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Casselman’s Basis of Iwahori Vectors and
Kazhdan-Lusztig Polynomials

Daniel Bump and Maki Nakasuji

Abstract. A problem in representation theory of p-adic groups is the computation of the Casselman
basis of Iwahori fixed vectors in the spherical principal series representations, which are dual to
the intertwining integrals. We shall express the transition matrix (m,,,) of the Casselman basis
to another natural basis in terms of certain polynomials that are deformations of the Kazhdan-
Lusztig R-polynomials. As an application we will obtain certain new functional equations for these
transition matrices under the algebraic involution sending the residue cardinality g to g~*. We will
also obtain a new proof of a surprising result of Nakasuji and Naruse that relates the matrix (1, )
to its inverse.

1 Statement of Results

We will state most of our results in this section, with proofs in Section 2. A few more
results will be stated in Section 3.

Let g be the residue cardinality of F and let o be its ring of integers. Let T(C) be
a split maximal torus in the Langlands dual group G(C), a reductive algebraic group
over C. Let ® be the root system of G in the weight lattice X* (T) of rational characters
of T that we identify with the group X, (T) of cocharacters in the maximal torus T
of G that is dual to T. Let B = TU be the Borel subgroup of G that is positive with
respect to a decomposition of @ into positive and negative roots. Let K be the standard
(special) maximal compact subgroup, and let ] be the positive Iwahori subgroup. The
Weyl group is W = Ng(T(F))/T(F). We will choose Weyl group representatives
from K.

Ifze T,thenz parametrizes an unramified character y, of T(F). The correspond-
ing principal series module V, of G(F) consists of smooth functions f on G(F) such
that f(bg) = (62x,)(b)f(g) for b € B(F). If w € W, then choosing a Weyl group
representative from K, and by abuse of notation denoting it also as w, there is an in-
tertwining integral operator A,,: V, - V,,, defined by the integral

Af(@= [ fwxg)dx.

Here, U_ is the unipotent radical of the Borel subgroup B_ opposite B, and although
the integral is only convergent for z in an open subset of T(C), it extends mero-
morphically to all of T(C) by analytic continuation. Casselman [9] and Casselman
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and Shalika [10] emphasized the importance of the functionals f — A, f(1) on the
|W|-dimensional space V] of Iwahori fixed vectors.

The space V] of Iwahori-fixed vectors in V, then have several important bases
parametrized by the Weyl group W. One basis {¢,, } is obtained by restricting the
standard spherical vector to the various cells in the Bruhat decomposition. That is,
G(F) is the disjoint union over w € W of cells Bw], so if w € W, we can define

(82x)(b) ifkew],

0 otherwise.

(pw(bk) = {

For us, a more useful basis is

Yy = Z¢ua

uzw
where > is the Bruhat order in W.
Another more subtle basis than the {¢,,} or {y,, } was defined in [9] to be dual to
the functionals f — A,, f(1). Thus, A,, f,r (1) = 8,4+ Casselman wrote:

It is an unsolved problem and, as far as I can see, a difficult one to
express the bases {¢,, } and {f,, } in terms of one another.

It seems more natural to ask for the transition function between the bases { f,, } and
{v }, and we will interpret the “Casselman problem” to mean this question.

The difficulty of this problem does not prevent the use of the Casselman basis { f,, }
in applications, for as Casselman [9] and Casselman-Shalika [10] showed, a small
amount of information about the Casselman basis can be used to compute special
functions such as the spherical and Whittaker functions. This is an idea that has
been used in a great deal of subsequent literature. Because detailed information about
the Casselman basis is not needed for these proofs, the Casselman problem has not
seemed urgent. Nevertheless, the Casselman problem is very interesting in its own
right because of a deep underlying structure similar to Kazhdan-Lusztig theory.

Before continuing, we remark that we will often find functions (u,v) ~ a,,, on
W x W such that g, , vanishes unless u < v. It is convenient to think of (a,,y )y vew
as a matrix whose index set is the Weyl group. Its product with another such matrix
(by,y) is (cy,y ), where

Cuyy = Z Ay, by

USXY
An important special case is the matrix (a,,,, ), where a,, , = lif u < v and 0 otherwise.
Then a theorem of Verma, which we will often use, is that if (b,,) is the inverse
matrix, then by, = (=1)')~*() when u < v. This is the Mébius function for the
Bruhat order; see [23,25].
Applying Casselman’s functionals to the basis {y,, } gives numbers

Myy = Avv/u (1)1

and these are the subject of this paper, as well as [6]. This is zero unless u < v in the
Bruhat order.
We also let m,, ,, (denoted 1, in [6]) denote the inverse matrix so that

m 711, = 6
u,x X,V u,v»>
usx<y
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where ¢ is the Kronecker delta. Clearly,

Yy = Z mu,va and fu = Z m;,v Yy,
vzu vzu
so the essence of the Casselman problem is to understand the m,,, and m;, ,. We
will give a kind of solution to this problem by showing that the m,,, and m;, , can
be expressed in terms of certain polynomials that are deformations of the Kazhdan-
Lusztig R-polynomials.

