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SPECTRAL ENCLOSURES AND COMPLEX RESONANCES FOR
GENERAL SELF-ADJOINT OPERATORS

E.B. DAVIES

Abstract

This paper considers a number of related problems concerning
the computation of eigenvalues and complex resonances of a general
self-adjoint operatorH . The feature which ties the different sections
together is that one restricts oneself to spectral properties ofH which
can be proved by using only vectors from a pre-assigned (possibly
finite-dimensional) linear subspaceL.

1. Introduction

This paper considers a number of related problems concerning the computation of eigen-
values and complex resonances of a general self-adjoint operatorH when one is provided
with limited information about the operator. The feature which ties the different sections
together is that one restricts oneself to spectral properties ofH which can be proved by using
only vectors from a pre-assigned (possibly finite-dimensional) linear subspaceL which is
not invariant with respect to the operator. Problems of this type arise in numerical analysis
and quantum chemistry (and probably elsewhere). We concentrate on the first of these ap-
plications, but discuss the second briefly at the end of this section. We also mention some
related work on a generalization of the classical Szegő limit theorem in Section5. While the
results of Sections1 to 4 are reformulations of theorems and techniques used by numerical
analysts, the later sections are entirely new to the best of our knowledge, particularly our
definition of complex resonances/higher-order spectra in Section9.

A well-known method for obtaining upper and lower bounds on the eigenvalues of self-
adjoint operators depends upon the choice of a parameterρ and a test-functionf , followed
by the computation of Temple’s ratio

〈Hf,Hf 〉 − ρ〈Hf, f 〉
〈Hf, f 〉 − ρ〈f, f 〉 .

Our first goal is to show how the upper and lower bounds of eigenvalues depend upon the
choice ofρ andf . The dependence uponρ appears not to have been previously investi-
gated from our point of view, but our theorems are confirmed by numerical data in earlier
publications, as well as by our own computations for a test example. We mention partic-
ularly the recent papers of Zimmerman and Mertins [33], [27] who obtained enclosures
for eigenvalues in the gap between two parts of the essential spectrum of a self-adjoint
operator. This part of our analysis depends heavily upon a theorem of Kato [19] which has
been little appreciated outside the numerical analysis community [17]. The novel feature
of our approach is that it depends upon the study of a particular non-negative functionF
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on the real line, which encapsulates much of the information about the given self-adjoint
operator which can be obtained by the use of a given linear subspaceL of the Hilbert space.
This function is effectively computable, and its geometrical and analytic properties help
to clarify a number of related spectral problems. In particular, it enables one to avoid the
spurious eigenvalues which may be obtained if one tries to approximate the spectrum ofH

by computing the spectrum ofPHP , whereP is the orthogonal projection onto the sub-
spaceL. Our main results concerning the discrete spectrum are Theorems3 and8, but their
relevance only becomes clear from the surrounding comments concerning their numerical
application.

In Section6 we consider the determination of the essential spectrum of discretised
Schrödinger operators with bounded potentials. Arveson [4], [5], [3] has recently usedC∗-
algebra methods in conjunction with a computer program to investigate the complicated
spectra possible for the almost Mathieu equation, a one-dimensional model with an almost
periodic potential. The methods of the present paper throw further light on the nature of
the spurious eigenvalues, and indicate how to eliminate them before passing to the infinite
volume limit.

In Section7 we describe an adaptation to Schrödinger operators of a theorem of Avron,
van Mouche and Simon [6] which enables one to locate the whole spectrum of such an
operator approximately, by considering only test functions which are supported in balls of
given radius. Although not particularly efficient, it is suprising that such bounds may be
proved witout any local or global restrictions on the potential, apart from the requirement
that it be non-negative.

Finally, in Sections8 and9, we consider the problem from a more theoretical point of
view, which leads to a new definition of the concept of resonance of an arbitrary self-adjoint
operator relative to a given subspace. This definition is purely functionally analytical, and
does not depend upon the operator in question having a non-empty absolutely continuous
spectrum, as do all other definitions of resonance that we know of. We define a hierarchy
of n-th order spectra ofH with respect to a subspace, and show that there is a very close
relationship between the functionF previously considered and the second-order spectrum,
which is usually entirely non-real. We also provide explicit computations for a simple
example.

When studying the discrete spectrum, we consider only the simplest case, namely finding
rigorous enclosures for solutions ofHf = λf , whereH is a possibly unbounded self-
adjoint operator acting in a Hilbert spaceH . The methods can be extended to the equation
Af = λBf where one of the self-adjoint operatorsA,B is positive definite. There are two
standard and complementary methods of bounding the eigenvalues of a self-adjoint operator
H , associated with Rayleigh–Ritz and Temple–Lehmann–Goerisch. Both methods involve
choosing a finite-dimensional subspace of the domain of the operator, followed by the
implementation of certain matrix calculations. We focus on three aspects of the procedures.

The first is the choice of the finite-dimensional subspaceL of the Hilbert spaceH .
This may well be the most important issue of all. IfL is even approximately orthogonal
to some eigenvector ofH , then no computations involving the restriction ofH to L can
possibly allow one to get a good approximation to the associated eigenvalue. Even if this
radical failure does not occur, the quality of any estimate depends critically upon how well
the subspace is adapted to the operatorH . Finite element subspaces provide a reasonable
general choice for many partial differential operators, but for particular problems of this
type one might do much better by choosing a basis of functions which have the appropriate
behaviour at local singularities. Another interesting possibility, discussed in Section5, is
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to chooseL to be a spectral subspace of an auxiliary operator. The quality of the spectral
information obtained can then be estimated in terms of certain commutators involving the
two operators.

The second issue is that of rounding errors in the numerical calculations. Interval arith-
metic methods give guaranteed bounds, but are slower to implement. The recommended
method is usually to obtain the best possible approximations to the eigenvalue and eigenvec-
tor using standard floating-point arithmetic, and then to start again, using these approxima-
tions, to obtain rigorous upper and lower bounds by means of a spectral inequality together
with interval arithmetic. This last stage should involve as few calculations as possible.

The third issue, and the one which we concentrate on, is that of the spectral inequalities
themselves. The Rayleigh–Ritz procedure provides upper bounds for those eigenvalues ofH

which are less than the bottom of the essential spectrum. Complementary lower bounds have
been obtained by Temple, Lehmann and Goerisch; see [13], [28], [27], [33] for accounts of
these methods. However the methods do not work as they stand for eigenvalues in a spectral
gap. Our goal in this paper is to reinvestigate this issue and to provide a new perspective on
the Temple–Lehmann procedure, which may even be of computational value.

We assume thatL is a linear subspace of the domain of the self-adjoint operatorH , and
thatA = H |L is a closed operator; this is automatic ifL is finite-dimensional. LetP be the
orthogonal projection onto the closurēL of L, and letB = PA. ThenB is a symmetric
operator acting in the Hilbert spacēL. If L is finite-dimensional thenB is self-adjoint, but
in general this is not the case. A standard procedure for calculating approximate eigenvalues
of H is to calculate the eigenvalues ofB, or of some particular self-adjoint extension ofB
in L. However, this may lead to serious errors: ifH is a differential operator, the choice
of L may be associated with boundary conditions which lead to spurious eigenvalues, the
eigenfunctions of which are concentrated near to the boundary [14, Lemma 6]. Whether it
is easy to identify these spurious eigenvalues may depend on the way in whichL is defined.
We refer to [4], [32, p. 201] for some famous examples for which the spectrum ofB and of
the original operatorH are totally unrelated in the limit asL increases towardsH .

We conclude the section by explaining the relevance of the theory presented here to
quantum chemistry. There are standard prescriptions for calculating the energy levels of
molecules (or atoms), but these assume that the molecule is isolated in space. For a typical
molecule, surrounded by others and by stray electric fields, it is of interest to ask about
those spectral properties which are stable with respect to a range of possibly random per-
turbations of the potential outside the immediate neighbourhood of the molecule. One way
of posing this question is by considering the usual Hamiltonian but confining oneself to
information which can be obtained by the use of wave-functions which have support in a
defined neighbourhood of the nuclei. Our procedure doesnot amount to imposing Dirichlet
or any other particular boundary conditions on the operator in the region considered. If
one chooses the subspaceL using this prescription, our method provides a procedure for
defining and computing spectral properties, including complex resonances.

