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SPECTRAL ENCLOSURES AND COMPLEX RESONANCES FOR
GENERAL SELF-ADJOINT OPERATORS

E.B. DAVIES

Abstract

This paper considers a humber of related problems concerning
the computation of eigenvalues and complex resonances of a general
self-adjoint operatof! . The feature which ties the different sections
together is that one restricts oneself to spectral propertidsvatiich
can be proved by using only vectors from a pre-assigned (possibly
finite-dimensional) linear subspade

1. Introduction

This paper considers a number of related problems concerning the computation of eige
values and complex resonances of a general self-adjoint opéfatdren one is provided
with limited information about the operator. The feature which ties the different section
together is that one restricts oneself to spectral propertiésatiich can be proved by using
only vectors from a pre-assigned (possibly finite-dimensional) linear subspadgch is
not invariant with respect to the operator. Problems of this type arise in numerical analys
and guantum chemistry (and probably elsewhere). We concentrate on the first of these
plications, but discuss the second briefly at the end of this section. We also mention sol
related work on a generalization of the classical $4&git theorem in Sectios. While the
results of Section& to 4 are reformulations of theorems and techniques used by numerice
analysts, the later sections are entirely new to the best of our knowledge, particularly c
definition of complex resonances/higher-order spectra in Se@tion

A well-known method for obtaining upper and lower bounds on the eigenvalues of sel
adjoint operators depends upon the choice of a parameted a test-functiorf, followed
by the computation of Temple’s ratio

(Hf, Hf) — p(Hf, )

Our first goal is to show how the upper and lower bounds of eigenvalues depend upon 1
choice ofp and f. The dependence upgnappears not to have been previously investi-
gated from our point of view, but our theorems are confirmed by numerical data in earli¢
publications, as well as by our own computations for a test example. We mention parti
ularly the recent papers of Zimmerman and Mertins [33], [27] who obtained enclosure
for eigenvalues in the gap between two parts of the essential spectrum of a self-adjo
operator. This part of our analysis depends heavily upon a theorem of ¥X3tarhich has
been little appreciated outside the numerical analysis commutiiy The novel feature

of our approach is that it depends upon the study of a particular non-negative fufiction
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on the real line, which encapsulates much of the information about the given self-adjoi
operator which can be obtained by the use of a given linear subgpafine Hilbert space.
This function is effectively computable, and its geometrical and analytic properties hel
to clarify a number of related spectral problems. In particular, it enables one to avoid tt
spurious eigenvalues which may be obtained if one tries to approximate the specttum of
by computing the spectrum dt H P, whereP is the orthogonal projection onto the sub-
spaceL. Our main results concerning the discrete spectrum are The@eanas, but their
relevance only becomes clear from the surrounding comments concerning their numeri
application.

In Section6 we consider the determination of the essential spectrum of discretise
Schrodinger operators with bounded potentials. Arveddri%], [3] has recently used*-
algebra methods in conjunction with a computer program to investigate the complicat
spectra possible for the almost Mathieu equation, a one-dimensional model with an almq
periodic potential. The methods of the present paper throw further light on the nature
the spurious eigenvalues, and indicate how to eliminate them before passing to the infir
volume limit.

In Section7 we describe an adaptation to Schrédinger operators of a theorem of Avrol
van Mouche and Simor6] which enables one to locate the whole spectrum of such ar
operator approximately, by considering only test functions which are supported in balls |
given radius. Although not particularly efficient, it is suprising that such bounds may b
proved witout any local or global restrictions on the potential, apart from the requiremer
that it be non-negative.

Finally, in Sections$3 and9, we consider the problem from a more theoretical point of
view, which leads to a new definition of the concept of resonance of an arbitrary self-adjoi
operator relative to a given subspace. This definition is purely functionally analytical, an
does not depend upon the operator in question having a non-empty absolutely continuc
spectrum, as do all other definitions of resonance that we know of. We define a hierarc
of n-th order spectra off with respect to a subspace, and show that there is a very clos
relationship between the functignpreviously considered and the second-order spectrum
which is usually entirely non-real. We also provide explicit computations for a simple
example.

When studying the discrete spectrum, we consider only the simplest case, namely findi
rigorous enclosures for solutions &ff = Af, whereH is a possibly unbounded self-
adjoint operator acting in a Hilbert spagé The methods can be extended to the equation
Af = ABf where one of the self-adjoint operatots B is positive definite. There are two
standard and complementary methods of bounding the eigenvalues of a self-adjoint oper:
H, associated with Rayleigh—Ritz and Temple—Lehmann—-Goerisch. Both methods invol
choosing a finite-dimensional subspace of the domain of the operator, followed by tt
implementation of certain matrix calculations. We focus on three aspects of the procedur

The first is the choice of the finite-dimensional subspacef the Hilbert space¥.

This may well be the most important issue of all4fis even approximately orthogonal
to some eigenvector aff, then no computations involving the restriction @fto .£ can
possibly allow one to get a good approximation to the associated eigenvalue. Even if tt
radical failure does not occur, the quality of any estimate depends critically upon how we
the subspace is adapted to the operatoFinite element subspaces provide a reasonable
general choice for many partial differential operators, but for particular problems of thi
type one might do much better by choosing a basis of functions which have the appropric
behaviour at local singularities. Another interesting possibility, discussed in Ségtisn
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to choose£ to be a spectral subspace of an auxiliary operator. The quality of the spectr
information obtained can then be estimated in terms of certain commutators involving t
two operators.

The second issue is that of rounding errors in the numerical calculations. Interval aritl
metic methods give guaranteed bounds, but are slower to implement. The recommen
method is usually to obtain the best possible approximations to the eigenvalue and eigenv
tor using standard floating-point arithmetic, and then to start again, using these approxin
tions, to obtain rigorous upper and lower bounds by means of a spectral inequality togett
with interval arithmetic. This last stage should involve as few calculations as possible.

The third issue, and the one which we concentrate on, is that of the spectral inequaliti
themselves. The Rayleigh—Ritz procedure provides upper bounds for those eigenvalues o
which are less than the bottom of the essential spectrum. Complementary lower bounds h
been obtained by Temple, Lehmann and Goerisch; see [13], [28], [27], [33] for accounts
these methods. However the methods do not work as they stand for eigenvalues in a spe
gap. Our goal in this paper is to reinvestigate this issue and to provide a new perspective
the Temple—Lehmann procedure, which may even be of computational value.

We assume that is a linear subspace of the domain of the self-adjoint operi@nd
thatA = H| . is a closed operator; this is automatigifis finite-dimensional. LeP be the
orthogonal projection onto the closw@of £, and letB = PA. ThenB is a symmetric
operator acting in the Hilbert spade If .£ is finite-dimensional the® is self-adjoint, but
in general this is not the case. A standard procedure for calculating approximate eigenval
of H is to calculate the eigenvalues Bf or of some particular self-adjoint extension®f
in .£. However, this may lead to serious errorsHfis a differential operator, the choice
of £ may be associated with boundary conditions which lead to spurious eigenvalues, t
eigenfunctions of which are concentrated near to the bounddry pmma 6]. Whether it
is easy to identify these spurious eigenvalues may depend on the way indtsdefined.

We refer to f], [32, p. 201] for some famous examples for which the spectrumatfd of
the original operatoH are totally unrelated in the limit ag increases toward# .