First, we review two conjectures from our previous paper [6]. Let P, , be the
Kazhdan-Lusztig polynomials for W, defined as in [16]. We will also use the inverse
Kazhdan-Lusztig polynomial Qy.y = Pyyy,weu> Where wy is the long Weyl group ele-
ment. Both P, , and Q,,, vanish unless u < v.

If « € O, let r, denote the corresponding reflection in W. Assume that u < v.
Define

S(u,v) ={ae® |ugvry<v} and S§'(u,v)={ae®" |u<ur,<v}.

It is a consequence of work of Deodhar [12], Carrell and Peterson [7], Polo [21],
Dyer [13], and Jantzen [15] that the sets S(u,v) and S'(u,v) have cardinality
> I(v) = I(u). Moreover, if the inverse Kazhdan-Lusztig polynomial Q,,, = 1, then
[S(u,v)| = 1(v) = I(u), while if P, , = 1then |S"(u,v)| = I(v) — I(u).

In [6] we conjectured that if ® is simply-laced and Q,,, = 1, then

1-q'z%
(L1 My, = mu,v(z) = H qi‘x'
1-z
aeS(u,v)

This formula generalizes the well-known formula of Gindikin and Karpelevich, which
is actually due to Langlands [17] in this nonarchimedean setting. This is the special
case where u = 1, so that y; is the K-spherical vector in V,. However, the method
commonly used to prove the formula of Gindikin and Karpelevich inductively does
not work for general u, and this conjecture still seems difficult. See [19,20] for recent
work on this problem, and Section 3 below for some new results based on the methods

of this paper.
Similarly, if P, , =1, then |S’(u,v)| = I(v) — I(u), and in this case we conjectured
that
/ I(v)-1 1-q7'2"
(1.2) ml, = (-1)/"=H) —
wy 1-2z%

aeS’(u,v)

It was shown by Nakasuji and Naruse [20] that these two conjectured formulas (1.1)
and (1.2) are equivalent. They did this by proving a very interesting fact relating the
matrices (m,,,) and (m;, ), which we will reprove in this paper as Theorem 1.5.

In this paper we will not prove these conjectures. Instead we will strive to adapt
methods of Kazhdan and Lusztig [16] to this situation. For example, the above con-
jectures can be thought of as closely related to their formula (2.6.b).

Our algebraic results about m,, ,, are independent of the origin of the problem in
p-adic groups. So we can regard g as an indeterminate. If f is a polynomial in g,
following Kazhdan and Lusztig, f will denote the result of replacing g by g7%. If f
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involves z, then z is unchanged in f unless we explicitly indicate a change. We will
also use the notation ,, = (-1)'™) and q,, = ¢'™) from [16].

Assume that Q,, = 1, that ® is simply-laced so that (1.1) is conjectured, and more-
over, |S(u,v)| = 1(v) — I(u). Observe that m,, , satisfies the functional equation

(1.3) My (2) = qvq, My, (z7).
Theorem 1.1  Assume that Q,,, = 1. Then the functional equation (1.3) is satisfied.

Note that this does not require @ to be simply-laced, even though (1.1) has coun-
terexamples already for B,. Proofs can be found in the next section.

The key to this and other results is to introduce a deformation of the Kazhdan and
Lusztig R-polynomials, defined in [16].

Theorem 1.2  'There exist polynomials 1, ,(z), depending on z € T(C) such that
tuu =1landr,, = 0 unless u < v. They have the property that r, ,(z) - R, ifz - oo
in such a direction that 2% — oo for all positive roots a € ®. They can be calculated by
the following recursion formula. Choose a simple reflection s = s, corresponding to the
simple root « such that sv <v. If su < u, then

1_
ru,v(z) = I—Z%ru’W(Z) + rsu,sv(z)-
If su > u, then
Z—v_loc
Tuy (z) = (1 - ‘Z) 1=z« ru,sv(z) + qrsu,sv(z)-

In the recursion, it is worth noting that since sv < v, —v~'a is a positive root. Then
the m,,, can be expressed in terms of the r,, ,, as follows.

Theorem 1.3  Suppose that u < v. Then
(14) My,y = Z Tx,v>

usxy

(L5) Tuw = Z EulxMy,y.

