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Abstract

We present a new version of a generalisation to elliptic nets of a theorem of Ward [‘Memoir on elliptic
divisibility sequences’, Amer. J. Math. 70 (1948), 31–74] on symmetry of elliptic divisibility sequences.
Our results cover all that is known today.
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1. Introduction

This paper concerns a generalisation of a theorem of Ward [7] on symmetry of elliptic
sequences to the case of nondegenerate elliptic nets of rank d (d ∈ N) associated to an
elliptic curve E and points on E. In our opinion, it is the most comprehensive form that
we can hope to achieve.

Symmetries of such elliptic nets written explicitly in a form similar to Ward’s
theorem [7] are only known for the cases d = 1 [6] and d = 2 [4, 6]. To get the
right shape for all d, an essential point of our demonstration consists of showing that
appropriate quotients of two elliptic nets follow a geometric progression. This new
approach allows us to obtain a simple proof of the generalisation of the symmetry
theorem in Ward’s form. In this way, we unify all the results known to date: for d = 1,
Ward [7, Theorem 8.1], Stange [4, Theorem 10.2.2] and [6, Theorem 4], and the author
[2, Theorem 1]; for d = 2, [4, Lemma 10.2.5] and [6, Theorem 5]; and for d > 2,
[4, Theorem 10.2.3] and Akbary et al. [1, Theorems 1.12 and 1.13].

Let E be an elliptic curve over a field K (see [3]). To simplify, we assume that the
characteristic is different from 2 and 3. Then

E(K) = {[X : Y : Z] ∈ P2(K) | F (X, Y , Z) = 0} = {(x, y) ∈ K2 | F (x, y, 1) = 0} ∪ {0E},
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with F (X, Y , Z) = Y2Z − (X3 + aXZ2 + bZ3), a, b ∈ K such that 4a3 + 27b2 � 0 and 0E
the unique point at infinity of the curve. The group structure of E(K) is defined by the
chord and tangent method with the neutral element 0E.

We introduce division polynomials ψm(x, y), m ∈ Z, of an elliptic curve E over the
field K with an affine equation y2 = x3 + ax + b (see [8]) by

ψ0(x, y) = 0, ψ1(x, y) = 1, ψ2(x, y) = 2y ψ3(x, y) = 3x4 + 6ax2 + 12bx − a2,

ψ4(x, y) = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx − 8b2 − a3),

and for n a natural integer, ψ−n = −ψn. Then, for all (m, n) in Z2,

ψm+nψm−n = ψm+1ψm−1ψ
2
n − ψn+1ψn−1ψ

2
m. (1.1)

This equality can be used for the product ψıψj when the integers ı and j have the
same parity. Any solution over an arbitrary integral domain of (1.1) is called an elliptic
sequence. Also,

ψ2n+1 = ψn+2ψ
3
n − ψ3

n+1ψn−1 and ψ2nψ2 = ψn(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1)

for n in Z. Note also Stephen Nelson’s form (see [4, page 22]): for all (α, β, γ, δ) ∈ Z4,

ψα+βψα−βψγ+δψγ−δ + ψα+γψα−γψδ+βψδ−β + ψα+δψα−δψβ+γψβ−γ = 0. (1.2)

Division polynomials have partial periodicity, called symmetry.

THEOREM 1.1 [2]. Let Fq be a finite field, let E/Fq be an elliptic curve and let
P ∈ E(F̄q) be a point of exact order u ≥ 2. Then there exists ω ∈ F̄q, depending on
P, such that the following hold.

(1) If u ≥ 3, then for all k and v in Z:

• if u = 2m, we have ψku+v(P) = (−ωm)k2
ωkvψv(P);

• if u = 2m + 1, we have ψku+v(P) = (−ω2m+1)k2
(ω2)kvψv(P).

(2) If u = 2, then for all k ∈ Z,

ψ4k+1(P) = (−1)kψk(2k+1)
3 , ψ4k+3(P) = (−1)kψ(k+1)(2k+1)

3 .

Note that the proof works for any field K and that ψu(P) = 0. Furthermore,
if u = 2m, then ω = (ψm+1/ψm−1)(P); otherwise ω = (ψm+1/ψm)(P). This result will
become a particular case of our generalisation and is already a precision of Ward’s
symmetry theorem for the elliptic sequence (ψn).

THEOREM 1.2 [7]. Let W be an integer elliptic sequence such that W(1) = 1 and
W(2) | W(4). Let p be an odd prime and suppose that W(2)W(3) � 0 mod p. Let u
be the rank of apparition of W with respect to p (that is, W(u) ≡ 0 and W(m) � 0 for
any m | u). Then there exist integersA and C such that

W(ku + v) = AkvCk2
W(v) for all k, v ∈ N. (1.3)
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We usually call the smallest positive index of a vanishing term the rank
of zero-apparition. If we consider the elliptic sequence W = ψ(P), the rank of
zero-apparition is the order of P on E.

