
1
Operator calculus

The operator calculus developed by Feynman [Fey51] makes it possible to
represent functions of (noncommuting) operators as path integrals, with
the integrand being the path-ordered exponential of operators, the order
of which is controlled by a parameter that varies along the trajectory.
This procedure is termed Feynman disentangling. It is also applicable to
functions of matrices (say, γ-matrices which are associated with a spinor
particle). When applied to the evolution operator, this procedure results
in the standard path-integral representation of quantum mechanics.
In this chapter we first demonstrate the general technique using the

simplest example, a free propagator in Euclidean space, and then con-
sider the path-integral representation of quantum mechanics, as well as
propagators in an external electromagnetic field.

1.1 Free propagator

Let us first consider the simplest propagator of a free scalar field which is
given in the operator formalism by the vacuum expectation value of the
T -product∗

G(x− y) = 〈0|Tϕ(x)ϕ(y) |0〉 (1.1)

with ϕ being the field-operator.
The T -product (1.1) obeys the equation(

−∂2 −m2
)
G(x− y) = i δ(d)(x− y) , (1.2)

where d = 4 is the dimension of space-time, however the formulas are
applicable at any value of d. In the operator formalism, Eq. (1.2) is a

∗ The ordered products of operators were introduced by Dyson [Dys49]. This paper
and other classical papers on quantum electrodynamics are collected in the book
edited by Schwinger [Sch58].
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4 1 Operator calculus

consequence of the free equations(
−∂2 −m2

)
ϕ(x)
∣∣ 0〉 = 0 ,〈

0
∣∣(−∂2 −m2

)
ϕ(x) = 0

}
(1.3)

and canonical equal-time commutators

[ϕ(t, �x) , ϕ̇(t, �y)] = i δ(d−1)(�x− �y) ,
[ϕ(t, �x) ,ϕ(t, �y)] = 0 .

}
(1.4)

The delta-function δ(1)(x0 − y0) emerges when (∂/∂x0)2 is applied to the
operator of the T -product in (1.1).

Problem 1.1 Derive Eq. (1.2) in the operator formalism.

Solution Let us apply the operator on the left-hand side (LHS) of Eq. (1.2) to
the T -product which is defined by

T ϕ(x)ϕ(y) = θ(x0 − y0)ϕ(x)ϕ(y) + θ(y0 − x0)ϕ(y)ϕ(x) (1.5)

with

θ(x0 − y0) =
{
1 for x0 ≥ y0

0 for x0 < y0 .
(1.6)

Equation (1.3) implies a nonvanishing result to emerge only when (∂/∂x0)2 is
applied to the operator of the T -product. One obtains(

−∂2 −m2
)
〈0|Tϕ(x)ϕ(y) |0〉 = − ∂

∂x0
〈0|Tϕ̇(x)ϕ(y) |0〉

= δ(1)(x0 − y0) 〈0| [ϕ(y) , ϕ̇(x)] |0〉
= i δ(d)(x− y) , (1.7)

where the canonical commutation relations (1.4) are used.

The explicit solution to Eq. (1.2) for the free propagator is well-known
and is most simply given by the Fourier transform:

G(x− y) =
∫

ddp

(2π)d
eip(x−y) i

p2 −m2 + iε
. (1.8)

An extra iε (with ε→ +0) in the denominator is due to the T -product in
the definition (1.1) and unambiguously determines the integral over p0.
The propagator (1.8) is known as the Feynman propagator that respects
causality.

Problem 1.2 Perform the Fourier transformation of the free momentum-space
propagator in the energy p0:

Gω(t− t′) =

+∞∫
−∞

dp0
2π

eip0(t−t
′) i
p20 − ω2 + iε

, ω =
√
�p 2 +m2 . (1.9)
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1.1 Free propagator 5

Solution The poles of the momentum-space propagator are at

p0 = ±ω ∓ iε . (1.10)

For t > t′ (t < t′), the contour of integration can be closed in the upper (lower)
half-plane which gives

Gω(t− t′) = θ(t− t′)
e−iω(t−t′)

2ω
+ θ(t′ − t)

eiω(t−t
′)

2ω

=
e−iω|t−t′|

2ω
. (1.11)

The Green function (1.11) obeys the equation(
− ∂2

∂t2
− ω2

)
Gω(t− t′) = i δ(1)(t− t′) (1.12)

and therefore coincides with the causal Green function for a harmonic oscillator
with frequency ω.

Remark on operator notations

In mathematical language, the Green function G(x − y) is termed the
resolvent of the operator on the LHS of Eq. (1.2), and is often denoted
as the matrix element of the inverse operator

G(x− y) =
〈
y

∣∣∣∣ i
−∂2 −m2

∣∣∣∣x〉 . (1.13)

The operators act in an infinite-dimensional Hilbert space, the elements
of which in Dirac’s notation [Dir58] are the bra and ket vectors 〈g| and |f〉,
respectively. The coordinate representation emerges when these vectors
are chosen to be the eigenstates of the position operator xµ:

xµ|x〉 = xµ|x〉 . (1.14)

These basis vectors obey the completeness condition∫
ddx |x〉〈x| = 1 , (1.15)

while the wave functions, associated with 〈g| and |f〉, are given by

〈g | x〉 = g(x) , 〈x | f〉 = f(x) . (1.16)

These wave functions appear in the expansions

|f〉 =
∫
ddx f(x)|x〉 , 〈g| =

∫
ddy g(y)〈y| . (1.17)
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6 1 Operator calculus

The action of a linear operator O on the bra and ket vectors in Hilbert
space is determined by its matrix element 〈y |O| x〉, which is also known
as the kernel of the operator O and is denoted by

〈y |O| x〉 = O(y, x) . (1.18)

Using the expansion (1.17), one obtains

〈g |O| f〉 =
∫
ddx
∫
ddy g(y)O(y, x) f(x) . (1.19)

Since the kernel of the unit operator is the delta-function,

〈y |1|x〉 = 〈y|x〉 = δ(d)(x− y) , (1.20)

the formula
〈y |O| x〉 = O δ(d)(x− y) (1.21)

can also be written down as a direct consequence of Eq. (1.20), where the
operator O on the right-hand side (RHS) acts on the variable x.
Therefore, when the operator acts on a function f(x), the result is

expressed via the kernel by the standard formula

Of(y) ≡ 〈y |O| f〉 =
∫
ddxO(y, x) f(x) . (1.22)

Equation (1.21) is obviously reproduced when f is substituted by a delta-
function, while Eq. (1.19) takes the form

〈g |O| f〉 =
∫
ddx g(x)Of(x) . (1.23)

If space-time is approximated by a discrete set of points, then the op-
erator O is approximated by a matrix with elements 〈y |O| x〉.

