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As wind farms continue to grow in size, mesoscale effects such as blockage and gravity
waves become increasingly important. Allaerts & Meyers (J. Fluid Mech., vol. 862,
2019, pp. 990–1028) proposed an atmospheric perturbation model (APM) that can
simulate the interaction of wind farms and the atmospheric boundary layer while keeping
computational costs low. The model resolves the mesoscale flow, and couples to a wake
model to estimate the turbine inflow velocities at the microscale. This study presents
a new way of coupling the mesoscale APM to a wake model, based on matching the
velocity between the models throughout the farm. This method performs well, but requires
good estimates of the turbine-level velocity fields by the wake model. Additionally, we
investigate the mesoscale effects of a large wind farm, and find that aside from the
turbine forces and increased turbulence levels, the dispersive stresses due to subgrid flow
heterogeneity also play an important role at the entrance of the farm, and contribute to the
global blockage effect. By using the wake model coupling, we can explicitly incorporate
these stresses in the model. The resulting APM is validated using 27 prior large-eddy
simulations of a large wind farm under different atmospheric conditions. The APM and
large-eddy simulation results are compared on both mesoscale and turbine scale, and on
turbine power output. The APM captures the overall effects that gravity waves have on
wind farm power production, and significantly outperforms standard wake models.

Key words: atmospheric flows, internal waves, wakes

1. Introduction

As offshore wind farms become larger, their interaction with the atmosphere becomes
important to their operation (Bleeg et al. 2018; Porté-Agel, Bastankhah & Shamsoddin
2020; Fischereit et al. 2021). Recent large-eddy simulation (LES) studies have identified
wind-farm-induced gravity waves as contributing to the so-called blockage phenomenon,
where the wind is slowed down upstream of the farm, thereby reducing turbine power
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output (Allaerts & Meyers 2017, 2018; Lanzilao & Meyers 2022, 2023b, 2024; Maas
2022, 2023; Stipa et al. 2024a).

Offshore, the atmosphere frequently has a structure similar to a conventionally neutral
boundary layer (CNBL), where a neutral atmospheric boundary layer (ABL) is topped
by a capping inversion and a stably stratified free atmosphere (Csanady 1974; Smedman,
Bergström & Grisogono 1997). Gravity waves can appear in these conditions, with waves
generated by surface topography being extensively studied (Klemp & Lilly 1975; Durran
1990; Vosper 2004; Smith 2007; Teixeira 2014; Sachsperger, Serafin & Grubišić 2015).
As first hypothesized by Smith (2010), wind farms can also trigger such gravity waves. By
slowing down the ABL flow, they push the capping inversion upwards, thereby initiating
gravity waves both within the inversion layer and in the free atmosphere aloft. The pressure
perturbations of these waves in turn affect the flow in the ABL, leading to blockage
upstream of the farm, and pressure gradients throughout it (Allaerts & Meyers 2017).

While LES studies are a useful tool to gain insight into the flow physics, their high
cost prevents them from being used for wind farm planning and control (Meyers et al.
2022). Conventional wake models, which focus on the downstream effects of individual
turbines (e.g. Bastankhah & Porté-Agel 2014), cannot account for the complex mesoscale
effects of large-scale interactions between wind farms and the ABL (Porté-Agel et al.
2020; Centurelli et al. 2021). Over the years, several approaches have been developed to
estimate the global atmospheric response of large wind farms. For instance, the upper
limit of wind farm power production has been studied using so-called ‘top-down’ models,
which estimate the available energy density for infinitely large wind farms (Frandsen 1992;
Frandsen et al. 2006; Emeis 2009; Calaf, Meneveau & Meyers 2010; Abkar & Porté-Agel
2013). This approach has also been extended to include entrance and turbine wake effects
(Stevens, Gayme & Meneveau 2015; Luzzatto-Fegiz & Caulfield 2018). However, these
models focus on turbulent entrainment, and do not include blockage or atmospheric gravity
waves.

Mesoscale climate and weather models can fully capture the atmospheric response to
wind farms, and have included various wind farm parametrizations (Fischereit et al. 2021).
However, the computational cost of these models is high and their resolution relatively
coarse. They do not model turbine–turbine interactions explicitly, as these occur on smaller
scales. Recent research by Nishino & Dunstan (2020) produced an elementary way of
coupling these large-scale flow models to turbine-level simulations, by ensuring that the
two scales predict the same mean velocity over the farm. While this has produced good
agreement with LES for infinite wind farms (Kirby, Nishino & Dunstan 2022), it still
requires expensive numerical models to estimate the atmospheric response for a given
farm (Patel, Dunstan & Nishino 2021). Very recently, Kirby, Dunstan & Nishino (2023)
developed an analytical approach of estimating the momentum availability for a given
farm, but does not yet include the effect of upper atmosphere stratification.

Inexpensive linear models of atmospheric gravity waves have been used in mountain
wave research for decades (Teixeira 2014). As first proposed by Smith (2010), these models
could predict the effects of wind-farm-induced gravity waves as well. Allaerts & Meyers
(2019) built on Smith’s idea, and produced an atmospheric perturbation model (APM),
so named because the effect of the wind farm is modelled as a linear perturbation on the
atmospheric flow. It divides the vertical structure of the ABL into two layers of vertically
averaged flow, topped by a capping inversion and the stratified free atmosphere. The flow
in the ABL layers is modelled explicitly, while the gravity waves are incorporated as a
closure equation for the pressure perturbation (Smith 2010; Devesse et al. 2022). In past
studies, the model has been called the three-layer model (TLM/3LM), but as more layers
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can be added (Devesse et al. 2022), we will call it the APM. As a simplified mesoscale
model, it is relatively fast, and has shown potential for both wind farm control (Lanzilao
& Meyers 2021b) and annual energy production estimates (Allaerts et al. 2018).

The goal of this paper is to improve the representation of wind farms in the APM.
As a highly simplified model, the APM cannot resolve turbine-level flows, due to its
height-averaged modelling approach and coarse grid resolution. Additionally, it does not
explicitly model turbulence. Therefore, when simulating large wind farms, the turbine
forces, the increase in turbulent momentum entrainment and the dispersive stresses from
the subgrid flow heterogeneity have to be parametrized. Previous studies with the APM
neglected the latter two, and represented the wind farm purely in terms of turbine forcing
(Allaerts & Meyers 2019; Devesse et al. 2022; Stipa, Allaerts & Brinkerhoff 2024b).
However, based on the LES results from Lanzilao & Meyers (2024), we find that the
increased turbulent momentum flux and dispersive stresses are important to the mesoscale
flow. Therefore, we develop parametrizations to represent them in the APM.

Dispersive stresses have been found to be important in sparse canopy flows, which
include large wind farms (Markfort, Zhang & Porté-Agel 2012; Brunet 2020). In such
flows, they primarily play a role at the canopy entrance, as large unresolved flow features
develop (Moltchanov, Bohbot-Raviv & Shavit 2011). Typically, these stresses are difficult
to parametrize, as the smaller-scale flows are not modelled and highly dependent on
the underlying canopy structure. In contrast, the turbine-scale flows in wind farms
consist primarily of the turbine wakes, which are relatively well-structured and can be
approximated using simple engineering models (Porté-Agel et al. 2020). We leverage this
in the development of a basic parametrization.