In [5], Stange generalised the concept of an elliptic sequence to a d-dimensional
array, called an elliptic net. An elliptic net in this article is a map W : Zd → K such
that, for all p, q, r, s in Zd,

W(p + q + s)W(p − q)W(r + s)W(r) +W(q + r + s)W(q − r)W(p + s)W(p)
+W(r + p + s)W(r − p)W(q + s)W(q) = 0. (1.4)

We have W(0) = 0, where 0 is the additive identity element of Zd, since char(K) � 3.
Stange proved that we can compute W(v) for all v in Zd from (1.4) and initial values
W(v) with v = ei, v = 2ei, v = ei + ej and v = 2ei + ej with {e1, e2, . . . , ed} the standard
basis of Zd. For s = 0, we deduce that

W(p + q)W(p − q)W(r)2 = W(p + r)W(p − r)W(q)2 −W(q + r)W(q − r)W(p)2.
(1.5)

An elliptic net W is called degenerate if one of the terms W(ei), W(2ei), W(ei ± ej)
(where i � j) is zero, and W(3e1) is zero if d = 1. As shown in [5], we can define an
elliptic netW = WE,P associated to the elliptic curve E and a d-tuple of fixed points
P = (P1, P2, . . . , Pd) on Ed with Pi = (xi, yi) � 0E for 1 ≤ i ≤ d and Pi ± Pj � 0E for
i � j, using the recurrence relation (1.4) and initial values

W(ei) = 1, W(2ei) = 2yi, W(ei + ej) = 1, W(2ei + ej) = 2xi + xj −
(yj − yi

xj − xi

)
.

From [1, Example 2.4], W(ei − ej) = W(ei + 2ej) −W(2ei + ej), so W(ei − ej) =
xj − xi. The nondegenerate case therefore reduces to W(2ei) � 0 (1 ≤ i ≤ d) with
W(3e1) � 0 when d = 1.

From (1.5) with r = er, we obtain (1.1) when d = 1 (note that, in general, W1 = 1
[7, Ch. VII]). Therefore, elliptic nets are effectively a generalisation of elliptic
sequences.

Even though it is not essential for our purpose, we take the opportunity to show the
converse, that is, that (1.1) implies (1.4) for d = 1, by giving the missing elementary
proof reported in [4, Ch. 3, page 22].

PROPOSITION 1.3. For all (p, q, r, s) ∈ Z4,

ψp+q+sψp−qψr+sψr + ψq+r+sψq−rψp+sψp + ψr+p+sψr−pψq+sψq = 0. (1.6)

PROOF. For any (α, β) ∈ Z2, the integers α + β + 1 and α − β have different pari-
ties. Thus, we obtain ψα+β+1ψα−βψ2ψ1 = ψβ+2ψβ−1ψα+1ψα − ψα+2ψα−1ψβ+1ψβ from the
expressions for ψ2k+1ψ1 and ψ2k′ψ2 for the left-hand side and from (1.1) for the
right-hand side, since the terms on each side of the subtraction can be coupled in pairs
of products ψıψj whose indexes have the same parity, which can be written in terms of

https://doi.org/10.1017/S0004972724000583 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000583


96 L. Dewaghe [4]

k and k′. Accordingly, we deduce a modified version of Stephen Nelson’s form: for all
(α, β, γ, δ) ∈ Z4,

ψα+β+1ψα−βψγ+δ+1ψγ−δ + ψα+γ+1ψα−γψδ+β+1ψδ−β + ψα+δ+1ψα−δψβ+γ+1ψβ−γ = 0. (1.7)

The equality (1.6) follows by setting r = β − α, p = γ − α, q = δ − α and, according to
the parity, s = 2α in (1.2) or s = 2α + 1 in (1.7). �

For the symmetries, for the case d = 1 [4, Theorem 10.2.2], withW(u) = 0 (u ∈ Z)
at a point P of E, we have, for all k ∈ Z,

W(ku + v) = AkvCk2W(v) withA = W(u + 2)
W(u + 1)W(2)

and C = W(u + 1)
A .

For the case d = 2 [4, Lemma 10.2.5], with W(u) =W(u1, u2) = 0 (u = (u1, u2) ∈
Z2), P = (P1, P2) ∈ E2 and v = (v1, v2) ∈ Z2, we have, for all k ∈ Z,

W(ku + v) = Akv1
1 A

kv2
2 C

k2W(v) withA1 =
W(u1 + 2, u2)

W(u1 + 1, u2)W(2, 0)
,

A2 =
W(u1, u2 + 2)

W(u1, u2 + 1)W(0, 2)
, C = W(u1 + 1, u2 + 1)

A1A2W(1, 1)
.

