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Reduction of bielliptic surfaces
Teppei Takamatsu

Abstract. A bielliptic surface (or hyperelliptic surface) is a smooth surface with a numerically triv-
ial canonical divisor such that the Albanese morphism is an elliptic fibration. In the first part of this
paper, we study the structure of bielliptic surfaces over a field of characteristic different from 2 and 3,
in order to prove the Shafarevich conjecture for bielliptic surfaces with rational points. Furthermore,
we demonstrate that the Shafarevich conjecture generally fails for bielliptic surfaces without ratio-
nal points. In particular, this paper completes the study of the Shafarevich conjecture for minimal
surfaces of Kodaira dimension 0.
In the second part of this paper, we study aNéronmodel of a bielliptic surface.We establish the poten-
tial existence of a Néronmodel for a bielliptic surface when the residual characteristic is not equal to
2 or 3.

1 Introduction

The Shafarevich conjecture for abelian varieties, proved by Faltings and Zarhin ([8, 5,
VI, §1, Theorem 2]) asserts the finiteness of isomorphism classes of abelian varieties of
a fixed dimension over a fixed number field that admit good reduction away from a
fixed finite set of finite places. In [15], Javanpeykar and Loughran conjectured that the
Shafarevich conjecture holds for more general families of varieties. They also show that
the Lang-Vojta conjecture for integral points of hyperbolic varieties implies the Sha-
farevich conjecture for hypersurfaces and complete intersections of general type ([15,
Theorem 1.5]). The Shafarevich conjecture is proved in many cases. For example, this
has been proved for del Pezzo surfaces ([32]), flag varieties ([14]), certain Fano three-
folds ([17]) ([13]), proper hyperbolic polycurves ([16], [28]), K3 surfaces ([1], [33], [34]),
Enriques surfaces ([35]), hyper-kähler varieties ([1], [10])). Furthermore, it is verified for
hypersurfaces in abelian varieties ([23]) and very irregular varieties ([21]). However, it is
still open in general.

In the first part of this paper (Section 2), we shall consider the same problem for
bielliptic surfaces. Our main theorem is the following.

Theorem 1.1 (Theorem 2.10) Let 𝐹 be a finitely generated field over Q, and 𝑅 be a finite
type algebra over Z which is a normal domain with fraction field 𝐹 . Then, the set{

𝑋

���� 𝑋 : bielliptic surface over 𝐹 which admits a rational point,
𝑋 has good reduction at any height 1 prime ideal 𝔭 ∈ Spec 𝑅

}
/𝐹-isom

is finite.
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2 T. Takamatsu

Remark 1.2 In Theorem 1.1, we only consider bielliptic surfaces with rational points.
This restriction is essential. Indeed, in Proposition 2.12, we show that the Shafarevich
conjecture for general bielliptic surfaces fails.Our counterexample is based on the exam-
ple in ([27, footnote 27]), which is a counterexample to the Shafarevich conjecture for
genus 1 curves.

As stated above, the Shafarevich conjecture is also justified in the cases of K3 surfaces
and Enriques surfaces (see [33], [34], and [35]). Therefore, Theorem 1.1 completes the
study of the Shafarevich conjecture for minimal surfaces of Kodaira dimension 0. We
remark that we assume the existence of a rational point on 𝑋 in Theorem 1.1, as in the
case of abelian varieties.

In Section 2, first, we shall study the structure of bielliptic surfaces with a rational
point and its reduction nature. After that, we give a proof of Theorem 1.1 by using that
structure result and the Shafarevich conjecture for (products of) elliptic curves. Here,
we also use the finitely generatedness of the Mordell-Weil groups of elliptic curves to
reduce the problem to the case of products of elliptic curves.

In the second part (Section 3), we shall study a Néron model of a bielliptic surface.
Let 𝐾 be a discrete valuation field, and 𝑋 a smooth separated finite type scheme over 𝐾 .
A NéronmodelX of 𝑋 is a smooth separated finite typemodel overO𝐾 satisfying some
extension property, which is known as the Néron mapping property. Néron proves the
existence of such models for abelian varieties ([30]). Moreover, Liu and Tong prove the
existence of Néron models for smooth proper curves of positive genus (see [26] for a
more precise statement). In general, a Néron model need not exist. Our main theorem
is the following.

Theorem 1.3 (see Theorem 3.6 for more precise statements.) Let 𝐾 be a strictly Henselian
discrete valuation field with residue characteristic different from 2 and 3, and 𝑋 be a bielliptic
surface over 𝐾 . Then 𝑋 potentially admits a Néron model, i.e., there exists a finite separable
extension 𝐿/𝐾 , such that 𝑋𝐿′ admits a Néron model for any finite extension 𝐿′/𝐿.

Thekey idea ofTheorem1.3 is to take a quotient of aNéronmodel of abelian surfaces.
If 𝑋 satisfies some condition, we can show that this quotient is the Néron model again
(see Theorem3.5 for a sufficient condition). However, in general, that quotient is not
necessarily a Néron model. To treat the general case, we use some gluing arguments.

Notations and Terminologies

• Let 𝐴→ 𝐵 be a morphism of algebras. For a scheme 𝑋 over 𝐴, we denote its base
change 𝑋 ×𝐴 𝐵 by 𝑋𝐵.

• For any scheme 𝑆 and a point 𝑠 ∈ 𝑆, we denote its residue field by 𝜅(𝑠).
• For any discrete valuation field 𝐾 , we denote its valuation ring by O𝐾 . We denote
the completion of 𝐾 by 𝐾 .

• Let 𝐾 be a discrete valuation field and 𝑋 a smooth separated finite type scheme over
𝐾 . A scheme (resp. algebraic space) O𝐾 -model (X, 𝑖) of 𝑋 is a scheme (resp.
algebraic space)X which is separated and of finite type over O𝐾 with an
isomorphism 𝑖 : X𝐾 ≃ 𝑋 . We often omit 𝑖 and say thatX is a scheme (resp. algebraic
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Reduction of bielliptic surfaces 3

space) O𝐾 -model of 𝑋 . We assume that "a O𝐾 -model" simply refers to a O𝐾 -scheme
model. An algebraic space O𝐾 -modelX of 𝑋 is called smooth (resp. proper) (resp.
projective) ifX is smooth (resp. proper) (resp. projective) over O𝐾 .

• Let 𝑋 be a smooth projective variety over 𝑘 . We denote the Albanese torsor of 𝑋 by
Alb(𝑋), and the Albanese morphism by

alb : 𝑋 → Alb(𝑋).
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2 Bielliptic surfaces and good reduction

In this section, we first recall the definition of bielliptic surfaces and study their basic
properties.

Definition 2.1 Let 𝑘 be a field. Let 𝑋 be a smooth projective surface over 𝑘 , and 𝑌 a
smooth projective curve over 𝑘 . Let 𝑓 : 𝑋 → 𝑌 be a proper surjective morphism over
𝑘 . We say 𝑓 is an elliptic fibration if 𝑓∗O𝑋 = O𝑌 and the generic fiber of 𝑓 is a smooth
genus 1 curve over the generic point of𝑌 .

Definition 2.2 Let 𝑘 be a field, and 𝑋 a smooth projective surface over 𝑘 . We say 𝑋 is
a bielliptic surface over 𝑘 if the Kodaira dimension 𝜅(𝑋) is equal to 0, the second Betti
number 𝑏2 (𝑋) is equal to 2, and the Albanese morphism alb : 𝑋 → Alb(𝑋) is an elliptic
fibration.

Note that, we mainly treat the case where char 𝑘 ≠ 2, 3 where the condition of the
Albanese morphism is unnecessary (see [3, p. 26]).

First, we review the basic property of bielliptic surfaces over an algebraically closed
field.

