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Abstract. The evolutions of satellite's orbit under the influence of the third disturbing body moving on an 
elliptic orbit and the oblate planet are studied by averaging the disturbing function, and integrable cases 

are classified in seven cases. 

In this report we shall study the evolution of satellite's orbit under the influence of 
simultaneous perturbations of the third body, moving on an elliptical orbit, and the 
oblateness of the planet, around which the satellite rotates. 

The problem is considered in the following assumptions, formulated by Lidov 
(1962): 

(1) The ratio of the radius-vector of the satellite r and the radius-vector of the 
third body rx is small (r/rx <̂  1), and in the expansion of the disturbing function in 
the series of r/r1 only the main term Wx remains (Hill's approximation). 

(2) The oblateness of the field, W2, is described by the second zonal harmonic. 
(3) We assume that there are no resonant relations between the frequencies of the 

satellite's and the third-body's rotations. In this case the disturbing function of the 
problem, being averaged with respect to the longitudes of the satellite and the per­
turbing body, X and <p, could be used for the description of the secular evolution: 

In 2n 

W = ^ \ j(W1 + W2)dkdq>. (1) 
0 0 

In the above assumptions the following formula for W is valid: 

w=u\{\-e\r> ifo2-1-15"2 s i n W 3 cos2,x 

x(5e> s i n 2 c o + l - g
2 ) ] + 4 a 3 ^ 2 ° ) 3 / 2 (1-3 cos 2 Q. (2) 

Here a, e, i, a>, and Q are the conventional notations for the Kepler's elements of the 
satellite's orbit. The orbital plane of the perturbing body is taken as reference; Q is 
counted from the ascending node of the perturbing body's orbit on the equator of 
the planet; ieq is an inclination of the satellite's orbit to the equatorial plane of the 
planet: 

cos ieq = cos / cos i — sin / sin i cos Q, (3) 
where / is the angle between the orbital plane of the perturbing body and the equa­
torial plane, ax and ex are orbital elements of the perturbing body, a0 is the equa-
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torial radius of the planet, c20 is the coefficient of the second zonal harmonic, \i = GM, 
lix =GMl, G is the gravitational constant, M is the mass of the central body, and 
Mx is the mass of the perturbing body. 

To the disturbing function (2) corresponds the system of equations (Lidov, 1962): 

— = 0, — = - ( 1 -e) e1/2 sin2co sin21, 
dn dn 
di 1—e sin / sin Q 
— = nr sin2a> sin/ cosi + p = cos*' 
dn 2el/2 a2 

— = e~1/2 —(- sin2 co (cos2 / — a) + 
dn |_5 J 

/? / 7 2 sin / cos (2 
H—r 1—5 coszi : cosi 

2zr V sin i 
d ^ -1 /2 T 6 / i \ • 2 
— = — p. /z cosn - + (1 —e) snr a> + dn |_5 

+ j?(e2 sin /)"* (sin / cos / + cos / sin / cos Q) cos ieq. 

Here instead of time t we introduced the dimensionless time n: 

d „ = ^ df, ( 5) 
4a?v^(l-^)3 '2 

£ = l - e 2 . 

/? is a constant parameter, characterizing the ratio of perturbing accelerations due 
to oblateness and the perturbing acceleration due to the third body, 

2 ^ 2 a ? ( l - e 2 ) 3 / 2 c 2 0 
P= * 5 ' 6 ) 

Besides the obvious integral a = const, the system of Equations (4) always has one 
more integral: 

W=const., (7) 

where W is given in (2). 
The general theory says that for integrating Equations (4) the existence of one 

more integral is necessary. In the general case, apparently, such integral does not 
exist. However, in certain special cases, Equations (4) could be integrated. 

Let us enumerate the following cases: 
(1) For /? = 0 (the influence of oblateness is negligibly small) the full investigation 

of the problem was carried out by Lidov (1961) and Kozai (1962). In this case there 
exists one more integral e cos2 i = cu and integral (7) could be simplified and rewritten 
in the following form: 

(1—e) (f —sin2/ sm2co) = c2. 
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To make the consideration complete we shall give, without comment, the qualitative 
pictures, describing the behaviour of the trajectories in the plane (e, co) for the three 
characteristic cases: 

(?!>! (Figure la); 0 < c 1 < f (Figure lb); 
cx = 0 (cos i = 0) (Figure lc). 

(2) For /?= ± oo (fil = 0). The solution in this popular case was obtained by many 

a) cf>3/s 4) o* c, ^ 3/5 c) c, = o (cos I = o) 
Fig. 1. e-o) diagrams for /? = 0. 

authors. The evolution reduces to the monotone variation of coeq and Qeq according 
to the formulas: 

- = ^ ( l - 5 c o s 2 i e q ) , 
dt 

dQ, 
—=?cosW 

Here coeq and Qeq are angles counted from the equatorial plane, and, 

3 / f l o V ^ 
ff=2l7 7 3 /2 ieq = const., e = const. *eq 

(3) sin 1 = 0 - the equatorial plane of the planet coincides with the orbital plane 
of the perturbing body. 

(4) cos 7 = 0, s ini=0 - the equatorial plane of the planet is orthogonal to the 
orbital plane of the perturbing body; the satellite moves in the orbital plane of the 
perturbing body. 

