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PRIME-UNIVERSAL QUADRATIC FORMS ax2 + by2 + cz2

AND ax2 + by2 + cz2 + dw2
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Abstract

A positive-definite diagonal quadratic form a1 x2
1 + · · · + an x2

n (a1, . . . ,an ∈ N) is said to be prime-universal
if it is not universal and for every prime p there are integers x1, . . . , xn such that a1 x2

1 + · · · + an x2
n = p.

We determine all possible prime-universal ternary quadratic forms ax2 + by2 + cz2 and all possible prime-
universal quaternary quadratic forms ax2 + by2 + cz2 + dw2. The prime-universal ternary forms are
completely determined. The prime-universal quaternary forms are determined subject to the validity
of two conjectures. We make no use of a result of Bhargava concerning quadratic forms representing
primes which is stated but not proved in the literature.
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1. Introduction

Let N denote the set of positive integers. We use the notation

〈a1, . . . , an〉 := a1x2
1 + · · · + anx2

n, a1, . . . , an ∈ N.

The quadratic form 〈a1, . . . , an〉 is said to be prime-universal if it is not universal but
represents every prime. If 〈a1, . . . ,an〉 is prime-universal then so is 〈ai1 , . . . ,ain〉 for any
permutation {i1, i2, . . . , in} of {1, 2, . . . , n}, so we may assume without loss of generality
that

a1 ≤ a2 ≤ · · · ≤ an.

Our first objective is to determine all prime-universal ternary quadratic forms
〈a1, a2, a3〉. In Section 2 we prove the following theorem.

Theorem 1.1. Let a, b, c ∈ N satisfy a ≤ b ≤ c. Then 〈a, b, c〉 is prime-universal if and
only if 〈a, b, c〉 is one of 〈1, 1, 2〉, 〈1, 1, 3〉, 〈1, 2, 3〉, 〈1, 2, 4〉 or 〈1, 2, 5〉.

As a consequence of this theorem, we deduce the following result.
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Table 1. Prime-universal forms 〈a, b, c, d〉.

a b c d Conditions on d

1 1 2 d d ≥ 15
1 1 3 d d ≥ 7
1 2 3 d d ≥ 11
1 2 4 d d ≥ 15
1 2 5 5
1 2 5 d d ≥ 11
2 2 3 d 3 ≤ d ≤ 15, d , 8, 11
2 3 3 5
2 3 3 7
2 3 4 d 5 ≤ d ≤ 11, d , 6, 7, 10
2 3 5 d 5 ≤ d ≤ 43, d , 7, 19, 28, 34, 37, 39, 42
2 3 7 8

Theorem 1.2. Let a, b, c ∈ N satisfy a ≤ b ≤ c. Let

S 3p := {2, 3, 5, 7, 17, 43}.

If 〈a, b, c〉 represents every integer in S 3p then 〈a, b, c〉 is prime-universal. Moreover,
the set S 3p is minimal in the sense that if any integer is removed from S 3p then the
resulting set no longer has this property.

We remark that the set S 3p is not unique as the set {2, 3, 5, 7, 41, 43} also has the
same property as S 3p.

Our second objective is to determine all possible prime-universal quaternary
quadratic forms 〈a1, a2, a3, a4〉. In Section 3 we prove the following theorem.

Theorem 1.3. Let a, b, c, d ∈ N satisfy a ≤ b ≤ c ≤ d. Suppose that 〈a, b, c, d〉 is prime-
universal. Then 〈a, b, c, d〉 is one of the forms listed in Table 1.

Theorem 1.3 does not assert that all of the infinitely many quaternary quadratic
forms 〈a, b, c, d〉 listed in Table 1 are prime-universal. We can prove the prime-
universality of all the forms in Table 1 except for the 27 forms

〈2, 3, 4, 5〉, 〈2, 3, 4, 11〉, 〈2, 3, 5, 5〉, 〈2, 3, 5, 11〉,
〈2, 3, 5, 13〉, 〈2, 3, 5, 14〉, 〈2, 3, 5, 16〉, 〈2, 3, 5, 17〉, (1.1)
〈2, 3, 5, h〉 for h = 20, . . . , 27, 29, . . . , 33, 35, 36, 38, 40, 41, 43.