USX<y

The proof will be given in the next section. We will deduce (1.3) from this result.
Moreover, we will prove the following general identity. If u < v, define

(1-6) Cuyy = Z exsyq;IQMpx,yQy,zezsv-

USXSYSZSY
(Let ¢,y = 0ifuisnot < v.)
Theorem 1.4 Ifu <v, then
(1.7) May(z) = q4vq;," Y. CuwMun(z).

Uuswsv

The proof will be given in the next section. The coefficients c,,, are interesting. If
u = v, then ¢, , = 1, but otherwise they are usually zero. The 46 pairs u, v with ¢, , # 1
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and u < v for the A4 Weyl group are tabulated in Figure 1. This includes all 38 pairs of
Weyl group elements with # < v in the notation of Kazhdan and Lusztig. This means
that I(v) — I(u) is odd and > 3, and that the degree of P, , is 3 (I(v) — I(u) — 1), the
largest possible. But there are a few other values for which ¢, # 0.

u % Cu,y u<v
5352 $354528351S2 q71 — q73 545152 515253545352 qiI — qu v
$381 $354828381 q71 — q72 N $482 5452838152 q71 — q72 v
S4515251  [S1525354535251 g -q ] v lsssis2 535452535152 g -q v
$25382 525354515253 q_l - q_2 V' ||s15258352 $3545152535152 q_l - q_z v
5452 $25354535152 —tfI + q73 $25382 $253545152535152 qu — q73 v
$354515251 |S152535452535152 q71 — qu V' |]83848381 $152535452835281 —q71 + cf3

5452 $253545352 g -q 7|V ||sssasssisasi|sisasasasasisisasi| g T —q 2 |V
$381 $152835281 q_l - q_2 V' |[sas25381 $253545152835251 q_I - q_3

$35481 515283845251 q_l - q_2 V' |ls2 52835152 q_l - q_2 v
$2535452 52535452535152 q71 — qu V' ||sas18281 $152535453515251 —q71 + q73

528382 $35452538182 q71 — q72 N $4528382 $2535451528352 q71 — q72 v
5451 $1525354838281 q"2 - q'3 V' |[s48283 528384515283 q' - ‘1_2 v
$381 $354515253 q_l - q_2 V' |[s2s3 $25354515283 q_I - q_3

5452535281 |S253545152535251 q71 — q72 V' ||sas381 545152835281 qil — qu v
$15253545351(515253545152535281 q71 — qu V' ||s3848182 $152535452535152 tf1 — q73

54515281 $1525354535152 q’1 - q’z V' |[s3545351 $3545182535251 ‘171 - ‘172 v
5482 5253548152 q_l - q_2 V' |[$3545351 $1525354528351 q_l - q-z v
5253545381 [$25354515283525] q_l - q_2 V' ||S451528351  [5253545152535251 q_l - q_z v
52535251 52535451528351 q71 — qu V' o ||s3s1 $35451525351 —q71 + q73

5354535152 |S152535452535152 qfl - qu V' |[s28381 525354515283 q71 - ‘Iﬁ2 v
54515281 $2535453515251 q_l - q_2 V' |[sas281 525354535281 q_l — ‘1_2 v
$3545351 51528354535281 q_l - q_2 V' s 53545283 q_l - q_2 v
535452 535452835152 qfl - qu V5152835452 [$1525354528351520 ‘171 - ‘Zfz v

Figure I: The pairs u,v in the A, Weyl group with u < v and c,,, # 0. The simple reflections are
s1, 52, 53 and s4. This list includes all 38 pairs with u < v in the notation of Kazhdan and Lusztig
(marked with v”). Note that if u < v then ¢,,, = q’l - tf2 but there are a few other pairs u, v
with ¢y, # 0.

Finally, we have a striking symmetry of the coefficients m,, ,. Equation (1.9) in the
following theorem was proved previously by Nakasuji and Naruse [20]. We will give
another proof based on Theorem 1.2.

Theorem 1.5 (Nakasuji and Naruse [20]) Suppose that u < v. Then

(1.8) Z Tu,xExEvTwov,wox = 614,1/)
usxgv
(19) Z My, xExEMygy,wox = 8u,v-
USXSY
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The proof will be given in the next section. Because (m;, ,) was defined to be the
inverse of the matrix (m,,, ), the last result can be written m!, , = €, &, M,y wou- This
seems a remarkable fact.

We end this section with a conjecture about the poles of m,, ,. As functions of z,
the function r,,, (z) is analytic on the regular set of T, that is, the subset of z such that
2% #1foralla € @.

v

Conjecture 1.6 The functions

1 (l—zﬁ)mu,v and 1 (l—zﬁ)ru,v
BeS(u,v) BeS(u,v)

are analytic on all of T(C).

