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C*-Algebras and Factorization Through
Diagonal Operators

Narcisse Randrianantoanina

Abstract. Let A be a C*-algebra and E be a Banach space with the Radon-Nikodym property. We
prove that if j is an embedding of E into an injective Banach space then for every absolutely summing
operator T: A — E, the composition j o T factors through a diagonal operator from I into /'. In
particular, T factors through a Banach space with the Schur property. Similarly, we prove that for
2 < p < oo, any absolutely summing operator from A into E factors through a diagonal operator
from I? into I2.

1 Introduction

Diagonal operators between [P-spaces are probably the most well-understood among
the many classes of operators involved in the theory of Banach spaces. Indeed, many
ideals of operators in the literatures are based on factorizations through diagonal op-
erators such as p-nuclear operators. It is well known that if E is a Banach space with
the Radon Nikodyn property (RNP) then every absolutely summing operator from
any C(K)-spaces into E is nuclear. Recognizing that C(K)-spaces are C*-algebras, one
may wonder if such permanent property extends to operators on C*-algebras. This
note is an attempt to isolate permanent properties of absolutely summing operators
when the domain spaces are extended to include (non-commutative) C*-algebras in
general. Since absolutely summing operators from C*-algebras are not necessarily
integral operators, one should not expect that the result for C(K)-spaces would ex-
tend to non-commutative C*-algebras. In fact, it is not even clear if such operators
are p-nuclear for p > 1. The Hilbert space case was settled in [7] where it was
shown that any absolutely summing operator from a C*-algebra into a Hilbert space
factors through a Hilbert space operator belonging to the 4-Schatten von Neumann
class. Our main result is Theorem 3.1 below, which roughly states that any absolutely
summing operator from a C*-algebra into a Banach space with the (RNP) factors
through a diagonal operators from /% into I' when viewed as an operator into an in-
jective space. Our proof is based on a factorization technique proved in [8] along
with basic properties of nuclear and integral operators.

Our terminology and notation are standard as may be found in [1, 3] for Banach
spaces, [4, 11] for C*-algebras and operator algebras.
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2 Preliminary Definitions

In this section, we recall some definitions.

Definition 2.1 Let X and Y be Banach spaces and 0 < p < oco. An operator
T: X — Y is said to be p-summing if there is a constant C such that for any finite
sequence {x;}"_, of X, one has

n 1 n 1
(S umslr) < csup{ (D0 1ex) 1) "5 2" € X%, ')l < 1
i=1 i=1

The smallest constant C for which the above inequality holds is denoted by 7, (T)
and is called the p-summing norm of T.

Definition 2.2 We say that an operator T: X — Y is an integral operator if it admits
a factorization:
iT
X — Y™

L>®(p) — L'(p)

where i is the natural inclusion from Y into Y**, p is a probability measure on a
compact space K, ] is the natural inclusion and « and (3 are bounded linear operators.

We define the integral norm i(T) := inf{||| - ||5]|} where the infimum is taken
over all such factorizations.

Similarly, we shall say that T is strictly integral if T is integral and on the factoriza-
tion above (3 takes its valuesin Y.

It is well known that integral operators are 1-summing but the converse is not
true.

If X = C(K) where K is a compact Hausdorff space then it is well known that
every 1-summing operator from X into Y is integral. Similarly, if the range space Y
is an injective Banach space, then every absolutely summing operator from X into Y
is (strictly) integral.

Definition 2.3 ([6, p. 243]) Let0 <r<oo,1 < p,g<ocand1+1/r > 1/q+1/p.
An operator S: X — Y is said to be (r, p, q)-nuclear if it admits a factorization:

S
X —Y

] l T p
D
lq/ — P

where 1/g + 1/q’ = 1 and D is a diagonal operator of the form D((&;);) = (0,&);
with (g;); € I'.
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In this case, the (1, p, g)-nuclear norm is defined by

Nepg(8) = inf {[|B] - [[(e)

r- Al

where the infimum is taken over all such factorizations.

We remark that (p, p, 1)-nuclear corresponds to the usual p-nuclear operators.
In this case, N, ,1)( ) is denoted by N, () and for p = 1, the nuclear norm will
be denoted by N(-). For more details on the different properties of the ideals of
operators involved, we refer to [2, 6].

The following simple fact will be needed in the sequel (see for instance, [3, Corol-
lary 5, p. 174]).

Proposition 2.4 IfY is a Banach space with the (RNP), then every absolutely sum-
ming operator T from any C(K)-space into Y is nuclear. In this case, m,(T) = N(T).