We now describe the difficulty in proving the prime-universality of these 27 forms.
We recall that the ternary subforms of the quaternary form 〈a, b, c, d〉 are 〈a, b, c〉,
〈a, b, d〉, 〈a, c, d〉 and 〈b, c, d〉. We also recall that a ternary quadratic form 〈a, b, c〉
is said to be regular if and only if there exist a finite number of progressions of
the form Ak(B` + C) (k, ` = 0, 1, 2, . . .), where A, B and C are positive integers with
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1 ≤ C < B, such that n ∈ N is represented by ax2 + by2 + cz2 if and only if n does
not belong to any of these progressions. The classic example of a regular ternary
quadratic form is 〈1, 1, 1〉, as Legendre showed that n is represented by 〈1, 1, 1〉 if
and only if n , 4k(8` + 7) for any nonnegative integers k and `. Dickson and Jones
showed that there are exactly 102 regular quadratic forms 〈a, b, c〉, and these are listed
in [2], together with a precise description of the integers they represent. Two of the
27 forms listed in (1.1) have 〈2, 3, 4〉 as a ternary subform and the remaining 25 have
〈2, 3, 5〉 as a ternary subform. These two forms are neither regular [2] nor spinor-
regular [4], and for such forms it is extremely difficult to determine precisely which
positive integers they represent. In fact, at present, there is no general algorithm for
determining the positive integers represented by a positive-definite ternary quadratic
form [11, page 1695]. If n is a large positive integer, the number of representations
of n by 〈a, b, c〉 is approximated by an expression involving the class number of an
imaginary quadratic field depending on n. Bounds for such class numbers are closely
tied to whether or not a quadratic Dirichlet L-function has a Siegel zero, and this is an
unsolved problem in number theory.

For example, Ono and Soundararajan [9, Theorem 3, page 419] made two
assumptions about the location of the nontrivial zeros of both Dirichlet L-functions and
Hasse–Weil L-functions in order to prove that the only positive integers not excluded
by congruence conditions which are not represented by Ramanujan’s ternary quadratic
form 〈1, 1, 10〉 are

3, 7, 21, 31, 33, 43, 67, 79, 87, 133, 217, 219, 223, 253, 307, 391, 679, 2719,

thereby illustrating the difficulty in determining the integers represented by a ternary
quadratic form.

Another example involves the three ternaries

x2 + 2y2 + 5z2 + xz, x2 + 3y2 + 6z2 + xy + 2yz, x2 + 3y2 + 7z2 + xy + xz.

Kaplansky [6, page 207] described these ternaries as ‘plausible candidates’ for
representing all odd positive integers. Rouse [11] formally made the conjecture that
they do. It is known that they represent every odd positive integer less than 214. This
conjecture remains open and appears to be very difficult to prove.

A numerical study of the positive integers represented by the two ternaries of
interest to us, namely 〈2, 3, 4〉 and 〈2, 3, 5〉, suggested the following two conjectures.

Conjecture 1.4. The quadratic form 〈2, 3, 4〉 represents all odd integers n > 647.

Conjecture 1.5. The quadratic form 〈2, 3, 5〉 represents all prime numbers p , 43.

Conjecture 1.4 has been verified for all odd positive integers n which satisfy
647 < n < 105. Conjecture 1.5 has been verified for all prime numbers p satisfying
2 ≤ p < 105, p , 43. Due to the difficulty in determining the integers represented
by nonregular ternary quadratic forms 〈a, b, c〉, it does not seem unreasonable to
make these two conjectures. Based on these two conjectures, we prove the following
theorem in Section 3.

https://doi.org/10.1017/S0004972719001023 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972719001023


4 G. Doyle and K. S. Williams [4]

Theorem 1.6. Let a, b, c, d ∈ N satisfy a ≤ b ≤ c ≤ d. Assuming that Conjectures 1.4
and 1.5 are valid, 〈a, b, c, d〉 is prime-universal if and only if 〈a, b, c, d〉 is listed in
Table 1.