There are some general results in the literature [4, Theorem 10.2.3] and [1, Theorem
1.13] for any natural integer d, presented as a generalisation of Ward’s theorem (1.3),
which we give here in a succinct form to avoid overloading the presentation. For
the version ([4], [1, Theorem 1.12]), which deals with nondegenerate elliptic nets
associated with an elliptic curve and a d-tuple of points on it,

W(u + v) = δ(u, v)W(v) for all v ∈ Zd, (1.8)

where W(u) = 0 and δ is a quadratic function that is linear in the second factor.
Stange’s version has a rather complicated proof [4, Theorem 10.2.3, page 62] and
a simplified version of its proof with ‘general’ elliptic nets W can be found in
[1, Theorem 1.13] with a factorised form of δ into linear and quadratic forms: that is,

W(u + v) = ξ(u)χ(u, v)W(v) for all v ∈ Zd. (1.9)

To obtain their results, Ward and Stange use complex analysis, which requires the
nondegeneracy hypothesis. The authors in [1] use the recurrence (1.4), which allows
them to remove the nondegeneracy condition and deal with elliptic nets that do not
necessarily come from elliptic curves but with the property that Λ = W−1(0) is a
subgroup of Zd and |Zd/Λ| ≥ 4. The result (1.9) is presented as a generalisation of
(1.3) by lettingA = χ(v, 1) and C = ξ(u) (see [1] for more details).

The purpose of this article is to prove the following result that unifies [7, Theorem
9.2], [2, Theorem 1], [4, Theorem 10.2.3] and [1, Theorem 1.13].
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THEOREM 1.4. For a nondegenerate elliptic net W = WE,P associated to an elliptic
curve E and a d-tuple of fixed points P = (P1, P2, . . . , Pd) on Ed such thatW(u) = 0
with u ∈ (Z∗)d (d ∈ N), we have, for all k ∈ Z and v = (v1, v2, . . . , vd) ∈ Zd,

W(ku + v) = Ck2
( d∏

r=1

Avr
r

)k
×W(v) (1.10)

with

Ar =
W(u + 2er)

W(u + er)W(2er)
for all r ∈ {1, 2, . . . , d},

C =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W(u + 1)

W(1) ×∏d
r=1Ar

if u � 1,

−AsW(u − es) (s ∈ {1, 2, . . . , d}) if u = ±1.

We limit ourselves to elliptic nets of the form W. Indeed, Ward [7] showed that
almost all elliptic divisibility sequences are of the formW = WE,P = ψn(P) and Stange
[6] reports that ‘nearly all elliptic nets arise in this way’, and are hence of the form
W = WE,P. On the other hand, in [1], to ensure that Λ is a group, the authors use the
hypothesis that each elliptic sequence W(nei) (n ∈ {1, 2, . . . , d}) has a unique rank of
zero-apparition. In our context, this means that all points Pi are of finite order on E,
which seems to be very restrictive in a field of characteristic different from zero.

Note that, from [5, Corollary 5.2], we have the equivalence betweenW(u) = 0 and
u.P = 0E. The zeros of an elliptic net then appear as a sublattice of Zd, called the lattice
of zero-apparition [6, Definition 3].

2. Periodicity

2.1. Generalities. In this paragraph, we consider, for d inN≥2 and ��� = (�1, �2, . . . , �d)
in Zd, a multi-index sequence denoted by G��� = G�1,�2,...,�d of elements in the fieldK. We
say that the sequence G��� is Z-geometric if, for all k fixed in {1, 2, . . . , d} and ��� fixed in
Zd, the sequence G�1,�2,...,�k−1,�,�k+1,...,�d = G� is geometric. To be more explicit, for all k in
{1, 2, . . . , d} we set ���k = (�1, �2, . . . , �k−1, �k+1, . . . , �d) in Zd−1 and define the ratios q(k)

���k

in K such that G���+ek = q(k)
���k

G���.
We prove the following lemma, which is useful for obtaining our final result.

LEMMA 2.1. Consider a Z-geometric sequence (G���)���∈Zd of elements in the field K such
that

for all u � v ∈ {1, 2, . . . , d}, G���+eu+ev G��� = G���+eu G���+ev .

Then, the sequence G��� is geometric in each direction ek for k ∈ {1, 2, . . . , d}, namely,

for all k ∈ {1, 2, . . . , d} there exists qk ∈ K, G���+ek = qkG���.
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PROOF. We show this result by induction on the integer d.
In the case d = 2, for i � j in {1, 2}, from G���+ej G���−ej = G2

���
since G��� is Z-geometric,

we deduce that q(i)
���j+1G���−ei+ej q

(i)
���j−1G���−ei−ej = (q(i)

���j
G���−ei )

2 so q(i)
���j

is a geometric sequence

whose ratio is denoted rj. So, we have q(i)
���j
= r�j

j q(i)
0 . Expressing G1,1 in terms of G0,0

gives r1 = r2 and, from G1,1G0,0 = G1,0G0,1, we find that r1 = r2 = 1. Finally, we obtain
G���+ei = q(i)