We conclude the section by explaining the relevance of the theory presented here
quantum chemistry. There are standard prescriptions for calculating the energy levels
molecules (or atoms), but these assume that the molecule is isolated in space. For a typ
molecule, surrounded by others and by stray electric fields, it is of interest to ask abo
those spectral properties which are stable with respect to a range of possibly random
turbations of the potential outside the immediate neighbourhood of the molecule. One w
of posing this question is by considering the usual Hamiltonian but confining oneself t
information which can be obtained by the use of wave-functions which have support in
defined neighbourhood of the nuclei. Our procedure doéamount to imposing Dirichlet
or any other particular boundary conditions on the operator in the region considered.
one chooses the subspaceausing this prescription, our method provides a procedure for
defining and computing spectral properties, including complex resonances.

2. The basic method

We base our analysis upon the behaviour of the non-negative real-valued function

l[Ap — 19|

F(t) = inf
© '”{ 191

:O;é¢>e£} (2.1)

https://doi.org/10.1112/51461157000000140 Published online by Ca414ridge University Press


https://doi.org/10.1112/S1461157000000140

Spectral enclosures and complex resonances for general self-adjoint operators

and higher-order analoguds, (t) for n > 2. Note that if£ is finite-dimensional then
F(r) = 0ifand only ifz is an eigenvalue aff whose eigenfunction lies if. This unlikely
possibility need not concern us any further.

The connection between the functiéiir) and the Temple—Lehmann—-Goerisch formula
for the enclosure of eigenvalues is not obvious, and we refer the reader who wishes to
this explained immediately to Theoresn

Lemma 1. The functionr — F(¢) is Lipschitz continuous and satisfies
|[F(s) — F()] < |s — 1 (2.2)
forall s,t € R and also
F(t) > dy (1) := dist(t, Spec(H). (2.3)
Proof. Given 0# ¢ € £, we have

149 — 19l _ IA¢ — s
ol = gl

Taking the inf over all suck leads quickly to the first inequality. if ¢ Spec(H),¢ is as
before and) := A¢ — t¢, then

F(1) < + s —1].

loll I(H =t~y -1 1
= SIH =)™ || =du (@)
1A — 14| Il ” = dn
so
Ap — 1l
dy(t) < ————
" |
and we may now take the inf over @llto obtain the second inequality.:le Spec(H then
the second inequality is elementary. O

Itis found in anumber of test cases tifaanddy are very similar even when the subspace
£ has quite low dimension. Thus any local minimumio) is close to the spectrum of
H, provided the valud '(¢) is small, an observation due to Krylov and WeinstéinCor.
6.20] :

Corollary 2. If 0 < F(r) < 8, then
Spec(H)N [t — 38,1+ 8] # 0, (2.4)
for any self-adjoint extensioH of the operatorA on L.

This corollary will be reconsidered in Sectibywhen we turn to the study of the essential
spectrum off . Until that section we assume that the essential spectrum is known, and th
we are interested in determining eigenvalues in the gaps between parts of the esser
spectrum as accurately as possible.

Corollary?2 yields a reasonable first estimate of the eigenvalug$,djut it is typically
much less efficient than the method of Theorgtrelow. It does not, and cannot, disprove
the possibility thatF (s) could be large even whene Spec(H). (See the comments made
in Sectionl about the importance of a good selection®j Thus the use of the functiaf
might not help to locate all of the eigenvaluesff but it cannot lead to the “discovery” of
spurious eigenvalues. The following typical example of a funcfigs), shown in Figure
1, was produced using [9].
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Figure 1: A functionF (s), produced using [9].
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Itis surprising that one gets much better enclosures of the eigenvallesyoévaluating
F (s) near its local maxima rather than near its local minima. The best theoretical choices
s are given in a standard context by the following theorem. We assumé/thas exactly
one simple eigenvaluein the interval(o~, o). Elaborations of the theorem are presented
later. The assumptions of the theorem become easier to satigfy decreases and™
increases, so the optimal choices are

p~ =max{s € Spec(H): s < A}

ot =min{s € Spec(H): s > A}.
If & is the smallest (respectively, the largest) point in the spectrufi,ahen the optimal
choices are~ = —oo (respectivelypt = +o0).

The amount of improvement obtained by the use of Theof®angl to locate Spec(H),
as opposed to Corollarg, is impressive. We refer to Sectidrfor a numerical example,
and for other relevant computations in the literature.

Theorem 3. Letp~ <o~ < o™ < p™, and letx be the only point of the spectrum &f
in(p~, p*). If
Fc7)<o™ —p~, Feh) <pt—o™. (2.5)
then
ot —FlohH) <A<o™ +F(o). (2.6)
If one assumes in addition that ¢ Spec(H), then (2.6) also follows from
Foc)=0" —p, FlcH =pT —o™T. 2.7)

Proof. By Corollary?2 there is a point of Spé&él) in [c+ — F(c ™), o + F(o™)] and this
forcesot — F(o™) < A. The other inequality has a similar proof, while the second version
of the theorem is an elementary consequence. O

The following theorem clarifies the principles underlying the best choieeof
Theorem 4. Let
p_<af<ag<02+<afr<p+
and
F(o;) <o —p, F(al."') <pt— crl.+
fori =1,2. Then
o) —F(o)) <o) —F(o]) <A <oy +F(o]) <o, +F(oy).

Proof. The inner two inequalities are taken from Theorgnand the outer two from the
first half of Lemmal. U

The following comments are in order.

1) Theorem4 may be summarised by saying thet should be as far away fromas
possible, subject to the stated constraints, in order to obtain the best enclosure of
2) It is clear from these theorems and Figudr¢hat if we knew the exact values of
A, p¥, p~, and could computé without error then by solving the equatior’s?)
we would obtain the optimal choices 6f" for the enclosures (2.6). The problem is
how to proceed in the absence of this information.

https://doi.org/10.1112/51461157000000140 Published online by Ca%Zridge University Press


https://doi.org/10.1112/S1461157000000140

Spectral enclosures and complex resonances for general self-adjoint operators

3) The theorems may be implemented in practice as follows. One first obtains appro
imate but unverified values of, p™, p~. If F is very close taly then one should
pute™ = (1 + pT)/2ando~ = (A + p7)/2, that is near the local maxima &f. If
one is confident thaF is close tody and that one has values bf p*, p~ which
are close to the true values, this suggests that one could try

ot =052 +0.48p"
o~ =052, +048p .

The acceptability of these choices is determined not by one’s confidence in the initi
estimates ok, o™ andp~, but solely by whether the required inequalities (2.5) hold.

4) The functionF only has to be evaluated at the chosen pairits Theoremb shows
that F (o) is the square root of a certain eigenvalue. There are of course standa
packages for evaluating eigenvalues of large matrices, but we need a verified upy
bound. The procedure for obtaining this is to use floating-point arithmetic to obtair
a good approximation to the eigenvalue and eigenvector. One then starts again us
this approximate eigenvector, the Rayleigh—Ritz procedure and interval arithmetic 1
obtain a verified upper bound on the eigenvalue. Although we only end up with a
upper bound orF (o), this still yields an enclosure of, albeit a slightly weaker
one.

We next describe the numerical procedure for evaluafing for anys € R, under the
assumption that is finite-dimensional. We defin¥ (s) : £ — £ for anys € R by

N(s) := A*A — 25B + s°1 (2.8)
=C+ (B —slg)?

where 0< C = A*(1 — P)A. The size of the operat@ measures the failure of to be

a spectral subspace #f. Leti,(s), 1 < n < dim(L), be the eigenvalues of (s) written

in increasing order and repeated according to multiplicity. They may be computed usir
standard packages.