Since My, = Y ycxcy Txv and S(x,v) € S(u,v) when u < x < v, the statement
about m,,, follows from the statement about r,,,. Moreover, the recursion in The-
orem 1.2 gives a way of trying to prove this recursively. So let us choose a simple
reflection s such that sv < v. It is sufficient to show that [Tgcg(u,v) (1= zP) cancels the
poles of both g, ¢, and of (1 - z"’il"‘)’1

The factor (l—z"’fl"‘ )~! thatappears with r,, , is cancelled for the following reason.
It only appears if r,, 5, # 0, that is, if u < sv. Now if this is so, then the positive root
—vlaisin S(u,v), because vr_,-14 = sv, and then u < sv implies —v~'a € S(u,v).

So the statement that [Tgeg(y,) (1 - zP) cancels the poles of r,, , would follow re-
cursively if we knew that S(u, sv) and S(su, sv) are both contained in S(u,v). Un-
fortunately, this is not always true, as the following example shows.

Tu,sv-

Example 1.7 Let ® be the A, root system, with simple roots a;, a; and correspond-
ing simple reflections s;, s5. Let u = 51, v = 518281, and 8 = a; + a,. Then if we take
s = 51, we have 8 € S(u,sv) and B € S(su,sv) but 8 ¢ S(u,v). This means that the
locus of Z* = 11is a pole of both terms in the recursion, but these poles cancel, and it
is not a pole of r,, ,, ().

At the moment we do not have a proof that such cancellation always occurs, but
often it can be proved using a different descent. In Example 1.7 with u, v and 8 as given,
we could take s = s, instead, and then we find that 8 ¢ S(u, sv) and 8 ¢ S(su, sv), so
1 - z# does not divide the denominator of Tup-

2 Proofs

Let H be the Iwahori Hecke algebra of the Coxeter group W, with basis elements T;,
for w € W, such that T,, Tyyr = Ty if I(ww') = I(w) + I(w"). Thus, if s is a simple
reflection, we have T2 = (q — 1) T; + g, and the usual braid relations are satisfied. We
extend the scalars to the field of meromorphic functions on T(C). Then the Hecke
algebra has another basis, which we will now describe. Let z ¢ T(C). If s = sy isa
simple reflection, and « is the corresponding simple root, let 4, (s) be the element of
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the Hecke algebra defined by

-1

-1 y 2° 1, 1-¢
=q Ts+(1- =T, + .

Ha(s) = q g ) =T+

It was shown in [6], using ideas of Rogawski [22], that we can extend this definition

to u,(w) for w € W such that if I(wyw,) = I(w;) + [(w,), then

HZ(WIWZ) = ‘“Z(Wz)nuwzl(wl)‘

The Hecke operator p,,(z) models the intertwining operator A,:V, — V,,,, as is
explained in [22] or [6]. It was clarified by Nakasuji and Naruse [20] that the basis y,,
is essentially the “Yang-Baxter basis” of Lascoux, Leclerc, and Thibon [18], and the
consistency of the definition follows from the Yang-Baxter equation. The appearance
of the Yang-Baxter equation in the context of p-adic intertwining operators is then
related to the viewpoint in Brubaker, Buciumas, Bump, and Friedberg [5].

Suppose that s = s, is a simple reflection. Then it is easy to check by direct com-
putation that
1-g'z% 1-q'z7°
1-—2z¢ 1-z7¢

(2.1) pa($) sz (s) =

Lemma 2.1 Lets = s, be a simple reflection. Then for any w € W, we have
Yo (W)t (8) = ¢ - pz(sw), where the constant

1 if sw>w,
CcC =

-1 -1
l_q—lzw « l_q—lz—w « .
l,zw_ltx : l,z—w_la l.fsw <w.

Proof If sw > w, this follows from the definition of y,(sw). In the other case, we
write pz (W) = pz(sW) tswz(s), then apply (2.1). [ |

Let A: H — C(q) be the functional such that A(T,) = 1if w = 1, and 0 otherwise.
Also, lety,, = 3,5, T,. Weare reusing the notation y,, used previously to denote cer-
tain Iwahori fixed vectors, but we are leaving the origins of the problem in the p-adic
group behind, so this reuse should not cause any confusion. Following Rogawski [22],
there is a vector space isomorphism between the Iwahori fixed vectors in the principal
series representation and the Hecke algebra I, and in this isomorphism, the Iwahori
fixed vectors y,, correspond to the Hecke elements y,,.

In [6], we proved that

Myy = mu,v(z) = A(V’uﬂl(v))
This will be the starting point of our proofs.

Lemma 2.2 Ifu,ve W, then

0  otherwise.

