $P_5 = (13, 126)$. We have $\mathbf{u} = \mathbf{1}$. We can write $q_1 = G_{\mathbf{e}_2}/G_{\mathbf{e}_2-\mathbf{e}_1} = 211$ and so $q_2 = 55$, $q_3 = 221$, $q_4 = 13$, $q_5 = 227$ and $G_{-1} = G_{\mathbf{e}_1-1}/q_1 = 181$.

So we can have cases where the definition $q_r = G_{\bar{u}-1} \times G_{e_r-1}$ is problematic. However, we can always find ℓ in \mathbb{Z}^d so that the ratio $q_r = G_{\ell+e_r}/G_{\ell}$ is well defined. Nevertheless, the expression (2.7) needs some W whose indexes are in the neighbourhood of $\mathbf{u}/2$, which is the best that we can do for the computation of G_{ℓ} whose indexes are symmetric with respect to $\mathbf{u}/2$.

2.4. Proof of Theorem 1.4. First, we set $\ell = \mathbf{i} + \mathbf{v}$ for \mathbf{v} in $\mathbb{Z}^d \setminus \Gamma$, giving

$$G_{\ell} = G_{\mathbf{i}+\mathbf{v}} = \frac{\mathcal{W}(\mathbf{i}+\mathbf{j}+\mathbf{v})}{\mathcal{W}(-\mathbf{v})} = \frac{\mathcal{W}(\mathbf{u}+\mathbf{v})}{\mathcal{W}(-\mathbf{v})} = -\frac{\mathcal{W}(\mathbf{u}+\mathbf{v})}{\mathcal{W}(\mathbf{v})}$$

Therefore, from (2.3), we obtain, in the cases where G_{-1} is well defined,

$$\mathcal{W}(\mathbf{u}+\mathbf{v})=-G_{\mathbf{i}+\mathbf{v}}\mathcal{W}(\mathbf{v})=-\left(\prod_{r=1}^{d}q_{r}^{i_{r}+v_{r}+1}\right)G_{-1}\times\mathcal{W}(\mathbf{v}),$$

which holds for **v** in \mathbb{Z}^d such that $\mathcal{W}(\mathbf{v}) = 0$. Note that, in this case, since *G* is geometric in each direction, $G_{-1} = \prod_{r=1}^d q_r^{-\overline{u_r}} \times G_{\bar{\mathbf{u}}-1}$; therefore, $G_{-1}^2 = \prod_{r=1}^d q_r^{-\overline{u_r}}$. This shows that $\prod_{r=1}^d q_r^{u_r}$ is a square.

For all r in $\{1, 2, ..., d\}$, when G_{-1} is well defined, we set $\mathcal{A}_r = q_r$ and $C = -(\prod_{r=1}^d q_r^{i_r+1})G_{-1}$. Thus, we can write $C^2 = \prod_{r=1}^d q_r^{2(i_r+1)} \times G_{-1}^2 = \prod_{r=1}^d \mathcal{A}_r^{u_r}$ (which is just $\xi(\mathbf{u})^2 = \chi(\mathbf{u}, \mathbf{u})$; see (2.5)). Hence, $\mathcal{W}(\mathbf{u} + \mathbf{v}) = C \prod_{r=1}^d \mathcal{A}_r^{v_r} \times \mathcal{W}(\mathbf{v})$ and a simple induction on k give the desired result (1.10). The formulas for \mathcal{A} and C in (1.10) follow immediately from the existence of these quantities.

On the other hand, if we set $\mathbf{u}_1 = (\mathbf{u} - \bar{\mathbf{u}})/2$ and $\mathbf{u}_2 = (\mathbf{u} + \bar{\mathbf{u}})/2$ with possibly $\mathbf{u}_1 = \mathbf{u}_2$, we have $G_{-1} = \mathcal{W}(\mathbf{u}_1)/\mathcal{W}(\mathbf{u}_2)$. Hence, G_{-1} is not defined if $\mathbf{u} = \pm \mathbf{1}$ or $\mathbf{u} = \mathbf{u}_1 + \mathbf{u}_2$ with $\mathbf{u}_1 \cdot \mathbf{P} = 0_E$ and $\mathbf{u}_2 \cdot \mathbf{P} = 0_E$. Suppose that $\mathbf{u} \neq \pm \mathbf{1}$. For s in $\{1, 2, \dots, d\}$, we have $G_{-\mathbf{e}_s-\mathbf{1}+\bar{\mathbf{u}}} = 1/G_{-\mathbf{e}_s-\mathbf{1}}$ and thus $q_s^2 \prod_{r=1}^d q_r^{-\bar{\mathbf{u}}_r} = G_{-\mathbf{e}_s-\mathbf{1}}^2$. We still have