Theorem 5. We have
F(s) = ra(s)'?

for all s € R. There exists an-dependent relabelling,, (s) of the eigenvalues such that
An(s) are all real-analytic functions of.

Proof. The first statement follows from the identity

(N(s)p, ) = |Hop — s¢]|?

for all ¢ € «£. The second is a standard consequence of the fact that the opevators
form a self-adjoint holomorphic family in the sense of Kato [20]. O

We now prove the equivalence between our method and that based upon the Temp
Lehmann—Kato bounds, which is the best general method for obtaining rigorous enclosul
of eigenvalues of partial differential operators if one uses a fixed test function space.
contrast to our previous practice, the parametirdefined in terms of ™, H and¢, rather
than being an independent variable.

The following theorem has an obvious analogue giving an upper bouid on
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Theorem 6. Letd < p™ and[A, p*] N Spec(H)= {A}. Let¢ € Dom(H) and
(Ho. ¢) < pT ]I

If we put
L1171 HY)?
2 ptlol?— (Ho, ¢)
then
. lHp—oll 1 lpte— He|?
g = S >0
ol 2pt9l% — (Ho, ¢)
and

1 _ PHHE @) — IH|?

A= 20 — .
7T T T 012 = (He. 6)

Proof. The identity

+ 1 |pt¢—Ho|?
o == -
2pt|¢lc = (Ho, ¢)
is obtained by simple algebra, and implies< p*. Hence the equality

n _1Hp — o9l
SEPSR LEh Sl 4}
loll
is equivalent to

(0t =)l = I1H — 0 9|?
which is again confirmed by simple algebra. We then have
A>o0—F(@©)>20—pt
and the final equality is again simple algebra. O

Note 1.The lower bound. > 20 — p™ is improved by increasing, subject to the
existence of a suitable functigh Assuming that € £, the optimal situation is obtained
by takingo to be the solution 0p™ — o = F(o).

Note 2.If we increaseo™ subject to[A, p™] N Spec(H)= {1} then by differentiating
the Temple ratio we see that we get a better lower bourid ®he optimal choice therefore
arises by taking™ to be close to the first spectral point Bfto the right ofa, if this point
is known.

3. An elaboration of the method

It appears from recent papers that one may sometimes obtain a better enclosure c
by takingp™* (p™) substantially larger (smaller) than suggested above. We describe th
theory behind this extension, which once again eventually yields the Temple—Lehman
Kato bounds.

We defined, y(s) to be thenth eigenvalue of H — sI| counting in increasing order,
repeating according to multiplicity, and stopping at the smallest point of the essential spe
trum of |[H — sI|. This may informally be described as the distance froto the nth
eigenvalue off counting outwards from. It is immediate from the definition thay, g (s)

https://doi.org/10.1112/51461157000000140 Published online by Ca419ridge University Press


https://doi.org/10.1112/S1461157000000140

Spectral enclosures and complex resonances for general self-adjoint operators

is a continuous, piecewise linear functionsofvith gradientt1 at every non-exceptional
point. A typical graph oflz g (s) is shown in Figure?.
We now recall that,, (s) was defined to be theth eigenvalue oiV (s).

Theorem 7. We have
dn 1 (5) < Fu(s) = hn(s) M2
for all » ands, and
[Fu(s) — Fa()| < |s — 1]

for all n, s andr.

Proof. The first inequality follows from the Rayleigh—Ritz method applied&o— s1)2.

The second inequality follows from the alternative definition

l|Ap — sl
1l

whereg, is the set of alk-dimensional subspaces £f O

F,,(s):{];iép max{ :OyéqSeL}

The same method as that of the last section now yields the following.

Theorem 8. If A, is thenth eigenvalue off counting to the left op™, ando* satisfies
F,(c™) < ,0+ —oT
then
=0t — Fy(c™).

The implementation of this method is similar to that for the case 1, described
after Theoremd. The first stage is to use unverified estimates of the eigenvalues to sele
appropriate values of *. Specifically, we takert as close tai, + p1)/2 as possible
while satisfying

Fyc™) <pt—o™.

We then takep to be the eigenvector df (¢ +) corresponding to itath eigenvalue, and
obtain

. (Hp, Hp) — pT(H, ¢)

T (Hé9) - pt(9.9)
The best choice of to take depends on circumstancesHlhas several very close eigen-
values surrounded by a large gap, then it is almost certainly necessary to take a large ve
of n to obtain good estimates on the middle eigenvalues of the group. Numerical exar
ples indicate that, even if the eigenvalues are well separated, there are often advantage
choosing: > 1. See B3, Tables 1 and 2]. The advantage of takirfgfurther away fromi
outweighs the disadvantage of having to compute higher eigenvectors of the opargtor
for appropriate.

4. A numerical example

We illustrate the above theory by means of a simple example which is deliberatel
computed to lower accuracy than possible so as to make the errors involved in the cho
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Figure 2: A typical graph ofi2 4 (s).
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Table 1:

s F(s) s+ F(s) s — F(s)
-.35 .05788448146 —.2921155185 —.4078844815
—-.34 .04821723590 —.2917827641 —.3882172359
-.33 .03871864769 —.2912813523 —.3687186477
-.32 .02955183526  —.2904481647 —.3495518353
-.31 .02115267820 —.2888473218 —.3311526782
-.30 .01488321555 —.2851167845 —.3148832156
-.29 .01398340816 —.2760165918 —.3039834082
—.28 .01922275402 —.2607772460 —.2992227540
=27 02726623140 —.2427337686 —.2972662314
—.26 .03629513011 —.2237048699 —.2962951301
-.25 04572945345 —.2042705466 —.2957294535

of s obvious. The operata? is defined ori2(Z) by the matrix
iflm—nl=1

1
H =1 (-1" ifm=n
0 otherwise.
Fouriertransform calculations show tt? is bounded with spectrum«/ﬁ, —1]U[L, V/5].
We now defineH by
H - -2 ifm=n=k
mn =1 HO  otherwise

mn
for some positive even integér SinceH is a rank one perturbation &, it has the same
essential spectrum, and at most one eigenvalue in each of the gaps of the spedifum of
In fact, Hp has two eigenvalues
u = —3.099952
A= —0.293684

We now definer to be the subspace of sequenges [%(Z) with supportin{1, ... , 2k},
and concentrate on obtaining enclosures aking this subspace only.

We putk = 10 and computé'(s), s+ F(s), s — F(s) for arange of values ofin Table
1, taken from [9].

If we simply minimiseF (s) by puttings = —0.29, then we obtain the very poor enclosure

—0.3040< 1 < —0.2760

Our theorems state that- F(s) < A provided that + F(s) < 1, and thak + F(s) > A
provided that — F(s) > —1. We see that the best enclosures @f Table2 are obtained
by takings = —0.64 ands = 0.35, the result being

—0.293775< A £ —0.293528.