As a consequence of Theorem 1.6, we obtain the following result.

Theorem 1.7. Let a, b, c, d ∈ N satisfy a ≤ b ≤ c ≤ d. Let

S 4u := {1, 6, 10, 14, 15},
S 4p := {2, 3, 5, 7, 13, 17, 23, 41, 43}.

Assume that Conjectures 1.4 and 1.5 hold. If 〈a, b, c, d〉 represents every integer in S 4p

but not every integer in S 4u, then 〈a, b, c, d〉 is prime-universal, and S 4p is minimal in
the sense explained in Theorem 1.2.

In proving our results, we make use of the following simple result known as the
‘bounding lemma’, which is proven in [12, pages 532–533].

Lemma 1.8 (Bounding lemma). Let k ∈ N. Let a1, . . . , ak ∈ N with a1 ≤ a2 ≤ · · · ≤ ak.
Set

q := 〈a1, . . . , ak〉, q1 := 0,
qi := 〈a1, . . . , ai−1〉, i = 2, . . . , k.

If q represents a positive integer n but qi does not represent n, for some i ∈ {1, 2, . . . , k},
then ai ≤ n.

We note that in proving our results, we have not used a result of Bhargava (see [5,
Theorem C, page 674]) which asserts that if a quadratic form represents a certain finite
set of prime numbers then the form represents all prime numbers, as its proof does not
appear to be available in the literature.

We close this introduction by remarking that the ternary quadratic form 〈a, b, c〉
(a, b, c ∈ N, a ≤ b ≤ c) cannot be universal (see [2, Theorem 95, page 104]) and
that Ramanujan [10] determined all the quaternary quadratic forms 〈a, b, c, d〉 with
a, b, c, d ∈ N, a ≤ b ≤ c ≤ d, which are universal (see also [2, page 105]).

2. Prime-universal forms 〈a, b, c〉

In this section we present the proofs of Theorems 1.1 and 1.2. As we often need to
consider several forms at the same time, we write, for example,

〈a, b,C1 ≤ c ≤ C2, d〉

to indicate the set of forms

{〈a, b, c, d〉 | a, b, c, d ∈ N,C1 ≤ c ≤ C2}.

If 〈a, b, c〉 fails to represent a prime, we call the smallest prime not represented by
〈a, b, c〉 its prime truant.
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Table 2. Prime truants for certain ternary quadratic forms 〈a, b, c〉.

a b c Prime truant

1 1 1 7
1 2 2 7
2 2 2 3
2 2 3 17
2 3 3 7
2 3 4 13
2 3 5 43
2 3 6 7
2 3 7 13

Proof of Theorem 1.1. Let a, b, c ∈ N be such that a ≤ b ≤ c and 〈a, b, c〉 is prime-
universal. As 〈a, b, c〉 represents 2, by the bounding lemma we have a ≤ 2. As 〈a, b, c〉
represents 3 but the forms 〈1 ≤ a ≤ 2〉 do not, by the bounding lemma we have b ≤ 3.
It remains to consider the forms

〈1 ≤ a ≤ 2, a ≤ b ≤ 3, b ≤ c〉.

Observe that 〈1, 3, c〉 has prime truant 2 regardless of the choice of c (≥ 3), and hence
this form is not prime-universal. We see that

〈1, 1〉 has prime truant 3, 〈1, 2〉 has prime truant 5,

〈2, 2〉 has prime truant 3, 〈2, 3〉 has prime truant 7.

Thus, by the bounding lemma, the only possible prime-universal forms are the 14
forms

〈1, 1, 1 ≤ c ≤ 3〉, 〈1, 2, 2 ≤ c ≤ 5〉, 〈2, 2, 2 ≤ c ≤ 3〉, 〈2, 3, 3 ≤ c ≤ 7〉.