$$\mathcal{W}(\mathbf{u}+\mathbf{v}) = -G_{\mathbf{i}+\mathbf{v}}\mathcal{W}(\mathbf{v}) = -\bigg(\prod_{r=1}^{d} q_r^{i_r+\nu_r+1}\bigg)\frac{G_{\mathbf{e}_s-\mathbf{1}}}{q_s} \times \mathcal{W}(\mathbf{v}),$$

v	k	$\mathcal{W}(k\mathbf{u} + \mathbf{v})$	$C^{k^2}(\prod_{r=1}^d \mathcal{A}_r^{v_r})^k$	$\mathcal{W}(\mathbf{v})$
(1, 1, 1)	1	231096861444852745469801181207	46432963923016424647337991	4977
	1 -	2074596720994616193681719296	433653160743021779615744	$-\frac{1}{4784}$
(1 1 1	\ 1	794	9243	18193
(-1, -1, 1)) 1	- 64	1472	9243
(1, 1, 1)	-1	7	1196	4977
		$-\frac{1}{4}$	711	$-\frac{1}{4784}$
(1, 1, 1)	-2	642961909517339482497	129186640449535761	4977
		1212663059537985536	253483081007104	$-\frac{1}{4784}$

TABLE 1. Calculations illustrating Theorem 1.4 in characteristic zero.

and so we set $\mathcal{A}_r = q_r$ and $C = -(\prod_{r=1}^d q_r^{i_r+1} G_{\mathbf{e}_s-1}/q_s)$. Note that, for $s \neq s'$, $G_{\mathbf{e}_s+\mathbf{e}_{s'}-1} = G_{\mathbf{e}_s-1}q_{s'} = G_{\mathbf{e}_{s'}-1}q_s$. Again, we obtain $C^2 = \prod_{r=1}^d \mathcal{A}_r^{u_r}$.

For $\mathbf{u} = \mathbf{1}$ (the case $\mathbf{u} = -\mathbf{1}$ can be handled in the same manner), we write instead

$$\mathcal{W}(\mathbf{u}+\mathbf{v}) = -\left(\prod_{r=1}^{d} q_r^{i_r+v_r}\right) G_{-\mathbf{e}_s} q_s \times \mathcal{W}(\mathbf{v}) = \left(\prod_{r=1}^{d} q_r^{v_r}\right) (-\mathcal{W}(\mathbf{1}-\mathbf{e}_s)q_s) \times \mathcal{W}(\mathbf{v})$$

and set $\mathcal{A}_r = q_r$ and $C = -\mathcal{W}(1 - \mathbf{e}_s)q_s$ for s in $\{1, 2, \dots, d\}$. Note that, since $G_{-\mathbf{e}_s-\mathbf{e}_{s'}} = G_{-\mathbf{e}_{s'}-\mathbf{e}_s}$ for $s \neq s'$, we have $\mathcal{W}(1 - \mathbf{e}_s)q_s = \mathcal{W}(1 - \mathbf{e}_{s'})q_{s'}$. Moreover, $C^2 = q_1q_2\mathcal{W}(1 - \mathbf{e}_1)\mathcal{W}(1 - \mathbf{e}_2)$ but

$$q_3 = \frac{G_{-\mathbf{e}_1}}{G_{-\mathbf{e}_1-\mathbf{e}_3}} = \mathcal{W}(\mathbf{1}-\mathbf{e}_1) \times \frac{\mathcal{W}(\mathbf{1}-\mathbf{e}_2-\mathbf{e}_4-\cdots-\mathbf{e}_d)}{\mathcal{W}(\mathbf{e}_2+\mathbf{e}_4+\cdots+\mathbf{e}_d)}$$
$$= \mathcal{W}(\mathbf{1}-\mathbf{e}_1) \times G_{-\mathbf{e}_2-\mathbf{e}_4-\cdots-\mathbf{e}_d} = \mathcal{W}(\mathbf{1}-\mathbf{e}_1) \times (q_4\cdots q_d)^{-1}G_{-\mathbf{e}_2},$$

and hence $C^2 = \prod_{r=1}^{d} q_r$ since $G_{-\mathbf{e}_2} = \mathcal{W}(\mathbf{1} - \mathbf{e}_2)$. This completes the proof of Theorem 1.4.