Y|
(2.2) A(THTV):{"” Ju=v-

Proof Without loss of generality [(u) < I(v). Assume that A(T,T,) # 0. We will
show that u = v~ and that A(T,T,) = q,. Proof is by induction on I(u), so we
assume that A( T, T,) is given by this formula for all 4’ < u and for all v. The formula
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(2.2) is trivial if u = 1, so we can assume that u > 1. Let s be a simple reflection such
that us < u. Let u’ = usand v/ = sv.
Suppose that v/ < v. Then T, = T; T, and T, = T, Ts. Thus,

(23) Tu Tv = Tul TSZTVI = (q - 1)Tul TsTv’ + unr Tvl = (q - I)Tul Tv + unl Tvl.

Thus, either A(T,+T,) # 0 or A(T, T,) # 0. By induction, we have either u’ = v~* or
u' = (v')L. The first is not possible, since [(u’) < I(v),sou’ = (v') andu™! =v7".
Now applying A to (2.3) gives A(T,,T,) = gA(Ty Tyr) = qqur = qu.

The case v/ > v is easier. Then A(T,T,) = A(T, T, T,) = A(T,Ty) = 0, since

I(u") < I(v"). And u cannot equal v, since s is a right descent of u but not v=!. ®

We will make use of the Kazhdan-Lusztig involution f + f on functions f of q
and z. This is the map that sends g to ¢! and z to z. We recall from [16] that it is
also the map q — g~* extended to an automorphism of the Hecke algebra by the map
T, — T;L.

We define r,,, = 1,,,(2) by
(2.4) u(v) =Y 4, Ty T

usv

We will first prove Theorem 1.2 followed by Theorem 1.3 and Theorem 1.1

Proof of Theorem 1.2 Beginning with (2.4), we can compute 7,,, by calculating the
coefficient of T,,-1 in

= sv = 71ETx*1 ! T 1-g7" (SVZ)‘X .
Uz (v) = a(sv) psva(s) (g;vqx Fow Tt ) (a7 T+ (1- )1_(5”)“)
Only x = u or su can contribute to the coefficient of T,,-1. Comparing the coefficients

of T,-1 and noting that (svz)* = 27V, the recursion formula is obtained.

Now the Kazhdan-Lusztig R-polynomials satisfy a similar recurrence, at the be-
ginning of [16, Section 2]. So specializing z — oo in such a way that z% — oo for all
positive roots, we see that r,, - R, ,. For this it is important that when s is a left
descent of v, the root —v ™'« that appears in the recursion is positive. ]

Theorem 1.2 has the following implication for the Yang-Baxter basis y,(w), which
was pointed out to us by the referee. Suppose that we specialize z — oo as in Theo-
rem 1.2. Then since r, ,(z) — Ry, using [16, (2.0.a)] and the fact that R, , = R,-1 1,

Ha(v) — Zq;lRu,vTu“ = Tv_l-
u
Proposition 2.3 We have r,, = 0 unlessu < v, and r,, = 1. Moreover, 1, =
-1
Eu€vquqy Tu,y-
Proof Both assertions follow from Theorem 1.2 by induction on I(v). [ |
If u < v in W, we will denote by [u, v] the Bruhat interval {x € W|u < x < v}.

Proof of Theorem 1.3 By definition
My = AMWupa(v)) = Z Z Q;lmA(Tx Tyfl)'

xX2u y<v
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Equation (1.4) now follows from Lemma 2.2. By Verma’s theorem, the Mobius func-
tion on the Bruhat interval [u, v]is (x, y) = &x¢,. (See [23].) Thus, (1.5) follows from
(14). [ |

Lemma 2.4  We have pu,(w) = qupz-1(w).

Proof This reduces to the case where w is a simple reflection, and this case is easily
checked from the definition. |

Proposition 2.5 We have
(25) Z Qu,wswstmt,v(z_l) :%q;l Z Qu,yry,v(z)-

USWSIESy usysv
Proof Using Lemma 2.4,

qv Z q;lm(z_l)Tu“ = QVPZ“(V) = .“Z(V) = Z ery,\/(z) T;l-

usv ysv

Bearing in mind that R, , = R,-1 ,-1, [16, (2.0.a)] implies that T}jl = Yuey Ruyqy Tum.
Substituting this on the right-hand side, and comparing the coeflicients of T,-1, gives

m(z_l) = ‘];1 z ‘IyRu,yry,V(z)-

usysv

Then by Theorem 1.3,
mu,V(Z_l): Z m(l_1)= Z q;IQny,yry,V(Z)-

usx<y USXSYsy

By Verma’s theorem [23,25],

Z sustmt)v(z’l): Z sustq;lqux)yry,v(z): Z q;lq},Ru,),ry,v(z).

ustsy USESXSYsy usysv
Thus,
Z Qu,wewetmt,v(zil) = Z Qu,wq;lq;/Rw,yry,v(Z)'

USWLISy USWysv

Now we require the identity

Qu,y = q;IQy Z Qu,w . Rw,ya

uswsy
which can be deduced from [16, (2.2.a)]. Applying this gives (2.5). [ |
The following property of Kazhdan-Lusztig polynomials is due to Carrell and Pe-
terson [7].
(2.6) Ifu<vandP,, =1,thenP,, =1foru<x <v.