2. The basic method

We base our analysis upon the behaviour of the non-negative real-valued function

F(t) = inf

{ ||Aφ − tφ||
||φ|| : 0 6= φ ∈ L

}
(2.1)
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and higher-order analoguesFn(t) for n > 2. Note that ifL is finite-dimensional then
F(t) = 0 if and only if t is an eigenvalue ofH whose eigenfunction lies inL. This unlikely
possibility need not concern us any further.

The connection between the functionF(t) and the Temple–Lehmann–Goerisch formula
for the enclosure of eigenvalues is not obvious, and we refer the reader who wishes to see
this explained immediately to Theorem6.

Lemma 1. The functiont → F(t) is Lipschitz continuous and satisfies

|F(s)− F(t)| 6 |s − t | (2.2)

for all s, t ∈ R and also

F(t) > dH (t) := dist
(
t,Spec(H)

)
. (2.3)

Proof. Given 0 6= φ ∈ L, we have

F(t) 6 ‖Aφ − tφ‖
‖φ‖ 6 ‖Aφ − sφ‖

‖φ‖ + |s − t |.
Taking the inf over all suchφ leads quickly to the first inequality. Ift /∈ Spec(H),φ is as
before andψ := Aφ − tφ, then

‖φ‖
‖Aφ − tφ‖ = ‖(H − tI )−1ψ‖

‖ψ‖ 6 ‖(H − tI )−1‖ = dH (t)
−1

so

dH (t) 6 ‖Aφ − tφ‖
‖φ‖

and we may now take the inf over allφ to obtain the second inequality. Ift ∈ Spec(H)then
the second inequality is elementary.

It is found in a number of test cases thatF anddH are very similar even when the subspace
L has quite low dimension. Thus any local minimum ofF(t) is close to the spectrum of
H , provided the valueF(t) is small, an observation due to Krylov and Weinstein [7, Cor.
6.20] :

Corollary 2. If 0 6 F(t) 6 δ, then

Spec(H)∩ [t − δ, t + δ] 6= ∅, (2.4)

for any self-adjoint extensionH of the operatorA onL.

This corollary will be reconsidered in Section5, when we turn to the study of the essential
spectrum ofH . Until that section we assume that the essential spectrum is known, and that
we are interested in determining eigenvalues in the gaps between parts of the essential
spectrum as accurately as possible.

Corollary2 yields a reasonable first estimate of the eigenvalues ofH , but it is typically
much less efficient than the method of Theorem3 below. It does not, and cannot, disprove
the possibility thatF(s) could be large even whens ∈ Spec(H). (See the comments made
in Section1 about the importance of a good selection ofL.) Thus the use of the functionF
might not help to locate all of the eigenvalues ofH , but it cannot lead to the “discovery” of
spurious eigenvalues. The following typical example of a functionF(s), shown in Figure
1, was produced using [9].
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Figure 1: A functionF(s), produced using [9].
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It is surprising that one gets much better enclosures of the eigenvalues ofH by evaluating
F(s) near its local maxima rather than near its local minima. The best theoretical choices of
s are given in a standard context by the following theorem. We assume thatH has exactly
one simple eigenvalueλ in the interval(ρ−, ρ+). Elaborations of the theorem are presented
later. The assumptions of the theorem become easier to satisfy asρ− decreases andρ+
increases, so the optimal choices are

ρ− = max{s ∈ Spec(H): s < λ}
ρ+ = min{s ∈ Spec(H): s > λ}.

If λ is the smallest (respectively, the largest) point in the spectrum ofH , then the optimal
choices areρ− = −∞ (respectively,ρ+ = +∞).

The amount of improvement obtained by the use of Theorems3 or 4 to locate Spec(H),
as opposed to Corollary2, is impressive. We refer to Section4 for a numerical example,
and for other relevant computations in the literature.

Theorem 3. Letρ− < σ− < σ+ < ρ+, and letλ be the only point of the spectrum ofH
in (ρ−, ρ+). If

F(σ−) < σ− − ρ−, F (σ+) < ρ+ − σ+. (2.5)

then

σ+ − F(σ+) 6 λ 6 σ− + F(σ−). (2.6)

If one assumes in addition thatρ± /∈ Spec(H), then (2.6) also follows from

F(σ−) = σ− − ρ−, F (σ+) = ρ+ − σ+. (2.7)

Proof. By Corollary2 there is a point of Spec(H) in [σ+ −F(σ+), σ+ +F(σ+)] and this
forcesσ+ −F(σ+) 6 λ. The other inequality has a similar proof, while the second version
of the theorem is an elementary consequence.

The following theorem clarifies the principles underlying the best choice ofσ±.

Theorem 4. Let

ρ− < σ−
1 < σ−

2 < σ+
2 < σ+

1 < ρ+

and

F(σ−
i ) < σ−

i − ρ−, F (σ+
i ) < ρ+ − σ+

i

for i = 1,2. Then

σ+
2 − F(σ+

2 ) 6 σ+
1 − F(σ+

1 ) 6 λ 6 σ−
1 + F(σ−

1 ) 6 σ−
2 + F(σ−

2 ).

Proof. The inner two inequalities are taken from Theorem3, and the outer two from the
first half of Lemma1.

The following comments are in order.

1) Theorem4 may be summarised by saying thatσ± should be as far away fromλ as
possible, subject to the stated constraints, in order to obtain the best enclosure ofλ.

2) It is clear from these theorems and Figure1 that if we knew the exact values of
λ, ρ+, ρ−, and could computeF without error then by solving the equations (2.7)
we would obtain the optimal choices ofσ± for the enclosures (2.6). The problem is
how to proceed in the absence of this information.
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3) The theorems may be implemented in practice as follows. One first obtains approx-
imate but unverified values ofλ, ρ+, ρ−. If F is very close todH then one should
putσ+ .= (λ+ ρ+)/2 andσ− .= (λ+ ρ−)/2, that is near the local maxima ofF . If
one is confident thatF is close todH and that one has values ofλ, ρ+, ρ− which
are close to the true values, this suggests that one could try

σ+ = 0.52λ+ 0.48ρ+

σ− = 0.52λ+ 0.48ρ−.

The acceptability of these choices is determined not by one’s confidence in the initial
estimates ofλ, ρ+ andρ−, but solely by whether the required inequalities (2.5) hold.

4) The functionF only has to be evaluated at the chosen pointsσ±. Theorem5 shows
thatF(σ±) is the square root of a certain eigenvalue. There are of course standard
packages for evaluating eigenvalues of large matrices, but we need a verified upper
bound. The procedure for obtaining this is to use floating-point arithmetic to obtain
a good approximation to the eigenvalue and eigenvector. One then starts again using
this approximate eigenvector, the Rayleigh–Ritz procedure and interval arithmetic to
obtain a verified upper bound on the eigenvalue. Although we only end up with an
upper bound onF(σ±), this still yields an enclosure ofλ, albeit a slightly weaker
one.

We next describe the numerical procedure for evaluatingF(s) for anys ∈ R, under the
assumption thatL is finite-dimensional. We defineN(s) : L → L for anys ∈ R by

N(s) := A∗A− 2sB + s2IL (2.8)

= C + (B − sIL)
2

where 06 C = A∗(1 − P)A. The size of the operatorC measures the failure ofL to be
a spectral subspace ofH . Letλn(s), 1 6 n 6 dim(L), be the eigenvalues ofN(s) written
in increasing order and repeated according to multiplicity. They may be computed using
standard packages.

Theorem 5. We have

F(s) = λ1(s)
1/2

for all s ∈ R. There exists ans-dependent relabelling̃λn(s) of the eigenvalues such that
λ̃n(s) are all real-analytic functions ofs.

Proof. The first statement follows from the identity

〈N(s)φ, φ〉 = ‖Hφ − sφ‖2

for all φ ∈ L. The second is a standard consequence of the fact that the operatorsN(s)

form a self-adjoint holomorphic family in the sense of Kato [20].