Moreover, this result includes [2, Theorem 1] for u > 3 (see (2.6) for u = 2 or 3). If u = 2m then, $\mathcal{A} = q = \psi_{m+1}/\psi_{m-1} = \omega$ and $C = -q^{i+1}G_{-1} = -q^m$, which gives $\psi_{ku+\nu} = (-1)^k \omega^{k(\nu+km)} \psi_{\nu}$. If u = 2m + 1, then $\mathcal{A} = q = (\psi_{m+1}/\psi_m)^2 = \omega^2$ and $C = -q^{i+1}G_{-1} = -q^{m+1}/\omega = -\omega^{2m+1}$, which gives $\psi_{ku+\nu} = (-1)^k \omega^{k(2\nu+k(2m+1))} \psi_{\nu}$.

EXAMPLE 2.4. Over \mathbb{Q} , the curve $y^2 = x^3 - 4x + 1$ with

$$P_1 = (0, 1), \quad P_2 = (82264/505521, 213664697/359425431), \quad P_3 = (4, 7),$$

gives **u**= (3, 1, 2) and

$$C = 255551481441/19041697792, \quad \mathcal{A} = (711/208, 359425431/297526528, 711/368).$$

We give some calculations to illustrate Theorem 1.4 in Table 1.

According to the Lutz–Nagell theorem [3, Ch. 8], the only possible points of $E(\mathbb{Q})_{tors}$ are $(0, 1), (2, \pm 1)$ and $(-2, \pm 1)$, which cannot arise according to Mazur's

v	k	$W(k\mathbf{u} + \mathbf{v})$	$C^{k^2}(\prod_{r=1}^d \mathcal{A}_r^{v_r})^k$	$\mathcal{W}(\mathbf{v})$
(1, 1, 1, 1)	1	944	2164	7129
(2, 3, 1, 5)	2	5742	3270	7078
(1, 7, 11, 15)	3	6155	3676	1766
(2, 1, 3, 5)	-1	2254	2788	3165
(3, 7, 8, 10)	-2	6418	1532	2475
(7, 3, 5, 10)	-3	2331	3928	7845

TABLE 2. Calculations illustrating Theorem 1.4 in nonzero characteristic.

theorem. As a result, none of the sequences $\psi_n(P_1); \psi_n(P_2); \psi_n(P_3)$ have a rank of zero-apparition.

Over \mathbb{F}_{7919} , the curve $y^2 = x^3 + 1562x + 1805$ with the points $P_1 = (4856, 5835)$, $P_2 = (6128, 7637)$, $P_3 = (3336, 2121)$ and $P_4 = (2415, 7795)$ gives $\mathbf{u} = (18, 17, 12, 17)$ and C = 3648, $\mathcal{A} = (2664, 4758, 5312, 531)$. Some calculations are given in Table 2.

2.5. The latest known general result. We now link our results to [1, Theorem 1.13]. With the assumptions and the notation χ and ξ of this theorem, one can write

$$\mathcal{W}(\mathbf{u} + \mathbf{v}) = \xi(\mathbf{u})\chi(\mathbf{u}, \mathbf{v})\mathcal{W}(\mathbf{v}).$$

More precisely, with $\Lambda = \{ \mathbf{v} \in \mathbb{Z}^d \mid W(\mathbf{v}) = 0 \}$, the functions χ and ξ are defined by

$$\begin{split} \delta &: \Lambda \times (\mathbb{Z}^d \backslash \Lambda) \to \mathbb{K}^* \\ & (\mathbf{u}, \mathbf{v}) \mapsto \frac{\mathcal{W}(\mathbf{u} + \mathbf{v})}{\mathcal{W}(\mathbf{v})} \end{split}$$

and the relations

$$\begin{split} \chi : \Lambda \times \mathbb{Z}^d &\to \mathbb{K}^*, \\ (\mathbf{u}, \mathbf{v}) &\mapsto \frac{\delta(\mathbf{u}, \mathbf{v} + \mathbf{v}')}{\delta(\mathbf{u}, \mathbf{v}')} \quad \text{where } \mathbf{v}' \in \mathbb{Z}^d \text{ but } \mathbf{v}', \mathbf{v}' + \mathbf{v} \notin \Lambda, \\ \xi : \Lambda &\to \mathbb{K}^*, \\ \mathbf{u} &\mapsto \frac{\delta(\mathbf{u}, \mathbf{v})}{\chi(\mathbf{u}, \mathbf{v})} \quad \text{for any } \mathbf{v} \in \mathbb{Z}^d \setminus \Lambda. \end{split}$$