���j
G��� = r�j

j q(i)
0 G��� = q(i)

0 G��� = qiG��� with q(i)
0 = qi.

For the case d > 2, in the same way, we deduce, for k in {1, 2, . . . , d}, that q(k)
���k

is

Z-geometric. On the other hand, for u � v, q(k)
���k

satisfies q(k)
���k+eu+ev

q(k)
���k
= q(k)

���k+eu
q(k)
���k+ev

.
Therefore, by the inductive hypothesis,

for all k ∈ {1, 2, . . . , d} and for all j � k, there exists rk,j ∈ K, q(k)
���k+ēj
= rk,jq

(k)
���k

,

where ēj is the projection of ej over spanZ(e1, . . . , ek−1, ek+1, . . . , ed). It fol-
lows that q(k)

���k
=
∏

1≤j≤d,j�k r�j

k,jq
(k)
0d−1

with 0d−1 = (0, 0, . . . , 0) in Zd−1 and thus we

have G���+ek =
∏

1≤j≤d,j�k r�j

k,jq
(k)
0d−1

G���. So, for u � v in {1, 2, . . . , d}, we can write

Geu+ev = rv,uq(v)
0d−1

q(u)
0d−1

G0 = Gev+eu . Hence, ru,v = rv,u. Finally, from Geu+ev G0 = Geu Gev ,

we obtain ru,v = 1 and so, for all k in {1, 2, . . . , d}, we have G���+ek = q(k)
0d−1

G��� = qkG���. �

2.2. Geometric sequence of quotient of elliptic nets. We consider a nondegenerate
elliptic net W = WE,P associated to the elliptic curve E and the d-tuple of fixed
points P = (P1, P2, . . . , Pd) on Ed. We assume that there is u = (u1, . . . , ud) in Zd with
W(u) =WE,P = 0. In other words, u.P = u1P1 + · · · + udPd = 0E [5, Corollary 5.2].

In equation (1.5), we set r = er (r ∈ {1, 2, . . . , d}), p = i − ��� and q = j + ��� with
���, i, j ∈ Zd and we consider i + j = u. We obtain, for all r in {1, 2, . . . , d},
W(i − ��� + er)W(i − ��� − er)W(j + ���)2 −W(j + ��� + er)W(j + ��� − er)W(i − ���)2 = 0.

(2.1)

This equation does not provide any information in certain cases, for example, for
��� = i ± er, i. We now define

G��� =
W(j + ���)
W(i − ���) ,

which depends on i and j but we will fix them later. Note also that G��� is not defined
for some ���, for example, for ��� = i,��� = −j. From (2.1),

for all r ∈ {1, 2, . . . , d}, G���+er × G���−er = G2
��� . (2.2)

Again, (2.2) does not make sense for some values of ���. We will come back later to all
these problematic cases (see Section 2.3) and we provisionally assume that G��� is well
defined for all ��� in Zd.

So, the sequence G��� is Z-geometric. Furthermore, from (1.4) with p = −eu,
q = j + ��� + ev, r = i − ��� − eu and s = eu − ev, we obtain

for all u � v ∈ {1, 2, . . . , d}, G���+eu+ev G��� = G���+eu G���+ev .
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From the previous section, with qr = Ger/G0, we deduce that

for all r ∈ {1, . . . , d}, there exists qr ∈ K, G���+er = qrG���.

Finally,

for all ��� = (�1, �2, . . . , �d) ∈ Zd, G��� =

d∏
r=1

q�r
r G0. (2.3)

However, this result omits the problematic cases mentioned, which does not guarantee
the existence of G��� for some ��� in Zd. Thus, we do not know whether we are keeping
the same ratio through certain points of Zd in a given direction. We deal with these
questions in the following section.

Before doing so, we fix i and j with u = i + j. For that, for all r in {1, 2, . . . , d}, if
ur = 2wr (ur ≡ ur mod 2 = 0), we set ir = wr − 1; but if ur = 2wr + 1 (ur = 1), we set
ir = wr and, in all cases, jr = wr + 1. Thus, if i = (i1, i2, . . . , id) and j = (j1, j2, . . . , jd),
writing ū ≡ u mod 2 and 1 = (1, 1, . . . , 1) in Zd, we have

i =
u + ū

2
− 1 and j =

u − ū
2
+ 1.

It can be observed that G′
���
= G−1

���
with ���′ = ū − 2 × 1 − ���.

2.3. Problematic cases. First, if u = u1 + u2 in Zd withWu = 0, thenWu1 = 0⇔
Wu2 = 0. Thus, the quantities G��� do not cancel, but are not defined at some points
of Zd. Moreover, the nondegeneracy hypothesis tells us that a problematic case can
only occur on one of three (four if d = 1) consecutive terms of the sequence G��� in one
direction. We will come back to the special cases of points of order two or three in
Section 2.6. On the other hand, if G��� and G′

���
are not defined, then (��� − ���′).P = 0E. We

deduce that, if G��� is not defined, then this is not the case for the G���+δer such that δ is in
{±1,±2} for r in {1, 2, . . . , d} or even for G���±er±es (r � s).