This initial enclosure leads us to new valuess‘onamely*—gl = —0.646 and%rl =
0.353. Having confirmed the relevant inequalities for these two valuesved then obtain
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Table 2:

s F(s) s+ F(s) s — F(s)
-.70 .3532050530 —.3467949469 —1.053205053
—.69 3628673504 —.3271326496 —1.052867350
—.68 3725232840 —.3074767161 —1.052523284
—.67 3763394573  —.2936605426 —1.046339457
—.66 3664305129 —.2935694871 —1.026430513
—.65 3564543397 —.2935456604 —1.006454340
—.64 3464716983 —.2935283016 —.9864716982
—.63 3364870385 —.2935129615 —.9664870385
—.62 3265015554  —.2934984447 —.9465015555
—.61 3165157582 —.2934842417 —.9265157581
—.60 3065299342  —.2934700658 —.9065299342

.30 .5937971136 .8937971136 —.2937971136
31 .6037928541 9137928541 —.2937928541
.32 .6137885136 .9337885136 —.2937885136
.33 .6237840484 .9537840484 —.2937840484
.34 .6337794005 9737794005 —.2937794005
.35 .6437744895 .9937744895 —.2937744895
.36 .6537691985 1.013769199 —.2937691985
.37 .6637633485 1.033763349 —.2937633485
.38 .6737566457 1.053756646 —.2937566457
.39 .6837485619 1.073748562 —.2937485619
.40 .6937380144 1.093738014 —.2937380144

the marginally stronger enclosure
—0.293773< 1 < —0.293538

which depends only upon the evaluation/if) at these two points and the fact thas the
only spectral point off in (—1, 1). One could improve this further, but there are obvious
limits to what can be achieved with= 10. There is no difficulty in taking larger values of
k, but the purpose of this example is to illustrate the methods. To obtain maximum accura
interval arithmetic, which we have not used, would in any case be necessary.

5. Sze@’'s theorem

We mention another approach to the spectral theory of a self-adjoint opékatanich
depends upon comparing the spectruntiofvith that of P H P, whereP is the orthogonal
projection on a given closed subspate

The Berezin—Lieb formula

tr[P¢(PHP)P] < tr[P¢(H)P],

valid for all convex¢, has recently been generalized by Laptev and Safarov [22], whc
obtained an estimate for the difference of the two expressions above for a certain cle
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of non-convexp. They used their new formula ir2B] to provide a generalization of the
classical Szefylimit theorem, described below.

Let P, be the spectral projections of an auxiliary self-adjoint operadtoso thatP;,
converge strongly to the identity operatonas> oo. If ¢ is a suitably smooth function on
R with ¢ (0) = 0, then one may investigate the asymptotics as oo of the quantity

tr[y (P HPy)]).

Laptev and Safarow?3] obtained an asymptotic formula for this with an explicit error esti-
mate, generalizing Szét theorem, and provided several applications to pseudodifferentia
operators. They assumed that the operatoasid H satisfy certain commutator estimates,
in order to obtain corresponding commutator estimatesPf@and H. Such commutator
estimates are also relevant to the theory of this paper, as we now demonstrate.

If one putsX := (I — P)H P then it is easy to verify that

P(H —sI)>P =C + (PHP — sP)?

whereC := X*X.
A second easy calculation shows that

[P,HI*[P,H] = X"X + X X*.
But it is well known thatX* X andX X* have the same spectrum, apart possibly from 0, so
ICl =11tP, H1II?

with corresponding results for othéy, norms. For TheorertO below, the rank ofC is a
more important measure of its influence than any of these norms.

It should be emphasised that in Secti¢ghand 3 we need no assumptions about the
magnitude of the commutator to justify the spectral enclosures obtained. While there
no a priori guarantee that the enclosures are tight, they are guaranteed to be valid,
their accuracy in applications probably exceeds what could be proved by any general pr
argument.

6. The essential spectrum

Our next theorem states that if one has an appropriate increasing sequence of subsp
L, then it is possible to determine the spectrunfoéxactly using our earlier theorems.

Theorem 9. Supposd€.L,,}7° ; is an increasing sequence of closed subspace# stich
that D := U, {L£, N Dom(H)} is a core for the self-adjoint operatatl. If F™ are

the functions associated with, according to (2.1) the " decrease monotonically and
converge locally uniformly tdy . In particular, s € Spec(H)if and only if

lim F™(s) = 0.
n—00

Note.While this confirms the theoretical importance of the functiss for the spectral
theory of H, it can only be of use numerically if supplemented by information about the
rate of convergence.

If we considerH := —A + V(x) acting in L2(R") and take.t,, to be the space of
functions with support ifx : |x| < n}, then the hypothesis of the theorem is satisfied if for
exampleV is bounded below anditis locall?. If H has a bounded (noh?) eigenfunction
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associated with the valuec R, then one might expect that™ (s) = 0(%). The precision
of this method does not compare with that for computations of discrete eigenvalues.

Since the essential spectrum, and in particular the continuous spectrum of a Schrodin
operator, depend entirely upon the asymptotic behaviour of the potential at infinity, it
location is best determined by using theorems about the essential spectrum if possible
no such theorems are available for a particular operator, then one may be forced to the t
of procedure which we now describe.

The method of Arvesor], [5] for determining the essential spectrum has some relation-
ship with our analysis, but does not involve the functi@i(s), which we regard as central.
He invokesC*-algebra theory to deal with some discretised problems in one dimensior
and produces efficient algorithms in that context. However, his paper only discusses t
infinite volume limit, without controlling the rate of convergence, while we are interestec
below in obtaining guaranteed bounds using one chosen subspace. We consider only dis
tised Schrodinger operators for definiteness, but the same methods can be applied to pa
differential operators.

Let # := 12(ZV), and let.£ be the finite-dimensional subspace #f consisting of
functions with support in some large finite subSeif ZV. Let H := Ho + V whereV is
a real-valued bounded potential 8 and

Hof(n) := Y f(m)

wherem ~ n if "N |m; —n;| = 1. Itis immediate thal H|| < ¢ := 2N + ||V ||s0. Our
task is to obtain as much information about Spec@|)—c, c] as possible from within the
subspacet. We must avoid spurious eigenvalues associated with eigenfunctions which a
concentrated around the boundary.

0S:={n¢ S:n~ mforsomem € S}.

We obtain estimates on the spectrumfwhich depend mainly upon the number=
#(S). One hask = 2 if S is an interval inZ, the only case considered by Arveson, but
in higher dimensiong increases indefinitely a$ expands. One immediately sees that
rank{(1 — P)H P} < k. We use this fact to compare the spectrumbivith that of its
restrictionB := PHP to L.

The following theorem is applicable to the example above, but we have formulated it i
a more general manner.

Theorem 10. If rank{(1 — P)H P} < k then
F(s) < di+1,B(s)
forall s € R. Hence
Spec(H)N [Aj, Akl # ¥

for all i, where{);} are the eigenvalues a® written in increasing order and repeated
according to multiplicity.

Proof. If {i;} are the eigenvalues 6B — s1), written in increasing order and repeated
according to multiplicity, then

i1, B(5)? = Wi41(s)
=inf{u(L) : L € &1}
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whereégy1 is the set of linear subspaces.6fof dimensiork + 1 and

IBf —sfI?

Ifdim(L) = k + 1, then there existg € L with || f|| = 1 andf € Ker{(1— P)H P}. We
deduce that

u(L) :=su

F()> <(NG)f, f) = IBf —sfl? < ().