1.2 Euclidean formulation

Equation (1.8) can be obtained alternatively by inverting the operator
on the LHS of Eq. (1.2). Before doing that, it is convenient to make an
analytic continuation in the time-variable t, and to pass to the Euclidean
formulation of quantum field theory (QFT) where one substitutes

t = −ix4 . (1.24)

The four-momentum operator in Minkowski space reads as

pµ
M = i ∂µM ≡

(
i
∂

∂t
,−i ∂

∂�x

)
Minkowski space , (1.25)
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1.2 Euclidean formulation 7

while its Euclidean counterpart is given by

pµ
E = −i ∂µE ≡

(
−i ∂

∂�x
,−i ∂

∂x4

)
Euclidean space . (1.26)

These two formulas together with Eq. (1.24) yield

E ≡ p0 = −i p4 (1.27)

for the relation between energy and the fourth component of the Euclidean
four-momentum.
The passage to Euclidean space results in changing the Minkowski sig-

nature of the metric gµν to the Euclidean one:∗

(+−− −) −→ (+ + + +)

Minkowski signature −→ Euclidean signature .
(1.28)

As such, one finds

p2M = p20 − �p 2 −→ −p2E = −�p 2 − p24 . (1.29)

The exponent in the Fourier transformation changes analogously:

−pµxµ = −Et+ �p�x −→ pµEx
µ
E = �p�x+ p4x4 . (1.30)

This reproduces the standard Fourier transformation in Euclidean space

f(p) =
∫
ddx e−ipxf(x) ,

f(x) =
∫

ddp

(2π)d
eipxf(p) .

 (1.31)

We shall use the same notation vµ for a four-vector in Minkowski and
Euclidean spaces:

vµM = (v0, �v) Minkowski space ,

vµE = (�v, v4) Euclidean space ,

 (1.32)

∗ An older generation will be familiar with the Euclidean notation which is used
throughout the book by Akhiezer and Berestetskii [AB69]. In contrast, the two canon-
ical books on quantum field theory by Bogoliubov and Shirkov [BS76] and by Bjorken
and Drell [BD65] use the Minkowskian notation instigated by Feynman. The modern
generation of textbooks on quantum field theory includes those by Brown [Bro92] and
Weinberg [Wei98].
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8 1 Operator calculus

�✄ � ✲

✻

︷ ︸︸ ︷
Minkowski
space

t = −iτ

�✂ ✁

�t

✟✟

✟✟
Euclidean
space

{

(a)

�✂ ✁ ✲

✻

︷ ︸︸ ︷
Minkowski
space

E = −ip4

�✄ �

�E

✘✘❍❍

✘✘❍❍
Euclidean

space

}

(b)

Fig. 1.1. Direction of Wick’s rotation from Minkowski to Euclidean space (indi-
cated by the arrows) for (a) time and (b) energy. The dots represent singularities
of a free propagator in (a) coordinate and (b) momentum spaces. The contours
of integration in Minkowski space are associated with causal Green functions.
They can obviously be deformed in the directions of the arrows.

with

v0 = −iv4 . (1.33)

The only difference resides in the metric. We do not distinguish between
upper and lower indices in Euclidean space.
Using Eqs. (1.24) and (1.26), we see that in Euclidean space Eq. (1.2)

takes the form (
−∂2 +m2

)
G(x− y) = δ(d)(x− y) (1.34)

with a positive sign in front of m2.
The passage to the Euclidean formulation is justified in perturbation

theory where it is associated with the Wick rotation. The direction in
which the rotation is performed is unambiguously prescribed by the +iε
term in Eq. (1.8), and is depicted in Fig. 1.1. The variable t = x0 rotates
through −π/2, while E = p0 rotates through π/2.
Figure 1.1a explains the sign in Eq. (1.24). Figure 1.1b and Eq. (1.27)

implies that the integration over p4 goes in the opposite direction, so that
+∞∫

−∞

dp0
2π
· · · = i

+∞∫
−∞

dp4
2π
· · · . (1.35)

Thus when passing into Euclidean variables, Eq. (1.8) becomes

G(x− y) =
∫

ddp

(2π)d
eip(y−x) 1

p2 +m2
. (1.36)
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1.2 Euclidean formulation 9

Note that the RHS of Eq. (1.36) is nothing but the Fourier transform of
the free momentum-space Euclidean propagator, and there is no need to
retain an iε in the denominator since the integration prescription is now
unambiguous.
It is now clear why we keep the same notation for the coordinate-space

Green functions: the Feynman propagator in Minkowski space and the
Euclidean propagator. They are the same analytic function of the time-
variable.

Problem 1.3 Repeat the calculation of Problem 1.2 in Euclidean space.

Solution According to Eq. (1.36) we need to calculate

Gω(τ − τ ′) =

+∞∫
−∞

dp4
2π

eip4(τ
′−τ) 1

p24 + ω2
. (1.37)

The integral on the RHS can be calculated for τ > τ ′ (τ < τ ′) by closing the
contour in the lower (upper) half-plane, and taking the residues at p4 = −iω
(p4 = iω), respectively. This yields

Gω(τ − τ ′) = θ(τ − τ ′)
eω(τ

′−τ)

2ω
+ θ(τ ′ − τ)

eω(τ−τ
′)

2ω

=
e−ω|τ−τ

′|

2ω
. (1.38)

The Euclidean Green function (1.38) can obviously be obtained from the
Minkowskian one, Eq. (1.11), by the substitution

τ = it , τ ′ = it′ (1.39)

and vice versa. Gω(τ − τ ′) obeys the equation(
− ∂2

∂τ2
+ ω2

)
Gω(τ − τ ′) = δ(1)(τ − τ ′) (1.40)

and, therefore, is the Green function for a Euclidean harmonic oscillator with
frequency ω.

As we shall see in a moment, the Euclidean formulation makes path in-
tegrals well-defined, and allows nonperturbative investigations analogous
to statistical mechanics to be carried out. There are no reasons, however,
why Minkowski and Euclidean formulations should always be equivalent
nonperturbatively.

Remark on Euclidean γ-matrices

The γ-matrices in Minkowski space satisfy{
γµM, γ

ν
M

}
= 2 gµν I , (1.41)
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10 1 Operator calculus

where I denotes the unit matrix. Therefore, γ0 is Hermitian while the
Minkowskian spatial γ-matrices are anti-Hermitian.
Analogously, the Euclidean γ-matrices satisfy

{γµ, γν} = 2 δµν I , (1.42)

so that all of them are Hermitian. We compose them from 2× 2 matrices
as

γ4 = γ0 =
(

I 0
0 −I

)
(1.43)

and

�γ =
(
0 −i�σ
i�σ 0

)
, (1.44)

where �σ are the usual Pauli matrices. Note that the Euclidean spatial
γ-matrices differ from the Minkowskian ones by a factor of i.
The free Dirac equation in Euclidean space reads as(

∂̂ +m
)
ψ = 0 , ∂̂ = γµ∂µ (1.45)

or

(ip̂ +m)ψ = 0 (1.46)

with p given by Eq. (1.26).