This requires the APM to couple to a wake model. Allaerts & Meyers (2019) took the
background velocity, to which the wake model adds the turbine wakes, to be constant
and equal to the velocity at some distance upstream of the farm entrance (i.e. 10 times
the turbine diameter). This approach, while effective at providing a rough estimate of the
blockage effect, is very ad hoc, and cannot take into account the influence of mesoscale
phenomena downstream of the farm entrance. This is an important shortcoming, as for
instance the favourable pressure gradients associated with gravity waves can increase
the power output of downstream turbines (Allaerts & Meyers 2017; Lanzilao & Meyers
2022, 2023b, 2024; Maas 2022, 2023). Very recently, Stipa et al. (2024b) improved on
this by calculating a background velocity for the wake model based on the APM pressure
estimates. We take a different approach, and present a new wake model coupling method
based on matching the velocity between the wake model and the APM. In addition, both
the new wake model coupling and APM are validated using 27 simulations of a finite wind
farm with varying levels of stratification from the LES dataset developed by Lanzilao &
Meyers (2024).

The new coupling method sets up a background velocity for the wake model that ensures
a velocity field that is consistent with the APM output. This results in good agreement for
both the velocity fields and the turbine power production, provided that the wake model
gives a realistic estimation of the turbine-level flow throughout the farm. When analysing
the LES cases from Lanzilao & Meyers (2024), we find that this requires the inclusion of
a turbine induction model. To this end, we use the model proposed by Troldborg & Meyer
Forsting (2017). We use the wake-merging method of Lanzilao & Meyers (2021a), as it
allows for varying background velocities throughout the farm.

The remainder of this paper is structured as follows. Section 2 re-derives and describes
the APM, and performs a momentum budget analysis to identify the most important
physical effects. Section 3 discusses the wake model used in this work, and develops
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Figure 1. Schematic representation of the atmospheric perturbation model. Figure from Allaerts & Meyers
(2019), reproduced with permission.

the new coupling method. Section 4 performs an a priori validation of the coupling
method using the LES dataset developed by Lanzilao & Meyers (2024), and an a posteriori
validation of the complete APM against the same data. Finally, § 5 gives some conclusions
and suggestions for further research.

2. Atmospheric perturbation model

To model the interaction between wind farms and atmospheric gravity waves, this paper
further develops the APM introduced by Allaerts & Meyers (2019). It is a reduced-order
model, where the ABL is treated as two vertically uniform layers of fluid. In the lower
layer, also called the wind farm layer, the effect of the turbine forces is felt directly,
while the upper layer consists of the remainder of the ABL. These layers are divided by
pliant surfaces, so that there is no mass flux between them. The capping inversion, which
separates the upper layer and the free atmosphere, also limits momentum flux (Taylor
& Sarkar 2008). Figure 1 conceptually shows the resulting model structure. The model
consists of two continuity and momentum equations, one for each layer, and a closure
equation that links the thickening of the ABL to the pressure feedback of the gravity waves
in the free atmosphere. This section provides an overview of the model’s derivation, and
its parametrization of gravity waves, turbulent momentum fluxes and wind farm effects.

In their original derivation of the APM, Allaerts & Meyers (2019) added the wind farm
forces to the model after the governing equations were derived. This implicitly introduced a
filtering operation, in order to represent the relatively small-scale turbines in the mesoscale
model. We largely follow Allaerts & Meyers (2019), but explicitly apply this filtering
operation and turbine forcing throughout the derivation, which will result in additional
dispersive stresses.

2.1. Derivation
In the derivation of the APM, two operations are applied to the momentum and continuity
equations: a horizontal filtering to obtain the mesoscale flow and a height-averaging to
reduce the order of the model (Allaerts & Meyers 2019). The former is done through a
Gaussian filter, defined as

φ̄(x, y) =
∫∫

Lx×Ly

G�(x − x′, y − y′)φ(x′, y′) dx′ dy′, φ = φ̄ + φ′′, (2.1)
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Meso–micro atmospheric perturbation model

where Lx × Ly is the APM domain size and G� is a Gaussian kernel with length � (Allaerts
& Meyers 2019):

G�(x, y) = 1
π�2 exp

(
−x2 + y2

�2

)
. (2.2)

Since the APM reduces the vertical structure of the ABL to two averaged layers, we try
to have a horizontal resolution similar to the ABL height. Therefore, we follow Allaerts
& Meyers (2019) in taking � = 1 km, which should suffice for typical offshore boundary
layers.

The flow is then split into three layers, bounded by the ground and the pliant surfaces
z1 and z2, as sketched in figure 1. The lower surface z1 divides the ABL into a lower
layer, where the turbine forces are felt directly, and an upper layer, which comprises the
remainder of the ABL. The third layer of the APM consists of the free atmosphere above
the ABL. The surfaces z1 and z2 are defined as

w̄(x, y, z1) = ūh(x, y, z1) · ∇hz1, (2.3)

w̄(x, y, z2) = ūh(x, y, z2) · ∇hz2, (2.4)

where w is the vertical velocity and uh and ∇h are the two-dimensional horizontal velocity
vector and del operator, respectively. Far upstream of the farm, we set z1 and z2 at twice the
hub height and the capping inversion height respectively (Allaerts & Meyers 2019). Note
that z1 and z2 are not the filtered pliant surfaces, but rather the pliant surfaces in the filtered
flow, as this greatly simplifies the derivation below. However, this difference is negligible
in practice.

We now define the height-averaging operator:

〈φ̄〉1 = 1
z1

∫ z1

0
φ̄(z) dz, (2.5)

〈φ̄〉2 = 1
z2 − z1

∫ z2

z1

φ̄(z) dz, (2.6)

where the subscripts 1 and 2 correspond to the lower and upper layer, respectively.
Fluctuations around the height-averaged state are denoted using triple primes, so that
φ̄ = 〈φ̄〉i + φ̄′′′

i in layer i. We denote the resulting layer thicknesses with h1 and h2.
To obtain the APM governing equations, these operators are applied to the steady-state,

Reynolds-averaged, incompressible continuity and momentum equations. In doing so,
the vertical velocity and the associated momentum equation drop out, analogous to the
derivation of the shallow-flow equations (Allaerts & Meyers 2019). Appendix A shows this
procedure in detail for the lower-layer continuity equation. The end result is a continuity
and momentum equation for each of the two layers:

∇h · (h1〈ūh〉1) = 0, (2.7)

∇h · (h2〈ūh〉2) = 0, (2.8)
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〈ūh〉1 · ∇h〈ūh〉1 = − 1
ρ0

∇h〈 p̄〉1 − fcJ · (Ug,h − 〈ūh〉1) + ∇h · 〈τ̄ hh〉1 + τ̄ h3,1 − τ̄ h3,0

h1

+ 〈 f̄ wf 〉1 − 〈∇ · (τ d,h)〉1 − 1
h1

∇h · (h1〈ū′′′
h,1ū′′′

h,1〉1) + R1

h1
, (2.9)