We now prove the equivalence between our method and that based upon the Temple–
Lehmann–Kato bounds, which is the best general method for obtaining rigorous enclosures
of eigenvalues of partial differential operators if one uses a fixed test function space. In
contrast to our previous practice, the parameterσ is defined in terms ofρ+,H andφ, rather
than being an independent variable.

The following theorem has an obvious analogue giving an upper bound onλ.
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Theorem 6. Letλ < ρ+ and[λ, ρ+] ∩ Spec(H)= {λ}. Letφ ∈ Dom(H) and

〈Hφ, φ〉 < ρ+‖φ‖2.

If we put

σ = 1

2

(ρ+)2‖φ‖2 − ‖Hφ‖2

ρ+‖φ‖2 − 〈Hφ, φ〉
then

ρ+ − σ = ‖Hφ − σφ‖
‖φ‖ = 1

2

‖ρ+φ −Hφ‖2

ρ+‖φ‖2 − 〈Hφ, φ〉 > 0

and

λ > 2σ − ρ+ = ρ+〈Hφ, φ〉 − ‖Hφ‖2

ρ+‖φ‖2 − 〈Hφ, φ〉 .

Proof. The identity

ρ+ − σ = 1

2

‖ρ+φ −Hφ‖2

ρ+‖φ‖2 − 〈Hφ, φ〉
is obtained by simple algebra, and impliesσ < ρ+. Hence the equality

ρ+ − σ = ‖Hφ − σφ‖
‖φ‖

is equivalent to

(ρ+ − σ)2‖φ‖2 = ‖Hφ − σφ‖2

which is again confirmed by simple algebra. We then have

λ > σ − F(σ) > 2σ − ρ+

and the final equality is again simple algebra.

Note 1. The lower boundλ > 2σ − ρ+ is improved by increasingσ , subject to the
existence of a suitable functionφ. Assuming thatφ ∈ L, the optimal situation is obtained
by takingσ to be the solution ofρ+ − σ = F(σ).

Note 2. If we increaseρ+ subject to[λ, ρ+] ∩ Spec(H)= {λ} then by differentiating
the Temple ratio we see that we get a better lower bound onλ. The optimal choice therefore
arises by takingρ+ to be close to the first spectral point ofH to the right ofλ, if this point
is known.

3. An elaboration of the method

It appears from recent papers that one may sometimes obtain a better enclosure ofλ

by takingρ+ (ρ−) substantially larger (smaller) than suggested above. We describe the
theory behind this extension, which once again eventually yields the Temple–Lehmann–
Kato bounds.

We definedn,H (s) to be thenth eigenvalue of|H − sI | counting in increasing order,
repeating according to multiplicity, and stopping at the smallest point of the essential spec-
trum of |H − sI |. This may informally be described as the distance froms to thenth
eigenvalue ofH counting outwards froms. It is immediate from the definition thatdn,H (s)
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is a continuous, piecewise linear function ofs with gradient±1 at every non-exceptional
point. A typical graph ofd2,H (s) is shown in Figure2.

We now recall thatλn(s) was defined to be thenth eigenvalue ofN(s).

Theorem 7. We have

dn,H (s) 6 Fn(s) = λn(s)
1/2

for all n ands, and

|Fn(s)− Fn(t)| 6 |s − t |
for all n, s andt .

Proof. The first inequality follows from the Rayleigh–Ritz method applied to(H − sI )2.
The second inequality follows from the alternative definition

Fn(s) = min
L∈En

max

{ ||Aφ − sφ||
||φ|| : 0 6= φ ∈ L

}

whereEn is the set of alln-dimensional subspaces ofL.

The same method as that of the last section now yields the following.

Theorem 8. If λn is thenth eigenvalue ofH counting to the left ofρ+, andσ+ satisfies

Fn(σ
+) < ρ+ − σ+

then

λn > σ+ − Fn(σ
+).

The implementation of this method is similar to that for the casen = 1, described
after Theorem4. The first stage is to use unverified estimates of the eigenvalues to select
appropriate values ofσ±. Specifically, we takeσ+ as close to(λn + ρ+)/2 as possible
while satisfying

Fn(σ
+) < ρ+ − σ+.

We then takeφ to be the eigenvector ofN(σ+) corresponding to itsnth eigenvalue, and
obtain

λn > 〈Hφ,Hφ〉 − ρ+〈Hφ, φ〉
〈Hφ, φ〉 − ρ+〈φ, φ〉 .

The best choice ofn to take depends on circumstances. IfH has several very close eigen-
values surrounded by a large gap, then it is almost certainly necessary to take a large value
of n to obtain good estimates on the middle eigenvalues of the group. Numerical exam-
ples indicate that, even if the eigenvalues are well separated, there are often advantages in
choosingn > 1. See [33, Tables 1 and 2]. The advantage of takingρ± further away fromλ
outweighs the disadvantage of having to compute higher eigenvectors of the operatorN(s)

for appropriates.

4. A numerical example

We illustrate the above theory by means of a simple example which is deliberately
computed to lower accuracy than possible so as to make the errors involved in the choice
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Figure 2: A typical graph ofd2,H (s).
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Table 1:

s F (s) s + F(s) s − F(s)

−.35 .05788448146 −.2921155185 −.4078844815
−.34 .04821723590 −.2917827641 −.3882172359
−.33 .03871864769 −.2912813523 −.3687186477
−.32 .02955183526 −.2904481647 −.3495518353
−.31 .02115267820 −.2888473218 −.3311526782
−.30 .01488321555 −.2851167845 −.3148832156
−.29 .01398340816 −.2760165918 −.3039834082
−.28 .01922275402 −.2607772460 −.2992227540
−.27 .02726623140 −.2427337686 −.2972662314
−.26 .03629513011 −.2237048699 −.2962951301
−.25 .04572945345 −.2042705466 −.2957294535

of s obvious. The operatorH 0 is defined onl2(Z) by the matrix

H 0
mn =




1 if |m− n| = 1
(−1)n if m = n

0 otherwise.

Fourier transform calculations show thatH 0 is bounded with spectrum[−√
5,−1]∪[1,√5].

We now defineH by

Hmn =
{ −2 if m = n = k

H 0
mn otherwise

for some positive even integerk. SinceH is a rank one perturbation ofH0, it has the same
essential spectrum, and at most one eigenvalue in each of the gaps of the spectrum ofH0.
In fact,H0 has two eigenvalues

µ
.= −3.099952

λ
.= −0.293684.

We now defineL to be the subspace of sequencesf ∈ l2(Z) with support in{1, . . . ,2k},
and concentrate on obtaining enclosures ofλ using this subspace only.

We putk = 10 and computeF(s), s+F(s), s−F(s) for a range of values ofs in Table
1, taken from [9].

If we simply minimiseF(s)by puttings = −0.29, then we obtain the very poor enclosure

−0.30406 λ 6 −0.2760.

Our theorems state thats − F(s) < λ provided thats + F(s) < 1, and thats + F(s) > λ

provided thats − F(s) > −1. We see that the best enclosures ofλ in Table2 are obtained
by takings = −0.64 ands = 0.35, the result being

−0.2937756 λ 6 −0.293528.

