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Besides offset biases (such as range, the gain of range, azimuth, and elevation biases), for
mobile radars, platform attitude biases (such as yaw, pitch, and roll biases) induced by the
accumulated errors of the Inertial Measurement Units (IMU) of the Inertial Navigation
System (INS) can also influence radar measurements. Both kinds of biases are coupled. Based
on the analyses of the coupling influences and the observability of 3-D radars’ error regis-
tration model, in the article, an Attitude Bias Conversion Model (ABCM) based on Square
Root Unscented Kalman Filter (SRUKF) is proposed. ABCM can estimate 3-D radars’
absolute offset biases under the influences of platform attitude biases. It converts platform
attitude biases into radar measurement errors, by which the target East-North-Up (ENU)
coordinates can be obtained from radar measurements directly without using the rotation
transformation, which was usually used in the transition from platform frame to ENU
considering attitude biases. In addition, SRUKF can avoid the inaccurate estimations caused
by linearization, and it can weaken the adverse influences of the poor attitude bias estimation
results in the application of ABCM. Theoretical derivations and simulation results show that
1) ABCM-SRUKF can improve elevation bias estimate accuracy to about 0·8 degree in the
mean square error sense; 2) linearization is not the main reason for poor estimation of attitude
biases; and 3) unobservability is the main reason.
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1. INTRODUCTION. With the growing military and civilian demands for
navigation and detection systems, more and more sensors are installed on moving
platforms such as trucks, ships and aircraft. In order to obtain target locations, these
sensors need to know the real-time attitude information of their platforms to rectify
radar measurements. However, the attitude angles provided by the Inertial Navigation
System (INS) are biased because of the accumulated errors in the Inertial
Measurement Units (IMU) of INS. In addition, the sensors have native systematic
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biases which are usually called offset biases. The attitude biases and offset biases
always influence the sensor measurements simultaneously and their adverse influences
are coupled. It is impossible for a single sensor to rectify these biases. Fortunately, in
order to estimate and compensate for these biases, many error registration methods
have been proposed; this is one of the key technologies to be tackled first in sensor
networking and directly affects the accuracies of the sensor networks in target
tracking, fusion, and recognition.
At present, the methods for registration are mostly focused on the networks

composed of stationary radars and the algorithms used include the parameter
estimation methods such as weighted mean (Burke, 1966), least square (Sudano,
1993), maximum likelihood (Zhou and Henry, 1997), and the state estimation
methods such as Kalman Filter [KF] (Kousuge and Okada, 1996), Unscented Kalman
Filter [UKF] (Li et al., 2004), EM method (Li and Leung, 2006), and so on. The
difficulty for mobile radar registration, which is different from stationary radars, is to
estimate offset biases of radars and attitude biases of platforms simultaneously. The
influences of the attitude biases on radar measurements are nonlinear and related to
the geometry between target(s) and radars. They take on the form of varying radar
measurement errors and are coupled with the native offset biases of radars. In order to
solve the coupling problems, Dela Cruz et al., (1992); Helmick and Rice, (1993);
Wang et al., (2012) have made some efforts.
A two-stepped method was proposed by Dela Cruz et al., (1992), which first

estimated radar offset biases using a KF without considering the influences of attitude
biases, that is, all the attitude biases were set zeroes. Subsequently, another KF was
used to merely estimate attitude biases by using raw radar measurements rectified by
the offset bias estimates obtained from the first step. This method ignored the
coupling. That is, the offset biases were solved independently of the attitude biases.
The model proposed by Helmick and Rice (1993) considered the coupling influences
adequately, however, it assumed that the sensors were close enough (e.g., they were
located on the same platform). For models proposed by Dela Cruz et al., (1992) and
Helmick and Rice (1993), they both selected relative offset biases and relative attitude
biases as their system state variables. So, their methods could only obtain the relative
bias estimates. However, the absolute bias estimates of each sensor are very important
for the Integrated Situation Awareness (ISA) in large regions, which cannot be
obtained by their methods. Wang et al., (2012) used all the absolute biases as state
variables. They gave the equivalent measurement error expressions induced by the
attitude biases by using linearization. Then, an Optimized Bias Estimation Model
(OBEM) was proposed which omitted radar pitch and roll biases in the state vector
when establishing the registration equations. However, OBEM did not make the best
of equivalent error expressions to simplify the models and the reasons for poor
estimate results of roll and pitch biases have not been fully explained.
In fact, the All Augmented Model (AAM) in Wang et al., (2012), which is the basic

model for the moving platform registration, and OBEM are both linearized models,
so, the errors caused by linearization may be the main reason for the poor estimates of
attitude biases. In order to analyse the effects of the linearization, we establish the
nonlinear registration models and use Square Root Unscented Kalman Filter
(SRUKF), as can be seen in Merwe and Wan (2001). In addition, based on the
equivalent error expressions given in this paper, an Attitude Bias Conversion Model
(ABCM) is proposed, in which the attitude biases are converted to radar measurement
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errors. This changes the coupling characteristic from multiplicative to additive and
simplifies the modelling process. ABCM also uses all the absolute radar offset biases
and attitude biases as the state variables to establish nonlinear equivalent
measurement equations and use SRUKF as filter. Theorem 1 in Appendix B and the
simulation results prove that the linearization is not the main reason for poor estimates
of the attitude biases. The estimate results of ABCM-SRUKF are very close to OBEM
because the former’s estimate values of roll and pitch biases are zeros and the latter
sets them to zeros, which suggest that observability is the main reason for poor
estimates. To simplify the problems, in this paper, it is assumed that all the systematic
biases are time-invariant parameters. It is also assumed that both radars have accurate
position information for themselves; they are synchronized and have the same
sampling intervals.
This paper is organized as follows: In section 2, the detailed descriptions of ABCM-