〈ūh〉2 · ∇h〈ūh〉2 = − 1
ρ0

∇h〈 p̄〉2 − fcJ · (Ug,h − 〈ūh〉2) + ∇h · 〈τ̄ hh〉2 − τ̄ h3,1

h2

− 〈∇ · (τ d,h)〉2 − 1
h2

∇h · (hi〈ū′′′
h,2ū′′′

h,2〉2) + R2

h2
, (2.10)

where the indices 1 and 2 indicate the layer number and the subscripts h and 3 indicate
horizontal and vertical components, respectively. Furthermore, ρ0 is the air density, p is the
pressure perturbation, fc is the Coriolis parameter, J = exey − eyex is the two-dimensional
rotation dyadic (with ex and ey the unit vectors in the x and y directions, respectively),
Ug,h is the horizontal geostrophic wind and τ̄ hh is the horizontal turbulent momentum
flux. Large-scale pressure gradients are included through the geostrophic balance as
fcJ · Ug,h. Additionally, τ h3,0 and τ h3,1 are the vertical turbulent kinetic shear stresses
at the ground and between the ABL layers, respectively. The wind farm force, also filtered
in the horizontal plane, is denoted with f̄ wf . The two penultimate terms in (2.9) and (2.10)
are the height-averaged dispersive stresses and the Taylor-shear dispersion, which appear
as the filtering and height-averaging operators are applied to the convective acceleration.
Allaerts & Meyers (2019) did not include the former, as they did not explicitly apply the
filtering operation. Because they are related to the unresolved flow, we denote them as
subgrid terms throughout this paper. The dispersive stresses are given by

τ d,h = uuh − ūūh. (2.11)

Finally, R1 and R2 are residual terms related to the vertical structure of the flow (Allaerts
& Meyers 2019):

R1 = 1
ρ0

( p̄|z1 − 〈 p̄〉1)∇hz1 − (τ̄ hh|z1 − 〈τ̄ hh〉1) · ∇hz1, (2.12)

R2 = 1
ρ0

( p̄|z2 − 〈 p̄〉2)∇hz2 − 1
ρ0

( p̄|z1 − 〈 p̄〉2)∇hz1

− (τ̄ hh|z2 − 〈τ̄ hh〉2) · ∇hz2 + (τ̄ hh|z1 − 〈τ̄ hh〉2) · ∇hz1. (2.13)

Equations (2.7)–(2.10) provide the governing equations for the APM, with the layer
thicknesses and velocities (〈ūh〉1, h1) and (〈ūh〉2, h2) as state variables. So far, these
equations are exact, aside from the assumption that the capping inversion suppresses the
vertical turbulent momentum fluxes at the top of the ABL. Following Allaerts & Meyers
(2019), we drop the residual terms based on an LES-based momentum budget analysis (see
§ 2.4).

2.2. Parametrizations
We now go through the remaining terms in the momentum equations, and provide closure
equations and parametrizations.
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2.2.1. Gravity waves
The displacement of the capping inversion ηt, sketched in figure 1, causes gravity waves
both within the inversion layer and in the free atmosphere above. These waves then induce
a pressure perturbation pt at the top of the ABL, which is given by (Smith 2010)

pt

ρ0
= g′ηt + F−1(Φ) ∗ ηt, (2.14)

where ηt = h1 + h2 − H, with H being the unperturbed ABL height, F−1 is the inverse
Fourier transform and ∗ denotes a convolution. The ABL is assumed to be hydrostatic,
so the pressure perturbation in both layers is equal to this pt. The first term in the above
equation gives the pressure feedback of the inversion waves, which directly scales with
the reduced gravity g′ = g�θ/θ , where the inversion strength �θ is the jump in potential
temperature θ across the capping inversion. The second term gives the pressure feedback
of waves in the free atmosphere. These are generated as the free atmosphere perceives the
displacement of the capping inversion similar to large-scale topographies when flowing
over it (Smith 2010). It is most easily expressed in Fourier components, where for each
horizontal wavenumber (k, l) the pressure scales with the stratification coefficients Φ. For
uniform free atmospheres, these coefficients are given by (Smith 2010)

Φ = i(N2
g − Ω2)

m
, (2.15)

where Ng = √
(g/θ)(dθ/dz) is the Brunt–Väisälä frequency and Ω = −Ug,h · (k, l) is the

intrinsic frequency of the waves. The vertical wavenumber m is given by the dispersion
relation (Gill 1982):

m2 = (k2 + l2)

(
N2

g

Ω2 − 1

)
. (2.16)

The sign of m has to be chosen so that the waves are evanescent if m2 < 0 and satisfy
the radiation condition if m2 > 0. The stratification coefficients Φ can also represent more
realistic upper atmospheres, with changes in stratification, wind speed and wind direction
(Devesse et al. 2022).

2.2.2. Wind farm model
The turbine thrust force per unit density of each turbine k is calculated as (Allaerts &
Meyers 2019)

f k = 1
2

CT,k
πD2

k
4

S2
kek, (2.17)

where CT,k is the thrust coefficient, Dk is the turbine diameter, Sk is the inflow velocity
and ek is the turbine direction. In this work, we take this direction to be the same for all
turbines, so that ek = et, and base it on the unperturbed background velocity at the average
turbine hub height zh.

The resulting wind farm force fwf is then the sum of the individual turbines:

f wf =
Nt∑

k=1

f kδ(x − xk, y − yk), (2.18)

where (xk, yk) denote the turbine locations. The turbine forces are assumed to be point
forces, as the filter length is much larger than the turbine diameter. This mesoscale
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resolution also prevents the APM from resolving the individual turbine wakes. Therefore,
to account for wake interactions, the turbine inflow velocities are calculated with an
engineering wake model. The coupling to this model has been substantially improved
compared with the model of Allaerts & Meyers (2019), and is the focus of § 3.

2.2.3. Subgrid terms
Within the wind farm, there are strong velocity fluctuations on the length scale of the
turbine diameters. The subgrid terms 〈∇ · (τ d,h)〉i and ∇h · (hi〈ū′′′

h,iū
′′′
h,i〉i)/hi, with i the

layer index, represent the mesoscale influence of these unresolved flow features. The
former are the dispersive stresses, which are due to horizontal subfilter variations, while
the latter is the result of the vertical flow structure, and sometimes called the Taylor-shear
dispersion. Based on an analysis of LES data from Lanzilao & Meyers (2024), we find that
this dispersion is negligible, as was also found by Allaerts & Meyers (2019). In contrast,
the dispersive stresses are significant within the wind farm, and have to be included in the
lower layer (see § 2.4). The dispersive stresses can be split into three components:

〈∇ · (τ d,h)〉1 = ∇h · 〈τ d,hh〉1 + τ d,h3|h1

h1
+ 〈τ d,hh〉1 − τ d,hh|h1

h1
· ∇hh1. (2.19)

The three terms on the right-hand side represent the average horizontal stresses across the
layer, the vertical fluxes at the top of the layer and the vertical variation of the stresses.
The latter two of these are negligible compared with the first.

To evaluate 〈τ d,hh〉1, the horizontal turbine-level velocity field must be known
throughout the farm, which can be done using the wake model. Since the wake-model
velocity field is also required for the coupling method developed in § 3, this does not
increase the computational cost for the APM. The filter and height-averaging operator can
then be applied numerically.