From Dickson [2, page 112],

〈1, 1, 2〉 represents all integers not of the form 4k(16` + 14),
〈1, 1, 3〉 represents all integers not of the form 4k(16` + 14),
〈1, 2, 3〉 represents all integers not of the form 4k(16` + 10),
〈1, 2, 4〉 represents all integers not of the form 4k(16` + 14),
〈1, 2, 5〉 represents all integers not of the form 25k(25` + {10 or 15}),

for any k, ` ∈ N0. The progressions 4k(16` + 10), 4k(16` + 14) and 25k(25` +

{10 or 15}) contain only composite integers, so the five forms in question represent all
primes and are prime-universal. All the remaining nine forms are not prime-universal
as they have the prime truants listed in Table 2. �
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Proof of Theorem 1.2. We see that if we repeat the proof of Theorem 1.1 under the
assumption that 〈a, b, c〉 represents all the integers in S 3p, we arrive at the same
conclusion, as 〈2, 3, 4〉 and 〈2, 3, 7〉 do not represent 17. Since

〈1, 3, 4〉 represents 3, 5, 7, 17, 43 but not 2,
〈1, 1, 6〉 represents 2, 5, 7, 17, 43 but not 3,
〈1, 2, 6〉 represents 2, 3, 7, 17, 43 but not 5,
〈1, 1, 1〉 represents 2, 3, 5, 17, 43 but not 7,
〈2, 2, 3〉 represents 2, 3, 5, 7, 43 but not 17,
〈2, 3, 5〉 represents 2, 3, 5, 7, 17 but not 43,

the set S 3p is minimal. �

3. Prime-universal forms 〈a, b, c, d〉

In this section we prove Theorems 1.3, 1.6 and 1.7. We also prove unconditionally
that those quadratic forms listed in Table 1 which are not given in (1.1) are prime-
universal (see Theorem 3.1).

Proof of Theorem 1.3. Let a, b, c, d ∈ N be such that a ≤ b ≤ c ≤ d and suppose that
〈a, b, c, d〉 is prime-universal. As 〈a, b, c, d〉 represents 2, by the bounding lemma we
have a ≤ 2. As 〈a, b, c, d〉 represents 3 but 〈1〉 and 〈2〉 do not, we have b ≤ 3 by the
bounding lemma. As 〈a, b, c, d〉 represents 7 but 〈1, 1〉, 〈1, 2〉, 〈2, 2〉 and 〈2, 3〉 do not
(and as 〈1, 3〉 does not represent 5) we have c ≤ 7 for all choices of a and b. This
leaves us to consider the set of forms 〈1 ≤ a ≤ 2, a ≤ b ≤ 3, b ≤ c ≤ 7, c ≤ d〉. We see
that 〈1, 1, 4, d〉, . . . , 〈1, 1, 7, d〉 cannot represent 3; 〈1, 2, 6, d〉, . . . , 〈1, 2, 7, d〉 cannot
represent 5; 〈1, 3, 3, d〉, . . . , 〈1, 3, 7, d〉 cannot represent 2; 〈2, 2, 4, d〉, . . . , 〈2, 2, 7, d〉
cannot represent 3. This leaves the forms

〈1, 1, 1, d〉, 〈1, 1, 2, d〉, 〈1, 1, 3, d〉,
〈1, 2, 2, d〉, 〈1, 2, 3, d〉, 〈1, 2, 4, d〉, 〈1, 2, 5, d〉,
〈2, 2, 2, d〉, 〈2, 2, 3, d〉,
〈2, 3, 3, d〉, 〈2, 3, 4, d〉, 〈2, 3, 5, d〉, 〈2, 3, 6, d〉, 〈2, 3, 7, d〉.

The prime truant of 〈1, 1, 1〉 is 7 and hence we have d ≤ 7 for 〈1, 1, 1, d〉. The forms
〈1, 1, 1, 1 ≤ d ≤ 7〉 are universal [10] and hence are not prime-universal. Similarly, the
prime truant of 〈1, 2, 2〉 is 7 and the forms 〈1, 2, 2, 2 ≤ d ≤ 7〉 are also all universal [10].
The remaining forms with a = 1, namely,

〈1, 1, 2, d〉, 〈1, 1, 3, d〉, 〈1, 2, 3, d〉, 〈1, 2, 4, d〉, 〈1, 2, 5, d〉

represent all prime numbers by Theorem 1.1. The conditions on d given in Table 1 for
these forms are so that the corresponding forms are not universal [10].