1.3 Path-ordering of operators

There are no problems in defining a function of an operator A, say via
the Taylor series. For instance,

eA =
∞∑
n=0

1
n!
An. (1.47)

However, it is more complicated to define a function of several noncom-
muting operators (or matrices), e.g. A and B having

[A,B] �= 0 , (1.48)

since the order of operators is now essential. In particular, one has

eA+B �= eA eB , (1.49)

so that the law of addition of exponents fails. Certainly, the exponen-
tial on the LHS is a well-defined function of A + B, but since A and B
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1.3 Path-ordering of operators 11

are intermixed in the Taylor expansion, this expansion is of little use in
practice. We would like to have an expression where all Bs are written,
say, to the right of all As. Generically, this is a problem of representing a
symmetric ordering of operators via a normal ordering.
This can be achieved by the following formal trick [Fey51].
Let us write

eA+B = lim
M→∞

[
1 +

1
M
(A+B)

]M
= lim

M→∞

[
1 +

1
M
(A+B)

]
· · ·
[
1 +

1
M
(A+B)

]
︸ ︷︷ ︸

M times

. (1.50)

The structure of the product on the RHS prompts us to introduce an
index i running from 1 to M and replace (A + B) in each multiplier by
(Ai +Bi). Therefore, one writes

eA+B = lim
M→∞

M∏
i=1

[
1 +

1
M
(Ai +Bi)

]
= lim

M→∞

[
1 +

1
M
(AM +BM )

]
· · ·
[
1 +

1
M
(A1 +B1)

]
, (1.51)

where the index i controls the order of the operators which are all treated
differently. The ordering is such that the larger i is, the later the operator
with the index i acts. This order of operators is prescribed by quantum
mechanics, where initial and final states are represented by ket and bra
vectors, respectively.
Equation (1.51) can be rewritten as

eA+B = P lim
M→∞

exp
[ 1
M

M∑
i=1

(Ai +Bi)
]
, (1.52)

where the symbol P denotes the ordering operation. There is no ambigu-
ity on the RHS of Eq. (1.52) concerning ordering Ai and Bi with the same
index i, since such terms are O

(
M−2) and are negligible as M →∞.

To describe the continuum limit asM →∞, one introduces the contin-
uum variable σ = i/M which belongs to the interval [0, 1]. The continuum
limit of Eq. (1.52) reads as

eA+B = P exp
{ 1∫
0

dσ [A(σ) +B(σ)]
}
, (1.53)
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12 1 Operator calculus

where A(i/M) = Ai and B(i/M) = Bi, while the operator A(σ) + B(σ)
acts at order σ.
Equation (1.53) is, in fact, obvious since it only involves the operator

A + B, which commutes with itself. For commuting operators there is
no need for ordering so that A(σ) + B(σ) does not depend on σ in this
case. The integral in the exponent on the RHS of Eq. (1.53) can then be
performed, and reproduces the LHS.
Equation (1.53) can however be manipulated as though A(σ) and B(σ)

were just functions rather than operators since the order would be spec-
ified automatically by the path-ordering operation. This is analogous to
the well-known fact that operators can be written in an arbitrary order
under the T -product. Therefore, we can rewrite Eq. (1.53) as

eA+B = P e
∫ 1
0 dσ

′A(σ′) e
∫ 1
0 dσB(σ). (1.54)

This is the operator analog of the law of addition of exponents.

Problem 1.4 Calculate explicitly the first term of the expansion of exp (A+B)
in B.

Solution Expanding the RHS of Eq. (1.54) in B, one finds

eA+B = eA +

1∫
0

dσ e
1
σ
dσ′A(σ′)B(σ) e

σ
0 dσ′A(σ′) + · · · . (1.55)

There is no need for a path-ordering sign in this formula, since the order of the
operators A and B is written explicitly. There is also no ambiguity in defining
the exponentials of the operator A as already explained.
Since the order is explicit, one drops the formal dependence of A and B on

the ordering parameter which gives

eA+B = eA +

1∫
0

dσ e(1−σ)AB eσA + · · · . (1.56)

Formulas (1.55) and (1.56) are known from time-dependent perturbation theory
in quantum mechanics.

Problem 1.5 Using Eq. (1.56), derive

1
A+B

=
1
A
− 1
A
B
1
A
+ · · · (1.57)

for small B.
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1.4 Feynman disentangling 13

Solution Exponentiating and using Eq. (1.56), we obtain

1
A+B

=

∞∫
0

dτ e−τ(A+B)

=

∞∫
0

dτ
[
e−τA − τ

1∫
0

dσ eτ(σ−1)AB e−τσA
]
+ · · · . (1.58)

Introducing the new variables

τ1 = τ (1− σ) , τ2 = τσ , (1.59)

we rewrite the RHS of Eq. (1.58) as

1
A
−

∞∫
0

dτ1 e−τ1AB

∞∫
0

dτ2 e−τ2A + · · · =
1
A
− 1
A
B
1
A
+ · · · (1.60)

which proves Eq. (1.57).

1.4 Feynman disentangling

The operator on the LHS of Eq. (1.34) can be inverted as follows:

G(x− y) =
1

−∂2 +m2
δ(d)(x− y)

=
1
2

∞∫
0

dτ e
1
2
τ(∂2−m2)δ(d)(x− y)

=
1
2

∞∫
0

dτ e−
1
2
m2τ P e

1
2

∫ τ
0
dt ∂2(t) δ(d)(x− y) , (1.61)

where we have formally labeled the derivatives using an ordering param-
eter t ∈ [0, τ ], which is an analog of σ from the previous section. This is
the general procedure upon which the Feynman disentangling is built.
Since the operators ∂µ and ∂ν commute in the free case, we could man-

age without introducing the t-dependence, however the operators do not
commute in general. The simple example of the nonrelativistic Hamilto-
nian and the propagator in an external electromagnetic field are consid-
ered later in this chapter. Other cases where the disentangling is needed
are related to inverting an operator which is also a matrix in some sym-
metry space.
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14 1 Operator calculus

✲

✻

t

z(t)

x

z(τ)

0 τ

Fig. 1.2. Trajectory zµ(t). The operator ∂µ(t) acts at the order t.

Continuing with the disentangling, the RHS of Eq. (1.61) can be rewrit-
ten as

G(x− y) =
1
2

∞∫
0

dτ e−
1
2
m2τ

∫
zµ(0)=xµ

Dzµ(t) e−
1
2

∫ τ
0
dt ż2

µ(t)

×P e
∫ τ
0 dt żµ(t)∂µ(t) δ(d)(x− y) , (1.62)

where the integration runs over all trajectories zµ(t) which begin at the
point x, as depicted in Fig. 1.2.
Since the operator ∂µ(t) acts at the order t, these operators are or-

dered along the trajectory zµ(t) with P , in Eq. (1.62), denoting the path-
ordering operator. Note, that żν(t) and ∂µ(t) commute since

∂µ(t)żν(t) =
d
dt
δµν = 0 (1.63)

so that their order is not essential in Eq. (1.62). With these rules of
manipulation, Eq. (1.62) can be proven by the “translation”

zµ(t) → z′µ(t) = zµ(t) +

t∫
0

dt′ ∂µ(t′) (1.64)

of the integration variable zµ(t) in the Gaussian integral.
The integral over the functions zµ(t) in Eq. (1.62) is called a path inte-

gral or a functional integral.
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✑✑
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Fig. 1.3. Discretization of trajectory zµ(t) (depicted for M = 6).