Proposition 2.1 Let 𝑘 be a field of characteristic different from 2 and 3, and 𝑋 a bielliptic
surface over 𝑘 . Then the Albanese torsor Alb(𝑋) is 1-dimensional and the Albanese morphism
alb : 𝑋 → Alb(𝑋) is an elliptic fibration such that any geometric fiber is a smooth elliptic
curve. Moreover, 𝑋

𝑘
admits another elliptic fibration 𝑔 : 𝑋

𝑘
→ P1

𝑘
, and all the fibers of 𝑔 are

irreducible.

Proof This follows from [2, Theorem 8.6, Lemma 8.7 and Theorem 8.10]. ■
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4 T. Takamatsu

It is well-known that a bielliptic surface over an algebraically closed field is written
as a quotient of certain abelian surfaces (cf. [2, Subsection 10.24]). We shall generalize
this fact to fields that are not necessarily algebraically closed.

Lemma 2.2 Let 𝑘 be a field of characteristic different from 2 and 3, and 𝑋 a bielliptic surface
over 𝑘 with a rational point 𝑥 ∈ 𝑋 (𝑘). Let 𝐴′ = Alb(𝑋) be the Albanese torsor of 𝑋 , and 𝐵
the fiber alb−1 (alb(𝑥)). By Proposition 2.1, we regard 𝐴′ and 𝐵 as elliptic curves with rational
points coming from 𝑥. Then there exists an elliptic curve 𝐴 over 𝑘 which is isogenous to 𝐴′ and
a finite étale subgroup scheme 𝐺 ↩→ 𝐴 with a group scheme monomorphism 𝐺 → Aut𝐵/𝑘 ,
such that there exists an isomorphism

𝑋 ≃𝑘 (𝐴 × 𝐵)/𝐺

which sends 𝑥 to (0, 0). Here, Aut𝐵/𝑘 is the automorphism scheme of the variety (rather than
the group scheme) 𝐵. Furthermore, the projection 𝑋 → 𝐴/𝐺 via the above isomorphism is
isomorphic to the Albanese morphism alb, and 𝑋 → 𝐵/𝐺 ≃ P1

𝑘
is an elliptic fibration.

Proof We will prove this in three steps: first, when 𝑘 is an algebraically closed field;
second, when 𝑘 is a separably closed field; and finally, in the case of a general field.

In the case when 𝑘 = 𝑘 , then it follows from [2, Subsection 10.24]. For future con-
venience, we will outline the proof. Let 𝑔 : 𝑋 → P1 be an elliptic fibration given in
Proposition 2.1. Let 𝑆 ⊂ P1 be the image of the non-smooth locus of 𝑔, which is a closed
subscheme of dimension 0. Then we can define the action

𝐴′ × 𝑔−1 (P1 \ 𝑆) → 𝑔−1 (P1 \ 𝑆)

as follows. For any 𝑘-algebra 𝑅, take 𝑃 ∈ 𝑔−1 (P1 \ 𝑆) (𝑅). Then we have the abelian
scheme

𝑇 := 𝑔−1 (𝑔(𝑃)) = 𝑔−1 (P1 \ 𝑆) ×P1\𝑆 𝑔(𝑃)
over Spec 𝑅 with a section 𝑃, and we have a morphism 𝑇 → 𝐴′

𝑅
coming from the

composition
𝑇 → 𝑔−1 (P1 \ 𝑆) ↩→ 𝑋 → 𝐴′.

Then we have
𝐴′
𝑅 ≃ 𝐴′∨

𝑅 → 𝑇∨,

and the right-hand side acts on 𝑇 canonically. Therefore we get the desired action.
By the minimality of 𝑋 (see [2, Theorem 10.21]), one can extend the above action to

𝜎 : 𝐴′ × 𝑋 → 𝑋 (since 𝐴′ is an elliptic curve, it is enough to extend the action of the
generic point of 𝐴′). Let 𝑛 be the intersection number of a fiber of alb and a fiber of 𝑔.

Then we have a diagram

𝐴′ × 𝑋 𝜎 //

id×alb
��

𝑋

alb
��

𝐴′ × 𝐴′ 𝜙 // 𝐴′

(2.1)

where 𝜙(𝑎, 𝑎′) := 𝑛𝑎 + 𝑎′. This diagram is commutative since it is commutative
over 𝑘 as in [2, Subsection 10.24]. By the above diagram, 𝐵 := alb−1 (0) is stable under
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Reduction of bielliptic surfaces 5

the action of 𝐺′ := 𝐴′ [𝑛] given by 𝜎. Therefore we have the morphism 𝐺′ → Aut𝐵/𝑘
corresponding to 𝜎 : 𝐺′ × 𝐵 → 𝐵. Moreover, we get the desired isomorphism (𝐴′ ×
𝐵)/𝐺′ ≃ 𝑋 via the action 𝜎 since it induces an isomorphism over 𝑘 . We put

𝐴 := 𝐴′/ker(𝐺′ → Aut𝐵/𝑘),
𝐺 := 𝐺′/ker(𝐺′ → Aut𝐵/𝑘)

so that 𝐺 → Aut𝐵/𝑘 is injective. These 𝐴, 𝐵, and 𝐺 satisfy the desired conditions, and
it finishes the proof for the case where 𝑘 = 𝑘 .

Next, we treat the case where 𝑘 is separably closed. Then by the argument in the case
where 𝑘 = 𝑘 , we have a finite étale morphism 𝜋 : 𝐴′

𝑘
× 𝐵

𝑘
→ 𝑋

𝑘
which is the quotient

map by an action of 𝐺′
𝑘
, where 𝐺′ := 𝐴′ [𝑛] for some 𝑛 ∈ {2, 3, 4, 6, 8, 9}. We shall

prove that this morphism is defined over 𝑘 . The morphism 𝜋 can be decomposed as

𝜋 : 𝐴′
𝑘
× 𝐵

𝑘

𝜋1

≃
// Spec

𝑋
𝑘

𝜋∗O𝐴′
𝑘
×𝐵

𝑘

𝜋2 // 𝑋
𝑘
.

Here, 𝜋∗O𝐴′
𝑘
×𝐵

𝑘
is decomposed as ⊕

𝜒∈�
𝐺′ (𝑘 )

F𝜒 , where F𝜒 is a line bundle on 𝑋𝑘 asso-

ciated with a character 𝜒 ∈ �
𝐺′ (𝑘). Since the 𝑛-multiplication map on the Picard

scheme Pic𝑋/𝑘 is an étale morphism, each F𝜒 descends to a line bundle on 𝑋 , hence the
morphism 𝜋2 comes from the morphism

𝜋2,0 : 𝑌 := Spec
𝑋
⊕
𝜒∈�
𝐺′ (𝑘 )

F𝜒 → 𝑋

over 𝑘 . Since 𝜋2,0 is a finite étalemorphism, the fiber over 𝑥 consists of 𝑘-rational points.
In particular, 𝜋1 (0, 0) descends to a 𝑘-rational point of 𝑌 . We can equip 𝑌 with the
structure of abelian variety over 𝑘 with the zero section 𝜋1 (0, 0) by the Albanese mor-
phism. Therefore themorphism 𝜋1 is a homomorphismover 𝑘 between abelian varieties
defined over 𝑘 . Since the homomorphism scheme of abelian varieties is étale ([7, Propo-
sition 7.14]), the morphism 𝜋1 is also defined over 𝑘 . Hence our 𝜋 is defined over 𝑘 ,
i.e., there exists a morphism 𝐴′ × 𝐵 → 𝑋 . Through this morphism, we have an iso-
morphism (𝐴′ × 𝐵)/𝐺′ → 𝑋 . This isomorphism induces the desired isomorphism
(𝐴 × 𝐵)/𝐺 → 𝑋, where

𝐴 := 𝐴′/ker(𝐺′ → Aut𝐵/𝑘),
𝐺 := 𝐺′/ker(𝐺′ → Aut𝐵/𝑘).

Finally, we show the general case. Note that, we have an elliptic fibration

𝑔′ : 𝑋𝑘sep → 𝐵𝑘sep/𝐺𝑘sep ≃ P1𝑘sep .