The remaining forms to consider all have a = 2 and so they are not universal as they
do not represent 1. Observe that if 〈2, 2, 2, d〉 is prime-universal then it represents 3
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Table 3. Prime truants for certain quaternary quadratic forms 〈a, b, c, d〉.

a b c d Prime truant

2 2 3 8 17
2 2 3 11 17
2 2 3 16 17
2 2 3 17 41
2 3 3 3 7
2 3 3 4 13
2 3 3 6 7
2 3 4 4 17
2 3 4 6 23
2 3 4 7 17
2 3 4 10 23
2 3 4 12 13
2 3 4 13 23
2 3 5 7 43
2 3 5 19 43
2 3 5 28 43
2 3 5 34 43
2 3 5 37 43
2 3 5 39 43
2 3 5 42 43
2 3 6 6 7
2 3 6 7 23
2 3 7 7 13
2 3 7 9 13
2 3 7 10 23
2 3 7 11 17
2 3 7 12 13
2 3 7 13 17

and so we must have d = 3. But 〈2, 2, 2, 3〉 does not represent 17 and thus 〈2, 2, 2, d〉 is
not prime-universal for any positive integer d ≥ 2.

For the remaining forms 〈2, 2, 3, d〉 and 〈2, 3, 3 ≤ c ≤ 7, d〉 we use Table 2 to
determine the prime truant of the given ternary subform, and hence, by the bounding
lemma, the possible remaining prime-universal forms are

〈2, 2, 3, 3 ≤ d ≤ 17〉, 〈2, 3, 3, 3 ≤ d ≤ 7〉, 〈2, 3, 4, 4 ≤ d ≤ 13〉,
〈2, 3, 5, 5 ≤ d ≤ 43〉, 〈2, 3, 6, 6 ≤ d ≤ 7〉, 〈2, 3, 7, 7 ≤ d ≤ 13〉.

From Table 3 we eliminate those forms in the sets above which contain a prime truant.
The remaining forms agree with those given in Table 1. �
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Table 4. All positive integers not represented by certain ax2 + by2 + cz2.

a b c Integers not represented

2 2 3 8n + 1, 9k(9n + 6)
2 3 3 9k(3n + 1)
2 3 6 3n + 1, 4k(8n + 7)
2 3 8 8n ± 1, 32n + 4, 9k(9n + 6)
2 3 9 3n + 1, 9n + 6, 4k(16n + 10)
2 3 12 16n + 6, 9k(3n + 1)
2 3 18 3n + 1, 8n + 1, 9k(9n + 6)
2 5 6 9k(9n + 3), 25k(25n ± 10), 4k(8n + 1)
2 5 10 8n + 3, 25k(5n ± 1)
2 5 15 9k(9n + 3), 4k(16n + 10), 25k(5n ± 1)

Proof of Theorem 1.6. The forms with a = 1 in Table 1 are not universal [10] and
represent all primes by Theorem 1.1 as they have a prime-universal ternary subform.
There are 50 forms with a = 2. None of these represent 1 so they are not universal.
Of these, 23 have 〈2, 2, 3〉, 〈2, 3, 3〉, 〈2, 3, 6〉, 〈2, 3, 8〉, 〈2, 3, 9〉, 〈2, 3, 12〉, 〈2, 3, 18〉,
〈2, 5, 6〉, 〈2, 5, 10〉 or 〈2, 5, 15〉 as a ternary subform. These 10 ternaries are all regular
and so the positive integers that they do not represent belong to a finite number of
progressions of positive integers of the type Ak(B` + C). These progressions, which
are taken from Dickson’s table [2, pages 112–113], are given in Table 4.