This is also proved in [1], where the result is stated on page 77, and the proof is con-
tained in the proof of Theorem 6.2.4.
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Proof of Theorem 1.1  Using (2.6), since Q,,, = 1, we have Q,,, = 1 for all x € [u,v].
Thus, (2.5) reads

Z eeimpy(27) = quq;l Z ryv(2) = quq;lmu,w

U<ty usysv

The result follows from Verma’s theorem. [ |
Let ¢, , be asin (1.6).
Proof of Theorem 1.4 Using (2.5), write

qv Z sxfyq;lpx,yQy,zfzstmt,v(Zil) = Z stny,yQy,trt,v(z)-

XSY<ZSISY XYY

Using the inversion formula [16, Theorem 3.1], the right-hand side is just 7, (z). Now
summing over x in [u, v] and using (1.4) gives (1.7). [ |

In preparation for proving Theorem 1.5, define r;, , to be the inverse of (r,,,) re-
garded as a matrix on |W/|. Thus,

/ _ / _ 6
ru,xrx,v - ru,xrx,v = CYu,v.
USxX<Y USXSY

Then, using Verma’s theorem, it is easy to see that

my,= > e&r,, and 1, = > ml .
usx<y usxy
The coefficient r;, ,(z) specializes to &, &, R,,, as z — oo. This is clear from [16,
Lemma 2.1(ii)]. Nevertheless, we are not aware of any simple relationship between
the coefficients r and r'.
The coefficients r;, , satisfy a recursion similar to Theorem 1.2.

Proposition 2.6  Suppose that su > u. Ifv < sv,

q-1
(2.7) r;,v = r;u,sv + 1_zila r;u,v .
Ifv > sv,
-1
(g-Dz" ¢
(2.8) r:,,v = W ;u,v + qr;u,sv .

Note that su > u implies that '« is a positive root.

Proof Since (r},,) is the inverse matrix of (r,,, ), we have

(2.9) Ty = Z qvm(z)yz(w).

usv
First let us consider the case v > sv. Then T(s,) = T, T, . Moreover, for any
w € W, we can write T, ! as a linear combination of y,,,(s) and 1 to obtain

-1

N 1-
(2.10) Ty = 32 (@7l (2)pa(w)) (tta(s) - ﬁ)

wv
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Then we can use Lemma 2.1 to compare the coefficients of y, (su) in this equation and
in (2.9) applied to sv. In (2.10) there are two ways to get a coeflicient of su: we can
either take w = u or w = su. We obtain
1-q7!

1—zw'a’
Applying the involution and rearranging gives (2.8).

Now let sv > v. Then T(,,y-+ = T,-1 T. We can proceed as before, except that now
it is T that we are expressing as a linear combination of y,,,(s) and 1. We obtain

T(sv)*l = Z (QVK(Z)#Z(W)) ( q.uWZ(S) - M) ’

.
w<v 1-z

7 _ 7 7
GsvVsu,sv = Avluy = Vsuvqv

Now comparing the coefficient of y,(sw) gives the identity

-1
(gD
qsvréu,sv = qur;,v - qugu,vﬁ'
Applying the involution and rearranging gives (2.7). ]

Proof of Theorem 1.5 It is sufficient to prove that defining
(2.11) ' (u,v) = e(u)e(V) wyvwou

makes the recursion of Proposition 2.6 true. Since w — wow is a Bruhat-order re-
versing bijection of the Weyl group to itself, we can apply Theorem 1.2 with u, v, and
s being replaced by wov, wou, and woswg. With this substitution, it is easy to see that
the definition (2.11) makes the recursion (2.7)-(2.8) true, so this definition must agree
with our original one that makes of (r, , ) being the inverse matrix of the matrix r,, , .
This is equivalent to (1.8). To obtain (1.9), we use equation (1.4) to express m,, , and
Mygv,weu 1D the left-hand side and then use (1.8). [ |

3 Descent Properties of m,,,

Although we will not prove the conjectured formula (1.1) we now have tools to prove
it in many cases.