Then by the argument in [6, Proposition 5.6], we obtain an elliptic fibration

𝑔 : 𝑋 → P1

over 𝑘 such that 𝑔𝑘sep is isomorphic to 𝑔′. Using this 𝑔, we can prove the theorem in
exactly the same way as in the case where 𝑘 = 𝑘 . It finishes the proof. ■

Remark 2.3 In the proof of the above proposition, we take a quotient 𝐴 (resp.𝐺) of 𝐴′

(resp.𝐺′). However, if we do not require𝐺 → Aut𝐵/𝑘 to be injective, we do not have to

2025/02/07 18:23
https://doi.org/10.4153/S0008439525000153 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000153


6 T. Takamatsu

take quotients in the final part of the proof. More precisely, 𝐴 := 𝐴′ and𝐺 := 𝐺′ gives
the description

𝑋 ≃𝑘 (𝐴 × 𝐵)/𝐺,

where 𝐴 is the Albanese variety of 𝑋 , 𝐵 := alb−1 (alb(𝑥)), 𝐺 := 𝐴[𝑛] for some 𝑛 ∈
{2, 3, 4, 6, 8, 9} with a group scheme morphism 𝐺 → Aut𝐵/𝑘 . In this description, the
projection 𝑋 → 𝐴/𝐺 ≃ 𝐴 gives the Albanese morphism, where 𝐴/𝐺 ≃ 𝐴 is given
by the 𝑛-multiplication map. Note that the integer 𝑛 is independent of the choice of a
rational point 𝑥 ∈ 𝑋 (𝐾).

Definition 2.3 Let𝐾 be a discrete valuation field, and 𝑋 a bielliptic surface over𝐾 . We
say 𝑋 admits good reduction if there exists a smooth proper algebraic space X over O𝐾
such thatX𝐾 ≃ 𝑋 .

Here, we also recall the definition of a Néron model.

Definition 2.4 Let 𝐾 be a discrete valuation field, 𝑋 a smooth separated finite type
scheme over 𝐾 , and X a smooth O𝐾 -model of 𝑋 . The O𝐾 -model X is a Néron model
of 𝑋 if for any smooth O𝐾 -scheme 𝑍 and 𝐾-morphism 𝑢𝐾 : 𝑍𝐾 → 𝑋 , there exists a
unique extension 𝑢 : 𝑍 → X of 𝑢𝐾 .

Remark 2.4 In Definition 2.4, if an extension 𝑢 exists, then it is automatically unique
sinceX is separated over O𝐾 .

Lemma 2.5 Let 𝐾 be a discrete valuation field with residue field 𝑘 whose characteristic is
different from 2 and 3. For any bielliptic surface 𝑋 over 𝐾 , the following are equivalent.

(1) 𝑋 admits good reduction.
(2) There exists a smooth proper scheme O𝐾 -model X of 𝑋 .
(3) There exists a smooth projective scheme O𝐾 -model X of 𝑋 .

Proof (3) ⇒ (2) ⇒ (1) is clear. We shall show (1) ⇒ (3). Let X be a smooth
proper algebraic space O𝐾 -model of 𝑋 . Let X̂ be a formal completion ofXÔ𝐾 along its
special fiber X𝑘 , where Ô𝐾 is a completion of O𝐾 . We note that X𝑘 is a bielliptic sur-
face over 𝑘 . Indeed, sinceX𝑘 is a principal Cartier divisor onX, we have𝜔⊗𝑚

X/O𝐾 ≃ OX ,
where 𝑚 is the order of 𝜔𝑋/𝐾 . Therefore 𝜔⊗𝑚

X𝑘/𝑘 is trivial, and X𝑘 is a minimal surface
of Kodaira dimension 0 with the same Betti numbers as 𝑋 . HenceX𝑘 is a bielliptic sur-
face, and we have 𝐻2 (X𝑘 ,OX𝑘 ) = 0. By [9, Corollary 8.5.5], one can lift an ample line
bundle 𝐿𝑘 on X𝑘 to 𝐿̂ on X̂. By Grothendieck’s existence theorem ([18, Theorem 6.3]),
the line bundle 𝐿̂ also lifts to 𝐿 on XÔ𝐾 as an invertible sheaf. The categorical equiv-
alence of Grothendieck’s existence theorem implies that for any coherent sheaf 𝐹 on
XÔ𝐾 , 𝐹 ⊗ 𝐿⊗𝑛 is globally generated for sufficiently large 𝑛. This also holds over a finite
scheme cover of XÔ𝐾 , hence 𝐿 is an ample line bundle. Therefore, we have a smooth
projective scheme model XÔ𝐾 over Ô𝐾 . Let 𝜙 : 𝜔⊗𝑚

XÔ𝐾
/Ô𝐾

≃ OXÔ𝐾
be the base change
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Reduction of bielliptic surfaces 7

of the isomorphism 𝜔⊗𝑚
X/O𝐾 ≃ OX . We take a cyclic coveringY associated with 𝜙, i.e.,

𝑌 := Spec
XÔ𝐾

𝑚−1⊕
𝑟=0

𝜔⊗𝑟
XÔ𝐾 /O𝐾

,

where the module on the right-hand side is equipped with the algebra structure given
by 𝜙. Since 𝑚 is 2, 3, 4, or 6 (see [3, p.37]), Y is finite étale over XÔ𝐾 . The base change
𝑌
𝐾
of the generic fiber 𝑌 := Y

𝐾
is an abelian surface since its canonical sheaf is trivial

and its first Betti number is not equal to zero.Moreover, by Hensel’s lemma, there exists
a finite unramified extension 𝐿/𝐾 such that𝑌𝐿 admits an 𝐿-rational point, i.e.,𝑌𝐿 has a
structure of an abelian variety. Therefore, by [4, Proposition 1.4.2], the O𝐿-modelYO𝐿
satisfies the Néronmapping property, andY also satisfies the Néronmapping property
by a descent argument. Using [4, Theorem 7.2.1], the smooth proper Néron model Y
descends to the smooth properNéronmodelY0 overO𝐾 whose generic fiber is𝑌0which
is the cyclic covering of 𝑋 associatedwith 𝜙0. By theNéronmapping property, the cyclic
action on𝑌0 can be extended to that onY0, and this action is free since its base change to
Ô𝐾 is the cyclic action onY. Therefore, we can take a finite étale quotientY0/𝜇𝑚 which
is separated of finite type. Hence it gives a smooth proper scheme model over O𝐾 of 𝑋 .
Note thatY0 is projective over O𝐾 by [4, Theorem 6.4.1], henceY0/𝜇𝑚 is also a smooth
projective. ■

Remark 2.6 In general, if a smooth proper variety 𝑋 over a discrete valuation field
admits a smooth proper schemeO𝐾 -model and aNéronmodel, then the smooth proper
scheme model of 𝑋 is isomorphic to the Néron model, by van der Waerden’s purity
theorem (see [12, Corollaire (21.12.16)]). Hence a smooth proper O𝐾 -model of 𝑋 is
unique for such 𝑋 . Note that, for general 𝑋 , a smooth proper scheme O𝐾 -model of 𝑋
need not be unique (see [24, Remark 6.3]).

Lemma 2.7 Let 𝐾 be a discrete valuation field with residue field 𝑘 whose characteristic is 𝑝.
Let 𝐴 be an abelian variety over 𝐾 . Let 𝐺 ⊂ 𝐴 be a finite subgroup scheme over 𝐾 . Suppose
that the order of 𝐺 (𝐾) is coprime to 𝑝. LetA be the Néron model of 𝐴. Then there exists the
Néron model G of 𝐺 and a natural closed immersion G → A.