This initial enclosure leads us to new values fors, namelyλ−1
2

.= −0.646 andλ+1
2

.=
0.353. Having confirmed the relevant inequalities for these two values ofs, we then obtain
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Table 2:

s F (s) s + F(s) s − F(s)

−.70 .3532050530 −.3467949469 −1.053205053
−.69 .3628673504 −.3271326496 −1.052867350
−.68 .3725232840 −.3074767161 −1.052523284
−.67 .3763394573 −.2936605426 −1.046339457
−.66 .3664305129 −.2935694871 −1.026430513
−.65 .3564543397 −.2935456604 −1.006454340
−.64 .3464716983 −.2935283016 −.9864716982
−.63 .3364870385 −.2935129615 −.9664870385
−.62 .3265015554 −.2934984447 −.9465015555
−.61 .3165157582 −.2934842417 −.9265157581
−.60 .3065299342 −.2934700658 −.9065299342
.30 .5937971136 .8937971136 −.2937971136
.31 .6037928541 .9137928541 −.2937928541
.32 .6137885136 .9337885136 −.2937885136
.33 .6237840484 .9537840484 −.2937840484
.34 .6337794005 .9737794005 −.2937794005
.35 .6437744895 .9937744895 −.2937744895
.36 .6537691985 1.013769199 −.2937691985
.37 .6637633485 1.033763349 −.2937633485
.38 .6737566457 1.053756646 −.2937566457
.39 .6837485619 1.073748562 −.2937485619
.40 .6937380144 1.093738014 −.2937380144

the marginally stronger enclosure

−0.2937736 λ 6 −0.293538

which depends only upon the evaluation ofF(s) at these two points and the fact thatλ is the
only spectral point ofH in (−1,1). One could improve this further, but there are obvious
limits to what can be achieved withk = 10. There is no difficulty in taking larger values of
k, but the purpose of this example is to illustrate the methods. To obtain maximum accuracy,
interval arithmetic, which we have not used, would in any case be necessary.

5. Szeg̋o’s theorem

We mention another approach to the spectral theory of a self-adjoint operatorH , which
depends upon comparing the spectrum ofH with that ofPHP , whereP is the orthogonal
projection on a given closed subspaceL.

The Berezin–Lieb formula

tr[Pφ(PHP)P ] 6 tr[Pφ(H)P ],
valid for all convexφ, has recently been generalized by Laptev and Safarov [22], who
obtained an estimate for the difference of the two expressions above for a certain class
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of non-convexφ. They used their new formula in [23] to provide a generalization of the
classical Szeg̋o limit theorem, described below.

Let Pλ be the spectral projections of an auxiliary self-adjoint operatorA, so thatPλ
converge strongly to the identity operator asλ → ∞. If ψ is a suitably smooth function on
R with ψ(0) = 0, then one may investigate the asymptotics asλ → ∞ of the quantity

tr[ψ(PλHPλ)].
Laptev and Safarov [23] obtained an asymptotic formula for this with an explicit error esti-
mate, generalizing Szegő’s theorem, and provided several applications to pseudodifferential
operators. They assumed that the operatorsA andH satisfy certain commutator estimates,
in order to obtain corresponding commutator estimates forP andH . Such commutator
estimates are also relevant to the theory of this paper, as we now demonstrate.

If one putsX := (I − P)HP then it is easy to verify that

P(H − sI )2P = C + (PHP − sP )2

whereC := X∗X.
A second easy calculation shows that

[P,H ]∗[P,H ] = X∗X +XX∗.

But it is well known thatX∗X andXX∗ have the same spectrum, apart possibly from 0, so

‖C‖ = ‖ [P,H ] ‖2

with corresponding results for otherCp norms. For Theorem10 below, the rank ofC is a
more important measure of its influence than any of these norms.

It should be emphasised that in Sections2 and3 we need no assumptions about the
magnitude of the commutator to justify the spectral enclosures obtained. While there is
no a priori guarantee that the enclosures are tight, they are guaranteed to be valid, and
their accuracy in applications probably exceeds what could be proved by any general prior
argument.

6. The essential spectrum

Our next theorem states that if one has an appropriate increasing sequence of subspaces
Ln, then it is possible to determine the spectrum ofH exactly using our earlier theorems.

Theorem 9. Suppose{Ln}∞n=1 is an increasing sequence of closed subspaces ofH such
that D := ∪∞

n=1{Ln ∩ Dom(H)} is a core for the self-adjoint operatorH . If F (n) are
the functions associated withLn according to (2.1) thenF (n) decrease monotonically and
converge locally uniformly todH . In particular, s ∈ Spec(H)if and only if

lim
n→∞F

(n)(s) = 0.

Note.While this confirms the theoretical importance of the functionsF (n) for the spectral
theory ofH , it can only be of use numerically if supplemented by information about the
rate of convergence.

If we considerH := −1 + V (x) acting inL2(RN) and takeLn to be the space of
functions with support in{x : |x| 6 n}, then the hypothesis of the theorem is satisfied if for
exampleV is bounded below and it is locallyL2. IfH has a bounded (non-L2) eigenfunction
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associated with the values ∈ R, then one might expect thatF (n)(s) = O( 1
n
). The precision

of this method does not compare with that for computations of discrete eigenvalues.
Since the essential spectrum, and in particular the continuous spectrum of a Schrödinger

operator, depend entirely upon the asymptotic behaviour of the potential at infinity, its
location is best determined by using theorems about the essential spectrum if possible. If
no such theorems are available for a particular operator, then one may be forced to the type
of procedure which we now describe.

The method of Arveson [4], [5] for determining the essential spectrum has some relation-
ship with our analysis, but does not involve the functionsF(s), which we regard as central.
He invokesC∗-algebra theory to deal with some discretised problems in one dimension,
and produces efficient algorithms in that context. However, his paper only discusses the
infinite volume limit, without controlling the rate of convergence, while we are interested
below in obtaining guaranteed bounds using one chosen subspace. We consider only discre-
tised Schrödinger operators for definiteness, but the same methods can be applied to partial
differential operators.

Let H := l2(ZN), and letL be the finite-dimensional subspace ofH consisting of
functions with support in some large finite subsetS of ZN . LetH := H0 + V whereV is
a real-valued bounded potential onZN and

H0f (n) :=
∑
m∼n

f (m)

wherem ∼ n if
∑N
i=1 |mi − ni | = 1. It is immediate that‖H‖ 6 c := 2N + ‖V ‖∞. Our

task is to obtain as much information about Spec(H)⊆ [−c, c] as possible from within the
subspaceL. We must avoid spurious eigenvalues associated with eigenfunctions which are
concentrated around the boundary.

∂S := {n /∈ S : n ∼ m for somem ∈ S}.
We obtain estimates on the spectrum ofH which depend mainly upon the numberk :=
#(∂S). One hask = 2 if S is an interval inZ, the only case considered by Arveson, but
in higher dimensionsk increases indefinitely asS expands. One immediately sees that
rank{(1 − P)HP } 6 k. We use this fact to compare the spectrum ofH with that of its
restrictionB := PHP to L.

The following theorem is applicable to the example above, but we have formulated it in
a more general manner.

Theorem 10. If rank{(1 − P)HP } 6 k then

F(s) 6 dk+1,B(s)

for all s ∈ R. Hence

Spec(H)∩ [λi, λi+k] 6= ∅
for all i, where{λi} are the eigenvalues ofB written in increasing order and repeated
according to multiplicity.

Proof. If {µi} are the eigenvalues of(B − s1)2, written in increasing order and repeated
according to multiplicity, then

dk+1,B(s)
2 = µk+1(s)

= inf {µ(L) : L ∈ Ek+1}
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whereEk+1 is the set of linear subspaces ofL of dimensionk + 1 and

µ(L) := sup
{‖Bf − sf ‖2

‖f ‖2
: 0 6= f ∈ L

}
.

If dim(L) = k + 1, then there existsf ∈ L with ‖f ‖ = 1 andf ∈ Ker{(1 − P)HP }. We
deduce that

F(s)2 6 〈N(s)f, f 〉 = ‖Bf − sf ‖2 6 µ(L).

Taking the inf over allL ∈ Ek+1 yields the first statement of the theorem. The second
statement is obtained by puttings := (λi + λi+k)/2 to obtaindk+1,B(s) = (λi+k − λi)/2.
From the inequality

F
(λi + λi+k

2

)
6 λi+k − λi

2

we complete the proof by invoking Corollary2.

The same idea can be applied using the functionsFn(s) to obtain the following result,
but we write the proof in a more direct form.

Theorem 11. Let −∞ < α < β < ∞ and suppose thatB hasj eigenvalues in[α, β].
Then either there is a point of the essential spectrum ofH in [α, β] orH has at leastj − k
eigenvalues in[α, β].
Proof. If L ⊆ L is the linear span of the eigenvectors ofB associated with the eigenvalues
lying in [α, β] then dim(L) = j . If we put γ := (α + β)/2 andδ := (β − α)/2, then
‖Bf − γf ‖ 6 δ‖f ‖ for all f ∈ L. If M is the subspace consisting of allf ∈ L such
that (1 − P)HPf = 0 then dim(M) > j − k andHf = Bf for all f ∈ M. Thus
‖Hf − γf ‖ 6 δ‖f ‖ for all f ∈ M. Applying the Rayleigh–Ritz principle to the operator
|H−γ1|we deduce thatH has at leastj−k eigenvalues (or non-empty essential spectrum)
in the stated interval.