We show that we keep the same ratio qr (r ∈ {1, 2, . . . , d}) through a prob-
lematic case of index ��� in the direction er. This means that W(j + ���) =
W(i − ���) = 0. We define the value of G��� by the expression G2

���−er
/G���−2er = qrG���−er .

Then, from the addition formula on an elliptic curve expressing x((r + s).P) and
x((r − s).P) for r � s in (Zd)∗ such that x(r.P) � x(s.P) and [5, Lemma 4.2], we obtain
W(2r)W(2s) = 4y(r.P)y(s.P)W(r)4W(s)4. Hence, if s = es for s � r in {1, 2, . . . , d}
with x(r.P) � x(Ps), we deduce that

W(2r) = 2y(r.P)W(r)4, (2.4)

for r in {1, 2, . . . , d}. With r = j + ��� − er, so that y(r.P) = −yr in (2.4), we obtain
W(2(j + ��� − er)) = −W(2er)W(j + ��� − er)4. Combining this with (1.5) for p = j + ���,
q = j + ��� − 2er and r = er gives

W(j + ��� + er)W(j + ��� − 2er)2 = −W(2er)2W(j + ��� − er)3. (2.5)
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In the same way, with r = i − ��� + er in (2.4) and p = i − ���, q = i − ��� + 2er and r = er
in (1.5), we obtain

W(i − ��� − er)W(i − ��� + 2er)2 = −W(2er)2W(i − ��� + er)3. (2.6)

From (2.5) and (2.6), we deduce that

W(j + ��� + er)W(j + ��� − 2er)2W(i − ��� + er)3

=W(i − ��� − er)W(i − ��� + 2er)2W(j + ��� − er)3,

and, therefore, G���+er = G2
���
/G���−er = qrG��� with the new definition of G���.

Next, for all λ and μ in Z∗, we set p = i − ��� + λer, q = λer + μer, r = j + ��� + λer
and s = −2λer with r ∈ {1, 2, . . . , d} in (1.4). We obtain G���+λer G���−λer = G���+μer G���+μer ,
and, therefore, G���+2er/G���+er = G���−er/G���−2er = qr.

Finally, we show that the definition of G��� in the direction er is consistent with that
in another direction es, which we denote by G̃���. For that, we set p = j + ��� − er − es,
q = i − ��� + er + es and r = er − es in (1.5) to obtain G2

���−er−es
= G���−2es G���−2er , and so

G2
���−er

G���−2es = G2
���−es

G���−2er , that is, G��� = G̃���. So, for a problematic index ���, we can set
G��� = qrG���−er to ensure that G��� is geometric in each direction.

EXAMPLE 2.2. For the curve y2 = x3 + 2x − 4 over F73 and the points P1 = (36, 71),
P2 = (51, 53), P3 = (7, 34), we have U = (3, 5, 7) and (q1, q2, q3) = (22, 71, 58). The
values Gi and G−j are not defined. We set Gi = qrGi−er = 47 and G−j = qrG−j−er = 14.
The values of Gi+ker (k ∈ {−3; 3}) are, for r = 1, 2, 3 successively,

{61, 28, 32, 47, 12, 45, 45}, {58, 30, 13, 47, 52, 42, 62}, {23, 20, 65, 47, 25, 63, 4},

and for G−j+ker ,

{57, 13, 67, 14, 16, 60, 6}, {53, 40, 66, 14, 45, 56, 34}, {55, 51, 38, 14, 9, 11, 54}.

We can give a harmonious formulation of the ratios qr in terms of G and, therefore,
of W, if the quantities involved are well defined. Indeed, from (2.2) for ��� = er − 1,
we obtain G2er−1G−1 = G2

er−1 for all r in {1, 2, . . . , d}. With G2er−1 = qrGer−1 and
G−1 = G−1

ū−1, we deduce that

for all r ∈ {1, 2, . . . , d}, qr = Gū−1 × Ger−1 =
W( u+ū

2 )

W( u−ū
2 )
×
W( u−ū

2 + er)

W( u+ū
2 − er)

. (2.7)

EXAMPLE 2.3. For the curve y2 = x3 + x + 1 over F11, we consider the points
of order seven, that is, P1 = (6, 5) and P2 = (3, 3). We have 3P1 + P2 = 0E =