SRUKF and the other comparative models such as AAM, OBEM, et al., are given.
Then, in Section 3, we test the comparative models and ABCM-SRUKF with a
simulated track data. Conclusions are given in Section 4. In Appendices A and B, the
validity of the model is verified and the estimate errors induced by the linearization are
analysed.

2. REGISTRATION MODELS. The problem addressed in this work can be
stated as follows. Consider the ith radar, where i=1, 2, which is installed on the ith
moving ship. The geographic coordinates of the ith ship are latitude Lsi, longitude Rsi,
and altitude Hi, which are known in real time. Three-axis gyro-stabilized platform of
radar can steadily track local East-North-Up (ENU) frame. Chapter 2 of Progri’s
pioneering work (Progri, 2011) provides an excellent environment description of local
and global reference coordinates and an illustration of various potential applications
of this technology. For the ENU frame, its origin o locates at the centre of the gyro-
stabilized platform, three mutually orthogonal axes x, y, and z refer to the directions
of East, North and Up, respectively. The plane xoy is horizontal. The output
Cartesian coordinates of the gyro-stabilized platform is defined as platform frame,
which has the same origin as the ENU frame, but its axes have angle biases with the
corresponding axes of the ENU. These biases are attitude biases. Figure 1 shows the
conversion process from the platform frame to ENU, where xp, yp, and zp denotes x, y,
and z axis of platform frame, respectively, and the axes drawn in dashed lines are the
intermediate axes. As shown in Figure 1, the transition of the target coordinates from
the platform frame to ENU is accomplished by first rotating about the y-axis of the
platform frame by the roll angle Δψ, then rotating about the intermediate x-axis by the
pitch angle Δη, and rotating about the final z-axis by the yaw angle Δϕ. Customarily,
the polarities of Δϕ and Δψ abide by the left-hand rule, while Δψ abides by the right-
hand rule.
Radar measurements are based on measurement frame which shares the same

origin with the platform frame. There are azimuth and elevation biases between the
corresponding axes of two frames. The measurements of the targets from the ith radar
include the range ri, the azimuth θi, and the elevation εi, which contain the true target
position information (such as the true range rit, azimuth θit, and elevation εit), radar
offset biases (such as the range bias Δri, the gain of the range kri, azimuth Δθi, and
elevation Δεi), the attitude biases of gyro-stabilized platform (such as the yaw bias Δϕi,

653ATTITUDE BIAS CONVERSION MODELNO. 4

https://doi.org/10.1017/S0373463312000239 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463312000239


pitch Δηi, and roll Δψi), and random measurement errors (such as the range error δri,
azimuth δθi, and elevation δεi) which are zero-mean, Gaussian with known standard
deviations.
The main work for mobile radar registration is to estimate radar offset biases and

attitude biases simultaneously using both radars’ raw measurements. Figure 2 is the
main procedures usually used to establish mathematic models. First, radar offset
biases and random measurement errors included in the raw measurements are re-
moved to obtain the True Target Coordinates (t.t.c.) in the platform frame. Then, the
conversion to ENU is accomplished according to the attitude biases. Finally, the
conversion from ENU to the Earth-Centered Earth-Fixed (ECEF) frame (see Zhou
et al., 1999) is used to obtain the t.t.c. in a common reference frame. The theoretical
basis for the alignment algorithm is that the t.t.c. included in both radars’ rawmeasure-
ments are equal when they are converted to a common reference frame.
From Figure 2, we know that the whole process is complicated and the conversion

from the platform frame to ENU needs three rotation transformations. If we use the
equivalent error expressions caused by the attitude biases, we can write out the t.t.c. in
ENU frame directly from radar measurements. When the nonlinear filter is used for
the model, such as SRUKF, the linearization process can also be deleted. As shown in
Figure 3, the main modelling procedures are given step by step as follows:

2.1. Selection of the State Vector. Usually, for the moving radar registration
equations, the offset and attitude biases of both radars are written sequentially in the
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Figure 2. The general procedure for mobile radar registration.
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Figure 1. Conversion from the platform frame to ENU.
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state vector as (the order can be changed):

β′ = [Δr1, kr1,Δθ1,Δε1,Δr2, kr2,Δθ2,Δε2,Δϕ1,Δη1,Δψ1,Δϕ2,Δη2,Δψ2]T , (1)
where the superscript “T” denotes the matrix or vector transposition.
According to (Wang et al., 2012), in the first-order linearized equations of the

systematic bias estimation models, the coefficients of the azimuth bias of radar i and
the yaw bias of platform i are equivalent and both biases are linearly dependent. In
this situation, if Equation (1) was used as state vector to establish the registration eq-
uations, the system is unobservable, and the estimates obtained individually for both
biases are meaningless. On the contrary, when the subtraction of the yaw bias from the
azimuth bias serves as one variable, the system is observable. That is, the state vector
should be selected as:

β = [Δr1, kr1, (Δθ1 − Δϕ1),Δε1,Δr2, kr2, (Δθ2 − Δϕ2),Δε2,Δη1,Δψ1,Δη2,Δψ2]T (2)

In view of this, all the linearized models will select Equation (2) as their state
vectors. Since all the biases are selected as the state variables, this kind of model is
called the All Augmented Model (AAM) by Wang et al. (2012).
As for the nonlinear models, given the multiplicative coupling of biases and the

existence of high-order terms, it is impossible to use (Δθi–Δϕi) as one variable when
nonlinear filter (such as UKF) is used. Both biases are estimated separately, that is,
Equation (1) is selected as the state vector. However, the linear dependences are still in
being although they were testified in the linearized models, that is, the estimates for
each variable are meaningless when they are used separately. On the contrary, if they
are combined as one term or used simultaneously, they become meaningful, which can
be seen in the following simulations. For convenience of comparison, the subtractions
of both biases’ estimates are used in the nonlinear models when we compute the Root
Mean Square Errors (RMSE).

2.2. True Target Coordinates in ENU Frame. Given the true target coordinates
in radar iENU frame as [xi, yi, zi], and the attitude biases of the platform i as [Δϕi, Δηi,
Δψi], Wang et al., (2012) derived the expressions for the equivalent measurement
errors of the attitude biases as:

Δric = 0+ o(Δϕ, Δη, Δψ), (3)

Δθic = −Δϕi +
yiziΔψi − xiziΔηi

x2i + y2i
+ o(Δϕ, Δη, Δψ), (4)

Δεic = −xiΔψi − yiΔηi���������
x2i + y2i

√ + o(Δϕ, Δη,Δψ). (5)

According to Equations (3)–(5), given the ith radar measurements at time “k” (ri(k),
θi(k), εi(k)), the systematic biases (Δri(k), kri(k), Δθi(k), Δεi(k)), and the random
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Figure 3. The block diagram of ABCM-SRUKF.
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measurement errors (δri(k), δθi(k), δεi(k)), the t.t.c. in the ENU frame can be written as:

X
′
i ENU = [x′

i ENU , y
′
i ENU , z

′
i ENU ]T = (ri − Δri − δri − kriri) ×

sin(ρi)cos(μi)
cos(ρi)cos(μi)

sin(μi)





,
(6)

where ρi = θi − (Δθi − Δϕi) − yiziΔψi−xiziΔηi
x2i +y2i

− δθi, μi = εi − Δεi + xiΔψi+yiΔηi������
x2i +y2i

√ − δεi.

For simplicity, the time argument “k” is omitted in Equation (6). Since the true
range of the target rit cannot be obtained, it can be approximated by the range
measurement ri, and:

xi
yi
zi





 =

ri sin(θi) cos(εi)
ri cos(θi) cos(εi)

ri sin(εi)





 (6a)

2.3. Transition from ENU to ECEF Frame. According to Zhou et al., (1999),
given the ith radar geographic coordinates, it is convenient to transform the t.t.c. from
ENU to ECEF frame as:

X
′
i ECEF (k) = X is(k) + T i(k) × X

′
i ENU (k), (7)

where:

T i k( ) =
− sinRsi(k) − sinLsi(k) cosRsi(k) cosLsi(k) cosRsi(k)
cosRsi(k) − sinLsi(k) sinRsi(k) cosLsi(k) sinRsi(k)

0 cosLsi(k) sinLsi(k)





. (8)

and:

X
′
i ECEF (k) denotes the t.t.c. in the ECEF frame obtained from the measurements
of the ith radar.

Xis(k) denotes the ith radar ECEF coordinates converted from its geographic
coordinates.

Ti(k) is the rotation matrix.
Xis(k) and Ti(k) are only correlated with the geographic coordinates of the ith radar

at time k.

2.4. Nonlinear ABCM Based on the SRUKF (ABCM-SRUKF). In view of the
fact that the true coordinates of the same target in the ECEF frame denoted by the
different radar measurements are equal, we can obtain:

X1s(k) + T1(k) × X
′
1 ENU (k) = X2s(k) + T2(k) × X

′
2 ENU (k). (9)

Equation (9) can be rewritten in the form of nonlinear measurement (registration)
equations as:

ZABCM (k) = hABCM (β′(k),w(k)), (10)
where:
ZABCM(k)=X2s(k)−X1s(k);
hABCM (β′ (k),w(k)) = T1(k) × X

′
1 ENU (k) − T2(k) × X

′
2 ENU (k);

w(k)= [w1
T(k), w2

T(k)]T.
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In Equation (10), all the offset biases and attitude biases are assumed to be
constants, then, the state equations can be written as

β
′ (k + 1) = β′(k). (11)