We interpret the above theorem by saying that in the passage fromB to H one loses
at mostk eigenvalues in each interval, regardless of the length of that interval. However,
the remaining eigevalues may also move within the interval, and new eigenvalues, or even
essential spectrum ofH , may appear.

As an example, letH be the operator onl2(ZN) defined above, so that‖H‖ 6 c. Let
S := [−m,m]N ∩ ZN so that #S = (2m + 1)N andk := #(∂S) 6 2N(2m + 2)N−1.
If we divide [−c, c] into a fixed numberh of equal subintervals, then we might have up
to k spurious eigenvalues in each subinterval, and hence might have up tohk spurious
eigenvalues altogether. The proportion of spurious eigenvalues lost is therefore at most
O(m−1).

The computation of the eigenvalues ofB := PHP can be carried out particularly
efficiently in one dimension, sinceB is then a tri-diagonal matrix. Numerical examples can
be extracted from Arveson’s program for computing the spectrum of the almost Mathieu
operator [3]. This operator onl2(Z) has matrix elements

Hm,n :=



1 if |m− n| = 1
λ cos(nθ) if m = n

0 otherwise.
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It has only essential spectrum, but a more precise classification depends delicately uponλ

andθ , the interesting cases being whenθ is irrational mod 2π . Arveson’s program provides
beautiful evidence of the extremely complicated spectral behaviour of this operator. If a
particular example is saved, then the data file consists of a list of the number of eigenvalues
in each of a substantial number of sub-intervals of the real line. The data is stored as an
unadorned hexadecimal list, but this is easy to interpret. We refer to [6], [24], [25] for
references to the extensive theoretical literature on the almost Mathieu equation.

For the reader’s convenience we have recreated the mathematical core of Arveson’s
program using Maple V.4 [10]. His key idea is to compute the number of eigenvalues ofB

less thans for enough values ofs to produce a graph (see Figure3). This may be done very
efficiently using the slicing method [31, p. 371] . Differences of successive elements of the
data list yield the number of eigenvalues ofB in each of a series of consecutive intervals.
The efficiency of the method arises from the fact that there is no need to take the number
of such intervals to be larger than the number of horizontal pixels of the graph to be drawn,
however large the dimension of the subspace.

7. Schrödinger operators

Let H := −1 + V be a Schrödinger operator acting inL2(RN), and let its potential
V be non-negative and locallyL2, so thatH is essentially self-adjoint onC∞

c (R
N). The

computation of the spectrum ofH is difficult because it depends upon the entire structure of
the potentialV . The theorems which we obtain are continuous analogues of Proposition 7.1
of Avron, van Mouche and Simon [6], which was used by them to prove that the spectrum
of an almost Mathieu equation is a Holder continuous function of the phase parameter.
This may then be used to compute the spectrum by approximating the phase by a rational
number, for which a detailed theory has been developed; see [24], [25] for the best recent
results and a review of the literature.

We start by proving a theorem about the bottom of the spectrum ofH . While this is a
special case of the subsequent result, its proof is simpler and the constant obtained is more
precise. The theorem is surprising in view of the fact that the bottom of the spectrum ofH

may have an associated eigenfunction which is concentrated on a region of arbitrarily large
diameter. It is related to Theorem 2 of [15], which computes the weak coupling asymptotics
of the bottom of the spectrum for arbitrary bounded potentials.

LetE denote the bottom of the spectrum ofH , andEx,L the bottom of the spectrum of
the restriction ofH toL2(B(x, L)) subject to Dirichlet boundary conditions, whereB(x, L)
denotes the ball inRN with centrex and radiusL. Finally, let

EL := inf {Ex,L : x ∈ RN }.

Theorem 12. Under the above assumptions we have

E
1/2
L − L−1γ 1/2 6 E1/2 6 E

1/2
L

for all L > 0, whereγ is the smallest eigenvalue of−1 acting inL2(B(0, 1)) subject to
Dirichlet boundary conditions.

Proof. Let η be a smooth function onRN with support inB(0, 1) and‖η‖2 = 1. Let

ηx,L(y) := L−N/2η(L−1(y − x))
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Figure 3: Spectrum of an almost Mathieu operator
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and regardηx,L as a multiplication operator. A direct computation establishes that∫
RN
(ηx,L)

∗(ηx,L)dx = ‖η‖2
2 1 = 1

where the integral converges in the weak operator topology. LetQ be the quadratic form of
H with domain

Dom(Q) = W1,2(RN) ∩ Dom(V 1/2)

and form coreC∞
c . Let ε, δ > 0 and letφ ∈ C∞

c satisfy

Q(φ) 6 (E + ε)‖φ‖2.

Then∫
RN
Q(ηx,Lφ)dx =

∫
RN

(
‖∇(ηx,Lφ)‖2 + ‖V 1/2ηx,Lφ‖2

)
dx

=
∫

RN

(
‖∇(ηx,L)φ + ηx,L∇(φ)‖2 + ‖V 1/2ηx,Lφ‖2

)
dx

6 (1 + δ−1)

∫
RN

‖∇(ηx,L)φ‖2dx + (1 + δ)

∫
RN

‖ηx,L∇(φ)‖2dx

+
∫

RN
‖V 1/2ηx,Lφ‖2dx

6 (1 + δ−1)L−2‖∇η‖2‖φ‖2 + (1 + δ)Q(φ)

6
(
(1 + δ−1)L−2‖∇η‖2 + (1 + δ)(E + ε)

)
‖φ‖2

=
(
(1 + δ−1)L−2‖∇η‖2 + (1 + δ)(E + ε)

) ∫
RN

‖ηx,Lφ‖2dx.

The above inequality implies that there existsx ∈ RN such that

Ex,L 6 (1 + δ−1)L−2‖∇η‖2 + (1 + δ)(E + ε)

and hence that

EL 6 (1 + δ−1)L−2‖∇η‖2 + (1 + δ)(E + ε).

By letting ε → 0 and then optimising with respect toδ, we obtain

E
1/2
L 6 L−1‖∇η‖ + E1/2.

The theorem follows by optimising with respect toη.

We now turn to the computation of the entire spectrum ofH . Let

F(s) := dist(s,Spec(H))

and put

Fx,L(s) := inf

{ ||Hφ − sφ||
||φ|| : 0 6= φ ∈ Dx,L

}
.

whereDx,L denotes the space of smooth functions with compact support inB(x, L). We
adopt the position thatFx,L may be computed by means which depend upon the operator
in question, and describe how these functions may be used to obtain estimates of Spec(H)

with controlled errors.
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Although it is fairly obvious thatF0,L(s) decreases monotonically and locally uniformly
to F(s) asL → ∞, the rate of convergence cannot be controlled without assumptions on
V . If we put

FL(s) := inf
x∈RN

{Fx,L(s)}

then this function also decreases monotonically and locally uniformly toF(s). However,
the rate of convergence can now be controlled, without any further assumptions onV .

Theorem 13. There existsc > 0 depending only uponN such that

F(s) 6 FL(s) 6 F(s)+ c
(
L−2 + L−1(s + F(s))1/2

)

for all s ∈ R. Hence

FL(s)− c
(
L−2 + L−1(s + FL(s))

1/2
)

6 F(s) 6 FL(s).

Proof. We follow the notation of Theorem12. Let δ, ε > 0 and assume thatφ ∈ C∞
c

satisfies‖(H − s)φ‖ 6 (F (s)+ ε)‖φ‖. Then

∫
RN

‖(H − s)ηx,Lφ‖2dx 6 (1 + δ−1)

∫
RN

‖ηx,L(H − s)φ‖2dx

+ (1 + δ)

∫
RN

‖[H, ηx,L]φ‖2dx.