The continual path integral can be approximated by a finite one. To
this end, let us choose M points ti = iε, where ε is the discretization step,
and M = τ/ε. We then connect the points

z0 = x , zi = z(iε) i = 1, 2, . . . ,M (1.65)

by straight lines. Such a discretization of the trajectory zµ(t) is depicted
in Fig. 1.3. The measure in Eq. (1.62) can then be discretized by∫

Dzµ(t) · · · =
M∏
i=1

∫
ddzi

(2πε)d/2
· · · . (1.66)

The explicit form of the operator ∂µ in Eq. (1.34) was not essential
in deriving Eq. (1.62). If ∂µ in Eq. (1.34) is replaced by an arbitrary
operator Dµ with noncommuting components, then Eq. (1.62) holds with
∂µ(t) substituted by Dµ(t). The discretized path-ordered exponential of
a general operator Dµ(t) is given by

P e
∫ τ
0 dt ż

µ(t)Dµ(t) = lim
ε→0

M∏
i=1

[1 + (zi − zi−1)
µDµ(iε)] . (1.67)

The order of multiplication here is the same as in Eq. (1.51).
The explicit form of the operator ∂µ is essential when we calculate how

it acts on the delta-function as prescribed by the RHS of Eq. (1.62). For
the free case, when the t-dependence of ∂µ(t) is not essential, one simply
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16 1 Operator calculus

finds

P e
∫ τ
0 dt ż

µ(t)∂µ(t) = exp
{
[zµ(τ)− xµ]

∂

∂xµ

}
, (1.68)

which is nothing but the shift operator. Applying the operator on the
RHS of Eq. (1.68) to the delta-function, one obtains

P e
∫ τ
0 dt ż

µ(t)∂µ(t) δ(d)(x− y) = δ(d)(z (τ)− y) . (1.69)

Therefore, zµ(τ) has to coincide with yµ owing to the delta-function,
which disappears after the integration over zµ(τ) has been performed.
Thus the final answer is

G(x− y) =
1
2

∞∫
0

dτ e−
1
2
τm2

∫
zµ(0)=xµ

zµ(τ)=yµ

Dzµ(t) e−
1
2

∫ τ
0
dt ż2

µ(t). (1.70)

This path integral goes over all trajectories zµ(t) that connect the initial
point xµ and the final point yµ.

Problem 1.6 Derive Eqs. (1.62) and (1.70) by introducing a path integral over
velocity vµ(t) = żµ(t).

Solution The operator on the RHS of Eq. (1.61) can be disentangled using the
following Gaussian path integral:

P e
1
2

τ
0 dtD2

µ(t) =
∫
Dvµ(t) e−

1
2

τ
0 dt v2

µ(t) P e
τ
0 dt vµ(t)Dµ(t). (1.71)

This formula holds for an arbitrary operator Dµ and can be proven formally by
calculating the Gaussian integral after shifting vµ(t).
Substituting Dµ(t) = ∂µ(t) and calculating the action of the path-ordered

exponential on δ(d)(x − y), we obtain

G(x − y) =
1
2

∞∫
0

dτ e−
1
2 τm

2
∫
Dvµ(t) e−

1
2

τ
0 dt v2

µ(t) δ(d)
(
x+

τ∫
0

dt v(t)− y

)
.

(1.72)
The integration over Dvµ(t) in this formula has no restrictions.
To derive Eq. (1.70) from Eq. (1.72), let us note that the discretized velocities

read as

vµi =
zµi − zµi−1

ε
. (1.73)

Since
τ∫

0

dt v2(t) → ε

M∑
i=1

v2i , (1.74)
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1.4 Feynman disentangling 17

the measure ∫
Dvµ(t) · · · =

M∏
i=1

∫
ddvi

(2π/ε)d/2
· · · (1.75)

obviously recovers Eq. (1.66) after calculating the Jacobian from the variables
vi to the variables zi. Therefore, Eq. (1.72) reproduces Eq. (1.70) provided

zµ(t) = xµ +

t∫
0

dt′vµ(t′) . (1.76)

Remark on definition of the measure

The discretized trajectory in Fig. 1.3 can be written analytically as the
expansion

zµ(t) =
M∑
i=1

zµi fi(t) + xµ(1− t/ε) θ(ε− t) , (1.77)

where the basis functions

fi(t) =


1 + (t/ε− i) for t ∈ [(i− 1)ε, iε] ,
1− (t/ε− i) for t ∈ [iε, (i+ 1)ε] ,
0 otherwise

(1.78)

are nonvanishing only for the ith and (i+1)th intervals. The measure
(1.66) is defined, therefore, via the coefficients zi as a multiple product of
dzi.
While the basis functions fi(t) are not orthogonal:

1
ε

τ∫
0

dt fi(t)fj(t) =
2
3
δij +

1
6
δi(j+1) +

1
6
δi(j−1) , (1.79)

the orthogonal set appears in the expansion of the velocity

żµ(t) =
M∑
i=1

(zµi − zµi−1)φi(t) , (1.80)

where

φi(t) =
{
1/ε for t ∈ [(i− 1)ε, iε] ,
0 otherwise .

(1.81)

This shows why the discretized velocities from Problem 1.6 are natural
variables.
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18 1 Operator calculus

One can choose, instead, another set of (orthogonal) basis functions
and expand

zµ(t) =
M∑
n=1

cµnφn(t) (1.82)

with some coefficients cµn. Then the measure (1.66) takes the form

Dzµ(t) · · · ∝
M∏
n=1

ddcn · · · (1.83)

modulo a c-independent Jacobian. Mathematically, this implies that one
approximates the functional space by M -dimensional spaces.

1.5 Calculation of the Gaussian path integral

The Gaussian path integral (1.70) can be calculated easily using the fol-
lowing trick.∗ Let us substitute the variable zµ(t) by a new variable ξµ(t),
which are related by the formula

zµ(t) =
yµ − xµ

τ
t+ ξµ(t) + xµ . (1.84)

The boundary conditions for the variable ξ(t) are determined by Eq. (1.84)
to be

ξµ(0) = ξµ(τ) = 0 . (1.85)

On substituting Eq. (1.84) into the exponent in Eq. (1.70), one finds
τ∫
0

dt ż2(t) =
(y − x)2

τ
+ 2

(y − x)
τ

[ξ(τ)− ξ(0)] +

τ∫
0

dt ξ̇2(t) . (1.86)

The second term on the RHS vanishes owing to the boundary conditions
(1.85) so that the propagator becomes

G(x− y) =
1
2

∞∫
0

dτ e−
1
2
τm2

e−(y−x)2/2τ

∫
ξµ(0)=ξµ(τ)=0

Dξµ e−
1
2

∫ τ
0 dt ξ̇

2
µ(t).

(1.87)
The path integral over ξ on the RHS of Eq. (1.87) is a function solely

of τ : ∫
ξµ(0)=ξµ(τ)=0

Dξµ e−
1
2

∫ τ
0 dt ξ̇

2
µ(t) = F(τ) . (1.88)

∗ See, for example, the book by Feynman [Fey72], Chapter 3.
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1.5 Calculation of the Gaussian path integral 19

This expression is to be compared with the proper-time representation
of the Euclidean free propagator which reads as

G(x− y) =
∫

ddp

(2π)d
eip(x−y)1

2

∞∫
0

dτ e−
τ
2 (p2+m2)

=
1
2

∞∫
0

dτ e−
1
2
τm2

e−(x−y)2/2τ 1

(2πτ)d/2
. (1.89)

These two expressions coincide provided that

F(τ) =
1

(2πτ)d/2
. (1.90)

Problem 1.7 Calculate F(τ) from the discretized path integral.