In Equation (11), the state transition matrix is a unit matrix and the process noises
for systematic biases are assumed to be zeroes.
Here, the model that converts the attitude biases into radar measurement errors and

does not use the rotation transformation is called ABCM. The UKF proposed by
Julier and Uhlmann (2004), whose theoretical basis is the unscented transformation,
can apply to nonlinear models and the computation burden does not increase much
compared with a KF. SRUKF is the improvement of UKF which can ensure
consistent estimation. For a detailed description of SRUKF see: Julier and Uhlmann
(2004); Li et al. (2006); Jwo et al., (2009); and Xu et al., (2010). In this paper, SRUKF
is used for the nonlinear models composed of Equations (10) and (11), and we call this
algorithm ABCM-SRUKF. The complete algorithm block diagram for ABCM-
SRUKF is given in Figure 3 and the flowchart for ABCM-SRUKF is given in
Figure 4.
In order to compare ABCM-SRUKF, nonlinear AAM and linearized ABCM

(which is equivalent to linearized AAM) are given below.

2.5. Comparative Models.
2.5.1. Nonlinear AAM based on SRUKF (AAM-SRUKF). The dynamic eq-

uations of AAM are established according to the mechanisms of radar measurements.
First, the t.t.c. in radar i platform frame can be written as:

X i p(k) =

[xi p(k), yi p(k), zi p(k)]T =

[ri(k) − Δri(k) − δri(k) − kri(k)rit(k)] ×
sin[ρi(k)]cos[μi(k)]
cos[ρi(k)]cos[μi(k)]

sin[μi(k)]










, (12)

where ρi(k)=θi(k)−Δθi(k)−δθi(k), μi(k)= εi(k)−Δεi(k)−δεi(k).
Secondly, transition from the platform frame to ENU can be written as:

X i ENU (k) = [xi ENU (k), yi ENU (k), zi ENU (k)]T = T i p2ENU (k)X i p(k), (13)
where:

Xi_ENU(k) denotes the t.t.c. in the ith radar ENU frame.
Ti_p2ENU(k) is an orthogonal matrix which denotes the rotation matrix from the

platform frame to ENU.

and:

T i p2ENU =
t11 i t12 i t13 i

t21 i t22 i t23 i

t31 i t32 i t33 i





,

where:

t11 i = cosΔψi cosΔϕi − sinΔψi sinΔηi sinΔϕi; t12 i = cosΔηisinΔϕi;
t13 i = − sinΔψi cosΔϕi − cosΔψi sinΔηi sinΔϕi;
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t21 i = − cosΔψi sinΔϕi − sinΔψi sinΔηi cosΔϕi;
t22 i = cosΔηi cosΔϕi; t23 i = sinΔψi sinΔϕi − cosΔψi sinΔηi cosΔϕi;
t31 i = sinΔψi cosΔηi; t32 i = sinΔηi; t33 i = cosΔψi cosΔηi.

Thirdly, substituting Equations (12), (13) into Equation (7), the t.t.c. in ECEF
frame can be written as:

X i ECEF (k) = X is(k) + T i(k) × X i ENU (k). (14)
Fourthly, the nonlinear AAM registration equations can be written as:

X1s(k) + T1(k) × X1 ENU (k) = X2s(k) + T2(k) × X2 ENU (k). (15)
Equations (11) and (15) are the dynamic equations for the nonlinear AAM, and

SRUKF can be used to estimate the offset and attitude biases simultaneously.

Figure 4. The complete algorithm flowchart for ABCM-SRUKF.
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2.5.2. Linearized AAM based on Kalman filter (AAM-KF). The linearized
model of Equation (15) and Equation (2) were used as the state vector. The description
of linearized AAM can be written as:

ZAAM(k) = H(k)β(k) + C(k)w(k), (16)
where:

ZAAM(k)=X2s(k)−X1s(k)+T2(k)X2(k)−T1(k)X1(k),

X i(k) =
xi(k)
yi(k)
zi(k)





 =

ri(k)sin[θi(k)]cos[εi(k)]
ri(k)cos[θi(k)]cos[εi(k)]

ri(k)sin[εi(k)]





,

H(k)= [T1(k)A1(k),−T2(k)A2(k),D1(k),−D2(k)],
C(k)= [C1(k),−C2(k)],
Ai(k)=∂Xi_p(k)∂βi(k),
Ci(k)=∂Xi_p(k)/∂wi(k)
βi(k)= [Δri(k), kri(k), Δθi(k), Δεi(k)]

T,
wi(k)= [δri(k), δθi(k), δεi(k)]

T,

Di =
yicos(Lsi)cos(Rsi) + zisin(Lsi)cos(Rsi) xicos(Lsi)cos(Rsi) + zisin(Rsi)
yicos(Lsi)sin(Rsi) + zisin(Lsi)sin(Rsi) xicos(Lsi)sin(Rsi) − zicos(Rsi)

yisin(Lsi) − zicos(Lsi) xisin(Lsi)





,

The state equations can be written as:

β(k + 1) = β(k). (17)
Using KF for the dynamic equations composed of Equations (16) and (17), the

model can be called the all augmented model based on a KF.
2.5.3. Linearized ABCM Based on Kalman Filter (ABCM-KF). Selecting

Equation (1) as the state vector, Equation (10) can be linearized by using the first-
order Maclaurin expansion, then, KF can be used for estimation. This model is named
as ABCM based on KF. ABCM-KF is equivalent to AAM-KF in essence, which will
be proved in appendix A.
The comparisons of the models mentioned above can be seen in Table 1, where

different rows denote different models mentioned in this paper. The column of ‘System
variables’ denotes all the variables used in the state vectors of different models. The
column of ‘Characteristic of the model’ denotes the characteristic of the dynamic
equations. The column of ‘Filter’ denotes the filter used for different models.