Taking the inf over allL € &1 yields the first statement of the theorem. The second
statement is obtained by putting= (A; + Xi1+x)/2 to obtaindxt1 g(s) = (Ajrrx — Ai)/2.
From the inequality

F(/\i +)»i+k) < Aitk — A
2 2
we complete the proof by invoking Corollagy O

The same idea can be applied using the functiBns) to obtain the following result,
but we write the proof in a more direct form.

Theorem 11. Let —oco < @ < 8 < oo and suppose thaB has j eigenvalues ifc, B].
Then either there is a point of the essential spectru afi [, 8] or H has at leastj — k
eigenvalues ifie, B].

Proof. If £ C £ is the linear span of the eigenvectorsiassociated with the eigenvalues
lying in [e, 8] then dim(.£) = j. If we puty := (a + B)/2 ands := (8 — «)/2, then
IBf —vfll < §|f] forall f e L. If Mis the subspace consisting of glle £ such
that(1 — P)HPf = O thendimM) > j —k andHf = Bf forall f € M. Thus
NHf —yfll <8Il f| forall f € M. Applying the Rayleigh—Ritz principle to the operator
|H —y1|we deduce thall has at least — k eigenvalues (or non-empty essential spectrum)
in the stated interval. O

We interpret the above theorem by saying that in the passageBréonH one loses
at mostk eigenvalues in each interval, regardless of the length of that interval. Howeve
the remaining eigevalues may also move within the interval, and new eigenvalues, or ev
essential spectrum @i, may appear.

As an example, leH be the operator ot?(Z") defined above, so thitH| < c. Let
S = [-m,m¥N N ZN sothat# = (2m + L)Y andk := #3S) < 2N(2m + 2)N~L.

If we divide [—c, ] into a fixed nhumbeh of equal subintervals, then we might have up
to k spurious eigenvalues in each subinterval, and hence might have iipgpurious
eigenvalues altogether. The proportion of spurious eigenvalues lost is therefore at mi
om™1.

The computation of the eigenvalues Bf := PH P can be carried out particularly
efficiently in one dimension, sincg is then a tri-diagonal matrix. Numerical examples can
be extracted from Arveson’s program for computing the spectrum of the almost Mathie
operator [3]. This operator di(Z) has matrix elements

1 if im—n|=1
Hyun:=1{ Acos(nl) ifm=n
0 otherwise.
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It has only essential spectrum, but a more precise classification depends delicately upo
ando, the interesting cases being wheis irrational mod . Arveson’s program provides
beautiful evidence of the extremely complicated spectral behaviour of this operator. If
particular example is saved, then the data file consists of a list of the number of eigenvalt
in each of a substantial number of sub-intervals of the real line. The data is stored as
unadorned hexadecimal list, but this is easy to interpret. We refed]td44], [25] for
references to the extensive theoretical literature on the almost Mathieu equation.

For the reader’s convenience we have recreated the mathematical core of Arveso
program using Maple V.4 [10]. His key idea is to compute the number of eigenvalues of
less tharny for enough values of to produce a graph (see Figudk This may be done very
efficiently using the slicing metho®], p. 371] . Differences of successive elements of the
data list yield the number of eigenvalues®fn each of a series of consecutive intervals.
The efficiency of the method arises from the fact that there is no need to take the numt
of such intervals to be larger than the number of horizontal pixels of the graph to be draw
however large the dimension of the subspace.

7. Schrodinger operators

Let H := —A + V be a Schrédinger operator actingif(R"), and let its potential
V be non-negative and locally?, so thatH is essentially self-adjoint 0G°(RM). The
computation of the spectrum &f is difficult because it depends upon the entire structure of
the potentialV. The theorems which we obtain are continuous analogues of Proposition 7
of Avron, van Mouche and Simo®], which was used by them to prove that the spectrum
of an almost Mathieu equation is a Holder continuous function of the phase paramet
This may then be used to compute the spectrum by approximating the phase by a ratio
number, for which a detailed theory has been developed;228g[R5] for the best recent
results and a review of the literature.

We start by proving a theorem about the bottom of the spectrufi.dVhile this is a
special case of the subsequent result, its proof is simpler and the constant obtained is
precise. The theorem is surprising in view of the fact that the bottom of the spectrdim of
may have an associated eigenfunction which is concentrated on a region of arbitrarily lar
diameter. It is related to Theorem 2 4], which computes the weak coupling asymptotics
of the bottom of the spectrum for arbitrary bounded potentials.

Let E denote the bottom of the spectrumi@f andE, ; the bottom of the spectrum of
the restriction off to L2(B(x, L)) subject to Dirichlet boundary conditions, whe&éx, L)
denotes the ball iRY with centrex and radiusL. Finally, let

E; = inf{Ex,L X € RN}.

Theorem 12. Under the above assumptions we have
1/2 - 1/2
EL/ _r 1)/1/2 < gl2 < EL/

for all L > 0, wherey is the smallest eigenvalue ofA acting in L?(B(0, 1)) subject to
Dirichlet boundary conditions.

Proof. Letn be a smooth function oR” with support inB(0, 1) and||n||> = 1. Let

ML () i= L~V (L7 (y — x))
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Figure 3: Spectrum of an almost Mathieu operator
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and regardy, ; as a multiplication operator. A direct computation establishes that

f ()" (x.p)dx = )21 = 1
RN

where the integral converges in the weak operator topologyQliss the quadratic form of
H with domain

Dom(Q) = WH#RY) N Dom(V*/?)
and form coreC°. Lete, § > 0 and letp € C2° satisfy

() < (E + )62
Then

/ Qi1 Lp)dx = / (IV O @) 12+ 1V 20, 1612 e

RN RN
= fR (V029 + 0L V@I + 1V, 1612 )
<@A+87Y /R V@@ d + (14 5) /R e LV (@) 1d

4 / V20, L)%k
RN
< @A+8HL V2Pl + 1+ 8)Q(9)
< (@+ DLV + A+ O(E +0) 191

= (@45 DL 2R+ @+ E+) [ Incrolias.

The above inequality implies that there exists RY such that
Eqp <A+ 8HL72| VI + 1+ 8)(E + o)
and hence that
EL < Q+8HL72|Vnl? + L+ 8)(E +e).
By letting e — 0 and then optimising with respectdpwe obtain
E;? < L7YVnl + EY2.
The theorem follows by optimising with respectito O
We now turn to the computation of the entire spectrunt/ol_et
F(s) := dist(s, Spec(H))
and put

l|1Hp —s¢l|
1l

whereD, ;. denotes the space of smooth functions with compact supp@&tinL). We

adopt the position thak, ; may be computed by means which depend upon the operato

in question, and describe how these functions may be used to obtain estimates(éf Spec
with controlled errors.