Solution The discretized version of the path integral in Eq. (1.70) is∫
zµ(0)=xµ

zµ(τ)=yµ

Dzµ(t) e−
1
2

τ
0 dt ż2µ(t) =

1
(2πε)d/2

∫ M−1∏
i=1

ddzi
(2πε)d/2

e−
1
2ε

M
i=1 (zi−zi−1)

2
,

(1.91)

where z0 = x and zM = y. The integral can be calculated using the well-known
formula for the Gaussian integral∫

ddz
(2π)d/2

exp
[
− (x− z)2

2τ1
− (z − y)2

2τ2

]
=
(

τ1τ2
τ1 + τ2

)d/2
exp
[
− (x− y)2

2(τ1 + τ2)

]
.

(1.92)

After applying this formula M−1 times, one arrives at Eq. (1.90). Note that ε
cancels in the final answer.

Problem 1.8 Which trajectories are essential in the path integral?

Solution It is seen from the discretization on the RHS of Eq. (1.91) that only
trajectories with

|zi − zi−1| ∼
√
ε (1.93)

are essential as ε→ 0. Such trajectories are typical Brownian trajectories. They
are continuous as ε→ 0 but not smooth (|zi− zi−1| ∼ ε for smooth trajectories).
In mathematical language, these functions are said to belong to the Lipshitz
class 1/2.

Remark on mathematical structure

The measure (1.66) for integration over functions is sometimes called the
Lebesgue measure. It was introduced in mathematics by Wiener [Wie23]
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20 1 Operator calculus

in connection with the problem of Brownian motion. With the Gaus-
sian factor incorporated, it is also known as the Wiener measure while
the proper path integral is known as the Wiener integral.∗ The mea-
sure (1.66) is defined on the space L2 (i.e. the space of functions whose
square is integrable, in the sense of the Lebesgue integral,

∫
dt z2(t) <∞).

The integration on L2 goes over trajectories zµ(t), which are generically
discontinuous. However, the extra weight factor exp [−1

2

∫ τ
0 dt ż

2(t)] re-
stricts the trajectories in the above path integrals to be continuous.

1.6 Transition amplitudes

As is well-known in quantum mechanics, G(x − y) is the probability for
a (scalar) particle to propagate from x to y. A convenient notation for a
trajectory zµ(t) that connects xµ and yµ is

Γyx ≡ {zµ(t); 0 ≤ t ≤ τ, zµ(0) = xµ, zµ(τ) = yµ} . (1.94)

Note that Γyx denotes a trajectory as a geometric object, while zµ(t) is
a function that describes a given trajectory in some parametrization t.
This function (but not the geometric object itself) depends on the choice
of parametrization and changes under the reparametrization transforma-
tion

t → σ(t) ,
dσ
dt
≥ 0 , (1.95)

with σ being a new parameter.
A convenient parametrization is via the proper length of Γyx which is

given by

s =
∫
Γyx

ds , (1.96)

where

ds =
√
ż2(σ) dσ (1.97)

and σ ∈ [σ0, σ1] is some parametrization. For obvious reasons the
parametrization

t =
1
m
s (1.98)

with s given by Eq. (1.96) is called the proper-time parametrization. Note
that the dimension of t is [length]2 according to Eq. (1.98).

∗ See, for example, the books [Kac59, Sch81, Wie86, Roe94] for a description of the
path-integral approach to Brownian motion.
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1.6 Transition amplitudes 21

Let us denote∗

S[Γyx] ≡ m2τ

2
+
1
2

τ∫
0

dt ż2(t) . (1.99)

The sense of this notation is that the RHS coincides with the classical ac-
tion of a relativistic free (scalar) particle in the proper-time parametriza-
tion (1.98) when

τ∫
0

dt ż2(t) = m

τ∫
0

ds = m Length[Γ] (1.100)

since (
dzµ(s)
ds

)2
= 1 (1.101)

and mτ = Length[Γ] by the definition of the proper time.
Therefore, the path-integral representation (1.70) is nothing but the

sum over trajectories with the weight being an exponential of (minus) the
classical action:

G(x− y) =
∑
Γyx

e−S[Γyx]. (1.102)

This sum is split in Eq. (1.70) into the trajectories along which the particle
propagates during the proper time τ and the integral over τ .
Equation (1.102) implies that the transition amplitude in quantum me-

chanics is a sum over all paths which connects x and y. In other words,
a particle propagates from x to y along all paths Γyx, including the ones
which are forbidden by the free classical equation of motion

z̈µ(t) = 0 . (1.103)

Only the classical trajectory (1.103) survives the path integral in the
classical limit � → 0. The reason for this is that if the dependence on
Planck’s constant is restored, it appears in the exponent:

G(x− y) =
∑
Γyx

e−S[Γyx]/�. (1.104)

As �→ 0 the path integral is dominated by a saddle point, which is given
in the free case by the classical equation of motion (1.103).

∗ The notation S[Γ] with square brackets means that S is a functional of Γ, while f(x)
with parentheses stands for functions.
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22 1 Operator calculus

It is worth noting that the sum-over-path representation (1.102) is writ-
ten entirely in terms of trajectories as geometric objects and does not refer
to a concrete parametrization. For the free theory S[Γ] is proportional to
the length of the trajectory Γ:

Sfree[Γ] = m Length[Γ] , (1.105)

where the length is given for some parametrization σ of the trajectory Γ
by

Length[Γ] =

σ1∫
σ0

dσ
√
ż2(σ) . (1.106)

The sum-over-path representation (1.102) with S[Γ] given by the clas-
sical action (Eq. (1.105) in the free case) is often considered as a first
principle of constructing quantum mechanics given the classical action
S[Γ].

Problem 1.9 Represent the matrix element of the (Euclidean) evolution oper-
ator 〈y | exp (−Hτ)|x〉 for the nonrelativistic Hamiltonian

H = − ∂2

2m
+ V (x) (1.107)

as a path integral.

Solution The calculation is similar to that already done in Sect. 1.4. It is
most convenient to use the path integral over velocity which was considered in
Problem 1.6 on p. 16. The appropriate disentangling formula is given as〈

y
∣∣ e−Hτ

∣∣x〉
=
∫
Dvµ(t) e−

m
2

τ
0 dt v2

µ(t) P e−
τ
0 dt vµ(t)∂µ(t)− τ

0 dt V (x;t) δ(d)(x− y) .

(1.108)

Here the argument t in V (x; t) is just the ordering parameter, while the same
formula holds when the potential is explicitly time-dependent.
In contrast to Eq. (1.71), we have put the minus sign in front of the linear-

in-v term in the exponent in Eq. (1.108), so that it agrees with Appendix B of
Feynman’s paper [Fey51]. In fact, it does not matter what sign is used since
the integral over v(t) is Gaussian, so only even powers of v survive after the
integration.
The path-ordered exponential in Eq. (1.108) reads explicitly as

P e−
τ
0 dt vµ(t)∂µ(t)− τ

0 dt V (x;t) = lim
ε→0

M∏
i=1

[
1− εvµi

∂

∂xµ
− εV (x; iε)

]
,

(1.109)
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1.6 Transition amplitudes 23

which can be rewritten as

P e−
τ
0 dt vµ(t)∂µ(t)− τ

0 dt V (x;t) = lim
ε→0

M∏
i=1

[
1− εvµi

∂

∂xµ

]
[1− εV (x; iε)] ,

(1.110)

if terms which vanish as ε→ 0 are neglected, or equivalently as

P e−
τ
0 dt vµ(t)∂µ(t)− τ

0 dt V (x;t) =
τ∏
t=0

[
1− dt vµ(t) ∂

∂xµ

]
[1− dt V (x; t)] .