Proof LetA′ be the Néron model of 𝐴/𝐺 . Then the natural morphism 𝜋 : A → A′

is an étale isogeny. Indeed, by [4, Proposition 7.3.6], we have a morphism 𝜋′ : A′ → A
with 𝜋′ ◦ 𝜋 = 𝑛, where 𝑛 is the order of 𝐺 (𝐾). Since 𝑛 is coprime to 𝑝, 𝜋′ ◦ 𝜋 is étale
([4, Lemma 7.3.2]). Hence, 𝜋 is quasi-finite and flat ([4, Proposition 2.4.2, Lemma 7.3.1]).
Moreover, the kernel of 𝜋 is étale, since 𝜋′ ◦ 𝜋 is étale. So 𝜋 is étale. LetK be the kernel
of 𝜋, which is étale separated of finite type over O𝐾 . Then G is canonically isomorphic
toK , since for any smooth O𝐾 -scheme 𝑍 ,

K(𝑍) = ker(A(𝑍) → A′ (𝑍))
= ker(𝐴(𝑍𝐾 ) → (𝐴/𝐺) (𝑍𝐾 ))
= 𝐺 (𝑍𝐾 ).

■
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8 T. Takamatsu

Proposition 2.8 Let 𝐾 be a discrete valuation field with residue field 𝑘 whose characteristic
is different from 2 and 3. Let 𝑋 be a bielliptic surface over 𝐾 which admits a rational point
𝑥 ∈ 𝑋 (𝐾). Let 𝑋 ≃ (𝐴 × 𝐵)/𝐺 be the isomorphism given in Lemma 2.2. Then the following
are equivalent.

(1) The bielliptic surface 𝑋 admits good reduction.
(2) The elliptic curves 𝐴 and 𝐵 admit good reduction.

Proof First we shall show (1) ⇒ (2). By Lemma 2.5, we have X → 𝑆 := SpecO𝐾
which is a smooth projective scheme O𝐾 -model of 𝑋 . Note that PicX𝜅 (𝑠) /𝜅 (𝑠) is smooth
of dimension 1 for any geometric point 𝑠 on 𝑆 since X𝜅 (𝑠)/𝜅(𝑠) is a bielliptic surface
over a field of characteristic different from 2 and 3. Let PicX/𝑆 be the Picard functor,
andY := Pic0X/𝑆 ↩→ PicX/𝑆 is the open closed subgroup scheme whose fiber over any
geometric point 𝑠 of 𝑆 is equal to the identity component of PicX𝑠/𝜅 (𝑠) (see [9, Theorem
9.4.8, Proposition 9.5.20]). Therefore,Y is an abelian scheme over 𝑆. For the fixed ratio-
nal point 𝑥 ∈ X(O𝐾 ), we have the corresponding morphism alb : X → Pic0Y/𝑆 which
sends 𝑥 to 0. Note that this morphism is flat since one can check it fiberwise (see [4,
Proposition 2.4.2]). Since Pic0Y/𝑆 is a smooth proper scheme O𝐾 -model of the Albanese
variety of 𝑋 , the elliptic curve 𝐴 admits good reduction. Moreover, one can show that
Z := X ×Pic0Y/𝑆

𝑆 is a smooth proper scheme O𝐾 -model of 𝐵, where 𝑆 → Pic0Y/𝑆 is the
0-section. Indeed, by the definition Z is proper and flat over 𝑆, and whose geometric
fibers are smooth. Therefore 𝐵 admits good reduction too.

Next, we shall show (2) ⇒ (1). LetA,B be the Néron models of 𝐴, 𝐵 (which is the
unique smooth proper schemeO𝐾 -model of the elliptic curves 𝐴, 𝐵).Moreover, letG be
theNéronmodel of𝐺 . Since 𝐴 admits good reduction, the scheme𝐺 consists of spectra
of fields that are unramified over 𝐾 (recall that 𝐺 is a quotient of the 𝑛-torsion points
of 𝐴′, where 𝐴′ is an elliptic curve which is isogenous to 𝐴 and 𝑛 ∈ {2, 3, 4, 6, 8, 9}).
Therefore a Néron model of 𝐺 is a finite étale group scheme over O𝐾 . By the Néron
mapping property, one can extend the action of𝐺 on 𝐴×𝐵 to the action ofG onA×B.
Be Lemma 2.7, G ↩→ A is a closed immersion of group schemes. Therefore the above
action G × A × B → A × B is a free action by the locally free group scheme. Hence
one can take a finite étale quotientA×B → X, whereX is separated of finite type over
O𝐾 . Therefore one can show thatX is a smooth proper scheme O𝐾 -model of 𝑋 , and it
finishes the proof. ■

Remark 2.9 This proposition is one formulation of a good reduction criterion for biel-
liptic surfaces. By using a 𝜇𝑚-torsor of a bielliptic surface 𝑋 defined as a cyclic covering
defined by 𝜔𝑋 , one can formulate a similar statement for bielliptic surfaces without
rational points (see [5, Section 9]).

Theorem 2.10 Let 𝐹 be a finitely generated field over Q, and 𝑅 a finite type algebra over Z
which is a normal domain with fraction field 𝐹 . Then, the set

Shaf :=
{
𝑋

���� 𝑋 : bielliptic surface over 𝐹 which admits a rational point,
𝑋 has good reduction at any height 1 prime ideal 𝔭 ∈ Spec 𝑅

}
/𝐹-isom

is finite.
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Reduction of bielliptic surfaces 9

Proof Shrinking Spec 𝑅, we may assume that 𝑅 is smooth over Z. For 𝑋 ∈ Shaf, one
can associate a rational point 𝑥 ∈ 𝑋 (𝐹) and we have a description 𝑋 ≃ (𝐴×𝐵)/𝐺 as in
Lemma 2.2. By Proposition 2.8, the elliptic curves 𝐴 and 𝐵 admit good reduction at any
height 1 prime 𝔭 ∈ Spec 𝑅. Therefore there exists a map Shaf → Shafab, where Shafab
is the set of pairs of 𝐹-isomorphism classes of elliptic curves both of which admit good
reduction at any height 1 prime of Spec 𝑅. By [8, VI, §1, Theorem 2], Shafab is a finite
set. Therefore, by Lemma 2.11 below, we obtain the desired finiteness. ■

Lemma 2.11 Let 𝐹 be a finitely generated field overQ, and 𝑅 a smooth domain over Z with
fraction field 𝐹 . We put Shaf as in Theorem 2.10. Also, we put Shafab as in the proof of Theorem
2.10, i.e.

Shafab :=
{
(𝐴, 𝐵)

���� 𝐴, 𝐵 : elliptic curves over 𝐹 that have good reduction
at any height 1 prime ideal 𝔭 ∈ Spec 𝑅

}
/𝐹-isom.

Let

Shaf → Shafab, 𝑋 ↦→ (𝐴, 𝐵)
be the morphism defined by choosing a rational point 𝑥 ∈ 𝑋 (𝐹) and using Lemma 2.2 and
Proposition 2.8 (see the proof of Theorem 2.10). Then this morphism is finite-to-one.

Proof For fixed 𝐴 × 𝐵 ∈ Shafab, let 𝑋 ∈ Shaf be a bielliptic surface lying in its fiber.
Then, 𝑋 is isomorphic to (𝐴 × 𝐵)/𝐺𝑋 for some finite étale subgroup scheme 𝐺𝑋 ↩→
𝐴 and some embedding 𝛼𝑋 : 𝐺𝑋 ↩→ Aut𝐵/𝐹 . Since the order of 𝐺𝑋 is bounded, the
candidates of 𝐺𝑋 ↩→ 𝐴 are finitely many. Hence we may fix an embedding 𝜄 : 𝐺 :=
𝐺𝑋 ↩→ 𝐴. Let 𝑆𝐴,𝐵, 𝜄 be the set of embeddings 𝛼 : 𝐺 ↩→ Aut𝐵/𝐹 such that (𝐴 × 𝐵)/𝐺
is a bielliptic surface, where the quotient is taken with respect to the action 𝜄 × 𝛼. Let
∼ be the equivalence relation on 𝑆𝐴,𝐵, 𝜄 given by 𝐵(𝐹)-conjugate. More precisely, for
𝛼, 𝛼′ ∈ Aut𝐵/𝐹 (𝐺), 𝛼 ∼ 𝛼′ if and only if there exists 𝑏 ∈ 𝐵(𝐹) such that 𝑡𝑏𝛼𝑡−𝑏 =