Fyep(s) := inf{ :075¢>e£Dx,L}.
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Although itis fairly obvious thaty ; (s) decreases monotonically and locally uniformly
to F(s) asL — oo, the rate of convergence cannot be controlled without assumptions o
V. If we put

Fp(s) := inI_IN{Fx,L(S)}

then this function also decreases monotonically and locally uniformfy(,g. However,
the rate of convergence can now be controlled, without any further assumptidhs on

Theorem 13. There existg > 0 depending only upoV such that
F) < Fu) < F6) + (L2 4+ 174 + Fs)M2)
forall s € R. Hence
Fu(s) = (L2 4+ L756 + FLe)Y2) < F(s) < FL(),

Proof. We follow the notation of Theorerfi2. Lets, ¢ > 0 and assume thagt € C°
satisfied|(H — s)¢|| < (F(s) +¢)||¢]l. Then

/R O = 9)ne 1p)Pdy < A+875 /R nen(H = )l %d

+(1+6) f \LH. nv.216]2dx.
RN

Secondly ify > 0

f ILH. 0, 2)g]1dx = / |(Ae,L)¢ + 2.1 - V|| 2dx
RN RN
<@y [ ianolies

F a4y /RN 1(Vns.1) - Vbl
<1+ y HL MBI + 21+ y)L 72|V
< (a@+y DL+ 2@+ L6 + F6) +0)) 112

2
G(L2+ 176+ F& +0Y2) o)

by optimising with respect tp. Combining the above two inequalities and optimising with
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respect td we obtain
[, W = sl < @ 57N - 9191
R

+ @+ OG(L2+ L7+ F ) + s>1/2)2||¢||2
<A+ HFE) +e)?gl

+ @+ 9G(L2 4 L7 s+ F) + e)l/z)znqbnz
= K?l|¢|1?

= k? / Iy, Lo l1%dx
RN

where
k= (F(s) + ) + cs(L’z F LY+ F(s) + 8)1/2).
This integral inequality implies the existencexo& R" such that

I(H — )0, L@l < klinx,oll-
The proof is completed by taking the imfimum owee RY and then the limit — 0. [

Our next result is a partial converse to Coroll&ry

Corollary 14. If E € Spec(H)andL > 0, then there exist € RY and¢ € D, such

that
1H¢ — E¢l C<L_2+ L_1E1/2>_
ol
Proof. The stated condition oB implies thatF (E) = 0, which implies the result imme-
diately. 0

If one has further information about the potentiélthen it may be preferable to use
a partition of the identity which takes advantage of this. For example suppos¥ tkat
periodic except for sparsely distributed compactly supported impurities. Then one cou
take a different function in the partition of the identity to equal one on the support of eac
impurity. If every pair of impurities is separated by a distance of at |€4dt), then we
may takes; = O(L~?) andes = O(L~%) below.

Theorem 15. Supposén, }2 ; lie in C2°(RY) with

Y omx)?=1

n=1

o0
D IVim@IE < e
n=1

o
Y 1A )P <62
n=1
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for all x € RN. Define

IHp —soll
ol
whereU,, is some open set containisgpp{n, }, and

Fy(s) == inf{ 10 ¢y € CE(Up)}

F(s) :=inf{F,(s) :n=1,2,.).
Then
F(s) — e — 2e1{s + F()}Y/? < F(s) < F(s)

forall s € R.

We omit the proof, which follows that of Theoreh3.

8. Complex resonances

The standard theory of complex resonances is easier to use than it is to explain in ft
damental terms. It involves the notion that certain self-adjoint operators may have compl
eigenvalues associated with eigenvectors which do not lie in the Hilbert space under cc
sideration. The problem with this idea is that one must then impose constraints on tl
eigenvectors involved, in order to prevent every complex number being a resonance, ¢
these constraints can appear rather arbitrary.

One extensively developed theory of resonances is described in the revigjwobideas
first developed by Aguilar, Balslev, Combes and Simon in the early 1970s. The autho
use a dense linear subspace to define resonances of a Schrédinger operator, namel
subspace of analytic vectors with respect to the dilation group actirig’arsee B, p.
152]. Resonances are defined as poles of the analytic continuation of the resolvent to
unphysical sheet. This definition is canonical to the extent that one does not distingui
between the resolvent operator and either its integral kernel or its matrix elements wi
respect to the linear subspace. While technically successful for certain types of Schrodin
operator, it cannot be used if the configuration space is a manifold or a discrete set, beca
of the absence of a dilation group in these cases. A more general definition applicable
Laplace—Beltrami operators on Riemannian manifolds has been proposed by AZjmon [
[1], and again depends upon the choice of a dense linear subspace satisfying a certain
of properties. Both definitions have the feature that the theory depends upon the spectr
of H having an interval of absolute continuity, and they are therefore unstable with respe
to arbitrarily small perturbations. For example, if one adds a very small almost periodi
perturbation to a Schrédinger operator, the above notion of resonance becomes meaning

In the next section we develop a different notion of resonance, in which the role of th
subspace is absolutely central, and in which analytic continuation of the resolvent pla
no role. Both approaches are applicable in a multi-dimensional context, but we investige
some one-dimensional examples here in order to compare the two.

We consider a discrete Schrédinger operatbracting on/2(Z*). This operator is
bounded and has matrix

Hyn:=14 v, ifm=n
0 otherwise
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where the potentigl, }7° ; is real-valued and of finite support. We assume that 0 but

thatv, = O for alln > k. An application of trace class scattering theory shows that the

operatorH has essential spectrum and absolutely continuous spectrum edua, 2.
Adapting the definition of resonance of HarrdlB] to this discrete context, we say that

z € Cis aresonance off if the solution f of Hf = zf subject to the intial condition

f1 = 1 satisfiesf,, = cw” for somec, w € C and all large enough. We do not impose

the conditionf € 72 but merely regard as a sequendgf,, )2 ;.

Theorem 16. If z is a complex resonance, ther= w~! + w and the conditiory, = cw”
holds for alln > k. Moreoverz is a solution of a polynomial equatign(z) = O of degree
2k — 1.

Proof. From the equations

Ju—1+ v fu + fo+1=2fn
where we putfp = 0 and f1 = 1, we deduce thaf, is a polynomial of the form

fo=2"1t—(i4...+ v 2+ 0. (8.1)
If n > k then

fn + fn+2 = an+1

and inserting the expression fgy for largen we deduce that = w1 + w. Carrying out
a reverse induction from such largewe find thatf, = cw”" for all n > k.
We now combine the two equations= w1 + w and fi1/fx = w to obtain

p@) = zfisafi — fE— fA1=0. (8.2)
Combining (8.1) and (8.2) we finally obtain
p(@) = w7+ 0E*?)

which confirms the order gb. O

It is generically the case that the roots of a polynomial depend analytically upon th
coefficients, and in our context this means that they depend analytically upon the coefficiel
of the potential. However, there is an important exception. If one examines the depender
of the roots upon the value of, one sees that whan = 0 the degree of the polynomial
decreases, so some of the roots momentarily disappear. In fagt,-as0 certain of the
resonances become rapidly larger, moving to infinity.

In the program [11] we investigate the case in whigh= 0, v = 3 andvz = a varies
through the value zero, while all othey = 0. Thusk = 3 and there are 5 resonances,
except whem = 0, when there are only 3 resonances. &et 0 the polynomial equation
mentioned in Theorerm6is

p(z)=32-92—6z— 1.