2.2.4. Turbulent momentum fluxes
Allaerts & Meyers (2019) modelled the vertical turbulent shear stresses τ 3,0 and τ 3,1
with constant friction coefficients, assuming that the momentum flux was aligned with
the velocity difference across the pliant surfaces. However, this approach does not account
for the increase in turbulence caused by large wind farms. To address this, we add a very
simple correction term to the momentum flux between the lower and upper layer:

τ̄ h3,0 = C||〈ūh〉1||〈ūh〉1, (2.20)

τ̄ h3,1 = D||〈ūh〉2 − 〈ūh〉1||(〈ūh〉2 − 〈ūh〉1) + �τwf . (2.21)

The friction coefficients C and D are fitted to the unperturbed atmospheric state in the
same way as in Allaerts & Meyers (2019). The added momentum flux �τwf is modelled
as a constant added value in the same direction et as the wind farm forcing. It is assumed
to have the same shape as the wind farm, shifted downstream to account for internal
boundary layer (IBL) growth. The added term is scaled with the wind farm force density,
as is typically done in top-down models for large wind farms (Frandsen 1992; Calaf et al.
2010; Abkar & Porté-Agel 2013). The resulting expression for �τwf is

�τwf (x, y) = aτ

1
2

CTNt
πD2

4
||U1||2

Awf
Π(x − dτ De1)et, (2.22)
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where CT and D are the average thrust coefficient and turbine diameter of the farm, Awf is
the wind farm area, U1 is the unperturbed velocity in the lower layer and Π is the footprint
of the farm, equal to one within the farm and zero everywhere else. The coefficients aτ

and dτ are fitted to the LES results of Lanzilao & Meyers (2024), and are 0.120 and 27.8,
respectively. A description of the fitting procedure can be found in Appendix B. We note
that this approach is quite rudimentary, and future work may look into the development of
a more involved model.

The horizontal momentum fluxes are modelled with a simple eddy viscosity formulation
(Allaerts & Meyers 2019):

τ̄ hh,1 = νt,1∇h〈ūh〉1, τ̄ hh,2 = νt,2∇h〈ūh〉2, (2.23a,b)

where νt,1 and νt,2 are the depth-averaged eddy viscosities, based on the unperturbed
atmospheric state. The increased turbulence near the wind farm is not taken into account
in this term.

2.3. Linearized equations
Following Allaerts & Meyers (2019) we partly linearize the equations (2.7)–(2.10) around
a uniform background state (U1, H1) and (U2, H2) for small perturbations (u′

1, η1)
and (u′

2, η2) caused by the wind farm forcing. However, since wake effects at the
microscale cannot be accurately represented by small perturbations, we keep the wind
farm parametrization nonlinear. This results in

U1 · ∇hη1 + H1∇h · u′
1 = 0, (2.24)

U2 · ∇hη2 + H2∇h · u′
2 = 0, (2.25)

U1 · ∇hu′
1 = − 1

ρ0
∇hpt + fcJ · u′

1 + νt,1∇2
h u′

1 + D′

H1
· �u′ − C ′

H1
· u′

1

−T h3,1 − T h3,0

H2
1

η1 + ( f̄ wf + �τwf )

(
1

H1
− η1

H2
1

)
+ ∇h · 〈τ d,hh〉1, (2.26)

U2 · ∇hu′
2 = − 1

ρ0
∇hpt + fcJ · u′

2 + νt,2∇2
h u′

2 − D′

H2
· �u′

+T h3,1

H2
2

η2 − �τwf

(
1

H2
− η2

H2
2

)
, (2.27)

where �u′ = u′
2 − u′

1. The matrices C ′ and D′ are the Jacobians with respect to the
velocity perturbations of the turbulent momentum fluxes at the ground and the ABL
layer interface, excluding the wind-farm-induced momentum flux, respectively (Allaerts &
Meyers 2019). The vectors T h3,0 and T h3,1 are the unperturbed momentum fluxes τ h3,0
and τ h3,0. Note that Allaerts & Meyers (2019) did not include these terms, which appear
in the linearized momentum equations as the derivatives of the net momentum fluxes over
the layers with respect to the layer thicknesses h1 and h2. Physically, this corresponds to
the fluxes entering at the layer boundaries being distributed over thicker or thinner layers
of fluid. Similarly, the terms containing the wind farm forces and momentum flux also
include the derivatives of the layer thicknesses.

In order to easily incorporate the pressure feedback of the internal gravity waves, the
model is solved using a Fourier–Galerkin spectral method. This allows all the terms in
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K. Devesse, L. Lanzilao and J. Meyers

Inputs:

APM parameters H1, �

Atmospheric data U0(z), θ(z), τh3(z), vt(z), fc, z0

CT,k(S), Dk, zh,k, (xk, yk)Wind turbine specifications and locations

Evaluate wake model

(3.6), (2.17)−(2.19), (2.22)

Solve linear APM system

(2.24)−(2.27)

Velocity matching

(3.12)

Fixed point iteration:

∇ℎ ∙ 〈τd,ℎℎ〉
fwf , �τwf ,

Outputs:

APM state

Turbine power outputs Pk

u′
1, u′

2, η1, η2, p

u′
1, η1

Ub = U0 + ub f

Figure 2. Flowchart showing the inputs, outputs and solving procedure of the APM. The inputs and outputs
are indicated by the rounded boxes. The arrows show the flow of information. The subscript k indicates
turbine-specific variables.

(2.24)–(2.27) besides the wind-farm-related terms fwf , �τwf and 〈τ d,hh〉1 to decouple per
wavenumber. To incorporate these wind-farm-related terms, we use a fixed-point iteration
solver with a relaxation factor of 0.7. At each step, the decoupled terms form a simple
six-by-six matrix for each wavenumber, which is easily solved. The wake model coupling,
described in § 3, can then be used to calculate the wind-farm-related terms for the next
iteration.

Using a Fourier–Galerkin spectral method imposes periodic boundary conditions on the
APM. Any issues related to recycling of the perturbations are avoided by using very large
domains of at least 1000 km in the streamwise direction. Finally, we use a grid spacing of
�x = �y = �/2, following Allaerts & Meyers (2019).

Figure 2 gives an overview of the working of the APM as a whole. The inputs to the
APM consist of the choice of H1 and �, information on the unperturbed atmospheric flow
and the wind turbine specification and locations. In a first step, the θ(z) profile is fitted to a
CNBL structure using the model by Rampanelli & Zardi (2004). Using the resulting H, g′
and Ng, all the coefficients of the linear model can be calculated. Parallel to this, an initial
wake model run based on the unperturbed velocity profile U0(z) provides the terms fwf ,
�τwf and 〈τ d,hh〉1. The iteration procedure described above is then fully set up, and run
until converged. The outputs of the APM consist of the mesoscale state u′

1, η1, u′
2, η2 and

p, and the turbine power outputs Pk.