𝛼′, where 𝑡𝑏 : 𝐵 → 𝐵 is the translation which sends 0 to 𝑏. In this case, we have the
𝐹-isomorphism

((𝐴 × 𝐵)/𝐺) ( 𝜄×𝛼) ≃ ((𝐴 × 𝐵)/𝐺) ( 𝜄×𝛼′ )

induced by id×𝑡𝑏 , where the left-hand (resp. right-hand) side is the quotientwith respect
to the action 𝜄×𝛼 (resp. 𝜄×𝛼′). Therefore, it suffices to show the finiteness of 𝑆𝐴,𝐵, 𝜄/∼.
Since (𝐵/𝐺) (𝛼𝐹 )

𝐹
(the quotient with respect to the action 𝛼

𝐹
) is P1

𝐹
, the image 𝐻 of

𝛼
𝐹
(𝐺 (𝐹)) in Aut(𝐵

𝐹
)/𝐵(𝐹) ≃ Aut(𝐵

𝐹
, 0) is non-trivial. Indeed, if this is trivial, then

the quotient is given by an isogenous elliptic curve, and we have a contradiction. Take
an element 𝑔 = 𝑔𝛼 ∈ 𝐺 (𝐹) such that the image of 𝛼

𝐹
(𝑔) generates 𝐻. Let 𝑏𝛼 ∈ 𝐵(𝐹)

be a fixed point of 𝛼
𝐹
(𝑔). Since 𝛼

𝐹
(𝐺 (𝐹)) is commutative, we have a decomposition

𝐺 (𝐹) ≃ 𝐻𝛼1 × 𝐻𝛼2 , with 𝛼(𝐻𝛼1 ) ⊂ Aut(𝐵
𝐹
, 𝑏𝛼) and 𝛼(𝐻𝛼2 ) ⊂ 𝐵(𝐹) ⊂ Aut(𝐵

𝐹
) (see

the arguments in [2, Subsection 10.26, List 10.27]). We denote the projection 𝐺 (𝐹) →
𝐻𝛼
𝑖
by 𝑝𝛼

𝑖
. SinceAut(𝐵

𝐹
, 𝑏𝛼) isZ/2Z,Z/4Z, orZ/6Z, there are classification of𝐻𝛼1 ↩→

Aut(𝐵
𝐹
, 𝑏𝛼) and 𝐻𝛼2 ↩→ 𝐵(𝐹) (see [2, List 10.27]). In particular, we remark that if 𝐻𝛼2

is non-trivial then 𝐻𝛼2 is Z/2Z (the case of (𝑎2) or (𝑐2) in [2, List 10.27]) or Z/3Z (the
case of (𝑐1) in [2, List 10.27]). In both cases, we note that #𝐻𝛼2 divides #𝐻𝛼1 .
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10 T. Takamatsu

We can define the morphism of sets

𝜙 : 𝑆𝐴,𝐵, 𝜄 → 𝐵(𝐹);𝛼 ↦→
∑︁

𝑔∈𝐺 (𝐹 )

𝛼
𝐹
(𝑔) (0).

Since #𝐻𝛼2 |#𝐻𝛼1 , we have∑︁
𝑔∈𝐺 (𝐹 )

𝛼
𝐹
(𝑝𝛼2 (𝑔)) (0) =

∑︁
ℎ∈𝐻𝛼2

#𝐻𝛼1 · 𝛼
𝐹
(ℎ) (0) = 0.

Let 𝑛 be the order of𝐺 (𝐹), and ℎ𝛼,𝑔 ∈ Aut(𝐵
𝐹
, 0) the automorphism such that

𝛼
𝐹
(𝑝𝛼1 (𝑔)) = 𝑡𝑏𝛼ℎ𝛼,𝑔𝑡−1𝑏𝛼 .

Since
ℎ𝛼,𝑔0 (

∑︁
𝑔∈𝐺 (𝐹 )

ℎ𝛼,𝑔) =
∑︁

𝑔∈𝐺 (𝐹 )

ℎ𝛼,𝑔

for non-trivial ℎ𝛼,𝑔0 (one can take 𝑔0 = 𝑔𝛼), the image (∑
𝑔∈𝐺 (𝐹 ) ℎ

𝛼,𝑔) (𝐵
𝐹
) is

contained in the fixed locus of ℎ𝛼,𝑔0 . Since (∑
𝑔∈𝐺 (𝐹 ) ℎ

𝛼,𝑔) (𝐵
𝐹
) is connected and

containing 0, we have
∑
𝑔∈𝐺 (𝐹 ) ℎ

𝛼,𝑔 = 0 ∈ End(𝐵
𝐹
). Combining with

𝛼
𝐹
(𝑔) (0) = 𝛼

𝐹
(𝑝𝛼1 (𝑔)) (0) + 𝛼𝐹 (𝑝

𝛼
2 (𝑔)) (0),

we have

𝜙(𝛼) =
∑︁

𝑔∈𝐺 (𝐹 )

𝛼
𝐹
(𝑝𝛼1 (𝑔)) (0)

=
∑︁

𝑔∈𝐺 (𝐹 )

(ℎ𝛼,𝑔 (−𝑏𝛼) + 𝑏𝛼)

=
∑︁

𝑔∈𝐺 (𝐹 )

(1 − ℎ𝛼,𝑔) (𝑏𝛼)

= 𝑛𝑏𝛼 .

Since we fix the isomorphism class of 𝐺 , possible isomorphism classes 𝐻𝛼1 , 𝐻
𝛼
2 are at

most finitely many (in fact unique). Therefore, possible 𝛼 |𝐻𝛼2 are at most finitely many.
Moreover, if 𝑛𝑏𝛼 is fixed, then possible 𝑏𝛼 are finitely many, and 𝛼 |𝐻𝛼1 are at most
finitely many since possible embeddings 𝐻𝛼1 → Aut(𝐵

𝐹
, 𝑏𝛼) are finitely many. Hence

each fiber of 𝜙 is finite. We note that 𝜙(𝑡𝑏𝛼𝑡−1𝑏 ) = 𝑛(𝑏𝛼 + 𝑏). Therefore 𝜙 induces the
morphism with finite fibers

𝑆𝐴,𝐵, 𝜄/∼→ 𝐵(𝐹)/𝑛𝐵(𝐹).

By [29] (see also [22, Section 1]), the abelian group 𝐵(𝐹) is finitely generated, so the
right-hand side is finite. It finishes the proof. ■

In Theorem 2.10, we only consider bielliptic surfaces admitting rational points. We
construct an example below to show that this assumption is an essential one. This exam-
ple is based on a counterexample to the Shafarevich conjecture for genus 1 curves in [27,
footnote 27].

2025/02/07 18:23
https://doi.org/10.4153/S0008439525000153 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000153


Reduction of bielliptic surfaces 11

Proposition 2.12 There exists a finite set of finite prime numbers 𝑆 such that the set

Shaf′ :=
{
𝑋

���� 𝑋 : bielliptic surface overQ,
𝑋 has good reduction at any prime number 𝑝 ∉ 𝑆

}
/𝐹-isom

is an infinite set.

Proof We take a finite set of finite prime numbers 𝑆 and an elliptic curve 𝐸 over Q
satisfying the following:

(1) 2 ∉ 𝑆,

(2) 𝐸 has good reduction outside 𝑆,
(3) The Mordell-Weil rank of 𝐸 is 0, and the analytic rank of 𝐸 is 0.
(4) Any point of 𝐸 [2] is aQ-rational point.

Note that the assumption (2) ensures that 𝑆 is non-empty by [31].Moreover, by Kolyva-
gin’s result [19] (see also [20, Theorem 1]) and the assumption (3), the Tate-Shafarevich
groupX(𝐸) of 𝐸 is known to be finite. We can take, for example, 𝑆 as {3, 5} and 𝐸 as
the elliptic curve overQwithCremona label 15𝑎2.We shall show that Shaf′ is an infinite
set for this 𝑆.