Table3 shows how two selected resonances depend upeinen this is very small. More
complete data can be obtained frofil], for this and other potentials. Moreoverl]
provides a procedure for plotting the data obtained in the complex plane. It may be se
that one of the resonances divergesias- 0, while the other varies smoothly under the
same conditions. This is confirmed by further numerical experiments.
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Table 3:

a resonancel resonance2
—.08 —.28475+ .085342 7.9289
-.07 —.28562+ .085732 8.3343
—.06 —.28649+ .086119i; 8.8411
—.05 —.28738+ .086479i 9.4942
—.04 —.28827+ .086827i 10.385
—.03 —.28919+ .087146i 11.696
-.02 —.29012+ .087453i 13.909
-.01 —.29105+ .087747i 18.939

0 —.29199+ .088010 0

.01 —.29294-+ .088259;  1.5058+ 17.199i

.02 —.29392+ .088476; 1.5109+ 12.074

.03 —.29489+ .088679; 1.5165+ 9.7876i

.04 —.29586+ .088867;  1.5225+ 8.4166i

.05 —.29684+ .089021;  1.5279+ 7.4733i

.06 —.29783+ .089160 1.5336+ 6.7732

.07 —.29883+ .089264 1.5388+ 6.2243i

.08 —.29983+ .089353i 1.54444 5.7798i

9. Higher-order spectra

Let H be a self-adjoint operator acting on a Hilbert spa€eand letP be an orthogonal
projection onto a closed linear subspateéle assume either thét is bounded, or that
is finite-dimensional and contained in the domain of as high a powHr & is needed for
each statement. Given a positive integemdz € C, let M,,(z) denote the restriction t&
of the operator penciP(H — zI)" P. We define the:-th order spectrum SpecH, £) of
H relative to.£ to be the set of such that the operatdd,, (z) is not invertible within the
subspacet.

Theorem 17. The seSpeg (H, L) is non-empty, closed and bounded for all positive inte-
gersn.

Proof. If £ is finite-dimensional this is an immediate consequence of the fact tkat
Speg (H, L) if and only if the characteristic polynomial

Pn(2) := det(M,(z)) (9.1)

vanishes. Note that, is of degree: dim(L).

Now suppose thal/ is bounded, but that is infinite-dimensional. Then we may follow
the same argument far > 1 as in the traditional case whette= 1 and.L = #. The
boundedness of the spectrum is a consequence of the estimate

n H r
I(=2) " M) — 11 < Z(’Z) Ll ©.2)

p
r=1 |Z|
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Its closedness follows from the fact thf, (z) depends norm continuously enThe proof
of its non-emptiness involves an application of Liouville’s theoremigz) 1, assuming
that this inverse is everywhere defined. O

Our next theorem is not sharp. It would be interesting to know the strongest restrictic
which may be placed on Spgd?, .£) under the given assumption on Spec(H).
Theorem 18. Suppose tha#l is bounded wittSpec(H)C [«, B]. Then
Speg(H, L) C {z € C:|z| <3|H| anda < Re(z) < B}.

Proof. The first part of the statement follows from the estimate (9.2).
Now suppose that = x + iy wherex < «, and letp € L. Then

IM2()oll loll = [(M2(2)¢, )]
= [([(H — x)* = y* = 2iy(H — )1¢, $)|
2ly[{(H —x)¢, ¢)|
2yl — 0l
If y # 0, then we deduce that there exists 0 such that

M2(z)oll = cligll

forall ¢ € £, so thatM»(z) is one-one with closed range.yf is orthogonal to the range,
then

2
2

0= [(Ma(2)¥, V)| = 2|yl(c — x)[[¥]I%.

Thereforey = 0, Ma(z) isinvertible and; ¢ Speg(H, L£).If y = 0, then an easier version
of the above calculation again shows that SpeG(H, L£). A similar argument works if
x > B. ]

We define the resonancesmfrelative to.L to be those isolated poinise Spe6(H, L)
such that O is an isolated eigenvalueM$(z) of finite multiplicity; we are particularly
interested in those points which are close to the real axis. ltgdim< oo then every point
of Speg(H, L) is a resonance. Note that an eigenvalugHofmay lead to a resonance
in this sense, because the associated eigenfunction may be clgdeutonot an element
of £. There is no way of avoiding this fact—the use of the subspéagegrades the
information contained inH. Alternatively two different self-adjoint extensions &f|
may have different spectral characteristics, and we are investigating only what is comm
to all possible such extensions.

The next theorem shows that our new definition of resonance is stable under sm
perturbations.

Theorem 19. Leta € C be a resonance dff with respect to£. Then for every > Othere
existss > Osuch thatifA : # — # is bounded and self-adjoint witi || < §, then there
exists a resonance eigenvalgef H + A such thatjz — a| < e.

Proof. If dim(£) < oo then we need only apply Rouché’s theorem to the polynomial
p2 defined by (9.1) since the coefficients pf vary continuously with the perturbation.
If dim(L£) = oo and H is bounded, we must make substantial use of Kato’s theory of
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holomorphic perturbations of the spectru?d]. The spectral projectiofi, associated with
the resonance is given by the contour integral

P, = i,/(Mz(a) — w) tdw
2ri J,

wherey is a sufficiently small circle with centre 0. This projection is of finite rank and
commutes withMz(a). If we fix y then for|z — a| sufficiently small the projections

P, .= i/(Mz(z) — w) tdw
2ri J,

depend analytically upony and therefore have the same rank asfer a. The function
G(z) := det(M2(z) P(z2))

is defined by computing the determinant within the rangeP¢f), and again depends
analytically uport. Sincea is a resonance, this function vanishesfet « but is non-zero
everywhere else in a sufficiently small neighbourhood.dflow let us consider the same
constructions fol := H + A. If | A|| is small enough, the@ (z) can be defined as before
in a small neighbourhood af, and is uniformly close t@; (z). By Rouché’s theorem it has
an isolated zero in a neighbourhoodagfand this yields a resonance Bt O

We now turn to connecting this account of resonance to the theory of S&ctiming
the notation developed there.slie R then Theoren® states that

F(s)™% = |Ma(s) 72

One might expect ' (s) to be small close to a point € C at which M»(z) is non-
invertible, i.e. close to a resonancemf If .£ is finite-dimensional, this can be made more
precise. Instead of asking whether the smallest eigenv&lug of M2(s) is small, one
may ask whether its determinant is small. But this determinant is the polynomial of degre
n dim(L£) whose extension t€ vanishes at the resonancestbfrelative to.L.

There is more which needs to be understood about the above idea, at both theoretical
computational levels, but we consider next an example which demonstrates that the the
above really is related to complex resonances in the sense of S8ction

Example 20. Let H be the bounded self-adjoint operator acting3Z *), whose matrix
is given by

1 flm—n=1
Hyp, =43 a ifm=n=3
0 otherwise

form,n > 1 anda > 0. This operator has absolutely continuous spectrai®y 2] with
multiplicity 1, together with a single eigenvalie> 2. If we define resonances as in Section
8, then they are the roots of the polynomial equation

p(2) = —az® + a7 + 4az® — 2a%72 —3az+ad°+1=0
of degree 5 iny. If a = 3, the roots are approximately

—1.1421+ 0.0342
0.8403+ 0.0489i
3.6036.
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The first four roots are complex resonances, and the last i€ #igenvaluei.

Now let us describe the approach of this section. Given any integerl, one can
defineL to be the subspace of functions with supportin. .. , k}. For reasonably small
k one can compute(z) as defined byq.1) and find the zeros of the polynomiad by
the use of a computer algebra package. (The only merit of this method is the simplici
of the programming involved. It is numerically unstable for large valugslodécause the
coefficients ofp, become so large. We suggest four alternative methods of computing th
complex resonances below.)

We have investigated the above example numerically:fer 3 andk = 20 using the
method just described and also the method of The@&pelow [12]. The graph of (s) for
reals in Figure4 shows clear local minima nearl.14 and (84, as well as an eigenvalue
near 3.60, that is at the resonances as well as dfthigenvalue. However, the first two
local minima mentioned are not of great value for locating the resonances in the compl
plane. The graph plotting the complex resonances as defined in this paper, shown in Fig
5is extremely interesting.