3. SIMULATION RESULTS. In order to analyse the performance of
ABCM-SRUKF and another three algorithms OBEM (Wang et al., 2012), AAM-
SRUKF and ABCM-KF, which are equivalent in essence to AAM-KF(Wang et al.,
2012), they are all compared in the same test environment. The system test setup block
diagram of ABCM-SRUKF can be seen in Figure 5, which is also applicable to the
other three algorithms.
The four alignment algorithms mentioned above are tested by generating a common

track for two radars installed on different ships. It is assumed that Ship 1 and Ship 2
are moving with a constant velocity model and the initial geographical coordinates are
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[40°, 116°, 10m], [40·4°, 115·8°, 10m], respectively. The initial states of both ships in
their native ENU frames are the same, i.e., [0,10m/s,0,10m/s,0,0]. In the state vector,
the variables denote x-coordinate, x-velocity, y-coordinate, y-velocity, z-coordinate,
and z-velocity, respectively. The standard deviations of both ships’ process noises are
equal which are given in x, y, and z coordinates by 0·1m/s2, 0·1m/s2, and 0m/s2,
respectively. The fusion centre is located at the initial position of Ship 1. The constant
velocity model is also used for the target. The initial state of the target in fusion centre
is [60km, −150m/s, 50km, 0m/s, 5km, 1m/s]. The standard deviations of the process
noises in x, y, and z coordinates are set to 1m/s2, 1m/s2, and 0·1m/s2, respectively. The
geometry of radars and target is shown in Figure 6. The true offset biases of both
radars are assumed to be constants and equal as Δri=300m, kri=0·01, Δθi=2°,
Δεi=2°, respectively. The standard deviations of the random measurement noises for
both radars are σri=50m, σθi=0·5°, and σεi=0·5°, respectively. The attitude biases of
both platforms are also assumed to be constant and equal as Δϕi=1°, Δηi=1°, and
Δψi=1°, respectively. It is assumed that both radars are synchronized with the same

Table 1. Comparison of AAM, ABCM, and OBEM.

Models System variables Characteristic of the model Filter Others

AAM-
SRUKF

Δri, kri, Δθi, Δεi, Δϕi,
Δηi, Δψi{i=1,2}

Establishing nonlinear model
according to the mechanism
of radar measurements.

SRUKF When rectifying radar
measurement,
azimuth
and yaw bias
estimates
should be combined
as one term.

ABCM-
SRUKF

Δri, kri, Δθi, Δεi, Δϕi,
Δηi, Δψi{i=1,2}

Establishing nonlinear model
by using the equivalent radar
measurement errors caused
by attitude biases.

SRUKF

AAM-KF Δri, kri, (Δθi−Δϕi),
Δηi, Δψi{i=1,2}

Linearization of
AAM-SRUKF.

KF

OBEM
(Wang
et al., 2012)

Δri, kri, (Δθi−Δϕi),
Δεi {i=1,2}

Linearization model whose
state vector do not contain
the roll and pitch biases.

KF

Figure 5. System test setup block diagram.
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sampling intervals T=5s. 200 scans of the target are simulated and the number of
Monte Carlo runs is set to 100. For length limitation, only the estimation results of
radar 1 are given below.
Figure 7 are the RMSEs of Radar 1 offset bias estimates, where the green lines

represent the results of ABCM-KF, the blue lines represent OBEM-KF, the red lines
represent ABCM-SRUKF, and the magenta lines represent AAM-SRUKF.
Figure 7(a) represents the gross range bias which is the sum of the range bias and the

range bias induced by the gain of the range.
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Figure 7(b) is the equivalent azimuth bias which is the subtraction of the yaw bias
from azimuth bias.
Figure 7(c) is the elevation bias.
Compared with the other three models, the attitude bias estimates of ABCM-

SRUKF are always zeros regardless of the different attitude bias magnitudes, because
in ABCM, the target location information weakens the influences of the attitude
biases and restricts their amplitude of variation, which can be seen from the equivalent
radar measurement error expressions at Equations (3)–(5). On the contrary, there is no
weakening in AAM, which leads to bigger attitude estimate magnitudes (see Figure 8).
In reality, attitude biases are usually small, then, the estimate errors will be unac-
ceptable. According to Equation (5), the big estimate errors of attitude biases influence
the estimate accuracies of radar elevation biases. So, ABCM-SRUKF has the best
estimation results for elevation biases. For pitch and roll biases, OBEM sets them to
zeros, which coincides with the results of ABCM-SRUKF. So, they have the similar
estimate accuracies in elevation biases. Figure 7(b) shows that the RMSE of the
subtraction of yaw bias from azimuth bias is less than 0·3°, which verifies the
correctness of the selection of state vector.
The RMSEs of pitch and roll biases estimated by three models (except OBEM) are