2.4. Momentum budget analysis
To investigate the importance of each of the terms in (2.9) and (2.10), we perform a
momentum budget analysis using the LES results of Lanzilao & Meyers (2024). This is a
dataset of 40 simulations of the same large wind farm of Nt = 160 IEA 10 MW turbines
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Meso–micro atmospheric perturbation model

Parameter Values

Capping inversion height H (m) 300, 500, 1000
Capping inversion strength �θ (K) 2, 5, 8
Lapse rate Γ (K km−1) 1, 4, 8
Turbulence intensity TI (%) 4
Roughness length z0 (m) 1 × 10−4

Coriolis parameter fc (s−1) 1.14 × 10−4

Table 1. Overview of the atmospheric conditions of the flow cases from Lanzilao & Meyers (2024) used for
the validation of the coupling method and the APM. In total all 27 combinations of these parameters are
considered. The TI value is taken at the turbine hub height of 119 m. Note that these values correspond to the
initial profiles, and that the actual conditions changed slightly during the precursor spin-up. See Lanzilao &
Meyers (2024) for a detailed description of the simulations.

Parameter Value

Number of turbines Nt (−) 160
Turbine diameter D (m) 198
Turbine hub height zh (m) 119
Turbine spacing sx, sy (m) 5D
Thrust coefficient CT (−) 0.88

Table 2. Description of the wind farm from Lanzilao & Meyers (2024) used for the validation of the coupling
method and the APM.

(Bortolotti et al. 2019), arranged in a staggered layout with 16 rows and 10 columns
(Lanzilao & Meyers 2023a). From these, we analyse 27 CNBL simulations, leaving
out the cases with low capping inversions or no stratification. The remaining cases all
have different combinations of boundary layer heights, capping inversion strengths and
atmospheric stratification levels. An overview of the atmospheric states and the wind farm
can be found in tables 1 and 2, respectively. We follow the naming convention of Lanzilao
& Meyers (2024), where cases are characterized by the boundary layer height, capping
inversion strength and atmospheric lapse rate. For instance, the case with H = 500 m,
�θ = 5 K and Γ = 4 K km−1 is denoted as H500-�θ5-Γ 4. Note that these values
correspond to the initial conditions, and the exact profiles have changed slightly during
the precursor spin-up (see Lanzilao & Meyers (2024) for details).

To analyse the momentum budget for the APM, we construct an APM ground truth
from the LES data. This is done by applying the filtering and height-averaging operations
defined in § 2 to the LES flow fields numerically. In a first step, the velocity and pressure
fields are Gaussian-filtered in the horizontal direction with the APM filter length. Then,
z1 is obtained by advecting a set of points over the domain starting from height z = H1,
to obtain the surface separating the two ABL layers. We initialize these points to coincide
with the LES grid along the domain inlet, resulting in 1380 points with a regular spacing
of 21.7 m. We find capping inversion displacement by applying the Rampanelli & Zardi
(2004) model, and Gaussian-filtering the results. Finally, the velocities and pressure are
height-averaged between the layer boundaries. The pressure perturbation at the top of the
ABL pt is evaluated 50 m below the bottom of the capping inversion, to ensure that it is
not partly evaluated within the inversion if the fitting by the Rampanelli & Zardi (2004)
model is poor.
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K. Devesse, L. Lanzilao and J. Meyers

We now consider the momentum balance in the streamwise direction, denoted by x,
across the wind farm. At each position, we evaluate the momentum balance across the
lateral cross-section of the wind farm, using an infinitesimally thin domain with the
wind farm width W and length dx. Note that we perform this analysis on the APM
momentum equations, which also implies a horizontal filtering and height-averaging of
the flow. After subtracting the background momentum balance between the Coriolis force,
vertical momentum flux and geostrophic pressure gradient of the precursor simulation, the
momentum budget equation in the lower layer becomes

−
∫ W

0
〈ūh〉1 · ∇h〈ūh〉1 dy︸ ︷︷ ︸

Fu,1

−
∫ W

0

1
ρ0

∂〈 p̄〉1

∂x
dy︸ ︷︷ ︸

Fp,1

+
∫ W

0
fcv′

1 dy︸ ︷︷ ︸
FC,1

+
∫ W

0
〈τ̄xx〉1dy + 〈τ̄xy〉1|W0 +

∫ W

0

(
τ̄3x,1 − τ̄3x,0

h1
− T3x,1 − T3x,0

H1

)
dy︸ ︷︷ ︸

Fτ,1

+
∫ W

0

f̄wf ,x

h1
dy︸ ︷︷ ︸

Ft

+
∫ W

0
〈∇ · (τ d,x)〉1 dy +

∫ W

0

1
h1

∇h · (h1〈ū′′′
h,1ū′′′

x,1〉1) dy︸ ︷︷ ︸
Fsg,1

+
∫ W

0

Rx,1

h1
dy︸ ︷︷ ︸

R1

= 0. (2.28)

The terms in the above equation represent the advection of momentum (Fu), the pressure
gradient (Fp), the Coriolis force (FC), the turbulent momentum fluxes (Fτ ), the turbine
thrust forces (Ft), the subgrid terms (Fsg) and the residual term (R). For the upper layer,
the result is analogous, but there is only a momentum flux at the bottom of the layer, and
there is no wind farm thrust contribution. The above equation is the complete momentum
budget, without any parametrizations or linearization.

We now calculate these terms from the LES results of Lanzilao & Meyers (2024).
In § 2.4.1, we discuss their calculation from (2.28), in order to get insight into which
effects are important to mesoscale wind farm flows. Afterwards, in § 2.4.1 we discuss
applying the parametrizations described in § 2.2 to the LES-based APM states, so that
these parametrizations can be validated a priori. Both results are shown together in
figure 3.

2.4.1. The LES data analysis
We now evaluate the momentum budget for the case H500-�θ5-Γ 4. It has a Froude
number of approximately 1, with internal waves strong enough to prevent the choking
effect described by Smith (2010). There are weak resonant lee waves that cause velocity
variations throughout the farm, and there is a moderate blockage effect.

Figure 3 (solid lines) shows the streamwise momentum balance through the farm. Both
the lower and upper layers are shown, and there are substantial differences in the flow
dynamics. In the lower layer, the turbine forces are felt directly, and they are balanced
primarily by the convective deceleration, the pressure gradients, the subgrid forces and the
turbulent momentum fluxes. While the wind farm force is relatively constant throughout
the farm, the other terms vary strongly, and which term is most important can change
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Meso–micro atmospheric perturbation model
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Figure 3. Streamwise variation of all the terms in the momentum budget in the lower (a) and upper (b) layers.
All the terms are scaled with W||U1||2/L and W||U2||2/L in the lower and upper layers, respectively, where
L is the farm length. The solid lines are the terms as calculated from the LES data and the dashed lines are
the parametrized and linearized versions calculated from the LES-based APM state. The vertical dotted lines
indicate the wind farm region.

depending on the location. Upstream, the only active terms are the unfavourable pressure
gradient and the flow deceleration. At the farm entrance, the pressure gradient becomes
smaller, as the pressure perturbation reaches its maximum, and the turbine forces are
completely balanced by the flow deceleration and the dispersive stresses. The rise in
the dispersive velocity contributions is to be expected, as within the farm the turbine
wakes form a strongly heterogeneous flow field with variations below the filter length
of � = 1 km.