(1.111)

There is no need to write down the t-dependence of ∂µ(t) in these formulas since
the order of the operators is explicit.
To disentangle the operator expression (1.111), let us note that

[1− dt vµ(t)∂µ] = U−1(t+ dt)U(t) (1.112)

with

U(t) = exp
[ t∫

0

dt′vµ(t′)∂µ

]
(1.113)

being the shift operator. It obviously obeys the differential equation

d
dt
U(t) = vµ(t) ∂µ U(t) . (1.114)

Now since

U(t) [1− dt V (x; t)]U−1(t) =

1− dt V (x+ t∫
0

dt′v(t′); t
) , (1.115)

the RHS of Eq. (1.111) can be written in the form
τ∏
t=0

[
1− dt vµ(t) ∂

∂xµ

]
[1− dt V (x; t)]

= U−1(τ)
τ∏
t=0

1− dt V (x+ t∫
0

dt′v(t′); t
)

= U−1(τ) exp

− τ∫
0

dt V
(
x+

t∫
0

dt′v(t′); t
), (1.116)

which is completely disentangled.
The operator U−1(τ) is now in the proper order to be applied to the variable

y in the argument of the delta-function, which results in the shift

δ(d)(x− y) =⇒ δ(d)
(
x+

τ∫
0

dt v(t)− y

)
. (1.117)

This will be explained in more detail in the next paragraphs.
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24 1 Operator calculus

Passing to the variable (1.76), we get finally

〈
y
∣∣ e−Hτ

∣∣ x〉 =
∫

zµ(0)=xµ

zµ(τ)=yµ

Dzµ(t) e−
τ
0 dtL(t), (1.118)

where

L(t) =
m

2
ż2µ(t) + V (z(t)) (1.119)

is the Lagrangian associated with the Hamiltonian H . The unusual plus sign
in this formula is due to the Euclidean-space formalism. It is clear from the
derivation that Eq. (1.118) holds for time-dependent potentials as well.
Notice that the path integral in Eq. (1.118) is now over trajectories along

which the particle propagates in the fixed proper time τ with no integration over
τ .
A special comment about the operator U−1(τ) in Eq. (1.116) is required. In

the Schrödinger representation of quantum mechanics, one is interested in the
matrix elements of the evolution operator between some vectors 〈g| and |f〉 in
the Hilbert space. According to Eq. (1.23), in the coordinate representation one
has

〈
g
∣∣ e−Hτ

∣∣ f〉 =
∫
ddx g(x) e−Hτf(x) . (1.120)

Integrating by parts, the operator U−1(τ) can then be applied to g(x) which
results in the shift

g(x) =⇒ U(τ) g(x)U−1(τ) = g

(
x+

τ∫
0

dt v(t)
)
. (1.121)

Passing to the variable (1.76), Eq. (1.120) becomes

〈
g
∣∣ e−Hτ

∣∣ f〉 =
∫
Dzµ(t) e−

τ
0 dtL(t)g(z(τ))f(z(0)) . (1.122)

There are no restrictions on the initial and final points of the trajectories zµ(t)
in this formula.

Problem 1.10 Calculate the diagonal resolvent of the Schrödinger operator in
the potential V (x):

Rω(x, x;V ) =
〈
x

∣∣∣∣ 1
−G∂2 + ω2 + V

∣∣∣∣x〉 , (1.123)

in the limit G → 0 for d = 1.
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1.6 Transition amplitudes 25

Solution Using the formula of the type (1.118), we represent Rω(x, x;V ) as
the path integral

Rω(x, x;V ) =
1
2

∞∫
0

dτ e−
1
2 τω

2
∫

zµ(0)=xµ

zµ(τ)=xµ

Dzµ(t) e−
1
2G

τ
0 dt ż2µ(t)−

τ
0 dt V (z(t)).

(1.124)

As G → 0 this path integral is dominated by the t-independent saddle-point
trajectory

z(t) = x , (1.125)

which is associated with a particle standing at the point x. Substituting V at this
saddle point, i.e. replacing V (z(t)) by V (x), and calculating the Gaussian integral
over quantum fluctuations around the trajectory (1.125) using Eqs. (1.88) and
(1.90), one finds

Rω(x, x;V ) =
1

2
√
ω2 + V (x)

(1.126)

in d = 1.
Equation (1.126) can be alternatively derived by applying the Gel’fand–Dikii

technique [GD75] which says that Rω(x, x;V ) obeys the third-order linear dif-
ferential equation

1
2

[
G
2
∂3 − ∂V (x)− V (x)∂

]
Rω(x, x;V ) = ω2∂Rω(x, x;V ) . (1.127)

Rω(x, x;V ) given by Eq. (1.126) obviously satisfies this equation as G → 0.
One more way to derive Eq. (1.126) is to perform a semiclassical Wantzel–

Kramers–Brillouin (WKB) expansion of Rω(x, y;V ) in the parameter G. This is
explained in Chapter 7 of the book [LL74].

Problem 1.11 Derive Eq. (1.127).

Solution The resolvent

Rω(x, y;V ) =
〈
y

∣∣∣∣ 1
−G∂2 + ω2 + V

∣∣∣∣ x〉 (1.128)

obeys the equations[
−G ∂2

∂x2
+ ω2 + V (x)

]
Rω(x, y;V ) = δ(1) (x− y) ,[

−G ∂2

∂y2
+ ω2 + V (y)

]
Rω(x, y;V ) = δ(1) (x− y) .

 (1.129)

It can be expressed via the two solutions f±(x) of the homogeneous equation[
−G ∂2

∂x2
+ ω2 + V (x)

]
f±(x) = 0 , (1.130)
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where f+ or f− are regular at +∞ or −∞, respectively. Then the full solution
is

Rω(x, y;V ) =
f+(x)f−(y)θ(x − y) + f−(x)f+(y)θ(y − x)

GWω
(1.131)

with

Wω = f+(x)f ′
−(x)− f ′

+(x)f−(x) (1.132)

being the Wronskian of these solutions. Applying ∂/∂x to Eq. (1.132), it is easy
to show that Wω is an x-independent function of ω.
The simplest way to prove Eq. (1.127) is to differentiate

Rω(x, x;V ) =
f+(x)f−(x)
GWω

(1.133)

using Eq. (1.130), in order to verify that it satisfies the nonlinear differential
equation

−2GRωR
′′
ω + G (R′

ω)
2 + 4
(
ω2 + V

)
R2
ω = 1 . (1.134)

One more differentiation of Eq. (1.134) with respect to x results in Eq. (1.127).
It is worth noting that Eq. (1.134) is very convenient for calculating the semi-

classical expansion of Rω(x, x;V ) in G. In particular, the leading order (1.126)
is obvious.