2P1 + 3P2 = 5P1 + 4P2, so u = (5, 4) = (3, 1) + (2, 3) = u1 + u2. In this case, G(−1,0)
and G(0,−2) are not defined since W2,3 =W3,1 = 0 and so q2 is not defined. We
define G(0,−2) = q1G(−1,−2) = 4 ∗ 5 = 9 and G(−1,0) = G(0,0)/q1 = 9/4 = 5 = 9−1. We
also set q2 = G(0,−1)G(−1,0) = 2 ∗ 5 = 10. Note that, at the end of the article, we show
that qr(u) = qr(u1) ∗ qr(u2) (r ∈ {1, 2}). Indeed, q(u) = (4, 10), q(u1) = (6, 6) and
q(u2) = (8, 9).
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If we now consider u = 2(3, 1) = (6, 2), then G−1 is not defined, nor are the
quantities q1 and q2. We have q1 = G(1,0)/G(0,0) = 3, q2 = G(0,1)/G(0,0) = 3 and
G(−1,−1) = G(0,0)/(q1q2) = −1. Once again, we see that qr(2u) = qr(u)2. Indeed,
q((6, 2)) = (3, 3); q((3, 1)) = (6, 6).

For the case u = 1, the quantities G−1, G0, and thus the ratios qk, are not defined.
But, we can set

for all k ∈ {1, 2, . . . , n}, qk
k′�k
=

Gek′

Gek′ −ek

,

and G−1 = G−1+ek/qk, G0 = qkG−ek .
For the curve y2 = x3 + 17x − 53 over F229, we consider the points P1 = (217, 63),

P2 = (153, 59), P3 = (42, 211), P4 = (40, 222) and P5 = (13, 126). We have u = 1.
We can write q1 = Ge2/Ge2−e1 = 211 and so q2 = 55, q3 = 221, q4 = 13, q5 = 227 and
G−1 = Ge1−1/q1 = 181.

So we can have cases where the definition qr = Gū−1 × Ger−1 is problematic.
However, we can always find ��� in Zd so that the ratio qr = G���+er/G��� is well defined.
Nevertheless, the expression (2.7) needs someW whose indexes are in the neighbour-
hood of u/2, which is the best that we can do for the computation of G��� whose indexes
are symmetric with respect to u/2.

2.4. Proof of Theorem 1.4. First, we set ��� = i + v for v in Zd\Γ, giving

G��� = Gi+v =
W(i + j + v)
W(−v)

=
W(u + v)
W(−v)

= −W(u + v)
W(v)

.

Therefore, from (2.3), we obtain, in the cases where G−1 is well defined,

W(u + v) = −Gi+vW(v) = −
( d∏

r=1

qir+vr+1
r

)
G−1 ×W(v),

which holds for v in Zd such that W(v) = 0. Note that, in this case, since G is
geometric in each direction, G−1 =

∏d
r=1 q−ur

r × Gū−1; therefore, G2
−1 =

∏d
r=1 q−ur

r . This
shows that

∏d
r=1 qur

r is a square.
For all r in {1, 2, . . . , d}, when G−1 is well defined, we set Ar = qr and

C = −(
∏d

r=1 qir+1
r )G−1. Thus, we can write C2 =

∏d
r=1 q2(ir+1)

r × G2
−1 =

∏d
r=1A

ur
r

(which is just ξ(u)2 = χ(u, u); see (2.5)). Hence, W(u + v) = C∏d
r=1A

vr
r ×W(v)

and a simple induction on k give the desired result (1.10). The formulas for A and C
in (1.10) follow immediately from the existence of these quantities.

On the other hand, if we set u1 = (u − ū)/2 and u2 = (u + ū)/2 with possibly
u1 = u2, we have G−1 =W(u1)/W(u2). Hence, G−1 is not defined if u = ±1 or
u = u1 + u2 with u1.P = 0E and u2.P = 0E. Suppose that u � ±1. For s in {1, 2, . . . , d},
we have G−es−1+ū = 1/G−es−1 and thus q2

s
∏d

r=1 q−ūr
r = G2

−es−1. We still have

W(u + v) = −Gi+vW(v) = −
( d∏

r=1

qir+vr+1
r

) Ges−1

qs
×W(v),
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TABLE 1. Calculations illustrating Theorem 1.4 in characteristic zero.

v k W(ku + v) Ck2
(
∏d

r=1A
vr
r )k W(v)

(1, 1, 1) 1 −231096861444852745469801181207
2074596720994616193681719296

46432963923016424647337991
433653160743021779615744

−4977
4784

(−1,−1, 1) 1 −794
64

9243
1472

−18193
9243

(1, 1, 1) −1 −7
4

1196
711

−4977
4784

(1, 1, 1) −2 −642961909517339482497
1212663059537985536

129186640449535761
253483081007104

−4977
4784

and so we setAr = qr and C = −(
∏d

r=1 qir+1
r Ges−1/qs). Note that, for s � s′, Ges+es′ −1 =

Ges−1qs′ = Ges′ −1qs. Again, we obtain C2 =
∏d

r=1A
ur
r .