We now relate the functions δ of (1.8) and χ, ξ of (1.9) to our notation. We have

$$\chi(\mathbf{u},\mathbf{v}) = \frac{\mathcal{W}(\mathbf{u}+\mathbf{v}+\mathbf{v}')}{\mathcal{W}(\mathbf{v}+\mathbf{v}')} \frac{\mathcal{W}(\mathbf{v}')}{\mathcal{W}(\mathbf{u}+\mathbf{v}')} = \prod_{r=1}^{d} \mathcal{H}_{r}^{v_{r}}.$$

So we deduce, for all k in $\{1, 2, ..., d\}$, that $\chi(\mathbf{u}, \mathbf{e}_k) = \mathcal{A}_k$, and, in the same way,

$$\xi(\mathbf{u}) = C$$
 and $\delta(\mathbf{u}, \mathbf{v}) = C \prod_{r=1}^{d} \mathcal{A}_{r}^{v_{r}} = \xi(\mathbf{u})\chi(\mathbf{u}, \mathbf{v}).$

Now, we recall the results of [1, Theorem 1.13, Lemma 4.2] to which we can give an immediate proof.

THEOREM 2.5. The functions ξ and χ have the following properties.

(1) χ is bilinear symmetric: that is, for all $\mathbf{u}, \mathbf{u}^{(1)}, \mathbf{u}^{(2)} \in \Lambda$ and $\mathbf{v}, \mathbf{v}^{(1)}, \mathbf{v}^{(2)} \in \mathbb{Z}^d$,

- (a) $\chi(\mathbf{u}, \mathbf{v}^{(1)} + \mathbf{v}^{(2)}) = \chi(\mathbf{u}, \mathbf{v}^{(1)})\chi(\mathbf{u}, \mathbf{v}^{(2)}),$ (b) $\chi(\mathbf{u}^{(1)} + \mathbf{u}^{(2)}, \mathbf{v}) = \chi(\mathbf{u}^{(1)}, \mathbf{v})\chi(\mathbf{u}^{(2)}, \mathbf{v}),$ (c) $\chi(\mathbf{u}^{(1)}, \mathbf{u}^{(2)}) = \chi(\mathbf{u}^{(2)}, \mathbf{u}^{(1)}),$ (d) $\chi(\mathbf{u}, -\mathbf{v}) = \chi(\mathbf{u}, \mathbf{v})^{-1}.$
- (2) $\xi(\mathbf{u}^{(1)} + \mathbf{u}^{(2)}) = \xi(\mathbf{u}^{(1)})\xi(\mathbf{u}^{(2)})\chi(\mathbf{u}^{(1)}, \mathbf{u}^{(2)}).$
- (3) $\xi(-\mathbf{u}) = \xi(\mathbf{u})$.
- (4) $\xi(\mathbf{u})^2 = \chi(\mathbf{u}, \mathbf{u}).$
- (5) $\xi(n\mathbf{u}) = \xi(\mathbf{u})^{n^2}$, for all $n \in \mathbb{Z}$.

PROOF.