Remark on parametric invariant representation

The Green function G(x − y) can alternatively be calculated from the
parametric invariant representation

G(x− y) ∝
∫

zµ(σ0)=xµ

zµ(σ1)=yµ

Dzµ(σ) e−m0

∫ σ1
σ0

dσ
√

ż2(σ) (1.135)

as prescribed by Eqs. (1.105) and (1.106). In contrast to (1.70), this
path integral is not easy to calculate. The integration over Dzµ(σ) in
Eq. (1.135) involves integration over the reparametrization group, which
gives the proper group-volume factor since the exponent is parametric
invariant. Eq. (1.70) is recovered after fixing parametrization to be proper
time. How this calculation can be performed is explained in Chapter 9 of
the book by Polyakov [Pol87].
If one makes a naive discretization of the parameter σ using equidistant

intervals, the exponent in Eq. (1.135) is highly nonlinear in the variables
zi, leading to complicated integrals. In contrast, the discretization (1.91)
of the path integral in Eq. (1.70), where the parametric invariance is fixed,
results in a Gaussian integral which is easily calculable.
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Problem 1.12 Calculate the path integral in Eq. (1.135), discretizing the mea-
sure by

Dzµ →
∞∑

M=1

M∏
i=1

ddzi
(2πε)d/2

(1.136)

and applying the central limit theorem as M →∞.
Solution By making the discretization, we represent the RHS of Eq. (1.135) as
the probability integral

Gε(x− y) =
1

(2πε)d/2

∞∑
M=1

∫ M−1∏
i=1

ddzi
(2πε)d/2

× ρ (x→ z1) ρ (z1 → z2) · · · ρ (zM−1 → y) (1.137)

with

ρ(zi−1 → zi) = e−m0|zi−zi−1| (1.138)

being an (unnormalized) probability function and ε is a parameter with the di-
mension of [length]2. The probability interpretation of each term in the sum is
standard for random walk models, and means, as usual, that a particle prop-
agates via independent intermediate steps. The discretization of the measure
given by Eq. (1.137) looks like that in Eq. (1.66), but the summation over M is
now added.
Since the integral in Eq. (1.137) is a convolution, the central limit theorem

states that

Gε(x− y) =
1

(2πε)d/2
∑
M

[
c0

(2πεm2
0)
d/2

]M
× 1

(2πσ2M)d/2
e−m

2
0(x−y)

2/(2σ2M)+O(M−2) (1.139)

at large M , where c0 and σ2 are the zeroth and (normalized) second moments
of ρ:

c0 =
∫
ddx e−|x| = 2πd/2

Γ (d)
Γ (d/2)

,

σ2 =
1
c0

∫
ddxx2 e−|x| = d(d+ 1) .

 (1.140)

The sum over M in Eq. (1.139) is convergent for

m0 > mc =
c
1/d
0√
2πε

(1.141)

and is divergent for m0 < mc. Choosing m0 > mc, but m2
0−m2

c ∼ 1 in the limit
ε→ 0, the sum over M will be convergent, while dominated by terms with large

M ∼ m2
c ∼

1
ε
. (1.142)
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28 1 Operator calculus

This is easily seen by rewriting Eq. (1.139) as

Gε(x − y) =
∑
M

(
m2

c

2πσ2M

)d/2
× e−dM ln (m0/mc)−m2

0(x−y)
2/(2σ2M)+O(M−2) . (1.143)

Each term with M ∼ m2
c contributes O(1) to the sum, so that

Gε(x− y) ∼ m2
c . (1.144)

This justifies the using of the central limit theorem in this case. The typical
distances between the zi, which are essential in the integral on the RHS of
Eq. (1.137), are

|zi − zi−1| ∼ 1
m0

∼
√
ε (1.145)

as in Eq. (1.93). The relation (1.142) between the essential values of M and ε is
also similar to what we had in Sect. 1.4.
The sum over M in Eq. (1.143) can be replaced by a continuous integral over

the variable

τ =
σ2M

m2
c

, (1.146)

which is O(1) for M ∼ m2
c . Also introducing the variable m by

m2 ≡ d

σ2
(
m2

0 −m2
c

)
> 0 , (1.147)

we rewrite Eq. (1.143) as

Gε(x− y) ε→0→ m2
c

σ2

∞∫
0

dτ
1

(2πτ)d/2
e−

1
2m

2τ−(x−y)2/2τ , (1.148)

the RHS of which is proportional to that in Eq. (1.89) for the Euclidean propa-
gator.

Remark on discretized path-ordered exponential

As is discussed in Sect. 1.3, the order of operators Ai and Bi with the same
index i is not essential in the path-ordered exponential (1.52) asM →∞.
If Eq. (1.52) is promoted to be valid at finite M (or at least to the order
of O
(
M−1)), this specifies the commutator of Ai and Bi. Analogously, a

discretization of Eq. (1.118) specifies in which order the product of xipi
in the classical theory should be substituted by the operators xi and pi

in the operator formalism. For details see the books by Berezin [Ber86]
(Chapter 1 of Part II) and Sakita [Sak85] (Chapter 6).
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1.7 Propagators in external field 29

1.7 Propagators in external field

Let us now consider a (quantum) particle in a classical electromagnetic
field. The standard way of introducing an external electromagnetic field
is to substitute the (operator of the) four-momentum pµ by

pµ −→ pµ − eAµ(x) . (1.149)

Recalling the definition (1.26) of the Euclidean four-momentum, ∂µ
needs to be replaced by the covariant derivative

∂µ −→ ∇µ = ∂µ − ieAµ(x) . (1.150)

Inverting the operator ∇2µ using the disentangling procedure, one finds
G(x, y;A)

≡
〈
y

∣∣∣∣ 1
−∇2µ +m2

∣∣∣∣ x〉

=
1
2

∞∫
0

dτ e−
1
2
τm2

∫
zµ(0)=xµ

zµ(τ)=yµ

Dzµ(t) e−
1
2

∫ τ
0
dt ż2

µ(t)+ie
∫ τ
0
dt żµ(t)Aµ(z(t)).

(1.151)

Note that the exponent is just the classical (Euclidean) action of a particle
in an external electromagnetic field. Therefore, this expression is again
of the type in Eq. (1.102).
The path-integral representation (1.151) for the propagator of a scalar

particle in an external electromagnetic field is due to Feynman [Fey50]
(Appendix A).

Problem 1.13 Derive Eq. (1.151) using Eq. (1.71) with Dµ = −∇µ.

Solution The calculation is analogous to that of Problem 1.9 on p. 22. We
have

Dµ(t) = −∇µ(t) ≡ − ∂µ(t) + ieAµ(x; t) (1.152)

so that explicitly

P e−
τ
0 dt vµ(t)∇µ(t) =

τ∏
t=0

[
1− dt vµ(t) ∂

∂xµ
+ ie dt vµ(t)Aµ(x; t)

]

=
τ∏
t=0

[
1− dt vµ(t) ∂

∂xµ

]
[1 + ie dt vµ(t)Aµ(x; t)] .