Secondly ifγ > 0

∫
RN

‖[H, ηx,L]φ‖2dx =
∫

RN
‖(1ηx,L)φ + 2∇ηx,L · ∇φ‖2dx

6 (1 + γ−1)

∫
RN

‖(1ηx,L)φ‖2dx

+ 4(1 + γ )

∫
RN

‖(∇ηx,L) · ∇φ‖2dx

6 c1(1 + γ−1)L−4‖φ‖2 + c2(1 + γ )L−2‖∇φ‖2

6
(
c1(1 + γ−1)L−4 + c2(1 + γ )L−2(s + F(s)+ ε)

)
‖φ‖2

= c2
3

(
L−2 + L−1(s + F(s)+ ε)1/2

)2‖φ‖2

by optimising with respect toγ . Combining the above two inequalities and optimising with
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respect toδ we obtain∫
RN

‖(H − s)ηx,Lφ‖2dx 6 (1 + δ−1)‖(H − s)φ‖2

+ (1 + δ)c2
3

(
L−2 + L−1(s + F(s)+ ε)1/2

)2‖φ‖2

6 (1 + δ−1)(F (s)+ ε)2‖φ‖2

+ (1 + δ)c2
3

(
L−2 + L−1(s + F(s)+ ε)1/2

)2‖φ‖2

= k2‖φ‖2

= k2
∫

RN
‖ηx,Lφ‖2dx

where

k := (F (s)+ ε)+ c3

(
L−2 + L−1(s + F(s)+ ε)1/2

)
.

This integral inequality implies the existence ofx ∈ RN such that

‖(H − s)ηx,Lφ‖ 6 k‖ηx,Lφ‖.
The proof is completed by taking the imfimum overx ∈ RN and then the limitε → 0.

Our next result is a partial converse to Corollary2.

Corollary 14. If E ∈ Spec(H)andL > 0, then there existx ∈ RN andφ ∈ Dx,L such
that

‖Hφ − Eφ‖
‖φ‖ 6 c

(
L−2 + L−1E1/2

)
.

Proof. The stated condition onE implies thatF(E) = 0, which implies the result imme-
diately.

If one has further information about the potentialV then it may be preferable to use
a partition of the identity which takes advantage of this. For example suppose thatV is
periodic except for sparsely distributed compactly supported impurities. Then one could
take a different function in the partition of the identity to equal one on the support of each
impurity. If every pair of impurities is separated by a distance of at leastO(L), then we
may takeε1 = O(L−2) andε2 = O(L−4) below.

Theorem 15. Suppose{ηn}∞n=1 lie in C∞
c (R

N) with

∞∑
n=1

ηn(x)
2 = 1

∞∑
n=1

|∇ηn(x)|2 6 ε1

∞∑
n=1

|1ηn(x)|2 6 ε2
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for all x ∈ RN . Define

Fn(s) := inf
{‖Hφ − sφ‖

‖φ‖ : 0 6= φn ∈ C∞
c (Un)

}

whereUn is some open set containingsupp{ηn}, and

F(s) := inf {Fn(s) : n = 1,2, ..}.
Then

F(s)− ε2 − 2ε1{s + F(s)}1/2 6 F(s) 6 F(s)

for all s ∈ R.

We omit the proof, which follows that of Theorem13.

8. Complex resonances

The standard theory of complex resonances is easier to use than it is to explain in fun-
damental terms. It involves the notion that certain self-adjoint operators may have complex
eigenvalues associated with eigenvectors which do not lie in the Hilbert space under con-
sideration. The problem with this idea is that one must then impose constraints on the
eigenvectors involved, in order to prevent every complex number being a resonance, and
these constraints can appear rather arbitrary.

One extensively developed theory of resonances is described in the review by [8] of ideas
first developed by Aguilar, Balslev, Combes and Simon in the early 1970s. The authors
use a dense linear subspace to define resonances of a Schrödinger operator, namely the
subspace of analytic vectors with respect to the dilation group acting onRN ; see [8, p.
152]. Resonances are defined as poles of the analytic continuation of the resolvent to the
unphysical sheet. This definition is canonical to the extent that one does not distinguish
between the resolvent operator and either its integral kernel or its matrix elements with
respect to the linear subspace. While technically successful for certain types of Schrödinger
operator, it cannot be used if the configuration space is a manifold or a discrete set, because
of the absence of a dilation group in these cases. A more general definition applicable to
Laplace–Beltrami operators on Riemannian manifolds has been proposed by Agmon [2],
[1], and again depends upon the choice of a dense linear subspace satisfying a certain list
of properties. Both definitions have the feature that the theory depends upon the spectrum
ofH having an interval of absolute continuity, and they are therefore unstable with respect
to arbitrarily small perturbations. For example, if one adds a very small almost periodic
perturbation to a Schrödinger operator, the above notion of resonance becomes meaningless.

In the next section we develop a different notion of resonance, in which the role of the
subspace is absolutely central, and in which analytic continuation of the resolvent plays
no role. Both approaches are applicable in a multi-dimensional context, but we investigate
some one-dimensional examples here in order to compare the two.

We consider a discrete Schrödinger operatorH acting on l2(Z+). This operator is
bounded and has matrix

Hm,n :=



1 if |m− n| = 1
vn if m = n

0 otherwise
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where the potential{vn}∞n=1 is real-valued and of finite support. We assume thatvk 6= 0 but
that vn = 0 for all n > k. An application of trace class scattering theory shows that the
operatorH has essential spectrum and absolutely continuous spectrum equal to[−2, 2].

Adapting the definition of resonance of Harrell [18] to this discrete context, we say that
z ∈ C is a resonance ofH if the solutionf of Hf = zf subject to the intial condition
f1 = 1 satisfiesfn = cwn for somec,w ∈ C and all large enoughn. We do not impose
the conditionf ∈ l2 but merely regardf as a sequence{fn}∞n=1.

Theorem 16. If z is a complex resonance, thenz = w−1 +w and the conditionfn = cwn

holds for alln > k. Moreover,z is a solution of a polynomial equationp(z) = 0 of degree
2k − 1.

Proof. From the equations

fn−1 + vnfn + fn+1 = zfn

where we putf0 = 0 andf1 = 1, we deduce thatfn is a polynomial of the form

fn = zn−1 − (v1 + . . .+ vn−1)z
n−2 +O(zn−3). (8.1)

If n > k then

fn + fn+2 = zfn+1

and inserting the expression forfn for largen we deduce thatz = w−1 + w. Carrying out
a reverse induction from such largen, we find thatfn = cwn for all n > k.

We now combine the two equationsz = w−1 + w andfk+1/fk = w to obtain

p(z) := zfk+1fk − f 2
k − f 2

k+1 = 0. (8.2)

Combining (8.1) and (8.2) we finally obtain

p(z) = vkz
2k−1 +O(z2k−2)

which confirms the order ofp.

It is generically the case that the roots of a polynomial depend analytically upon the
coefficients, and in our context this means that they depend analytically upon the coefficients
of the potential. However, there is an important exception. If one examines the dependence
of the roots upon the value ofvk, one sees that whenvk = 0 the degree of the polynomial
decreases, so some of the roots momentarily disappear. In fact, asvk → 0 certain of the
resonances become rapidly larger, moving to infinity.

In the program [11] we investigate the case in whichv1 = 0, v2 = 3 andv3 = a varies
through the value zero, while all othervn = 0. Thusk = 3 and there are 5 resonances,
except whena = 0, when there are only 3 resonances. Fora = 0 the polynomial equation
mentioned in Theorem16 is

p(z) = 3z3 − 9z2 − 6z− 1.