Most of the points lie near a closed convex curve, corresponding in some way to t
continuous spectrum df . There is a pair of points at@36+ 10-8; very close to thé?
eigenvalue off, which is of multiplicity 1. Finally there are four complex resonances at

—1.1425+ 0.0600
0.8357+ 0.0793i.

It is rather surprising that these four complex resonances vary only very slowly with
in contrast to the other points of the second-order spectrufi.dfor example, if we put
k = 4 the corresponding values are

—1.1527+ 0.1306:
0.85004+ 0.1707i.

We do not claim that our approach is superior to the standard one for this exampl

but emphasise again that our result applies equalbilitself-adjoint extensions aff | ;.
This elementary procedure, which could still be implemented if one added a small almo
periodic potential ta?, yields values which bear a striking similarity to those of the standard
approach for this example. This may be interpreted as showing that complex resonan
(in the standard sense) are very little affected by perturbations of the operator outside 1
potential barrier which gives rise to the resonance.

We now discuss two very general methods, the first real and the second complex, 1
computing the higher-order spectra, which are more appropriate for large matricég. Let
be any finite-dimensional Hilbert space, anddet- A(z) be an analytic function defined
on aregiony/ C C, whose values are operators & i.e. an analytic operator pencil. We
define the spectrum of to be the set of € U such thatA(z) is not invertible. Since this
coincides with the set of zeros of the analytic functjefy) := det(A(z)), it must be a
discrete subset df, excluding the uninteresting case in whigliz) is singular for every
z € U. We describe a method for computing Se€cwhich does not involve the use of
determinants.

If (x,y) € U, we defines (x, y) to be the smallest singular value of the matfigx +
iy). There are well-developed techniques for computing singular values, for example v
reduction of the matrix to bidiagonal form, described in [31, Chapter 7].
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Figure 4: The graph of (s) for reals, with clear local minima near1.14 and 084 and an
eigenvalue near 3.60.
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-0.1+

Figure 5: A plot of the complex resonances, as defined in this paper.
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It follows from the formula

o(x,y) =inf{[[A2)¢ll/l¢ll : 0 # ¢ € Ht}

thato is a non-negative Lipschitz continuous function, and that it vanishes precisely at tt
points of Spe¢4). One can now try to find the zeros @fby using a standard algorithm to
move from an initial guess in steps towards a local minimum.ofhe following theorem
guarantees that this procedure succeeds.

Theorem 21. Generically, the only local minima of the functienare the points at which
it vanishes. Moreover, the functier(x, y)~2 is subharmonic on the s&t := U\Spec(A).

Proof. Both statements follow by an analysis of the function= o ~1 defined onv. We
have

px,y) =A@
Givenc :=a + ib € V, suppose thap, i are vectors of norm 1 such that

pla,b) = (¥, A(2) )
for z = ¢. Because the RHS of the above equation is an analytic function, therezgkists
any neighbourhood af, however small, such that
p(x, ) = (¥, AR)'9)]

> (¥, Ala +ib)"'9)]

= p(a, b)
unless the RHS is constant. The word “generically” in the theorem refers to the possibili
that the RHS might be constant. While this is may indeed happen, it cannot do so if, f

examplelU = C and||A(z)"1| — 0 as|z| — oo.
Next let{u,}"_, be an orthonormal basis ¢t. Then

p(x, )2 = HAGR) AR

= sup > |{ur, A() ).
lpl=1,—71
The proof is completed by combining the invariance of the set of subharmonic functior
under sums and suprema with the fact tlgét) |2 is subharmonic for every analytic function
g. O

Our second method of computing the complex resonances of an analytic operator per
involves determining the smallest eigenvaluei@f) instead of its smallest singular value.
We make the same assumptions on the operator-valued analytic function as in TB&éorem
Givenz € U, we definef(z) to be the smallest eigenvalue a{z) using the following
lexicographic ordering o€: we putré? < s€?if0 < r < s < oo, orif r = s and
0<0 << 2m.

Theorem 22. If a is a resonance oA whose associated spectral projection has rdnk
then there exist8 > 0 such thatf is analytic on{z : |z — a| < §} with f(a) = 0.

Proof. If y is a small enough circle with centre 0 the contour integral
1
P, = f/(A(a) — w) tdw
2mi v
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defines the spectral projection df(a) associated with its eigenvalue 0. Replacingy
z in this formula the spectral projectiop, is still of rank 1 and depends anaytically on
z, provided that; is close enough te by Kato's theory of analytic perturbations of the
spectrum [20]. For such, A(z) has only one eigenvalue insigle This eigenvalue equals
f(z), and depends analytically an 0

Computationally, the application of this method involves evaluating the eigenvalues
A(z) at some point which is suspected to be close to a complex resonance, and then us
a modification of Newton’s method for analytic functions to move towards a zefo of

We have not attempted to write code to implement either of the above two ideas. Whi
finding the smallest eigenvalue of a non-self-adjoint matrix is probably slower than findin
its smallest singular value, the subsequent iterative procedure may well be faster beca
one can exploit the analyticity of the function concerned.

There is an extensive spectral theot¥], [26], [29] of polynomial operator pencils,
including quadratic operator pencils of the form 21g). We refer to30] and sources cited
there for an account of the delicate issues involved in defining the spectrum of unbound
quadratic operator pencils, but confine ouselves to the bounded and finite-dimensional ca
here. This theory suggests two other methods of finding the eigenvalues of the pencil. T
first depends upon the existence of a factorisation

Nz):=Q — 2B +z°1 = (Z1 —zI)(Z2 — zI)

for any square matriced andB. Our particular choices @ andB put us in the self-adjoint
weakly coupled case, and we ha¥g = Z; and

Spec(4) < {z : Im(z) > 0}.

Given such a formula, it follows immediately that the set of eigenvalues of the quadrat
pencil is just the union of the sets of eigenvalues of the two operdtoasndZ,. For refer-
ences to the literature on factorisations of this type, 8&g [16], [26], [29]. Unfortunately,
existing procedures for obtainirigy andZ»> from Q and B are either indirect or not well
adapted to efficient computation, so one cannot implement this approach.

The second method depends upon a theorem which may be extended to general p
nomial operator pencils. It may often be the best method of calculating the spectrum
quadratic operator pencils, since it reduces the problem to standard eigenvalue estima
the only cost being the doubling of the size of the matrices involved. For an implementatic
of this method see [12].

Theorem 23. Let QO and B be bounded operators on a Banach spa&eand letz € C.
Then the operatoN (z) := Q — 2zB + 721 is invertible if and only if the operatdf — z1
acting on8 x B is invertible, where

. 2B —Q
T = ( I 0 ) .
Moreover, one then has

(T—zI)_lz(Q—ZzB+zzl)_l< __ZII ZBQZ] )

Finally, N (z) has a non-zero kernel if and onlyzfis an eigenvalue df .
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Proof. Allof the statements are obtained by direct computatiornB.iff finite-dimensional,
almost all of the statements are consequences of the identity

det(T — zI) = det(Q — 2zB + 721).

Appendix A. Maple programs
The Maple programs in [9], [10], [11], [12] are provided as an electronic appendix tc

this paper. The appendix is available to subscribers to the journal at:

=

10.

11.

12.

13.

14.

http://www.Ims.ac.uk/jcm/1/Ims97005/appendix-a/.
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