(1.153)

This looks exactly like the expression (1.111) with

V (x; t) = −ie vµ(t)Aµ(x; t) . (1.154)

Substituting this potential into Eq. (1.118) and remembering the additional in-
tegration over τ , we obtain the path-integral representation (1.151).
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30 1 Operator calculus

We can alternatively rewrite Eq. (1.151) in the spirit of Sect. 1.6 as

G(x, y;A) =
∑
Γyx

′
eie
∫
Γyx

dzµAµ(z), (1.155)

where we have included the free action in the definition of the sum over
trajectories: ∑

Γyx

′ def=
∑
Γyx

e−Sfree[Γyx], (1.156)

and represented the (parametric invariant) integral over dt as the contour
integral over

dzµ = dt żµ(t) (1.157)

along the trajectory Γyx.
The meaning of Eq. (1.155) is that the transition amplitude of a quan-

tum particle in a classical electromagnetic field is the sum over paths of
the Abelian phase factor

U [Γyx] = eie
∫
Γyx

dzµAµ(z). (1.158)

Under the gauge transformation

Aµ(z)
g.t.−→ Aµ(z) +

1
e
∂µα(z) , (1.159)

the Abelian phase factor transforms as

U [Γyx]
g.t.−→ eiα(y) U [Γyx] e−iα(x). (1.160)

Noting that a wave function at the point x is transformed under the gauge
transformation (1.159) as

ϕ(x)
g.t.−→ eiα(x) ϕ(x) , (1.161)

we conclude that the phase factor is transformed as the product
ϕ(y)ϕ†(x):

U [Γyx]
g.t.∼ “ϕ(y)ϕ†(x)”, (1.162)

where “· · ·” means literally “transforms as . . .”.
As a consequence of Eqs. (1.160) and (1.161), a wave function at the

point x transforms like one at the point y after multiplication by the phase
factor:

U [Γyx]ϕ(x)
g.t.∼ “ϕ(y)”, (1.163)

https://doi.org/10.1017/9781009402095.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402095.002


1.7 Propagators in external field 31

and analogously

ϕ†(y)U [Γyx]
g.t.∼ “ϕ†(x)”. (1.164)

Equations (1.163) and (1.164) show that the phase factor plays the role
of a parallel transporter in an electromagnetic field, and that in order
to compare phases of a wave function at points x and y, one should first
make a parallel transport along some contour Γyx. The result is, generally
speaking, Γ-dependent except when Aµ(z) is a pure gauge. The sufficient
and necessary condition for the phase factor to be Γ-independent is the
vanishing of the field strength, Fµν(z), which is a consequence of the
Stokes theorem when applied to the Abelian phase factor.∗

Below we shall deal with determinants of various operators. Analogous
to Eq. (1.151), one finds

ln det∇2µ =
1
2

∞∫
0

dτ
τ
Tr e

1
2
τ∇2

µ

=
1
2

∞∫
0

dτ
τ

∫
zµ(0)=zµ(τ)

Dzµ(t) e−
1
2

∫ τ
0
dt ż2

µ(t)+ie
∮
Γ
dzµAµ(z),

(1.165)

where the path integral goes over trajectories which are closed owing to
the periodic boundary condition zµ(0) = zµ(τ). To derive Eq. (1.165), we
have used the formula

ln detD = Tr lnD , (1.166)

which relates the determinant and the trace of a Hermitian operator (or
a matrix) D.

Problem 1.14 Prove Eq. (1.166).

Solution Let D be positive definite. We first reduce D to a diagonal form by a
unitary transformation and denote (positive) eigenvalues asDi. Then Eq. (1.166)
can be written as

ln
∏
i

Di =
∑
i

lnDi (1.167)

which is obviously true.

∗ Strictly speaking, this statement holds for the case when Γ can be chosen everywhere
in space-time, i.e. which is simply connected. However, there exist situations when Γ
cannot penetrate into some regions of space as for the Aharonov–Bohm experiment
which is discussed below in Sect. 5.4.
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The phase factor for a closed contour Γ enters Eq. (1.165). It describes
parallel transportation along a closed loop, and is gauge invariant as a
consequence of Eq. (1.160):

eie
∮
Γ
dzµAµ(z) g.t.−→ eie

∮
Γ
dzµAµ(z). (1.168)

This quantity, which plays a crucial role in modern formulations of gauge
theories, will be discussed in more detail in Chapter 5.

Problem 1.15 Show how the path-integral representation (1.151) recovers for
G(x, y;A) the diagrammatic expansion of propagator in an external field Aµ:

G(x, y;A) = + + + + · · · .
x x x xy y y y

(1.169)

Solution Let us expand the phase factor in Eq. (1.155) in e. The linear-in-e
term can be transformed using the formula

∑
Γyx

′
∫
Γyx

dξµ δ(d)(ξ − z) · · · =
∑
Γyz

′
↔
∂

∂zµ

∑
Γzx

′
· · · , (1.170)

where
↔
∂µ = −

←
∂µ + ∂µ , (1.171)

to reproduce the second diagram on the RHS of Eq. (1.169). Equation (1.170)
can be proven by varying both sides of Eq. (1.155) with respect to Aµ (z).
Equation (1.170) can be rewritten using the formula

∂xµ
∑
Γzx

′
· · · = −

∑
Γzx

′
vµ(x) · · · , (1.172)

where vµ(x) = ξ̇µ(0) is the velocity at the point x of the trajectory Γ. Using
Eq. (1.172), we find∑

Γyx

′
∫
Γyx

dξµ δ(d)(ξ − z) · · · =
∑
Γyz

′
vµ(z)
∑
Γzx

′
· · ·+
∑
Γyz

′∑
Γzx

′
vµ(z) · · · .

(1.173)

Equation (1.172) can be proven by shifting variable in the path integral, while
Eq. (1.173) holds, strictly speaking, only if an integrand (denoted by · · ·) does
not include velocities. Otherwise, additional contact terms might appear.
They can be obtained by noting that the velocity vν(x) corresponds to the

covariant derivative (1.150), where Aν(x) is also to be varied. Doing so, we arrive
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at ∑
Γyx

′
vν(x)

∫
Γyx

dξµ δ(d)(ξ − z) · · ·

=
∑
Γyz

′
vν(x) vµ(z)

∑
Γzx

′
· · ·+
∑
Γyz

′
vν(x)
∑
Γzx

′
vµ(z) · · ·+ δµν

∑
Γyx

′
· · · .
(1.174)

For the case of a more complicated integrand, each velocity produces the same
type of contact terms since the variation δ/δAµ(z) acts linearly. This reproduces
the contact terms as in the fourth term on the RHS of Eq. (1.169).
This Problem is based on Appendix A of the paper [MM81].

Problem 1.16 Establish the equivalence of the path-integral representation
(1.165) of ln det∇2

µ and the sum of one-loop diagrams in an external field Aµ:

ln det∇2
µ = ✒✑

	✏
+ ✒✑

	✏
+ 1

2 ✒✑
	✏

+ ✒✑
	✏

+ · · · .

(1.175)

Solution The derivation is the same as in the previous Problem. The combina-
toric factor of 1/2 in the third diagram on the RHS of Eq. (1.175) is associated
with a symmetry factor.

Remark on analogy with statistical mechanics

A formula of the type (1.165), which represents the trace of an operator
via a path integral over closed trajectories, is known as the Feynman–
Kac formula. The terminology comes from statistical mechanics where
the partition function (or equivalently the statistical sum) is given by the
Boltzmann formula

Z = Tr e−βH (1.176)

(with β being the inverse temperature) whose path-integral representation
is of the type given in Eq. (1.165). The expression which is integrated on
the RHS of Eq. (1.165) over dτ/τ is associated, in statistical-mechanical
language, with the partition function of a closed elastic string, the energy
of which is proportional to its length, that interacts with an external
electromagnetic field. This shows an analogy between Euclidean quantum
mechanics in d dimensions and statistical mechanics in d (spatial) and one
(temporal) dimensions whose time-dependence disappears, since nothing
depends on time at equilibrium. We shall explain this analogy in more
detail in Part 2 (Chapter 9) when discussing quantum field theory at finite
temperature.
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