given in Figure 8. The results show that the estimates deviate from the true values
significantly. It is not ideal for the three models to estimate the attitude biases.
Figure 9 shows the RMSEs of Radar 1 measurements rectified by offset bias

estimates. Since the attitude estimate errors are large, the attitude biases are omitted
when the raw measurements are rectified. In Figure 9, the black lines represent the
RMSE curves of raw measurements. Figure 9(c) shows that ABCM-SRUKF and
OBEM have significant performances on rectifying z-coordinate errors.
Comparing four methods above, it is obvious that ABCM-SRUKF and OBEM

have better and closer performance. Besides that, the former has simplified process for
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modelling and the idea of the conversion from attitude biases to measurement errors is
both novel and prospective. It can be applied to all the detection systems with attitude
biases and it does not need linearization. However, the latter has lower system state
dimension, which can reduce the computation burden. Both algorithms have their
own merits and they can be used for mobile radar registration.

4. CONCLUSIONS. For mobile 3-D radar registration, Wang et al., (2012)
gave the equivalent measurement error expressions caused by the attitude biases.
According to these expressions, they proposed Optimized Bias Estimation Model
(OBEM), which is a linearized model and omits pitch and roll biases to establish
registration model. Compared with All Augmented Model (AAM), which uses all the
radar offset biases and platform attitude biases as state vector for registration, OBEM
can obtain better elevation bias estimates and its calibration effects on radar raw
measurements are better than AAM. However, OBEM cannot explain why the
estimates of the attitude biases are poor. In order to testify the influences of
linearization on the attitude bias estimates, in this paper, the nonlinear AAM and
ABCM are proposed which use SRUKF as filter. ABCM uses the equivalent
measurement error expressions to convert radar measurements to ENU frame directly
without using rotation transformation, which simplifies the modelling process.
Appendix A proves that linearized AAM and ABCM are equivalent in essence, and
it also proves the validity of the derivations of the equivalent measurement error
expressions at Equations (3)–(5). Appendix B gives the influences of linearization on
attitude bias estimates mathematically and explains that the linearization is not the
main reason for the poor estimates of attitude biases. The simulation results in
Appendix B prove these results.
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Figure 9. RMSEs of Radar 1 measurements rectified by the offset bias estimation results.
(a) x-coordinate; (b) y-coordinate; (c) z-coordinate.
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The observability proof for AAM in proposition 1 in Wang et al., (2012) and good
estimate results for yaw bias in OBEM remind us that other dependencies may exist
for pitch and roll biases with radar offset biases.
According to Equations (3)–(5), Δθ − Δϕ+ yzΔψ−xzΔη

x2+y2 , and Δε+ −xΔψ−yΔη������
x2+y2

√ should

serve as one variable to keep the observability of the system. We will develop this
method in our future work.
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APPENDIX A. In order to testify the validity of the equivalent measurement error
expressions caused by the attitude biases, the true target coordinates in ENU frame
obtained from two different methods should be compared, that is, from the ABCM
method and the rotation transformation method. The following are the derivations.
A1. THE ABCM METHOD. A first-order Taylor series expansion can be
made for the nonlinear ABCM Equation (6) about zero systematic biases and random
measurement errors as:

X
′
i ENU = [xi ENU , yi ENU , zi ENU ]T = X

′
i + A

′
iβi +D

′
iai + C

′
iwi, (A1)

where:

ai = [Δϕi,Δηi,Δψi]T (A2)

X
′
i = X

′
i ENU

∣∣
βi = 0
wi = 0

= X i p
∣∣
βi = 0
wi = 0

= X i; (A3)

A
′
i =

∂X
′
i ENU

∂βi
= ∂X i p

∂βi
= Ai; (A4)

C
′
i =

∂X
′
i ENU

∂wi
= ∂X i p

∂wi
= C i; (A5)

D
′
i =

∂X
′
i ENU

∂ai
=

D
′
i(1, 1) D

′
i(1, 2) D

′
i(1, 3)

D
′
i(2, 1) D

′
i(2, 2) D

′
i(2, 3)

D
′
i(3, 1) D

′
i(3, 1) D

′
i(3, 3)





, (A6)

where the elements of matrix D
′
i can be written further as:

D
′
i(1, 1) = ricos(θi)cos(εi) = yi; (A7)

D
′
i(2, 1) = −risin(θi)cos(εi) = −xi; (A8)

D
′
i(1, 2) =

xizi
x2i + y2i

ricos(θi)cos(εi) + −yi���������
x2i + y2i

√ risin(θi)sin(εi) = 0; (A9)

D
′
i(1, 3) =

−yizi
x2i + y2i

ricos(θi)cos(εi) + −xi���������
x2i + y2i

√ risin(θi)sin(εi) = −zi; (A10)

D
′
i(2, 2) =

−xizi
x2i + y2i

risin(θi)cos(εi) + −yi���������
x2i + y2i

√ ricos(θi)sin(εi) = −zi; (A11)

D
′
i(2, 3) =

yizi
x2i + y2i

risin(θi)cos(εi) + −xi���������
x2i + y2i

√ ricos(θi)sin(εi) = 0; (A12)