For u = 1 (the case u = −1 can be handled in the same manner), we write instead

W(u + v) = −
( d∏

r=1

qir+vr
r

)
G−es qs ×W(v) =

( d∏
r=1

qvr
r

)
(−W(1 − es)qs) ×W(v)

and set Ar = qr and C = −W(1 − es)qs for s in {1, 2, . . . , d}. Note that, since
G−es−es′ = G−es′ −es for s � s′, we have W(1 − es)qs =W(1 − es′)qs′ . Moreover,
C2 = q1q2W(1 − e1)W(1 − e2) but

q3 =
G−e1

G−e1−e3

=W(1 − e1) × W(1 − e2 − e4 − · · · − ed)
W(e2 + e4 + · · · + ed)

=W(1 − e1) × G−e2−e4−···−ed =W(1 − e1) × (q4 · · · qd)−1G−e2 ,

and hence C2 =
∏d

r=1 qr since G−e2 =W(1 − e2). This completes the proof of
Theorem 1.4.

Moreover, this result includes [2, Theorem 1] for u > 3 (see (2.6) for u = 2 or
3). If u = 2m then, A = q = ψm+1/ψm−1 = ω and C = −qi+1G−1 = −qm, which gives
ψku+v = (−1)kωk(v+km)ψv. If u = 2m + 1, then A = q = (ψm+1/ψm)2 = ω2 and
C = −qi+1G−1 = −qm+1/ω = −ω2m+1, which gives ψku+v = (−1)kωk(2v+k(2m+1))ψv.

EXAMPLE 2.4. Over Q, the curve y2 = x3 − 4x + 1 with

P1 = (0, 1), P2 = (82264/505521, 213664697/359425431), P3 = (4, 7),

gives u = (3, 1, 2) and

C = 255551481441/19041697792, A = (711/208, 359425431/297526528, 711/368).

We give some calculations to illustrate Theorem 1.4 in Table 1.
According to the Lutz–Nagell theorem [3, Ch. 8], the only possible points of

E(Q)tors are (0, 1), (2,±1) and (−2,±1), which cannot arise according to Mazur’s
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TABLE 2. Calculations illustrating Theorem 1.4 in nonzero characteristic.

v k W(ku + v) Ck2
(
∏d

r=1A
vr
r )k W(v)

(1, 1, 1, 1) 1 944 2164 7129
(2, 3, 1, 5) 2 5742 3270 7078
(1, 7, 11, 15) 3 6155 3676 1766
(2, 1, 3, 5) −1 2254 2788 3165
(3, 7, 8, 10) −2 6418 1532 2475
(7, 3, 5, 10) −3 2331 3928 7845

theorem. As a result, none of the sequences ψn(P1);ψn(P2);ψn(P3) have a rank of
zero-apparition.

Over F7919, the curve y2 = x3 + 1562x + 1805 with the points P1 = (4856, 5835),
P2 = (6128, 7637), P3 = (3336, 2121) and P4 = (2415, 7795) gives u = (18, 17, 12, 17)
and C = 3648,A = (2664, 4758, 5312, 531). Some calculations are given in Table 2.

2.5. The latest known general result. We now link our results to [1, Theorem 1.13].
With the assumptions and the notation χ and ξ of this theorem, one can write

W(u + v) = ξ(u)χ(u, v)W(v).

More precisely, with Λ = {v ∈ Zd | W(v) = 0}, the functions χ and ξ are defined by

δ : Λ × (Zd\Λ) → K∗

(u, v) �→ W(u + v)
W(v)

and the relations

χ : Λ × Zd → K∗,

(u, v) �→ δ(u, v + v′)
δ(u, v′)

where v′ ∈ Zd but v′, v′ + v � Λ,

ξ : Λ → K∗,

u �→ δ(u, v)
χ(u, v)

for any v ∈ Zd\Λ.

We now relate the functions δ of (1.8) and χ, ξ of (1.9) to our notation. We have

χ(u, v) =
W(u + v + v′)
W(v + v′)

W(v′)
W(u + v′)

=

d∏
r=1

Avr
r .

So we deduce, for all k in {1, 2, . . . , d}, that χ(u, ek) = Ak, and, in the same way,

ξ(u) = C and δ(u, v) = C
d∏

r=1

Avr
r = ξ(u)χ(u, v).
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Now, we recall the results of [1, Theorem 1.13, Lemma 4.2] to which we can give
an immediate proof.

THEOREM 2.5. The functions ξ and χ have the following properties.

(1) χ is bilinear symmetric: that is, for all u, u(1), u(2) ∈ Λ and v, v(1), v(2) ∈ Zd,

(a) χ(u, v(1) + v(2)) = χ(u, v(1))χ(u, v(2)),
(b) χ(u(1) + u(2), v) = χ(u(1), v)χ(u(2), v),
(c) χ(u(1), u(2)) = χ(u(2), u(1)),
(d) χ(u,−v) = χ(u, v)−1.