Recently, Bastankhah et al. (2024) also found that dispersive stresses played an
important role in the momentum balance in wind farm flows. However, they only averaged
in the lateral direction, and found the terms to contribute at turbine-length scales in the
streamwise direction. In contrast, we find that when the flow is filtered in the streamwise
direction as well, the main contribution of this term occurs at the start of the farm as
the flow heterogeneity is rapidly established, similar to sparse canopy flows (Moltchanov
et al. 2011). Throughout the farm, the dispersive stresses diminish slowly as the wake
mixing increases, so that their divergence at the farm exit is not as strong as their rise at
the entrance. Overall, we conclude that these dispersive stresses are important to take into
account when parametrizing wind farms in the APM, as their maximum effect at the farm
entrance is as strong as that of the pressure gradient.

Further downstream, the wind farm forcing is mostly counteracted by the flow
acceleration, the pressure gradient and the turbulent momentum fluxes, which primarily
consist of the vertical flux contributions. Across the farm, the pressure gradient is
favourable, while the turbulent momentum fluxes slowly increase. As a result, the flow
gradually decelerates less throughout the farm, with the velocity reaching a roughly
constant value towards the end of the farm and increasing again in the farm wake. On
top of these average trends, the pressure gradient and flow convection also show strong
oscillations throughout the farm, which balance each other. These are the resonant lee
waves described by Allaerts & Meyers (2019).

In the upper layer, the momentum balance is simpler. The main contributions are from
the oscillations in the pressure gradient and the flow acceleration, as the resonant lee waves
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excite the whole ABL. On top of that, the turbulent momentum flux, which prevented
flow deceleration and helped wake recovery in the lower layer, now slows down the flow,
although it is largely counteracted by the favourable pressure gradient within the farm.

Finally, we note that the Coriolis contribution FC is small compared with the terms
discussed above. The only smaller term is the residual R.

2.4.2. The APM approximations
We now verify the correctness of the approximations made when linearizing and
parametrizing the various terms in the APM. To this end, the dashed lines in figure 3 show
the momentum budget analysis of (2.26)–(2.27). Note that this is obtained without running
the APM, and instead computed using the LES-based APM state. The convective terms
are linearized, the height-averaged pressure has been replaced with the pressure at the
top of the ABL pt and the turbulent momentum fluxes are calculated using the linearized
versions of (2.20), (2.21) and (2.23a,b). The wind farm forces and dispersive stresses are
evaluated using the wake model, coupled to the LES-based APM state (see § 3 for details
of the wake model coupling). The background state has been computed using the precursor
velocity and potential temperature profiles.

Overall, the APM parametrizations perform well. In all terms, the general trends are
captured. The pressure gradient is matched very well by using pt instead of p1 and p2,
indicating that the pressure perturbations are dominated by the gravity waves in the free
atmosphere. This hydrostatic approximation is worse for the H = 1 km cases (not shown),
but still holds there as well.

The errors in the Fτ terms are larger, which is to be expected given the basic turbulence
parametrization used in this work. The APM overestimates the vertical momentum flux
at the farm entrance, where there is a velocity difference between the APM layers but the
growing IBL has not yet reached z1, and underestimates the horizontal momentum flux
at the farm boundaries. Additionally, the vertical momentum fluxes at the ground and at
h1 are respectively over- and underestimated within the farm. For τ̄3x,0, this is mainly due
to the lack of correction for the presence of the wind farm, whereas for τ̄3x,1 it is mostly
caused by the linearization. For the lower layer, where both contribute to Fτ , these errors
cancel out, but for the upper layer the result is an underestimation of Fτ . The simple
parametrization used here can be improved upon in future work (Stipa et al. 2024b).

Additionally, the subgrid terms are underestimated at the farm entrance. This is mostly
due to an underestimation of the dispersive stresses, while the Taylor-shear dispersion has
only a minor impact.

Finally, the main discrepancy comes from the linearization of the convective terms. As
the mesoscale velocity drops, the flow deceleration is overestimated by a factor of U1/〈ū〉1.
With flow perturbations of roughly u′

1/U1 ≈ 0.25, this mismatch can be severe.

3. Wake-model coupling

This section describes the wake model used in this work, and the new method for coupling
it to the APM.

3.1. Wake model
To incorporate the spatially varying effects of gravity waves, the wake model should
be able to handle heterogeneous background velocities. We therefore employ the
wake-merging method of Lanzilao & Meyers (2021a). This superposition method
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Meso–micro atmospheric perturbation model

conserves mass and momentum as long as the background flow variations have large
length scales, which should be the case for gravity-wave-induced perturbations. Each
turbine multiplies the flow by a wake modifier, so that every turbine wake has a self-similar
behaviour with respect to the flow without it. For two-directional flow, Lanzilao & Meyers
(2021a) gave a recursive formula:

uk(x) = (uk−1(x) · e⊥,k)(1 − Wk(x))e⊥,k + (uk−1(x) · e‖,k)e‖,k k = 1, . . . , Nt, (3.1)

uw(x) = uNt(x), u0(x) = Ub, (3.2a,b)

where Nt is the number of turbines and Wk is the wake deficit function of turbine k, defined
along the background flow streamlines. The turbines are ordered upstream to downstream,
so that the first turbine applies its wake to the background velocity Ub. The unit vectors
e⊥,k and e‖,k denote the directions perpendicular and parallel to the rotor disk of turbine k
(see Lanzilao & Meyers (2021a) for details).

For the wake-model coupling method developed later, it will be important to have
an explicit expression for the final velocity field uw. This can be obtained by rewriting
equations (3.1) as a matrix multiplication with uk−1:

uk(x) = Ak(x) · uk−1(x) k = 1, . . . , Nt, (3.3)

where
Ak(x) = (1 − Wk(x))(e⊥,ke⊥,k) + (e‖,ke‖,k). (3.4)

The explicit formula for two-directional flow is then

uw(x) =
Nt∏

k=1

Ak(x) · Ub(x). (3.5)

For simplicity, this paper neglects multi-directional effects and assumes straight
streamlines throughout the farm along the direction of the background flow and the wind
farm force et. Throughout this section, all velocities refer to the velocity components in this
direction, unless stated otherwise. An extension of the coupling method to two-directional
flow is possible using (3.5), but beyond the scope of this work. For a given background
velocity Ub, the wake model then predicts the following velocity field uw (Lanzilao &
Meyers 2021a):

uw(x, y, z) = Ub(x, y, z)
Nt∏

k=1

[1 − Wk(x, y, z)]. (3.6)

For the wake deficit function, we use the Gaussian wake model of Bastankhah &
Porté-Agel (2014). The evolution of the turbulence intensity is incorporated using the
model of Niayifar & Porté-Agel (2016). The wake model is not tuned, and instead uses the
parameters given in the papers cited above, as these have been found to perform well when
compared with operational data (Doekemeijer, Simley & Fleming 2022). The turbines are
mirrored to account for ground effects.