- (1) (a) is obvious; (b) is obtained from (1.4) with $\mathbf{p} = \mathbf{e}_r$, $\mathbf{q} = -\mathbf{u}^{(2)}$, $\mathbf{r} = 2\mathbf{e}_r$ and $\mathbf{s} = \mathbf{u}^{(1)} + \mathbf{u}^{(2)}$; (c) is easily obtained from $\mathcal{W}(\mathbf{u}^{(1)} + (\mathbf{u}^{(2)} + \mathbf{v})) = \mathcal{W}(\mathbf{u}^{(2)} + (\mathbf{u}^{(1)} + \mathbf{v}))$; and (d) is obvious.
- (2) This is easily obtained from $\mathcal{W}((\mathbf{u}^{(1)} + \mathbf{u}^{(2)}) + \mathbf{v}) = \mathcal{W}(\mathbf{u}^{(1)} + (\mathbf{u}^{(2)} + \mathbf{v})).$
- (3) From (1.5) with $\mathbf{p} = 2\mathbf{e}_r$, $\mathbf{q} = \mathbf{u}$ and $\mathbf{r} = \mathbf{e}_r$, we deduce that $\chi(-\mathbf{u}, \mathbf{v}) = \chi(\mathbf{u}, \mathbf{v})^{-1}$ so $\chi(-\mathbf{u}, -\mathbf{v}) = \chi(\mathbf{u}, \mathbf{v})$. The result comes from $\mathcal{W}(-\mathbf{u} \mathbf{v}) = -\mathcal{W}(\mathbf{u} + \mathbf{v})$.
- (4) This follows from $1 = \xi(0) = \xi(\mathbf{u} \mathbf{u}) = \xi(\mathbf{u})\xi(-\mathbf{u})\chi(\mathbf{u}, -\mathbf{u})$.
- (5) This result can be deduced from the previous statements.

EXAMPLE 2.6. Following [6, Section 5.1], we consider Q = k.P on an elliptic curve E with P and Q of order m. The elliptic net associated to P and Q cancels at the points $\mathbf{u} = (-k, 1), \mathbf{s} = (m, 0)$ and $\mathbf{t} = (0, m)$. With obvious notation,

$$\chi((-km,m), \mathbf{e}_r) = \chi(m(-k,1), \mathbf{e}_r) = \chi^m((-k,1), \mathbf{e}_r) = (\mathcal{A}_r^{(\mathbf{u})})^m$$

and

$$\chi((-km,m),\mathbf{e}_r) = \chi^{-k}((m,0),\mathbf{e}_r)\chi((0,m),\mathbf{e}_r) = (\mathcal{A}_r^{(s)})^{-k}\mathcal{A}_r^{(t)}.$$

Thus, we easily obtain $(\mathcal{A}_r^{(\mathbf{u})})^m = (\mathcal{A}_r^{(\mathbf{s})})^{-k} \mathcal{A}_r^{(\mathbf{t})}$, which is [6, Equation (9)].

For the curve $y^2 = x^3 + x + 1$ over \mathbb{F}_{11} , with the points $P_1 = (6, 5)$ and $P_2 = (3, 3)$ of order seven, we have the values shown in Table 3.

2.6. Points of order two or three. We return here to special cases related to the degeneracy conditions of W, namely, $W(2e_i) \neq 0$ for $1 \leq i \leq d$ and $W(3e_1) \neq 0$ when d = 1. This, therefore, concerns cases where there are points of order two, or order three when d = 1, on the elliptic curve *E*. Note that $|\mathbb{Z}^d/\Lambda| = 2$ occurs only in the case d = 1 when $\mathbf{P} = P$ is of order two. We have $|\mathbb{Z}^d/\Lambda| = 3$ if either d = 1 and $\mathbf{P} = P$ is of order three, or d = 2 and $\mathbf{P} = (P_1, P_2)$ are two points of order two and $\mathbf{u} = (2, 2)$.

u	$q_r = \mathcal{A}_r = \chi(\mathbf{u}, \mathbf{e}_r)$
(1,5)	(7,8)
(2,3)	(8,9)
(3, 1)	(6,6)
(5,4)	(4, 10)
(4, 6)	(9,4)
(6, 2)	(3, 3)
(7,7)	(10, 2)

TABLE 3. Calculations illustrating Theorem 2.5 for various $u \in \Lambda$.

For the case d = 1 with $\mathbf{P} = P$ of order two on E, we have u = 2 so i = 0 and j = 2, and hence $G_{\ell} = \psi_{2+\ell}/\psi_{\ell}$ with ℓ odd. In (1.1) with $m = 2\ell + 1$ and n = 2, we obtain $G_{2\ell+1} = -\psi_3 G_{2\ell-1}$. But we can easily show that, when y = 0, we have $\psi_3(x, y) = -((2ax + 3b)/x)^2$ if $x \neq 0$ and $\psi_3(x, y) = -a^2$ if x = 0. Hence, in every case, we can write $-\psi_3 = q^2$ with q in \mathbb{K} . So, we deduce that $G_{2\ell+1} = q^{2\ell+2}G_{-1} = q^{2\ell+2}$, and writing $2\ell + 1 = i + v = v$ for v odd in \mathbb{Z} , since $G_{i+v} = \psi_{u+v}/\psi_{-v}$, we have $\psi_{u+v} = -q^{v+1}\psi_v$. Finally, we set C = -q and $\mathcal{A} = q$, to obtain $C^2 = \mathcal{A}^u$ and $\psi_{ku+v} = C^{k^2}\mathcal{A}^{kv}\psi_v$. We also find the result of [2, Theorem 1].