D
′
i(3, 2) =

yi���������
x2i + y2i

√ ricosεi = yi; (A13)

D
′
i(3, 3) =

xi���������
x2i + y2i

√ ricosεi = xi. (A14)
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A2. THE ROTATION TRANSFORMATION METHOD. Xi_ENU

obtained by using the first-order linearization can be written out as:

X i ENU = X i + Aiβi + C iwi + ΔiX i. (A15)
In Equation (A15), Xi, Ai, and Ci are the same as those in Equation (16), and the

higher-order minor terms are omitted. Also, the only term which contains the attitude
biases is ΔiXi which can be rewritten as:

ΔiX i =
0 Δϕi −Δψi

−Δϕi 0 −Δηi
Δψi Δηi 0





 xi

yi
zi





 =

yi 0 −zi
−xi −zi 0
0 yi xi





 Δϕi

Δηi
Δψi





 = Diai. (A16)

Then, Equation (A15) can be rewritten as:

X i ENU = X i + Aiβi + C iwi +Diai (A17)
Comparing Di in (A16) with D

′
i in Equation (A6), we can obtain:

Di = D
′
i. (A18)

According to Equations (A1), (A3), (A4), (A5), and (A17):

X i ENU = X
′
i ENU . (A19)

Equation (A19) proves the equivalence between ABCM and the normal model,
which also proves the validity of the equivalent radar measurement error expressions
caused by the attitude biases.

APPENDIX B. B1. THEOREM 1. Incorrect covariance of measurement noises
induced by linearization is not the main factor to affect the estimate accuracy.

B2. PROOF . In order to analyse the effects of the incorrect covariance of the
measurement noises in ABCM, we use the linearized model of ABCM which consists
of Equations (24) and (25) based on Seo et al., (2006).
Assuming that the complete information on the initial state covariance P(0) and the

measurement noise covariance R(k) are not known, the KF designed for Equations
(24) and (25) is no longer optimal, it can be expressed by:

β̂M (k + 1) = LM (k)β̂M(k) + KM (k + 1)z(k + 1); P−
M (k + 1) = PM(k), (B1)

KM (k + 1) = P−
M (k + 1)HT (k + 1)[H(k + 1)P−

M(k + 1)HT (k + 1)
+C(k + 1)RM(k + 1)CT (k + 1)]

{
, (B2)

PM (k + 1) = LM (k)P−
M (k + 1)LT

M (k)+
KM (k + 1)C(k + 1)RM (k + 1)CT (k + 1)KT

M (k + 1)
{

, (B3)

LM(k) = I − KM (k + 1)H(k + 1), (B4)
where:

PM (0) ; P(0) + ΔP(0) and RM (k) ; R(k) + ΔR(k) (B5)
are model representations of P(0) and R(k) respectively. ΔP(0) and ΔR(k) denote
the respective modelling errors. Then, the mean-squared error of the estimate is
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expressed by:

E{‖β̂M(k + 1) − β(k + 1)‖2} = tr{P(k + 1)}, (B6)
where P(k+1) is an actual covariance matrix of the suboptimal estimate in (B1)–(B5),
and:

P(k + 1) = LM (k)P−(k + 1)LT
M (k)+

KM (k + 1)C(k + 1)RM (k + 1)CT (k + 1)KT
M (k + 1)

{
. (B7)

From Equation (B7):

P−(k + 1) = P(k) =
LM (k − 1)P−(k)LT

M(k − 1) + KM(k)C(k)RM (k)CT (k)KT
M (k)

{
. (B8)

Proceeding in this way and substituting Equations (B5) and (B8) into Equation
(B7), we can obtain:

P(k + 1) =

∏0
i=k

LM (i)
[ ]

(PM (0) − ΔP(0)) ∏0
i=k

LM(i)
[ ]T

+

∑k
j=0

∏j
i=k

LM (i)
[ ]

KM ( j)C( j)(R( j) + ΔR( j))CT ( j)KT
M ( j) ∏j

i=k
LM (i)

[ ]T{ }
+

KM (k + 1)C(k + 1)(R(k + 1) + ΔR(k + 1))CT (k + 1)KT
M (k + 1)

.




(B9)
Let ΔPP0 and ΔPR denote the mean-squared errors of the estimation caused by

ΔP(0) and ΔR(k), respectively, according to Equation (B9), we have

ΔPP0 (k + 1) = −
∏0
i=k

LM (i)
[ ]

ΔP(0)
∏0
i=k

LM(i)
[ ]T

, (B10)

ΔPR(k + 1) =
∑k
j=0

∏j
i=k

LM (i)
[ ]

KM (j)C(j)ΔR(j)CT (j)KT
M (j) ∏j

i=k
LM (i)

[ ]T{ }
+

KM(k + 1)C(k + 1)ΔR(k + 1)CT (k + 1)KT
M(k + 1)


 .