(2) ξ(u(1) + u(2)) = ξ(u(1))ξ(u(2))χ(u(1), u(2)).
(3) ξ(−u) = ξ(u).
(4) ξ(u)2 = χ(u, u).
(5) ξ(nu) = ξ(u)n2

, for all n ∈ Z.

PROOF.

(1) (a) is obvious; (b) is obtained from (1.4) with p = er, q = −u(2), r = 2er and
s = u(1) + u(2); (c) is easily obtained from W(u(1) + (u(2) + v)) =W(u(2) +

(u(1) + v)); and (d) is obvious.
(2) This is easily obtained fromW((u(1) + u(2)) + v) =W(u(1) + (u(2) + v)).
(3) From (1.5) with p = 2er, q = u and r = er, we deduce that χ(−u, v) = χ(u, v)−1

so χ(−u,−v) = χ(u, v). The result comes fromW(−u − v) = −W(u + v).
(4) This follows from 1 = ξ(0) = ξ(u − u) = ξ(u)ξ(−u)χ(u,−u).
(5) This result can be deduced from the previous statements. �

EXAMPLE 2.6. Following [6, Section 5.1], we consider Q = k.P on an elliptic curve E
with P and Q of order m. The elliptic net associated to P and Q cancels at the points
u = (−k, 1), s = (m, 0) and t = (0, m). With obvious notation,

χ((−km, m), er) = χ(m(−k, 1), er) = χm((−k, 1), er) = (A(u)
r )m

and

χ((−km, m), er) = χ−k((m, 0), er)χ((0, m), er) = (A(s)
r )−kA(t)

r .

Thus, we easily obtain (A(u)
r )m = (A(s)

r )−kA(t)
r , which is [6, Equation (9)].

For the curve y2 = x3 + x + 1 over F11, with the points P1 = (6, 5) and P2 = (3, 3) of
order seven, we have the values shown in Table 3.

2.6. Points of order two or three. We return here to special cases related to the
degeneracy conditions ofW, namely,W(2ei) � 0 for 1 ≤ i ≤ d andW(3e1) � 0 when
d = 1. This, therefore, concerns cases where there are points of order two, or order
three when d = 1, on the elliptic curve E. Note that |Zd/Λ| = 2 occurs only in the case
d = 1 when P = P is of order two. We have |Zd/Λ| = 3 if either d = 1 and P = P is of
order three, or d = 2 and P = (P1, P2) are two points of order two and u = (2, 2).
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TABLE 3. Calculations illustrating Theorem 2.5 for various u ∈ Λ.

u qr = Ar = χ(u, er)

(1, 5) (7, 8)
(2, 3) (8, 9)
(3, 1) (6, 6)
(5, 4) (4, 10)
(4, 6) (9, 4)
(6, 2) (3, 3)
(7, 7) (10, 2)

For the case d = 1 with P = P of order two on E, we have u = 2 so i = 0 and
j = 2, and hence G� = ψ2+�/ψ� with � odd. In (1.1) with m = 2� + 1 and n = 2,
we obtain G2�+1 = −ψ3G2�−1. But we can easily show that, when y = 0, we have
ψ3(x, y) = −((2ax + 3b)/x)2 if x � 0 and ψ3(x, y) = −a2 if x = 0. Hence, in every case,
we can write −ψ3 = q2 with q in K. So, we deduce that G2�+1 = q2�+2G−1 = q2�+2,
and writing 2� + 1 = i + v = v for v odd in Z, since Gi+v = ψu+v/ψ−v, we have ψu+v =

−qv+1ψv. Finally, we set C = −q andA = q, to obtain C2 = Au and ψku+v = Ck2Akvψv.
We also find the result of [2, Theorem 1].

For the case d = 1 with P = P of order three on E, we proceed in the same way. We
have u = 3 so i = 1 and j = 2, and hence G� = ψ2+�/ψ1−� with � � 1 mod 3. In (1.1)
with m = � + 1 and n = 2, we obtain G�+1 = ψ

2
2G� for � ≡ 2 mod 3. The rest follows

in the same way as before with C = −ψ3
2 and A = ψ2

2 (C2 = A3 = Au) or w = ψ2 to
obtain [2, Theorem 1] when u = 3.

For the case d = 2, with one or two points of order two, as already mentioned,
if G� creates a problem, then the G�′ are well defined for �′ = � ± er or � + es
or � + es ± er with r � s in {1, 2, . . . d}, and we can then ‘bypass’ the index �
by setting G� = (G�+es−er/G�+es )G�−er = qrG�−er . Furthermore, G�+er = q−1

s G�+er+es =

q−1
s q2

r G�−er+es = q2
r G�−er , and hence G�+er = qrG�.

For the case d = 3, we can have three points of order two but, in this case, u = 1,
which we have already dealt with. For d > 3, we can always make sure that the
geometric character of G� subsists with the same ratio through a problematic index
with points of order two by ‘bypassing’ in another direction.
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