Using this in conjunction with a technique of Ramanujan [10] allows us to prove
that these 23 quaternaries are prime-universal (see Theorem 3.1). The remaining 27
quaternaries have either the nonregular ternary 〈2, 3, 4〉 or the nonregular ternary
〈2, 3, 5〉 as a ternary section. Assuming the validity of Conjectures 1.4 and 1.5, we
deduce that the remaining quaternaries are prime-universal. This proves Theorem
1.6. �

Theorem 3.1. The following 23 quadratic forms are prime-universal:

(i) 〈2, 2, 3, h〉, h ∈ {3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15};
(ii) 〈2, 3, 3, h〉, h ∈ {5, 7};
(iii) 〈2, 3, h, 8〉, h ∈ {4, 5, 7};
(iv) 〈2, 3, h, 9〉, h ∈ {4, 5};
(v) 〈2, 3, 5, 6〉;
(vi) 〈2, 3, 5, 10〉;
(vii) 〈2, 3, 5, 12〉;
(viii) 〈2, 3, 5, 15〉;
(ix) 〈2, 3, 5, 18〉.

For the various quaternary quadratic forms in Theorem 3.1, the method of proof
is the same, only the values change. We describe the method in general. Suppose
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〈a, b, c, d〉 is a quaternary quadratic form we wish to show is prime-universal and
which also has a regular ternary subform, say 〈a, b, c〉. We use Table 4 to determine all
positive integers represented by 〈a,b, c〉. This is given as a list of progressions such that
〈a, b, c〉 can represent all positive integers which do not belong to the corresponding
progressions. For all sufficiently large primes p not represented by 〈a, b, c〉, we can
determine a positive integer m using the properties of the given progressions, such that

p − dm2 is represented by 〈a, b, c〉,
and hence it follows that p is represented by 〈a, b, c, d〉. We choose p sufficiently large
so that p − dm2 is a positive integer, and for the remaining small primes not represented
by 〈a, b, c〉 it can be shown that they are represented by 〈a, b, c, d〉.

We give complete details for part (i) of Theorem 3.1. For the remaining parts, we
state only the conditions on the prime p, the lower bound for p, the relevant ternary
subform and the corresponding positive integer m.
Proof of Theorem 3.1.

Part (i). Fix h ∈ {3, 4, 5, 6, 7, 9, 10, 12, 13, 14, 15}. It can be shown that 〈2, 2, 3, h〉
represents every prime p ≤ 9h. Let p be a prime with p > 9h. From Table 4
we see that 〈2, 2, 3〉 represents all positive integers not of the forms 8` + 1 and
32k(9` + 6) (k, ` ∈ N0). Thus 〈2, 2, 3〉 represents all primes not of the form 8` + 1, and
hence so does 〈2, 2, 3, h〉. Now suppose p ≡ 1 (mod 8). As h . 0 (mod 8) it follows
that the positive integer p − 9h satisfies p − 9h ≡ 1 − h . 1 (mod 8). Further, as p . 0
(mod 3) it follows that p − 9h , 32k(9` + 6) for any choice of k, ` ∈ N0. Thus there
exist integers x, y and z such that

p − 9h = 2x2 + 2y2 + 3z2, and so p = 2x2 + 2y2 + 3z2 + h32,

proving that 〈2, 2, 3, h〉 is prime-universal for every h in the given set.

Part (ii). Let h ∈ {5, 7}. We use the general method with the ternary subform 〈2, 3, 3〉,
p ≡ 1 (mod 3), p > 28 and

m =


1 if h = 5,
1 if h = 7, p ≡ 1, 4 (mod 9),
2 if h = 7, p ≡ 7 (mod 9).

Part (iii). Let h ∈ {4, 5, 7}. We use the general method with the ternary subform
〈2, 3, 8〉, p ≡ ±1 (mod 8), p > 180 and

m =

3 if h = 4, 7,
6 if h = 5.

Part (iv). Let h ∈ {4, 5}. We use the general method with the ternary subform 〈2, 3, 9〉,
p ≡ 1 (mod 3), p > 20 and

m =


2 if h = 4, p ≡ 1 (mod 9),
1 if h = 4, p ≡ 4, 7 (mod 9),
2 if h = 5.
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Part (v). We use the general method with the ternary subform 〈2, 5, 6〉, p ≡ 1 (mod 8),
p > 300 and m = 10.