Additionally, an induction-zone model is included to accurately represent the velocity
field upstream of the turbine. In this work, we use the model by Troldborg & Meyer
Forsting (2017) with the parameters reported in Branlard et al. (2020). The induction
model is only used to better represent the velocity field for the coupling method, and is
not used when calculating the turbine inflow velocities for the calculation of thrust and
power. The necessity of the induction model is discussed in depth in § 4.1.1.
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3.2. Velocity matching
The goal of the wake model coupling is to find a background velocity Ub based on a
mesoscale APM state. This is done by ensuring that the velocity fields predicted by the
wake model and the APM are consistent with each other. Concretely, height-averaging
and filtering the wake model velocity as in (2.5) and (2.1) should result in the APM’s
lower-layer velocity field. For a given mesoscale state, the goal is thus to find a
heterogeneous background velocity that, once wakes are superimposed on it, matches the
mesoscale velocity. This requires the following equation to hold:

1
z1

∫ z1

0

∫∫
Lx×Ly

G�(x − x′, y − y′)uw(x′, y′, z) dx′ dy′ dz = 〈ū〉1, (3.7)

where 〈ū〉1 is the mesoscale velocity in the lower layer along et and Lx × Ly is the size
of the APM domain. If the background velocity Ub results in a wake-model velocity that
satisfies (3.7), the velocity fields of the APM and the wake model are consistent. Because
of this concept, we refer to the coupling method developed here as velocity matching
(VM).

Equation (3.7) matches the velocity fields over the entire computational domain.
However, it is unnecessary and computationally costly to obtain the background velocity
in regions far away from the farm. We therefore split the velocity into the parts inside and
outside the wind farm:

uw(x, y, z) ≈ Ub(x, y, z)
Nt∏

k=1

[1 − Wk(x, y, z)]δwf (x, y) + 〈ū〉1(x, y)(1 − δwf (x, y)), (3.8)

where δwf = 1 in a region Ωwf around the wind farm and δwf = 0 everywhere else. In the
latter area, we assume it is roughly equal to the mesoscale velocity, which should be a good
approximation far away from the farm. The boundaries of Ωwf are placed at a distance of
at least 2� from the farm edges. The equation for the background velocity then becomes

1
z1

∫ z1

0

∫∫
Ωwf

G�(x − x′, y − y′)Ub(x′, y′, z)
Nt∏

k=1

[1 − Wk(x′, y′, z)] dx′ dy′ dz

= 〈ū〉1(x, y) −
∫∫

Lx×Ly

G�(x − x′, y − y′)〈ū〉1(x′, y′)(1 − δwf (x′, y′)) dx′ dy′. (3.9)

Finally, to avoid having to solve for the three-dimensional background velocity, we
decompose Ub into an unperturbed state U0(z), which is known as an input to the APM,
and a perturbation:

Ub(x, y, z) = U0(z) + ub(x, y)f (z). (3.10)

We use a standard logarithmic shape function for f :

f (z) = 1
κ

log
(

z
z0

)
, (3.11)
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Meso–micro atmospheric perturbation model

where κ = 0.41 is the Von Kármán constant and z0 is the roughness length. The resulting
final VM equation for the background velocity scale ub is then

1
z1

∫ z1

0

∫∫
Ωwf

G�(x − x′, y − y′)ub(x′, y′)f (z)
Nt∏

k=1

[1 − Wk(x′, y′, z)] dx′ dy′ dz

= 〈ū〉1(x, y)

−
∫∫

Lx×Ly

G�(x − x′, y − y′)〈ū〉1(x′, y′, z)(1 − δwf (x′, y′)) dx′ dy′

− 1
z1

∫ z1

0

∫∫
Ωwf

G�(x − x′, y − y′)U0(z)
Nt∏

k=1

[1 − Wk(x′, y′, z)] dx′ dy′ dz. (3.12)

Equation (3.12) is a linear equation for the background velocity, which, once solved for,
can be used as an input for the wake model. As this essentially requires inverting a filtering
operation, the problem is ill-posed. We avoid this issue by phrasing it as a least-squares
problem, and limiting the number of degrees of freedom of the background velocity.
Appendix C provides a detailed overview of this procedure.

4. The LES-based validation

This section contains a validation study of the VM method and the APM based on LES
data. Section 4.1 contains an a priori validation of the coupling method. Section 4.2
performs an a posteriori validation campaign of the full APM.

4.1. The VM method validation
To validate the VM method derived in the previous section, we need APM states for it to
couple to. In the current section, we do not yet use the APM for this, but instead use the
LES-based states set up for the momentum budget analysis in § 2.4. This allows us to test
the coupling’s performance separately from the APM.

Section 4.1.1 discusses the dependence of the VM method on the performance of the
wake model. Section 4.1.2 validates the coupling using the LES simulations outlined
above.

4.1.1. Importance of wake-model performance
For the VM method to perform well, the wake model needs to provide good estimates
for the velocity field. Typically, wake models only need to be accurate near downstream
turbines, as the velocity in other regions, such as the near-wake or the induction region,
does not affect the inflow velocities for other turbines. As a result, a wake model with
an unrealistic near-wake flow field can still perform well, especially when tuned. However,
when the VM method couples such a wake model to a mesoscale state, it will try to correct
the errors made in the global velocity field, thereby worsening the power prediction. To
prevent this, we make three choices when setting up the wake model. First, we mirror the
turbines to account for ground effects. Second, we apply a correction to the centreline
velocity deficit in the near-wake region (Zong & Porté-Agel 2020). Third, we include
an induction model to account for upstream velocity changes. Here, we use the model
by Troldborg & Meyer Forsting (2017), but other models should also achieve similar
performance (Branlard et al. 2020). Note that this induction model is only used to estimate
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Figure 4. Performance of the wake model (WM) for the case H500-�θ0-Γ 0. (a) The mesoscale velocity
deficit as found by LES (black) and the wake model, both with and without induction model (blue and magenta,
respectively). The dotted lines denote the wind farm region. (b) The power output as found by LES (x axis) and
wake model (y axis). The triangles and the circles denote the first two turbine rows and the remainder of the
farm, respectively.

the velocity fields in (3.12), and not when performing thrust and power calculations. In
the latter it is not necessary, as wake models are designed to yield predictions for these
properties. In order to investigate this dependence on the wake model in detail, we analyse
the VM method’s performance for the case H500-�θ0-Γ 0. This is a purely neutral case,
without gravity waves and minimal mesoscale feedback effects. As a result, one would
expect an uncoupled wake model to perform well in terms of both velocity and power,
and for the coupling method to predict a background velocity perturbation close to zero.
Figure 4 shows the mesoscale velocity deficits u′

1 and the power output of the turbines as
found by LES and an uncoupled wake model, both with and without induction. The wake
model background velocity is simply the precursor profile U0(z). The LES turbine power
outputs were scaled with the power output for a single turbine, and the wake-model power
outputs are scaled with the power calculation for a single turbine with the precursor as
inflow conditions. Note that even without an induction model, there is a mesoscale velocity
deficit upstream of the farm, as the Gaussian filtering operation smears out the turbine
wakes within the farm. We observe that the wake model reproduces both the velocity
and power accurately, with an average power error across all turbines of 1.8 %. However,
without an induction model, the wake model underestimates the velocity upstream of and
throughout the farm.