By Tate’s argument ([27, footnote 27]) and the assumptions (2) and (3), we can take
infinitely many isomorphism classes of 𝐸-torsors 𝐶𝑖 over Q (𝑖 = 1, 2, . . .) such that
𝐶𝑖,Q𝑝 is a trivial torsor for any 𝑝 ∉ 𝑆. SinceX(𝐸) is finite, we may assume that there
exists a prime number 𝑝 ∈ 𝑆 such that the isomorphism classes of 𝐸Q𝑝 -torsor𝐶𝑖,Q𝑝 are
all distinct. By restricting the action of the torsor structure, we have a free action 𝜎1 of
𝐸 [2] on 𝐶𝑖 . We fix a Z/2Z-basis 𝑃,𝑄 of 𝐸 [2] ≃ (Z/2Z)⊕2, that are Q-rational points
by the assumption (4). We consider the morphism

𝜎2 : 𝐸 [2] × 𝐸 → 𝐸 ; (𝑎𝑃 + 𝑏𝑄, 𝑅) ↦→ (−1)𝑎𝑅 + 𝑏𝑄,

which is well-defined and gives the action of 𝐸 [2] on 𝐸 . We put

𝑋𝑖 := (𝐶𝑖 × 𝐸)/𝐸 [2],

where the quotient is taken with respect to the action 𝜎 := 𝜎1 × 𝜎2. Clearly, 𝑋𝑖 is a
bielliptic surface overQ. Moreover, 𝑋𝑖 has good reduction outside 𝑆 by the same argu-
ment as in the proof of Proposition 2.8. We shall show that 𝑋𝑖 (𝑖 = 1, 2, . . .) represent
infinitely many Q-isomorphism classes. Let 𝐴𝑖 be the Albanese torsor Alb(𝑋𝑖) of 𝑋𝑖 . It
suffices to show that 𝐴𝑖 (𝑖 = 1, 2, . . .) represent infinitelymanyQ-isomorphism classes.
Let 𝑓𝑖 : 𝑋𝑖 → 𝐶𝑖/𝐸 [2] be the natural morphism. Fix a Q-rational point of 𝐶

𝑖,Q so that
𝐶
𝑖,Q is equippedwith the structure of an elliptic curve, which is isomorphic to 𝐸Q. Since

(𝐸Q × 𝐸Q)/𝐸 [2] ≃ 𝑋
𝑖,Q = (𝐶

𝑖,Q × 𝐸Q)/𝐸 [2] → 𝐶
𝑖,Q/𝐸 [2] ≃ 𝐸Q/𝐸 [2] → 𝐸Q

is an Albanese morphism by the proof of Lemma 2.2, we have 𝐴𝑖 ≃ 𝐶𝑖/𝐸 [2]. There-
fore, 𝐴𝑖 admits 𝐸/𝐸 [2] ≃ 𝐸-torsor structure, whose class in Weil–Châtelet group
𝐻1 (Gal(Q/Q), 𝐸) is 2[𝐶𝑖]. Here, 𝐶𝑖 is a class represented by the 𝐸-torsor 𝐶𝑖 . We
recall that [𝐶𝑖,Q𝑝 ] ∈ 𝐻1 (Gal(Q𝑝 ,Q𝑝), 𝐸Q𝑝 ) is a non-trivial class. Moreover, since
𝑝 ≠ 2 by the assumption (1), the group 𝐻1 (Gal(Q𝑝 ,Q𝑝), 𝐸Q𝑝 ) [2] ≃ 𝐸 (Q𝑝)/2𝐸 (Q𝑝)
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12 T. Takamatsu

is a finite group. Since the classes [𝐶𝑖,Q𝑝 ] ∈ 𝐻1 (Gal(Q𝑝 ,Q𝑝), 𝐸Q𝑝 ) are all distinct,
{2[𝐶𝑖,Q𝑝 ]} ⊂ 𝐻1 (Gal(Q𝑝 ,Q𝑝), 𝐸Q𝑝 ) is an infinite set, and it finishes the proof. ■

3 On the Néron model of a bielliptic surface

In this section, we prove the existence of a Néron model of a bielliptic surface under
certain conditions. First, we recall the notion of a weak Néron model.

Definition 3.1 Let𝐾 be a discrete valuation field, 𝑋𝐾 be a smooth separated finite type
scheme over 𝐾 , and X and X𝑖 (𝑖 = 0, . . . , 𝑠) smooth O𝐾 -models of 𝑋 . The family of
O𝐾 -models {X𝑖}𝑖 is aweak Néron model of 𝑋 if each𝐾sh-valued point of 𝑋 extends to an
O𝐾 sh-valued point of at least one of X𝑖 . We say the O𝐾 -model X is a weak Néron model
of 𝑋 if {X} is a weak Néron model of 𝑋 in the sense defined above.

A weak Néron model satisfies the following useful extension property.

Proposition 3.1 Let 𝐾 be a discrete valuation field, and 𝑋 be a smooth separated 𝐾-scheme
of finite type.

(1) Let X be a weak Néron model of 𝑋 . Then for any smooth O𝐾 -scheme 𝑍 and for any 𝐾-
rational map 𝑢𝐾 : 𝑍𝐾 d 𝑋 , there exists an extension of 𝑢𝐾 to an O𝐾 -rational map
𝑍 d X, i.e., there exists an open subscheme𝑈 ⊂ 𝑍 and an O𝐾 -morphism 𝑢 : 𝑈 → X
which is an extension of 𝑢𝐾 such that𝑈𝜅 (𝑠) is open dense in 𝑍𝜅 (𝑠) for any 𝑠 ∈ SpecO𝐾 .

(2) Let {X𝑖}0≤𝑖≤𝑠 be a weak Néron model of 𝑋 . Then for any smooth O𝐾 -scheme 𝑍 with
irreducible special fiber and for any 𝐾-rational map 𝑍𝐾 d 𝑋 , there exists an integer 𝑖
with 0 ≤ 𝑖 ≤ 𝑠 such that 𝑢𝐾 extends to an O𝐾 -rational map 𝑍 d X𝑖 .

Proof See [4, Proposition 3.5.3]. ■

Lemma 3.2 Let 𝐾 be a discrete valuation field, 𝑋 a smooth separated 𝐾-scheme of finite
type, and X the Néron model of 𝑋 . Let Y be a smooth separated finite type scheme over O𝐾 .
Let 𝑓 : X → Y be a finite étale morphism over O𝐾 . Assume that Y is a weak Néron model
of its generic fiberY𝐾 . ThenY is the Néron model ofY𝐾 .

Proof Let 𝑍 be a smooth O𝐾 -scheme, and 𝑢𝐾 : 𝑍𝐾 → Y𝐾 a 𝐾-morphism. We shall
extend the domain of 𝑢𝐾 to 𝑍 . By Proposition 3.1, there exists an open subscheme𝑈 ⊂
𝑍 and 𝑢 : 𝑈 → Y, such that𝑈 contains the generic fiber 𝑍𝐾 and all the generic points
of the special fiber, and 𝑢 is the extension of 𝑢𝐾 . Using 𝑢, one has a finite étale covering
𝑈 := 𝑈 ×Y X → 𝑈. Since 𝑍 is a regular scheme, by taking the normalization of 𝑍 in𝑈
and using the Zariski-Nagata purity theorem, one can extend this finite étale covering
to 𝑍 → 𝑍 . By the Néron mapping property of X, we have X(𝑈) = X(𝑈𝐾 ) = X(𝑍).
Therefore, the base change morphism 𝑢̃ : 𝑈 → X can be extended to 𝑢̃ : 𝑍 → X. Then
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we have a morphism 𝑢
𝑍
: 𝑍 → Y. Consider the equalizer diagram

Y(𝑍) //

��

Y(𝑍) // //

��

Y(𝑍 ×𝑍 𝑍)