(5) cos 7 = 0, cos/=0, sin (2 = 0 - the equatorial plane of the planet is orthogonal 
to the orbital plane of the perturbing body; the orbital plane of satellite coincides 
with the equatorial plaice. 

(6) cosi=0, cos ( 2 = 0 - the orbital plane of the satellite is orthogonal to the inter­
section line of the planes of the perturbing body and the equator. 

(7) e= 1 (e = 0) - circular orbits of the satellite for the arbitrary parameters ft, 1. 
(a) In case 4 the evolution reduces to the monotone variation of the longitude of 
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the pericentre of the orbit: 

X = Q + A(D, J=sgn cosi, 
dA/dn = ^(£J/2/5 + iiS/62). 

Here e = e0 = const., i = i0 = const. 
(b) In Figures 2a-d the qualitative pictures of the behaviour of the trajectories for 

the special case, sin 1 = 0 and cosi = 0, are given for different values of parameter /?. 
The equations of the evolution in this case coincide with the equations for case 6. 

That is why the qualitative pictures of the behaviour of solutions, represented in 
Figure 2, describe also case 6. 

The equations of the evolution for case 5 also coincide with the same equations 
if one should replace ft by — |/? therein. 

That is why one can also use the pictures in Figure 2 for the description of case 5. 

C) 0*j>> * 6/5 d) ft > 6/5 
Fig. 2. E-CO diagram for sin 7=0 and cos/=0. 

In this connection one should only to replace ft by — 2j8 in the legends to the pictures. 
Integrable case 5 was used by Lidov (1962) for the proof of stability by the ec­

centricity of the orbits of Uranus' satellites in spite of closeness of their inclination 
to the ecliptic to 90°. 

(c) For the practically important and interesting case 7 the reader is referred to 
Sekiguchi (1961) and Allan and Cook (1964). 

(d) The most complicated and interesting case 3 has been investigated by Kozai 
(1963) in connection with the problem of evolution of the orbits of the Moon's ar-
tifical satellites. 

The integration of the problem in this case is based on an additional integral: the 
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projection of the vector of the angular momentum on the axis of symmetry is con­
stant. This integral may be written in the form : 

e cos2 i = c1= const. 

Using a computer Kozai (1963) constructed the field of integral curves in the plane 
of variables, similar to a, co. 

In our work this problem is studied completely for all the values cl and /?. In this 
connection certain new cases, qualitatively different from those by Kozai, were re­
vealed. 

Fig. 3. Condition of appearance (or disappearance) of singularities is expressed by solid curves, and 
dashed curves define boundaries on which qualitative change takes place for sin 7=0. 
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V* 

sura 
Fig. 4. s-co diagrams for sin7=0. 
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In this report we shall give only certain results. A more detailed treatment is found 
in Lidov and Jarskaya (1973). 

The Investigation of Case 3 (sin 7=0) 

Instead of parameters cx and j? we shall use the parameters: y = /fc;~5/4 and a = c} /4. 
For the elliptical orbits O ^ a ^ 1. 

Instead of variable e it turned out to be more convenient to introduce the variable 
x = s1/2/a. It is not difficult to show that, for elliptical orbits of satellites, when a is 
fixed, x could turn into the values from the interval: a ^ x ^ a " *. In this investigation 
we studied the whole range of possible values — oo <y < + oo, although in most ap­
plications we could confine ourselves to the case y^O (c2 0^0). 

In Figure 3 the strip, O ^ a ^ l , - o o < y < + o o , is divided by the solid curves 
7i(a), y 2 ( 4 73(a), y4(a), y5(a), y'6(a),..., y^(a) and by the dashed ones y7(a), y8(a), 

79 (a), 79 (a), 7i2(a) in 17 areas. The equations of these curves are given in Lidov and 
Jarskaya (1973). The construction of these curves requires a cumbersome analysis. 
The first group of these curves is defined by the condition of appearance (disappear­
ance) of the singular points in the rectangle, 

The second group of curves (the dashed ones) define the boundaries in which the 
qualitative change in the behaviour of separatrixrs takes place. 

In Figure 4 (1-17) the qualitative pictures of the behaviour of the integral curves 
are given. The number of 17 pictures corresponds to the areas of parameters shown in 
Figure 3. In Kozai (1963) there are examples qualitatively coinciding with the cases 
2, 3, 4, 5 in Figure 4. 

The cases 1, 6, 7, 8, which also take place for y < 0 evidently, were not revealed. Let 
us note that the most complicated cases 6-8 (in the rectagle P 6 singular points are 

10-11 15-16 1$-17 
i * 1 * i i * v m "3 i *̂ v m H 3 

i — _ « — 1 ». i i — - ^ 1 i -* 1 
Fig. 5. F~a> diagrams for sin 7=0 and for parameters of boundary values. 
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present), if the eccentricity of the orbit is not too close to 1, could be realized only 
when the inclination of the satellite's orbit is close to 90°. 

In Figure 5 analogous pictures are given for certain boundary values of the para­
meters of the problem. 

For example, case 4-5 is realized if the parameters a, y belong to the boundary, 
separating areas 4 and 5 represented in Figure 3. 

In these cases the separatrix, going from one of the singular points of the saddle 
type, is at the same time the separatrix of another singular point of the same type. 

The existence of many stable singular points gives reason to believe that this in­
vestigation could turn out to be useful for the practical selection of the special orbits 
of satellites. 
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