More generally, the preceding proposition can be extended to strictly integral opera-
tors.

Proposition 2.5 Let T: X — Y be a strictly integral operator. If Y has the (RNP)
then T is nuclear with i(T) = N(T).

Proof The operator T has a factorization T = [Ja where a: X — L*(u),
J: L®(w) — L'(u) and B: L'(u) — Y are as in the above definition. Note that
J is 1-summing so 5]: L*°(u) — Y is 1-summing and since L () is a C(K)-space
and Y has the (RNP), 8] (and hence T) is nuclear. [ |

We will now recall some basic facts about C*-algebras and von Neumann algebras.
Let A be a C* algebra, we denote by A the set of Hermitian (self adjoint) elements of
A.Forx € Aand f € A*, as is customary, xf (resp., fx) denotes the element of A*
defined by xf(y) = f(yx) (resp., fx(y) = f(xy)) for every y € A.

Definition 2.6 A von Neumann algebra is said to be o-finite if it admits at most
countably many orthogonal projections.

We refer to [4, 11] for some characterizations and examples of o-finite von Neumann
algebras. Of particular use in this paper is that a von Neumann algebra M is o-finite
if and only if there exists a faithful normal state ¢ € M..

3 The Results

The main result of this paper is Theorem 3.1 below which provides a factorization
of absolutely summing operators through diagonal operators. The reader is referred
to [3] for extensive exposition on Banach spaces with the Radon-Nikodym properties
(RNP).

Theorem 3.1 Let A be a C*-algebra and E be a Banach space with the (RNP) and

T: A — E be an absolutely summing operator. Then for every operator S: E —
L*>[0, 1], the composition ST is (2, 1, 2)-nuclear with N3 1 2)(ST) < 2||S||71(T).
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For the proof, we will consider first the following particular case:

Proposition 3.2 Let M be a o-finite von Neumann algebra and E be a Banach space
with the (RNP). If T: M — E is absolutely summing and is weak* to weakly continuous
and S: E — L0, 1] then ST is (2, 1, 2)-nuclear with N(3,1.2)(ST) < 2||S||m1(T).

Proof Let§ > 0. From Lemma 2.3 of [8], there exists a faithful state f in M, such
that for every x € M,

[ Tx|| < 2(1 + &)m(T)[|xf + fx[[a, -

If L*(f) is the completion of the prehilbertian space (M, (-, -)) where (x,y) =
f((xy* + y*x)/2) then we have the following factorization:

T
M ——E

RN

]
L(f) — I*(f)* —= M.

where ] is the inclusion map, 8(Jx) = (-, J(x*)) for every x € M and
L((xf + fx)/2) = Tx.

Here we denote by x* the adjoint of the element x € M. We recall that L is a
well defined bounded linear map since {xf + fx ; x € M} is dense in M, and
ILxf + fx)|] <41+ 0)m(D)||xf + fx|a,. By duality, the proposition will follow
from the following lemma:

Lemma 3.3 Forevery S: E — L*>|0, 1], the composition JL*S* is 2-nuclear.

Remark that L*S*: L*°[0, 1]* — M so the composition TL*S*: L*°[0,1]* — E
is well-defined and is absolutely summing as T is absolutely summing.

Claim LT*: E* — Eissuch that LT* = (LT*)* = TL*.
In fact, for every e* and f* in E*, we have:

(LT"(e"), f*) =

e, TL*(f*))

e, LT"0JL*(f*))
JL*(€"),0(JL)(f*))
JL*(e*), JAL*(f))) 2 p)-

o~ o~~~

By the definition of the scalar product on L?(f),

L*(e")L*(f7) +L*(f*)L*(6*))
2

AT, £ = f(
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which is symmetric on e* and f*. Thatis, (LT*(e*), f*) = (LT*(f*), ¢*) and hence,
(LT*)* = LT* and the claim is verified.