��
Y(𝑍𝐾 ) // Y(𝑍𝐾 ) // // Y((𝑍 ×𝑍 𝑍)𝐾 )

, (3.1)

where the vertical arrows are injective since 𝑍 , 𝑍 , and 𝑍 ×𝑍 𝑍 are reduced schemes
which are flat over O𝐾 andY is separated over O𝐾 . It suffices to show that 𝑢

𝑍
∈ Y(𝑍)

is contained in the equalizer of the upper right arrows. Since the middle vertical map
sends 𝑢

𝑍
to 𝑢𝐾 , which is contained in the equalizer of the lower right arrows, it finishes

the proof. ■

Remark 3.3 Without the assumption thatY is a weak Néron model, Lemma 3.2 does
not hold. For example, consider an elliptic curve 𝐸 over a discrete valuation field 𝐾
whose ℓ-torsion points are 𝐾-rational. Here, we fix a prime number ℓ that is different
from the residual characteristic of 𝐾 . Assume that the residue field of 𝐾 is algebraically
closed, and the special fiber of minimal regular model of 𝐸 is of reduction type 𝐼𝑛 (i.e.
non-singular rational curves arranged in the sphe of an 𝑛-gon) with ℓ |𝑛. Let E and G
be Néron models of 𝐸 and 𝐺 := 𝐸 [ℓ] with a closed immersion G ↩→ E given by
Lemma 2.7. Then E → E/G is a finite étale morphism over O𝐾 , but E/G is not a
Néron model of 𝐸/𝐺 . Suppose by contradiction that E/G is a Néron model of 𝐸/𝐺 .
Then the isomorphism 𝐸/𝐺 ≃ 𝐸 induced by ×ℓ extends to an isomorphism E/G ≃ E.
Since the composition 𝐸 → 𝐸/𝐺 ≃ 𝐸 is the ℓ-multiplication, so is the composition
E → E/G ≃ E . Since the later composition is not surjective by ℓ |𝑛, we obtain the
contradiction.

We obtain the existence of a Néron model for biellptic surfaces admitting good
reduction. Note that this can also be proved using [11, Proposition 6.2].

Proposition 3.4 Let𝐾 be a discrete valuation field with residual characteristic different from
2 and 3, and 𝑋 a bielliptic surface over 𝐾 . Assume that 𝑋 admits good reduction. Then 𝑋
admits a Néron model.

Proof LetX be a proper smooth scheme in Lemma 2.5. Then the cyclic covering over
O𝐾 associatedwith a fixed isomorphism𝜔⊗𝑚

X/O𝐾 ≃ OX is theNéronmodel of its generic
fiber as in the proof in Lemma 2.5. By the valuative criterion of properness, the model
X is a weak Néron model of 𝑋 , so by Lemma 3.2, it finishes the proof. ■

Next, we state the existence of Néron models in a little more general setting. Let 𝐾
be a discrete valuation field with residue characteristic different from 2 and 3, and 𝑋 a
bielliptic surface over 𝐾 which admits a rational point 𝑥 ∈ 𝑋 (𝐾). Let 𝑋 ≃ (𝐴 × 𝐵)/𝐺
be the isomorphism given in Lemma 2.2. LetA, B and G be Néron models of 𝐴, 𝐵 and
𝐺 . LetA,B beminimal regularmodels of 𝐴, 𝐵. Note that theNéronmodel of an elliptic
curve is the smooth locus of theminimal regularmodel (see [4, Proposition 1.5.1]). By the
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Néronmappingproperty,wehave a group action𝜎 : G×A×B → A×B, which is a free
action since G ↩→ A is a closed immersion by Lemma 2.7. In the following, we assume
that G is finite étale over O𝐾 (i.e., 𝐺 admits good reduction). Then one can extend the
action G × A → A to G × A → A uniquely. Indeed, the connected component
of G is the spectrum of discrete valuation ring O𝐿 which is unramified over O𝐾 . Since
AO𝐿 is also a minimal regular model of 𝐴𝐿 ([25, Proposition 9.3.28]), one can use the
minimality to extend this action ([25, Proposition 9.3.13]). Similarly, one can extend the
action G × B → B uniquely, therefore we have the action Σ : G × A × B → A × B.

Theorem 3.5 Let 𝐴, 𝐵, 𝐺,A,B,G, 𝜎 and Σ as above (so we suppose that 𝐺 admits good
reduction). Then, if Σ is a free action (for example, the case where 𝐴 admits good reduction),
the quotient (A × B)/G is the Néron model of 𝑋 .

Proof By the assumption, the scheme (A × B)/G is a finite étale quotient ofA ×B.
Therefore (A × B)/G is a regular scheme which is proper over O𝐾 . Since its smooth
locus is (A × B)/G, by the valuative criterion of the properness and [26, Lemma 3.1],
one can show that (A × B)/G is a weak Néron model of 𝑋 . By Lemma 3.2, it finishes
the proof. ■

This proof is based on the philosophy ‘the smooth locus of a minimal model is the
Néron model’. On the other hand, one can prove the existence of Néron models in a
more general setting, as follows.

Theorem 3.6 Let 𝐾 be a strictly Henselian discrete valuation field with residue field 𝑘 whose
characteristic is different from 2 and 3, and 𝑋 a bielliptic surface over𝐾 which admits a rational
point 𝑥 ∈ 𝑋 (𝐾). Let 𝑋 ≃ (𝐴 × 𝐵)/𝐺 be the isomorphism given in Remark 2.3. If 𝐺 admits
good reduction (i.e., the inertia group 𝐼𝐾 acts trivially on𝐺 (𝐾)), then 𝑋 admits a Néronmodel.
In particular, for any bielliptic surface 𝑋 over 𝐾 , there exists a finite separable extension 𝐿/𝐾
such that 𝑋𝐿′ admits a Néron model for any finite extension 𝐿′/𝐿.

Remark 3.7 Since wework over a strictly Henselian discrete valuation field, if 𝑋 (𝐾) =
∅, then 𝑋 → Spec𝐾 → SpecO𝐾 itself is the Néron model of 𝑋 by Hensel’s lemma.
Thus, to prove the existence of a Néron model, we may assume that 𝑋 (𝐾) ≠ ∅.

Proof It suffices to show the first statement. Let 𝑋 ≃ (𝐴×𝐵)/𝐺 be a bielliptic surface
with a rational point 𝑥 ∈ 𝑋 (𝐾), as in the assumption. Let 𝑛 be the integer as in Remark
2.3. Sincewe areworkingwith a strictly Henselian discrete valuation field, the following
hold.

• The group scheme𝐺 consists of 𝐾-rational points.
• Every connected component of the special fiber of a Néron modelA has a
𝑘-rational point. Especially, every component is geometrically connected.

• Let
Φ : 𝑋 (𝐾) → 𝐴/𝐺 (𝐾) → 𝐴(𝐾) ≃ A(O𝐾 ) → 𝜋0 (A𝑘)/𝑛𝜋0 (A𝑘)

be the composition of the Albanese morphism with the reduction maps. Here, the
second arrow is an isomorphism given by the 𝑛-multiplication map as in Remark
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2.3. Then, there exist 𝐾-valued points 𝑥0 = 𝑥, 𝑥1, . . . , 𝑥𝑠 ∈ 𝑋 (𝐾) which give a
complete set of representatives of ImΦ.

For each rational points 𝑥𝑖 , we have a description

𝑋 ≃ (𝐴𝑖 × 𝐵𝑖)/𝐺𝑖
given in Remark 2.3. Here, by the definition every 𝐴𝑖 is the Albanese variety of 𝑋 , so
every 𝐴𝑖 is naturally isomorphic to each other. The only difference is that the zero
section of 𝐴𝑖 is given by alb(𝑥𝑖). As in Remark 2.3, each𝐺𝑖 consists of𝐾-rational points.