Part (vi). We use the general method with the ternary subform 〈2, 5, 10〉, at least one
of p ≡ 3 (mod 8) or p ≡ ±1 (mod 5), p > 192 and

m =



1 if p ≡ 3 (mod 8), p ≡ 1 (mod 5),
2 if p ≡ 3 (mod 8), p ≡ −1 (mod 5),
5 if p ≡ 3 (mod 8), p . ±1 (mod 5),
4 if p . 3 (mod 8), p ≡ 1 (mod 5),
8 if p . 3 (mod 8), p ≡ −1 (mod 5).

Part (vii). We use the general method with the ternary subform 〈2, 3, 12〉, p ≡ 1
(mod 3), p > 80 and m = 4.

Part (viii). We use the general method with the ternary subform 〈2, 5, 15〉, p ≡ 1
(mod 5), p > 108 and

m =

6 if p ≡ 1 (mod 5),
2 if p ≡ −1 (mod 5).

Part (ix). We use the general method with the ternary subform 〈2, 3, 18〉, at least one
of p ≡ 1 (mod 3) or p ≡ 1 (mod 8), p > 180 and

m =


1 if p ≡ 1 (mod 3), p ≡ 1 (mod 8),
3 if p ≡ 2 (mod 3), p ≡ 1 (mod 8),
4 if p ≡ 1 (mod 3), p . 1 (mod 8).

�

Proof of Theorem 1.7. Suppose that 〈a, b, c, d〉 represents every prime in S 4p and
not every integer in S 4u. Then 〈a, b, c, d〉 does not represent every integer in
{1, 2, 3, 5, 6, 7, 10, 14, 15} and so is not universal by the fifteen theorem (see [1]).
Proceeding as in the proof of Theorem 1.6, universal forms are eliminated and the
representability of every prime in S 4p by 〈a, b, c, d〉 leads to the set of forms in Table 1.
Moreover, this set is minimal as

〈1, 3, 3, 4〉 represents 3, 5, 7, 13, 17, 23, 41, 43 but not 2,
〈2, 4, 5, 6〉 represents 2, 5, 7, 13, 17, 23, 41, 43 but not 3,
〈1, 2, 6, 6〉 represents 2, 3, 7, 13, 17, 23, 41, 43 but not 5,
〈2, 3, 3, 8〉 represents 2, 3, 5, 13, 17, 23, 41, 43 but not 7,
〈2, 3, 3, 4〉 represents 2, 3, 5, 7, 17, 23, 41, 43 but not 13,
〈2, 3, 4, 4〉 represents 2, 3, 5, 7, 13, 23, 41, 43 but not 17,
〈2, 3, 4, 6〉 represents 2, 3, 5, 7, 13, 17, 41, 43 but not 23,
〈2, 2, 3, 17〉 represents 2, 3, 5, 7, 13, 17, 23, 43 but not 41,
〈2, 3, 5, 42〉 represents 2, 3, 5, 7, 13, 17, 23, 41 but not 43. �
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4. Final remarks

Let q(x1, x2, x3) be a positive-definite ternary quadratic form with integral
coefficients and set

D = det
(
∂2q
∂xi∂x j

)
.

Duke [3] has shown that if n is a positive squarefree integer for which the congruence
q(x1, x2, x3) ≡ n (mod 8D3) has a solution, then q(x1, x2, x3) = n is solvable in integers
x1, x2, x3 if n > cD337, for some positive constant c. This theorem enables us to
deduce that 2x2 + 3y2 + 4z2 represents all sufficiently large odd integers n and that
2x2 + 3y2 + 5z2 represents all sufficiently large primes p. Unfortunately, the size of
‘sufficiently large’ is out of reach!

Bhargava announced that he had proved that for any infinite set of positive integers
T , there is a finite subset S ⊆ T such that if an integral positive-definite quadratic form
represents all integers in S , then this form represents all integers in T (see [8]). This
was proved in more generality by Kim et al. [7]. Bhargava asserted (see [5, Theorem C,
page 674]) that if T is the set of prime numbers, then the corresponding smaller finite
set S is given by

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 67, 73},

but no proof of this has appeared in the literature to the authors’ knowledge. Should
this set S be proven to be correct, then it is straightforward to verify that the unproven
forms in Table 1 represent all primes in S, and Theorems 1.6 and 1.7 would be
unconditional.
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