Proposition 3.1 Letu,v € W and assume that s is a simple reflection such that su < u
and sv < v. Then the following are equivalent:

(i) wu<v,

Proof This is Property Z in Deodhar [11]. It is sometimes called the lifting property
of the Bruhat order. See [2, Proposition 2.2.7] for a proof. ]

The next result allows computation of m,, , from m,, s, if a simple reflection s can
be found such that sv < v and su > u. If this is true, the map x — sx is a special
matching in the sense of Brenti [3] and the reduction is reminiscent of the proof in
certain cases that that the Kazhdan-Lusztig polynomials are combinatorial invariants
of the Bruhat interval poset; see [4].
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Proposition 3.2 Letu < v and let s = s, be a simple reflection such that sv < v and
u < su. Then

S(u,v) = S(u,sv) u{-v'a} (disjoint),
and

va

3. e e

1- z—v“a ) My, sy-

Proof Note that by Proposition 3.1, we have u < sv. If B = —v™'a, then vrg = sv,
s0 u < vrg < v is true but u < svrg < sv is not, showing that —v'a € S(u,v) but
not S(u,sv). If B is a positive root not equal to —v'a, we must show B € S(u,v)
if and only if B € S(u,sv). First suppose that svrg < vrg. Then this statement is
easily deduced from Proposition 3.1. Therefore, let us assume that vrg < svrg. If
B € S(u,sv), then u < svrg < sv. Proposition 3.1 implies that u < vrg, and vrg < svrg
while again by Proposition 3.1, svrg < v. Therefore, 8 € S(u,v). We are left to check
that if B € S(u,v) but B ¢ S(u,sv) then B = —v'a. To do this, we use the Strong
Exchange Property for Coxeter groups, which is [14, Theorem 5.8]. Write v = s;--- sy
where the s; are simple reflections, and the expression is reduced. Since s is a left
descent we can assume that s; = s. The Strong Exchange Property states that vrg =
sp---5;--- sy for some i. Suppose that i # 1. Then svrg = s55---5;-+- 55 < $3-- SN = 5V,
while by Proposition 3.1, we have u < svrg. This contradicts our assumption that
B ¢ S(u,sv). Therefore, i = 1, which implies that = sysy_1 -+ sz (@) = v (-a).

We turn to (3.1). Using Proposition 3.1, the fact that sv < v and su < u implies that
u < x < vifand only if u < sx < v. Therefore

My,y = Z Ty, = Z (rx,v +r5x,v)'

u<x<y UuSxX<Y
SX<X

We can now use both cases of Theorem 1.2 to rewrite this. The first case of the recur-
sion applies to 7y, and the second applies to 7y ,. We have

-1
77V @

1-
Tx,wy * Tsxv = I—Z%rx sv (z) + Tsx,sv (z) (1 - Q)i_—larsx,sv(z) + qrx,sv(z)'

Simplifying, we get

1 _ qul’iltx
1-z Ve

The term r, 5, can be zero, since it is possible that x is not < sv, but we always have

sx < sv by Proposition 3.1. Discarding r, s, when x is not sv, we get

-1 -1
1_ qz—v 24 1 qz -V «
My, = ( = ) Z (rx sv T Tsx sv) ( —— ) Z Tx,sv>
1-z U<xX<Y - USXSSY
sx<x

which equals the right-hand side of (3.1). ]

Txyw T Vsx,p = ( ) (rx,sv + rsx,sv)-

Here is another type of descent result.

Proposition 3.3  Assume that sv <v and su < u. Assume further that u is not < sv.
(i) Then S(u,v) = S(su, sv).
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(ii) The map x v sx is a bijection of the Bruhat interval [u,v] = {x|u < x < v} fo
[su,sv]. If u < x < v, then sx < x and x is not < sv, and S(x,v) = S(sx, sv).

(iii) Wehave my,,, = Mgy svs Tuyy = Tsu,sy-

(iv) If, in addition, Q,, =1, then Qsy 5y = 1.

Proof To prove (i), we first show that S(u,v) € S(su,sv). Let § € S(u,v) and let
r = rg, so that u < vrg. Letv = s;---sy be a reduced expression with s, = s. Thus,
vr = §1---5;+--sy for some i. We claim that i # 1. Indeed, if i = 1 then vr = sv so
u < vr, which contradicts our assumption. Therefore, i # 1and svr = s5---5; - sn.
Since sv = 55 --- sy is a reduced expression, we see that svr < sv. On the other hand,
since su < u, Proposition 3.1 implies that su < svr and therefore 8 € S(su, sv).

On the other hand, let us show that S(su,sv) ¢ S(u,v). Thus, assume that r = g
where 8 € S(su,sv) and su < svr < sv. We claim that svr < vr. Indeed, if not, then
su < svr implies u < svr by Proposition 3.1 and so u < svr < sv, contradicting our
hypothesis. Now since vr > svr, u > su, and su < svr, Proposition 3.1 implies that
u < vr. On the other hand, since v > sv and svr < sv, Proposition 3.1 implies that
vr < v. (We cannot have vr = v, since r is a reflection.) Thus, u < vr < v and so
B € S(u,v). Now (i) is proved.