As LT* = TL* is absolutely summing and L°°[0, 1] is injective, SLT™ is strictly
integral. Consequently, its adjoint TL*S*: L°°[0, 1]* — E is strictly integral. Since E
has the (RNP), Proposition 2.5 implies that TL*S* is nuclear. A fortiori,

STL*S*: L0, 1]* — L*[0, 1]

is nuclear.
To complete the proof of the lemma, fix (f£,)72, and (g,)52, bounded sequences
in L°°[0, 1] with lim,,— o0 || fu|lco = limy— oo ||gn]lcc = 0 and (>\ )20, € I' such that

o0
STL™S* = Mfu ® g
For every £ € L>[0, 1]*, STL*S* (&) = >_ 2, Au{fu, €)gn and hence,

(3.1) (STL*S*(€),€) = ZA (fur €) (g, €

On the other hand, one can see that

Combining (3.1) and (3.2), we get that

o0

1
63) s @l <5 ZM &)+ 32 [Nl (8]

n=1

If we set hy, := f, and hypiq = gn» and Qi = Q1 = /| An|/2, then

LSO 1y < S 0] ()]

n=1

Define the operator U: L*°[0, 1]* — ¢y by setting for & € L*°[0,1]*, U(§) =
((hy, €))22, and D: ¢g — P the diagonal operator (a,), — (a,a,)>2,. Also if Z
is the subspace of I* defined by Z = span{(a,(h,,£))2,,& € L*[0,1]*}, then
(an(hy, £)32, — JL*S*(&) defines a bounded linear map from Z into Lz(f) Since
Z is a complemented subspace of 2, it can be extended to a bounded linear map V'
from I into L(f). It is now clear that

JL*S*
L=[0,1]* —— L*(f)

g —> 2
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is a commutative diagram that shows that JL*S* is 2-nuclear.
For the estimate of N2 1 2)(ST), note that for € > 0, the sequence {\,}72, can be
chosen so that Y ° | |[A\,| < N(STL*S*) + £. We now have the following estimate:

> Il = < |ISIN(TL*S")

n=1
= [|S||i(TL*S*) = ||S||i(SLT*)
= ||S||mi (SLT*) < ||S||*mi (LT*).
As LT* = TL* and ||L|| < 4(1 + §)m(T), we deduce that

> Al =& < [ISIP41 + 8)my (T2,

n=1

which shows that ||(av,)||z < [|S||2(1 + 8)/?7,(T) + e. Taking infimum over § and
g, we conclude that N1 2)(ST) < 2||S||m1(T). The proof of the proposition is com-
plete. ]

For the proof of Theorem 3.1, it is enough to reduce the general case to the particu-
lar case of Proposition 3.2. Recall that any C*-algebra can be considered as a concrete
C*-algebra via its universal representation ([11, Theorem 2.4]) and its second dual
can be identified with its universal enveloping von Neumann algebra. Denote by M
the universal enveloping von Neumann algebra of A.

Proposition 3.4 There exists a countably decomposable projection p in M such that
T**(x**) = T** (px** p) for every x** € A** = M.

Since E has the (RNP), it has the compact range property. From [9], the operator
T is compact and therefore T*(E*) is separable. Let {©,}52, be a countable dense
subset of T*(E*).

Lemma 3.5 There exists a countably decomposable projection p € M such that for all
n2>1ppn = Pup = Pn.
Fix an orthogonal family of cyclic projections {e, } nes in M such that 1 =\/
(see for instance, [5, Proposition 5.5.9]). For each n € Nand € > 0, set
E,. i ={a€1l;lleapn| >c}andE, = {a €1 |leapnl # 0}.

acl a

Claim E, . is finite (hence E, is countable).

To see this, assume that E, . is infinite. Then there exists an infinite sequence
{ex}2, in {eq faer such that ||exp,|| > e for all k € N. If J is a finite subset of N, then

Hzekwn = H(Zek) Pn
keJ keJ
= | (Ve
keJ

< lleall-
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S0 || >-ke) expnll < llul| (a constant independent of J) which shows that 7% e,
is a weakly unconditionally Cauchy (w.u.c.) series in A* = M, but since M, does
not contain any copies of ¢y, > .-, e, is unconditionally convergent and hence
limy_, o ||expn|| = O (see for instance, [1, p. 45]). This is in contradiction with the
assumption that ||exp,|| > € for all k € N. We have proved that E,, . is finite. It is
clear that E, = ;e Enx—1 50 it is at most countable. The claim is verified.

Similarly, if R, = {a € I, ||pnea|| # 0} then R, is at most countable.

LetC = |, (R,UE,). The set C is at most countable and if we set p := Vec €as
then p is a union of a countable family of disjoint cyclic projections in M so p is
countably decomposable in M ([5, Proposition 5.5.19]). Moreover, the construction
of p implies that py, = p,p = ¢, for all n > 1. The lemma is proved.

To complete the proof of the proposition, let x** € A** = M and e* € E*. Fix an
ultrafilter U in N such that T*(e*) = lim,, 1 .