Table3 shows how two selected resonances depend upona when this is very small. More
complete data can be obtained from [11], for this and other potentials. Moreover [11]
provides a procedure for plotting the data obtained in the complex plane. It may be seen
that one of the resonances diverges asa → 0, while the other varies smoothly under the
same conditions. This is confirmed by further numerical experiments.
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Table 3:

a resonance1 resonance2
−.08 −.28475+ .085342i 7.9289
−.07 −.28562+ .085732i 8.3343
−.06 −.28649+ .086119i 8.8411
−.05 −.28738+ .086479i 9.4942
−.04 −.28827+ .086827i 10.385
−.03 −.28919+ .087146i 11.696
−.02 −.29012+ .087453i 13.909
−.01 −.29105+ .087747i 18.939

0 −.29199+ .088010i ∞
.01 −.29294+ .088259i 1.5058+ 17.199i
.02 −.29392+ .088476i 1.5109+ 12.074i
.03 −.29489+ .088679i 1.5165+ 9.7876i
.04 −.29586+ .088867i 1.5225+ 8.4166i
.05 −.29684+ .089021i 1.5279+ 7.4733i
.06 −.29783+ .089160i 1.5336+ 6.7732i
.07 −.29883+ .089264i 1.5388+ 6.2243i
.08 −.29983+ .089353i 1.5444+ 5.7798i

9. Higher-order spectra

LetH be a self-adjoint operator acting on a Hilbert spaceH , and letP be an orthogonal
projection onto a closed linear subspaceL. We assume either thatH is bounded, or thatL
is finite-dimensional and contained in the domain of as high a power ofH as is needed for
each statement. Given a positive integern andz ∈ C, letMn(z) denote the restriction toL
of the operator pencilP(H − zI)nP . We define then-th order spectrum Specn(H,L) of
H relative toL to be the set ofz such that the operatorMn(z) is not invertible within the
subspaceL.

Theorem 17. The setSpecn(H,L) is non-empty, closed and bounded for all positive inte-
gersn.

Proof. If L is finite-dimensional this is an immediate consequence of the fact thatz ∈
Specn(H,L) if and only if the characteristic polynomial

pn(z) := det(Mn(z)) (9.1)

vanishes. Note thatpn is of degreen dim(L).
Now suppose thatH is bounded, but thatL is infinite-dimensional. Then we may follow

the same argument forn > 1 as in the traditional case wheren = 1 andL = H . The
boundedness of the spectrum is a consequence of the estimate

‖(−z)−nMn(z)− I‖ 6
n∑
r=1

(
n

r

)‖H‖r
|z|r . (9.2)
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Its closedness follows from the fact thatMn(z) depends norm continuously onz. The proof
of its non-emptiness involves an application of Liouville’s theorem toMn(z)

−1, assuming
that this inverse is everywhere defined.

Our next theorem is not sharp. It would be interesting to know the strongest restriction
which may be placed on Spec2(H,L) under the given assumption on Spec(H).

Theorem 18. Suppose thatH is bounded withSpec(H)⊆ [α, β]. Then

Spec2(H,L) ⊆ {z ∈ C : |z| 6 3‖H‖ andα 6 Re(z) 6 β}.
Proof. The first part of the statement follows from the estimate (9.2).

Now suppose thatz = x + iy wherex < α, and letφ ∈ L. Then

‖M2(z)φ‖ ‖φ‖ > |〈M2(z)φ, φ〉|
= |〈[(H − x)2 − y2 − 2iy(H − x)]φ, φ〉|
> 2|y|〈(H − x)φ, φ〉|
> 2|y|(α − x)‖φ‖2.

If y 6= 0, then we deduce that there existsc > 0 such that

‖M2(z)φ‖ > c‖φ‖
for all φ ∈ L, so thatM2(z) is one-one with closed range. Ifψ is orthogonal to the range,
then

0 = |〈M2(z)ψ,ψ〉| > 2|y|(α − x)‖ψ‖2.

Thereforeψ = 0,M2(z) is invertible andz /∈ Spec2(H,L). If y = 0, then an easier version
of the above calculation again shows thatz /∈ Spec2(H,L). A similar argument works if
x > β.

We define the resonances ofH relative toL to be those isolated pointsz ∈ Spec2(H,L)
such that 0 is an isolated eigenvalue ofM2(z) of finite multiplicity; we are particularly
interested in those points which are close to the real axis. If dim(L) < ∞ then every point
of Spec2(H,L) is a resonance. Note that an eigenvalue ofH may lead to a resonance
in this sense, because the associated eigenfunction may be close toL but not an element
of L. There is no way of avoiding this fact—the use of the subspaceL degrades the
information contained inH . Alternatively two different self-adjoint extensions ofH |L
may have different spectral characteristics, and we are investigating only what is common
to all possible such extensions.

The next theorem shows that our new definition of resonance is stable under small
perturbations.

Theorem 19. Leta ∈ C be a resonance ofH with respect toL. Then for everyε > 0 there
existsδ > 0 such that ifA : H → H is bounded and self-adjoint with‖A‖ < δ, then there
exists a resonance eigenvaluez ofH + A such that|z− a| < ε.

Proof. If dim(L) < ∞ then we need only apply Rouché’s theorem to the polynomial
p2 defined by (9.1) since the coefficients ofp2 vary continuously with the perturbation.
If dim(L) = ∞ andH is bounded, we must make substantial use of Kato’s theory of
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holomorphic perturbations of the spectrum [20]. The spectral projectionPa associated with
the resonancea is given by the contour integral

Pa := 1

2πi

∫
γ

(M2(a)− w)−1dw

whereγ is a sufficiently small circle with centre 0. This projection is of finite rank and
commutes withM2(a). If we fix γ then for|z− a| sufficiently small the projections

Pz := 1

2πi

∫
γ

(M2(z)− w)−1dw

depend analytically uponz, and therefore have the same rank as forz = a. The function

G(z) := det(M2(z)P (z))

is defined by computing the determinant within the range ofP(z), and again depends
analytically uponz. Sincea is a resonance, this function vanishes forz = a but is non-zero
everywhere else in a sufficiently small neighbourhood ofa. Now let us consider the same
constructions forH̃ := H +A. If ‖A‖ is small enough, theñG(z) can be defined as before
in a small neighbourhood ofa, and is uniformly close toG(z). By Rouché’s theorem it has
an isolated zero in a neighbourhood ofa, and this yields a resonance ofH̃ .

We now turn to connecting this account of resonance to the theory of Section2, using
the notation developed there. Ifs ∈ R then Theorem5 states that

F(s)−2 = ‖M2(s)
−1‖.

One might expectF(s) to be small close to a pointz ∈ C at whichM2(z) is non-
invertible, i.e. close to a resonance ofH . If L is finite-dimensional, this can be made more
precise. Instead of asking whether the smallest eigenvalueF(s) of M2(s) is small, one
may ask whether its determinant is small. But this determinant is the polynomial of degree
n dim(L) whose extension toC vanishes at the resonances ofH relative toL.

There is more which needs to be understood about the above idea, at both theoretical and
computational levels, but we consider next an example which demonstrates that the theory
above really is related to complex resonances in the sense of Section8.

Example 20. LetH be the bounded self-adjoint operator acting inl2(Z+), whose matrix
is given by

Hm,n :=



1 if |m− n| = 1
a if m = n = 3
0 otherwise

for m, n > 1 anda > 0. This operator has absolutely continuous spectrum[−2, 2] with
multiplicity 1, together with a single eigenvalueλ > 2. If we define resonances as in Section
8, then they are the roots of the polynomial equation

p(z) := −az5 + a2z4 + 4az3 − 2a2z2 − 3az+ a2 + 1 = 0

of degree 5 inz. If a = 3, the roots are approximately

−1.1421± 0.0342i

0.8403± 0.0489i

3.6036.
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The first four roots are complex resonances, and the last is thel2 eigenvalueλ.

Now let us describe the approach of this section. Given any integerk > 1, one can
defineL to be the subspace of functions with support in{1, . . . , k}. For reasonably small
k one can computep2(z) as defined by (9.1) and find the zeros of the polynomialp2 by
the use of a computer algebra package. (The only merit of this method is the simplicity
of the programming involved. It is numerically unstable for large values ofk because the
coefficients ofp2 become so large. We suggest four alternative methods of computing the
complex resonances below.)

We have investigated the above example numerically fora = 3 andk = 20 using the
method just described and also the method of Theorem23below [12]. The graph ofF(s) for
reals in Figure4 shows clear local minima near−1.14 and 0.84, as well as an eigenvalue
near 3.60, that is at the resonances as well as at thel2 eigenvalue. However, the first two
local minima mentioned are not of great value for locating the resonances in the complex
plane. The graph plotting the complex resonances as defined in this paper, shown in Figure
5 is extremely interesting.