LetA𝑖 ,B𝑖 ,G𝑖 be the Néron models of 𝐴𝑖 , 𝐵𝑖 , 𝐺𝑖 . By the Néron mapping property,
one can extend the group action toNéronmodels. By Lemma 2.7, a NéronmodelG𝑖 is a
finite étale subgroup scheme ofA𝑖 . LetX𝑖 be the finite étale quotient (A𝑖 ×B𝑖)/G𝑖 . As
before, the quotientX𝑖 is smooth separated of finite type over O𝐾 . LetX be the scheme
obtained by gluingX𝑖 together on the generic fibers. By definition,X is a smooth finite
type scheme overO𝐾 satisfyingX𝐾 ≃ 𝑋 . We shall prove that thisX is the desiredNéron
model.
First, we shall prove thatX is separated overO𝐾 . Let 𝑅 be a discrete valuation ring over
O𝐾 , and𝐹 the fraction field of 𝑅. By the valuative criterion of separatedness, it is enough
to show that X(𝑅) → X(𝐹) is injective. Assume that there exist 𝑡1, 𝑡2 : Spec 𝑅 → X
which are different 𝑅-valued points going to the same 𝐹-valued point. Clearly, each 𝑡𝑙
factors through some X𝑖𝑙 ↩→ X. If 𝑡𝑙 factors through the same component X𝑖 , by the
separatedness ofX𝑖 , we have 𝑡1 = 𝑡2. Therefore each 𝑡𝑙 factors throughX𝑖𝑙 with 𝑖1 ≠ 𝑖2
and each 𝑡𝑙 does not factors through the generic fiber 𝑋 . Let 𝑠𝑙 := alb(𝑡𝑙) ∈ A𝑖𝑙 (𝑅),
where alb is the extension of the Albanese morphism toX → A. The morphism alb|X𝑖𝑙
is written as the following composition,

X𝑖𝑙 := (A𝑖𝑙 × B𝑖𝑙 )/G𝑖𝑙 → A𝑖𝑙/G𝑖𝑙 → A𝑖𝑙 ,

where the last map is given by 𝑛-multiplication morphism. As remarked above, for any
0 ≤ 𝑖, 𝑗 ≤ 𝑠, the varietiesA𝑖 andA 𝑗 are naturally isomorphic (we denote it byA), and
there exists the following commutative diagram.

A
𝑡𝑖, 𝑗 //

𝑛A𝑖
��

A
𝑛A 𝑗
��

A
𝑡𝑖, 𝑗 // A

(3.2)

Here 𝑡𝑖, 𝑗 is a translation on A which sends alb(𝑥𝑖) to alb(𝑥 𝑗 ), and 𝑛A𝑖 is 𝑛-
multiplication map as the group scheme A𝑖 . Note that we identify alb(𝑥𝑖) with its
extension to the O𝐾 -valued point of A. Let 𝔪 be the maximal ideal of Spec 𝑅. Since
𝑡𝑙 (𝔪) is contained in the special fiber ofX𝑖𝑙 , the point 𝑠𝑙 (𝔪) is contained in the special
fiber of A. By the above description of alb|X𝑖𝑙 , the point 𝑠𝑙 (𝔪) lies in the component
which is contained in Π𝑖𝑙 , where

Π𝑖 := Im(𝑛A𝑖 : 𝜋0 (A𝑘) → 𝜋0 (A𝑘)).

By the above commutative diagram, as subsets of the component group 𝜋0 (A𝑘), we have

Π𝑖𝑙 = 𝑡0,𝑖𝑙Π0 = (alb(𝑥𝑖𝑙 ) − alb(𝑥0))Π0.
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Since we have 𝑖1 ≠ 𝑖2, by the definition of 𝑥𝑖 , we have that Π𝑖1 and Π𝑖2 are disjoint in
𝜋0 (A𝑘). So we have 𝑠1 ≠ 𝑠2. However, since 𝑠1 and 𝑠2 give the same 𝐹-valued point
of A, we have 𝑠1 = 𝑠2 by the separatedness of A. This is a contradiction, thus X is
separated over O𝐾 .

Next, we shall prove that the family {X𝑖}𝑖=0,...,𝑠 is a weak Néron model of 𝑋 . Let
𝑦 ∈ 𝑋 (𝐾) be any 𝐾-valued point of 𝑋 . By definition, there exists a unique 𝑥𝑖 ∈ 𝑋 (𝐾)
which representsΦ(𝑦). Let alb(𝑦)′ ∈ A(O𝐾 ) be the unique extension of alb(𝑦). Then
the special fiber of alb(𝑦)′ lies in the unionof components corresponding to 𝑡0,𝑖Π0 = Π𝑖 .
We note that this union of components is the image of the 𝑛-multiplication map on the
special fiber induced by 𝑛A𝑖 (see [4, Lemma 7.3.1, Lemma 7.3.2]). Since O𝐾 is strictly
Henselian, the fiber of alb(𝑦)′ along 𝑛A𝑖 has a component SpecO𝐾 , i.e., there exists
a lift 𝑦′1 ∈ A(O𝐾 ) of alb(𝑦)′ along 𝑛A𝑖 . Let 𝑦1 ∈ 𝐴(𝐾) be the 𝐾-rational point of
𝐴 induced by 𝑦′1 (so 𝑦1 is a lift of alb(𝑦) along the 𝑛-multiplication map on 𝐴𝑖 ). Let
𝑦2 := (−𝑦1) · 𝑦 ∈ 𝑋 (𝐾), where · denotes the action 𝐴𝑖 × 𝑋 → 𝑋 given in the proof
of Lemma 2.2. Then by the definition (see the commutative diagram (2.1) in the proof
of Lemma 2.2), we have alb(𝑦2) = alb(𝑥𝑖), and therefore 𝑦2 lies in 𝐵𝑖 (𝐾) and we have
𝑦 = (𝑦1, 𝑦2). We can extend (𝑦1, 𝑦2) ∈ 𝐴𝑖 × 𝐵𝑖 to (𝑦′1, 𝑦′2) ∈ A𝑖 × B𝑖 (O𝐾 ). Therefore
𝑦′ := (𝑦′1, 𝑦′2) ∈ X𝑖 (O𝐾 ) gives a desired extension of 𝑦.

Finally, we shall prove that X satisfies the Néron mapping property. This part is
essentially the same as in the proof of Lemma 3.2, but we include it for the sake of com-
pleteness. Let 𝑍 be any smooth O𝐾 -scheme, and 𝑢𝐾 : 𝑍𝐾 → 𝑋 be a 𝐾-morphism. By
Remark 2.4, it suffices to show the existence of an extension of 𝑢. Moreover, we may
assume that 𝑍 has an irreducible special fiber (in the general case, one can glue them). By
Proposition 3.1 (2), there exists an extension of 𝑢𝐾 to an O𝐾 -rational map 𝑢 : 𝑍 d X𝑖
for some 0 ≤ 𝑖 ≤ 𝑠. Therefore, there exists an open subscheme 𝑈 ↩→ 𝑍 where 𝑢
is defined, such that 𝑈 contains 𝑍𝐾 and the generic point of 𝑍𝑘 . Then the finite étale
covering

𝑈 := 𝑈 ×X𝑖 (A𝑖 × B𝑖) → 𝑈

can be extended to the finite étale covering 𝑍 → 𝑍 by taking the normalization of 𝑍
in𝑈 and using the Zariski-Nagata purity theorem. By the Néron mapping property, we
have

A𝑖 × B𝑖 (𝑈) = A𝑖 × B𝑖 (𝑈𝐾 ) = A𝑖 × B𝑖 (𝑍),
so the base change morphism 𝑢̃ : 𝑈 → A𝑖 × B𝑖 can be extended to 𝑢̃ : 𝑍 → A𝑖 × B𝑖 .
Hence we have a morphism 𝑢

𝑍
: 𝑍 → X𝑖 , and by the uniqueness of extension, one can

descends 𝑢
𝑍
to 𝑢𝑍 which is a desired extension of 𝑢𝐾 . It finishes the proof. ■
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