(B11)
According to Equations (B10) and (B11), the influences of the incorrect initial

covariance on P(k+1) will diminish with time. In view of this, the errors of the
equivalent measurement error covariance in Equation (24) caused by linearization are
probably the main factor. Following is the computation of ΔR( j) in (B11).
For nonlinear registration model Equation (27), it can be written in the exact first-

order Maclaurin series as:

ZAAM = Hβ + Cw+ E(β,w); E(β,w) = 1
2

β
∂

∂β
+ w

∂

∂w

( )2

hAAM(aβ, aw) (0 , a , 1),
(B12)

where E(β, w)= [Ex, Ey, Ez]
T denotes the exact remainder terms in x, y, and z

coordinate, respectively.
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In Equation (B12), there are 10 variables, so, each element of E contains 10×10=
100 terms. Since the coefficients of the attitude biases are smaller than 1, for the sake of
simplicity of analysis, the errors caused by the attitude biases will not be considered.
Then, each direction in E has only 49 terms. From Equation (B12), we can obtain:

Ex =

cos(θ + θe) cos(ε+ εe) (ΔrΔθ + δrΔθ + Δrδθ + δrδθ)−
sin(θ + θe) sin(ε+ εe) (ΔrΔε+ δrΔε+ Δrδε + δrδε)+

(r+ re) cos(θ + θe) cos(ε+ εe) (krΔθ + krδθ)−
(r+ re) sin(θ + θe) sin(ε+ εe) (krΔε+ krδε)−

1/2(r+ re) sin(θ + θe) cos(ε+ εe) ((Δθ)2 + (δθ)2 + 2Δθδθ)−
(r+ re) cos(θ + θe) sin(ε+ εe) (ΔθΔε+ Δθδε + δθΔε+ δθδε)−
1/2(r+ re) sin(θ + θe) cos(ε+ εe) ((Δε)2 + (δε)2 + 2Δεδε)




, (B13)

Ey =

− sin(θ + θe) cos(ε+ εe) (ΔrΔθ + δrΔθ + Δrδθ + δrδθ)−
cos(θ + θe) sin(ε+ εe) (ΔrΔε+ δrΔε+ Δrδε + δrδε)−

(r+ re) sin(θ + θe) cos(ε+ εe) (krΔθ + krδθ)−
(r+ re) cos(θ + θe) sin(ε+ εe) (krΔε+ krδε)−

1/2(r+ re) cos(θ + θe) cos(ε+ εe) ((Δθ)2 + (δθ)2 + 2Δθδθ)+
(r+ re) sin(θ + θe) sin(ε+ εe) (ΔθΔε+ Δθδε + δθΔε+ δθδε)−
1/2(r+ re) cos(θ + θe) cos(ε+ εe) ((Δε)2 + (δε)2 + 2Δεδε)




, (B14)

Ez =
cos(ε+ εe) (ΔrΔε+ δrΔε+ Δrδε + δrδε)+

(r+ re) cos(ε+ εe) (krΔε+ krδε)−
1/2(r+ re) sin(ε+ εe) ((Δε)2 + (δε)2 + 2Δεδε)


 , (B15)

where:

re = −aΔrΔr− akrkrrt − aδrδr; θe = −(aΔθΔθ − Δϕ) − yzΔψ−xzΔη
x2+y2 − aδθδθ;

εe = −aΔεΔε+ xΔψ+yΔη������
x2+y2

√ − aδεδε; and 0 , aΔr, akr , aΔθ, aΔε, aδr , aδθ , aδε , 1
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Figure A1. Estimated covariance considering linearization errors
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Using the well-known inequalities:

0 4 |sin(θ)|, | cos(θ)| 4 1 and r+ re 4 r+ |Δr| + |krrt| + |δr|, (B16)
and substituting the true bias values in the standard deviation for random measure-
ment error terms in Equations (B13)–(B15), the maximum values of Ex, Ey, and Ez,
respectively will be obtained.
Then:

C(k)ΔR(k)CT (k) , diag([E2
x max(k), E2

y max(k), E2
z max(k)]), (B17)

where diag(V) denotes a square matrix whose main diagonal elements are
composed of the elements of vector V, and the other elements are zeros. Substituting
Equation (B17) into Equation (B11), the upper bounds of ΔPR can be calculated.
Figure A1 is the square root of the diagonal elements of covariance matrix of the

estimate. The thick lines represent the covariance of the linearized model using KF,
and dotted lines represent the actual covariance upper bounds considering errors
caused by linearization. For the range upper bounds, it’s a little bigger, because in
Equation (B13), Equation (B17) and the absolute value for each term can amplify the
errors, and the number of the terms in Equation (B13) is large. Despite the am-
plification, the upper bound is only about 100 m bigger than the calculated one. The
upper bounds for the other biases are very close to the calculated values which show
that the effects of the linearization errors are small.
From Equations (B13)–(B15), we know that the second-order remainder terms are

smaller by an order of magnitude than the first-order terms. In addition, Figure A1
proves that the incorrect covariance of P(0) and R(k) are not the main factors for the
poor estimates of the attitude biases and that the instability of the system should be the
main factor. According to the definition of stability, when the system is stable, the
adverse effects of P(0) will be diminished with time automatically which can be seen in
Qin et al., (1998). One of the sufficient conditions for stability is the controllability and
observability of the system. Though it is not the necessary condition, the instability of
the model we used in this paper shows that the system may be uncontrollable or
unobservable, which will be studied in our future work.
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