For the case d = 1 with $\mathbf{P} = P$ of order three on E, we proceed in the same way. We have u = 3 so i = 1 and j = 2, and hence $G_{\ell} = \psi_{2+\ell}/\psi_{1-\ell}$ with $\ell \not\equiv 1 \mod 3$. In (1.1) with $m = \ell + 1$ and n = 2, we obtain $G_{\ell+1} = \psi_2^2 G_{\ell}$ for $\ell \equiv 2 \mod 3$. The rest follows in the same way as before with $C = -\psi_2^3$ and $\mathcal{A} = \psi_2^2 (C^2 = \mathcal{A}^3 = \mathcal{A}^u)$ or $w = \psi_2$ to obtain [2, Theorem 1] when u = 3.

For the case d = 2, with one or two points of order two, as already mentioned, if G_{ℓ} creates a problem, then the $G_{\ell'}$ are well defined for $\ell' = \ell \pm \mathbf{e}_r$ or $\ell + \mathbf{e}_s$ or $\ell + \mathbf{e}_s \pm \mathbf{e}_r$ with $r \neq s$ in $\{1, 2, ..., d\}$, and we can then 'bypass' the index ℓ by setting $G_{\ell} = (G_{\ell+\mathbf{e}_s-\mathbf{e}_r}/G_{\ell+\mathbf{e}_s})G_{\ell-\mathbf{e}_r} = q_rG_{\ell-\mathbf{e}_r}$. Furthermore, $G_{\ell+\mathbf{e}_r} = q_s^{-1}G_{\ell+\mathbf{e}_r+\mathbf{e}_s} = q_s^{-1}q_r^2G_{\ell-\mathbf{e}_r}$, and hence $G_{\ell+\mathbf{e}_r} = q_rG_{\ell}$.

For the case d = 3, we can have three points of order two but, in this case, $\mathbf{u} = \mathbf{1}$, which we have already dealt with. For d > 3, we can always make sure that the geometric character of G_{ℓ} subsists with the same ratio through a problematic index with points of order two by 'bypassing' in another direction.

Acknowledgement

The author would like to thank the anonymous referee for their comments.

References

- A. Akbary, J. Bleaney and S. Yazdani, 'On symmetries of elliptic nets and valuations of net polynomials', J. Number Theory 158 (2016), 185–216.
- [2] L. Dewaghe, 'Périodicité des polynômes de division sur une courbe elliptique', *Math. Res. Lett.* 14(6) (2007), 887–891.

[14]

- [3] J. H. Silverman, *The Arithmetic of Elliptic Curves*, Graduate Texts in Mathematics, 151 (Springer, New York, 1986).
- [4] K. E. Stange, *Elliptic Nets and Elliptic Curves*, PhD Thesis (Brown University, 2008).
- [5] K. E. Stange, 'Elliptic nets and elliptic curves', *Algebra Number Theory* 5(2) (2011), 197–229.
- [6] K. E. Stange and K. E. Lauter, 'The elliptic curve discrete logarithm problem and equivalent hard problems for elliptic divisibility sequences', in: *Selected Areas in Cryptography*, Lecture Notes in Computer Science, 5381 (eds. R. M. Avanzi, L. Keliher and F. Sica) (Springer, Berlin, 2009), 309–327.
- [7] M. Ward, 'Memoir on elliptic divisibility sequences', Amer. J. Math. 70 (1948), 31-74.
- [8] L. C. Washington, *Elliptic Curves: Number Theory and Cryptography*, 2nd edn, Discrete Mathematics and its Applications, 50 (CRC Press, Boca Raton, FL, 2008).

L. DEWAGHE, Institut Polytechnique UniLaSalle,

SYMADE, Campus Amiens, 14 quai de la somme, 80082 Amiens, France e-mail: laurent.dewaghe@unilasalle.fr

106