Most of the points lie near a closed convex curve, corresponding in some way to the
continuous spectrum ofH . There is a pair of points at 3.6036± 10−8i very close to thel2

eigenvalue ofH , which is of multiplicity 1. Finally there are four complex resonances at

−1.1425± 0.0600i

0.8357± 0.0793i.

It is rather surprising that these four complex resonances vary only very slowly withk,
in contrast to the other points of the second-order spectrum ofH . For example, if we put
k = 4 the corresponding values are

−1.1527± 0.1306i

0.8500± 0.1707i.

We do not claim that our approach is superior to the standard one for this example,
but emphasise again that our result applies equally toall self-adjoint extensions ofH |L.
This elementary procedure, which could still be implemented if one added a small almost
periodic potential toH , yields values which bear a striking similarity to those of the standard
approach for this example. This may be interpreted as showing that complex resonances
(in the standard sense) are very little affected by perturbations of the operator outside the
potential barrier which gives rise to the resonance.

We now discuss two very general methods, the first real and the second complex, for
computing the higher-order spectra, which are more appropriate for large matrices. LetH
be any finite-dimensional Hilbert space, and letz → A(z) be an analytic function defined
on a regionU ⊆ C, whose values are operators onH , i.e. an analytic operator pencil. We
define the spectrum ofA to be the set ofz ∈ U such thatA(z) is not invertible. Since this
coincides with the set of zeros of the analytic functionp(z) := det(A(z)), it must be a
discrete subset ofU , excluding the uninteresting case in whichA(z) is singular for every
z ∈ U . We describe a method for computing Spec(A) which does not involve the use of
determinants.

If (x, y) ∈ U , we defineσ(x, y) to be the smallest singular value of the matrixA(x +
iy). There are well-developed techniques for computing singular values, for example via
reduction of the matrix to bidiagonal form, described in [31, Chapter 7].
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Figure 4: The graph ofF(s) for reals, with clear local minima near−1.14 and 0.84 and an
eigenvalue near 3.60.
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Figure 5: A plot of the complex resonances, as defined in this paper.

69https://doi.org/10.1112/S1461157000000140 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000140


Spectral enclosures and complex resonances for general self-adjoint operators

It follows from the formula

σ(x, y) = inf {‖A(z)φ‖/‖φ‖ : 0 6= φ ∈ H}
thatσ is a non-negative Lipschitz continuous function, and that it vanishes precisely at the
points of Spec(A). One can now try to find the zeros ofσ by using a standard algorithm to
move from an initial guess in steps towards a local minimum ofσ . The following theorem
guarantees that this procedure succeeds.

Theorem 21. Generically, the only local minima of the functionσ are the points at which
it vanishes. Moreover, the functionσ(x, y)−2 is subharmonic on the setV := U\Spec(A).

Proof. Both statements follow by an analysis of the functionρ := σ−1 defined onV . We
have

ρ(x, y) = ‖A(z)−1‖.
Givenc := a + ib ∈ V , suppose thatφ,ψ are vectors of norm 1 such that

ρ(a, b) = 〈ψ,A(z)−1φ〉
for z = c. Because the RHS of the above equation is an analytic function, there existsz in
any neighbourhood ofc, however small, such that

ρ(x, y) > |〈ψ,A(z)−1φ〉|
> |〈ψ,A(a + ib)−1φ〉|
= ρ(a, b)

unless the RHS is constant. The word “generically” in the theorem refers to the possibility
that the RHS might be constant. While this is may indeed happen, it cannot do so if, for
example,U = C and‖A(z)−1‖ → 0 as|z| → ∞.

Next let{ur}nr=1 be an orthonormal basis ofH . Then

ρ(x, y)2 = ‖{A(z)−1}∗A(z)−1‖

= sup
‖φ‖=1

n∑
r=1

|〈ur, A(z)−1φ〉|2.

The proof is completed by combining the invariance of the set of subharmonic functions
under sums and suprema with the fact that|g(z)|2 is subharmonic for every analytic function
g.

Our second method of computing the complex resonances of an analytic operator pencil
involves determining the smallest eigenvalue ofA(z) instead of its smallest singular value.
We make the same assumptions on the operator-valued analytic function as in Theorem21.
Given z ∈ U , we definef (z) to be the smallest eigenvalue ofA(z) using the following
lexicographic ordering ofC: we put reiθ 6 seiφ if 0 6 r < s < ∞, or if r = s and
0 6 θ 6 φ < 2π .

Theorem 22. If a is a resonance ofA whose associated spectral projection has rank1,
then there existsδ > 0 such thatf is analytic on{z : |z− a| < δ} with f (a) = 0.

Proof. If γ is a small enough circle with centre 0 the contour integral

Pa := 1

2πi

∫
γ

(A(a)− w)−1dw
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defines the spectral projection ofA(a) associated with its eigenvalue 0. Replacinga by
z in this formula the spectral projectionPz is still of rank 1 and depends anaytically on
z, provided thatz is close enough toa by Kato’s theory of analytic perturbations of the
spectrum [20]. For suchz, A(z) has only one eigenvalue insideγ . This eigenvalue equals
f (z), and depends analytically onz.

Computationally, the application of this method involves evaluating the eigenvalues of
A(z) at some point which is suspected to be close to a complex resonance, and then using
a modification of Newton’s method for analytic functions to move towards a zero off .

We have not attempted to write code to implement either of the above two ideas. While
finding the smallest eigenvalue of a non-self-adjoint matrix is probably slower than finding
its smallest singular value, the subsequent iterative procedure may well be faster because
one can exploit the analyticity of the function concerned.

There is an extensive spectral theory [16], [26], [29] of polynomial operator pencils,
including quadratic operator pencils of the form of (2.8). We refer to [30] and sources cited
there for an account of the delicate issues involved in defining the spectrum of unbounded
quadratic operator pencils, but confine ouselves to the bounded and finite-dimensional cases
here. This theory suggests two other methods of finding the eigenvalues of the pencil. The
first depends upon the existence of a factorisation

N(z) := Q− 2zB + z2I = (Z1 − zI)(Z2 − zI)

for any square matricesQ andB. Our particular choices ofQ andB put us in the self-adjoint
weakly coupled case, and we haveZ∗

2 = Z1 and

Spec(Z1) ⊆ {z : Im(z) > 0}.
Given such a formula, it follows immediately that the set of eigenvalues of the quadratic
pencil is just the union of the sets of eigenvalues of the two operatorsZ1 andZ2. For refer-
ences to the literature on factorisations of this type, see [21], [16], [26], [29]. Unfortunately,
existing procedures for obtainingZ1 andZ2 fromQ andB are either indirect or not well
adapted to efficient computation, so one cannot implement this approach.

The second method depends upon a theorem which may be extended to general poly-
nomial operator pencils. It may often be the best method of calculating the spectrum of
quadratic operator pencils, since it reduces the problem to standard eigenvalue estimates,
the only cost being the doubling of the size of the matrices involved. For an implementation
of this method see [12].

Theorem 23. LetQ andB be bounded operators on a Banach spaceB, and letz ∈ C.
Then the operatorN(z) := Q− 2zB + z2I is invertible if and only if the operatorT − zI

acting onB × B is invertible, where

T :=
(

2B −Q
I 0

)
.

Moreover, one then has

(T − zI)−1 = (Q− 2zB + z2I )−1
( −zI Q

−I 2B − zI

)
.

Finally,N(z) has a non-zero kernel if and only ifz is an eigenvalue ofT .
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Proof. All of the statements are obtained by direct computations. IfB is finite-dimensional,
almost all of the statements are consequences of the identity

det(T − zI) = det(Q− 2zB + z2I ).

Appendix A. Maple programs

The Maple programs in [9], [10], [11], [12] are provided as an electronic appendix to
this paper. The appendix is available to subscribers to the journal at:

http://www.lms.ac.uk/jcm/1/lms97005/appendix-a/.
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