<T>k>k(x**), e*> _ <X**, T*(e*)>

= lim{x**, ,).
,11513<x » Pn)

As p,p = ppy = @y foralln > 1, we have

= lim{px™p, ou)

= (px"p, T"(e")
which shows that (T**(x**), e*) = (T**(px™*p), e*) and as €* is arbitrary, the pro-
position follows.

To complete the proof, note that since p is countably decomposable, the von Neu-
mann algebra pMp is o-finite and the following commutes:

A E

j l/ T T**‘pMp
Q

A =M — pMp

where j is the natural inclusion and Q(x**) = px**p for all x** € A**. It is clear
that T**| 5, satisfies the conditions of Proposition 3.2. ]

For the next extension, we refer to [12] for definitions and examples of JB*-triples
and JBW*-triples.

Corollary 3.6 Let A be a JB*-triple and E be a Banach space with the (RNP). If

T: A — E is absolutely summing operator then for every S: E — L*°[0, 1], ST is
(2,1, 2)-nuclear.
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Proof LetT: A — EandS: E — L°°[0, 1] as in the statement, A** is a JBW *-trip-
les. Since JBW *-triples are (as Banach space) isometric to complemented subspaces

of von Neumann algebras, it follows that ST is (2, 1, 2)-nuclear. [ ]

Remarks 3.7

(i) In Theorem 3.1, the space L°°[0, 1] can be replaced by any injective Banach
spaces.

(ii) In general, the operator T itself cannot be (2, 1, 2)-nuclear. In fact, it is enough
to consider the Hilbert space. If every absolutely summing operator from A to 2
were to be (2, 1, 2)-nuclear then it factors through a Hilbert-Schmidt operator.
An example was provided in [7] to show that this is not the case in general.

It was noted in [7] that in general, absolutely summing operators from C*-alge-
bras into Hilbert space are not L, -factorable. Theorem 3.1 also implies the following:

Corollary 3.8 Let A be a C*-algebra and E be a Banach space with the (RNP). Every
absolutely summing operator from A into E factors through a subspace of I'.

One can refine the argument given in the proof of Proposition 3.2 to get the fol-
lowing stronger result:

Theorem 3.9  Let A be a C*-algebra and E be a Banach space with the (RNP) and
T: A — E be an absolutely summing operator. Then for every operator S: E —
L>°[0,1] and every 1 < p < oo, the composition ST is (p, 1, p)-nuclear.

The theorem can be deduced from the following two results due to Saphar [10] and
Lewis-Stegall [3, p. 66], respectively.

Theorem 3.10 ([10, Theorem 8]) For 1 < p < oo, every compact operator from 1!
into I? is p-nuclear.

Theorem 3.11  Every representable operator from L'[0,1] into any given Banach
space factors through I,

Sketch of the proof of Theorem 3.9 It is enough to verify that for 1 < p < oo,
(ST)* is p-nuclear. Since (ST)* is 2-nuclear, there exist compact operators U:
L%°[0, 1]* — ¢, a diagonal operator D: ¢g — 2 and V: 2 — A* such that (ST)* =
VDU. Since U is compact, by Theorem 3.11, it factors through I', that is there are
U: L*°[0,1]* — ' and U,: I' — ¢ such that U = U,U,. By Theorem 3.10, VDU,
is p-nuclear and hence (ST)* is p-nuclear. ]

Our final result provides a factorization of absolutely summing operators without
embedding the range space into an injective space.

Corollary 3.12  Let A be a C*-algebra and E be a Banach space with the (RNP) and

T: A — E be an absolutely summing operator. Then for every 2 < p < oo, T factors
through a diagonal operator from IF into I>.
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Proof We can assume that E is separable. Let j be an embedding of E into L*>°[0, 1].
Let 2 < p < oo. From Theorem 3.9, there exists a diagonal operator D: I? — [!
such that jT factors through D. That is, there exist operators A: A — and B: I! —
L>°[0, 1] such that jT = BDA. Fix ()2, such that D((a,),) = (ana,), for all
(an), € IP. Clearly, (o), € 1 where 1/p +1/q = 1. For 1/2 = 1/p + 1/r,
let v, = |an|Q/r for all n > 1. It is clear that (v,), € I so a diagonal operator
Dy — 1P — 2 defined by D((a,),) = (yna,), for all (a,), € IP is a well defined
bounded operator and jT = CDyA for some operator C — > — L°°[0,1]. Since

X = C71(j(E)) is complemented in /> and C|y has its range in j(E), one can define
an operator S — I — E such that T = SDyA. The proof is complete. ]
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