We prove (ii). First, if x € [u,v], then we claim that x > sx. Indeed, if sx > x,
then x < sv by Proposition 3.1. Then u < x < sv, contradicting our hypothesis.
Now two applications of Proposition 3.1 show that su < sx and sx < sv. Thus, x ~
sx maps [u,v] into [su,sv]. The fact that this map is surjective also follows from
Proposition 3.1. Finally, since we have shown that x < sx for x € [u, v], part (i) applies
to the pair x, v, implying that S(x,v) = S(sx, sv). Now (ii) is proved.

As for (iii), the fact that r,,, = 7y, s, follows from Theorem 1.2, since r, 5 = 0
under our assumption that u is not < sv. By (ii), we have similarly 7, = 7y s for
x € [u,v]. Summing over x and applying the involution gives m,, , = Mgy 5.

We prove (iv). A criterion for Py , = 1 due to Kazhdan and Lusztig [16, Lemma 2.6]
isthat ¥ ,c., Ry,z = g, qx". (Actually in this lemma this is the condition that P, =1
for all x < z < y, but by (2.6), this is equivalent to Py , = 1.) By [16, Lemma 2.1(iv)]
it follows that the criterion for Q,,, = 1is that Yaczy Reyy = qu;l. Thus, Q,,, =1
we have Y, ., Ryxy = 4+9,". Moreover, using (ii) and the recurrence [16, (2.0.b)]
for R we have Ry, = Ry gy, and it follows that ¥, cvcsy Roxsv = v = Gsvqsn-
Therefore, Qgy,sp = L. [ |

We make the following conjecture.

Conjecture 3.4  Assume that @ is simply-laced and that u < v in W such that Q,, = L.
Then there exists a simple reflection s € W such that either:

(i) sv<vandsu>u,or
(ii) sv <vandsu < u, and u is not < sv.

We have checked this (using Sage) for Cartan types As and D4. For A5 we find 1346

pairs u < v such that no descent s of v exists satisfying either (i) or (ii), and for each
of these, we have Q,,,, # 1. For example, we can take (u,v) = (s3,2518352) and the
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only descent s = s, of v does not satisfy either (i) or (ii), but this does not contradict

the conjecture, since Q,,, =1+ q.

Theorem 3.5 Assume that @ is simply-laced and Q,, = 1. Then Conjecture 3.4
implies (1.1), which is conjectured in [6] under these assumptions.

Proof We assume that u < v and Q,,, = 1. Choose a left descent s of v. If su > u,

then Proposition 3.2 applies. Note

My sy = mu,sv(z) =

Now Proposition 3.2 implies (1.1) for u

> V.

I1

BeS(u,sv)

1-q7'7#

1-zP

On the other hand, if su < u, then on Conjecture 3.4 we have u not < sv, and so
Proposition 3.3 applies, and again the result follows.

We end with another puzzle. We give the root lattice the usual partial order in
which x > y if x — y lies in the cone generated by the positive roots. Then the set T of
reflections has a partial order in which if &, 8 € ®*, then r, > rp if and only if « > b.
Let AD(u,v) = {r € T|ru > u,rv < v}. We will write u < v to denote the covering
relation in the Bruhat order. Thus, u < v ifu <vand I(u) = I(v) - 1.

Theorem 3.6 (Tsukerman and Williams [24], Caselli and Sentinelli [8]) Suppose
that @ is a simply-laced root system. Suppose u < v. Then AD(u,v) is nonempty and if
t is a minimal element, then u < tu < v and u < tv < v. In this case,

Ru,v = thu,tv + (q - ].)Ru)[v.

Suppose in the setting of this theorem that f = r, (a € ®*). Let f = —v"'a. Then 3
is a positive root. To generalize Theorem 1.2, it is natural to ask whether

B
Z
(3-2) Tuy = qleu,tv + (q - l)ﬁru,tw

B=-v'a.

This is often, but not always, true. For A3, it fails in the following cases:

u v t P,, | Quy
S1 $152838281 | S15281 | 1+g |1

S3 $152838281 | 28382 | 1+q | 1

5183 | 8152538281 515281 1+ q 1+ q
S183 | 8152538281 | $28382 | 1+q | 1+¢
So $2515382 s15281 | 1+q | 1+¢
S 52515352 $28382 [ 1+q | 1+¢
Sy 5352515352 | S15251 | 1 1+gq
S 5152515352 | $28355 | 1 1+gq

Except in these cases, we have not only (3.2), but also

(3.3) My, = (
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We can conjecture that (3.2) and (3.3) are true if both P, , = Q,,, = 1. (This has been
checked for A, as well as As.) This does not imply the conjecture (1.1), because of the
condition P, , = 1.
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