We now apply the VM method to this case, matching the wake-model velocities to the
LES-based APM state. Figure 5 shows the resulting background velocity perturbations ub
with and without using an induction model. When an induction model is used, the VM
method predicts almost no variations in the background velocity. Without, the coupling
lowers the background velocity considerably. We find that power predictions of the wake
model based on this background velocity are up to 10 % too low.

We conclude that the performance of the wake model drastically affects the VM
method’s output, and good results depend on the estimations of the turbine-level velocities
being realistic at every point in the farm. This requires the wake model to account for
turbine induction, the near-wake region and ground effects. With the corrections used in
this work, this is achieved fairly well, although there is still a slight underestimation of the
mesoscale velocity deficit within the farm.
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Figure 5. Background velocity perturbations ub as found by applying the VM method to the LES-based APM
state for the case H500-�θ0-Γ 0 when using a wake model with an induction model (a) and without an
induction model (b). The black lines indicate the turbine disks.
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Figure 6. Streamwise velocity deficits through the centre of the farm of the LES (solid lines, black) and
the wake model (dashed lines), both uncoupled and coupled (blue and red, respectively), for the case
H500-�θ5-Γ 4. (a) The mesoscale velocity deficit. (b) The average velocity across a tube with the turbine
diameter. The dotted lines denote the wind farm region.

4.1.2. Coupling performance
We coupled the wake model to the LES-based APM state for all 27 simulations with
atmospheric stratification. As a comparison, we also apply the uncoupled wake model
to all analysed cases. The coupling method was consistently able to provide background
velocities that resulted in matching mesoscale velocity fields. Figure 6 shows this for the
case H500-�θ5-Γ 4, which is the same case as shown in § 2.4. It is clear that this required
significant corrections to the background velocity of the wake model, as the uncoupled
wake model has a very different profile. Moreover, this mesoscale matching corresponds
to a better agreement of the velocity fields on the turbine level. Figure 6(b) shows the
local velocity averaged over a streamwise tube with the turbine diameter, placed at hub
height through the centre of the farm, for the same case. The velocity-matched wake model
captures well the lower velocity at the farm entrance, and follows the LES state throughout
the rest of the farm. This good performance is consistent across all tested cases.
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Figure 7. The averaged pressure (horizontal axes) and background velocity perturbations (vertical axes) over
the width of the farm, evaluated at the farm entrance (a) and their difference across the farm (b). The dashed
lines show linear regressions, with the R2 values as the coefficient of determination.

For all cases, there is a blockage effect, resulting in a lower background velocity at
the start of the farm. Throughout the farm itself, the wake model background speeds Ub
increase, and even become larger than the unperturbed speeds U0 halfway through the
farm. This is consistent with the pressure gradients, which Lanzilao & Meyers (2024)
found to be unfavourable upstream of the farm, and favourable throughout. To better
quantify this relation, we define the following metrics:

�ub,up =
∫ W

0
ub(0, y) dy, (4.1)

�pup =
∫ W

0
p(0, y) dy, (4.2)

�ub,farm =
∫ W

0
(ub(L, y) − ub(0, y)) dy, (4.3)

�pfarm =
∫ W

0
( p(L, y) − p(0, y)) dy, (4.4)

where W and L are the farm width and length, respectively, so that the variables above
describe the averaged velocity and pressure perturbations at the entrance of the farm
(4.1)–(4.2) and their difference across it (4.3)–(4.4). Figure 7(a) shows that the upstream
unfavourable pressure rise correlates very well with the upstream change of background
velocity. Likewise, figure 7(b) shows that the favourable pressure drop over the farm
correlates very well with the change in background velocity in the farm. Thus the VM
method manages to catch the expected favourable and unfavourable pressure gradients
through ub.

We also compare the turbine power outputs for all flow cases. The results are shown in
figure 8. The coupled wake model significantly outperforms the uncoupled wake model.
The power output of the front-row turbines is retrieved very well, with the VM method
having an average error across all front turbines of 1 %, compared with 24 % for the
uncoupled wake model. This shows that the coupling correctly captures the blockage
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Figure 8. (a) The turbine power outputs for all cases for both the uncoupled (blue) and coupled (red) wake
model as compared to the LES. The triangles and the circles denote the first two turbine rows and the remainder
of the farm, respectively. (b) The average power output error of the VM method for each turbine in the farm.

effect in the mesoscale velocity fields. It also has lower errors throughout the farm when
compared with the uncoupled wake model, as it takes into account the positive effect of
the favourable pressure gradient in the farm. That said, it still underestimates farm power
output, with the largest errors situated between the second and fifth turbine rows (see
figure 8b). This is probably primarily caused by a combination of two factors. First, wake
deflection, which occurs in the farm entrance region under strong stratification conditions,
will cause some turbines to not be waked in the studied farm layout. As we simplify the
wake model to be unidirectional in this work, we do not capture this effect. However, this
is not an inherent limitation of the VM method, as it can be extended to two-directional
flow using the formulation of the wake model outlined in § 3. Figure 8(b) shows that the
largest errors are predicted for the turbines in the entrance region at the side of the farm,
which are the turbines that are most affected by upstream wake deflection. Second, as can
be seen in figure 4(a), the wake model slightly overestimates the velocity throughout the
farm. As discussed in the previous section, the VM method depends on the performance
of the wake model, so more realistic wake models could improve the results. Future work
should address both of these issues.

We conclude that the VM coupling method performs very well. It reproduces the
mesoscale flow throughout the farm, which also results in a better approximation of the
local flow. Furthermore, this translates to a better capturing of the turbine power outputs,
especially for the front-row turbines. This good performance was consistent across all
analysed flow cases.

4.2. The APM validation
The APM is validated using the same LES data from Lanzilao & Meyers (2024) as in the
previous sections. To do this, the APM was run for each of the flow cases listed in table 1
with the wind farm described in table 2. For each flow case, the background ABL state
around which the APM is linearized was based on the corresponding precursor simulation.
As the APM does not have a fringe region, the periodic boundary conditions of the Fourier
spectral method were dealt with by using a domain length of Lx = 10 000 km. We use the
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Figure 9. (a) Cross-section through the centre of the farm of the velocity perturbation for the case
H500-�θ5-Γ 4, as found by LES. Cross-section through the centre of the farm of the velocity perturbation
for the APM state based on the LES results (b) and as found by the APM (c) for the case H500-�θ5-Γ 4. The
solid black lines denote the pliant surfaces separating the APM layers while the dashed lines show the wind
farm region. The flow above the capping inversion is found using linear gravity wave theory.

same domain width of Ly = 30 km, with the same periodic boundary conditions as the
LES.

Section 4.2.1 discusses the flow fields generated by the APM and its performance in
capturing the mesoscale wind farm effects. Section 4.2.2 investigates the power output
predictions made by the APM.

4.2.1. Flow physics
To analyse the flow states produced by the APM, we take an in-depth look at the
H500-�θ5-Γ 4 case from Lanzilao & Meyers (2024), which was also discussed in the
previous sections. Both the flow physics and the APM performance are representative of
the total dataset. We both provide a qualitative description of the flow phenomena and
indicate the strengths and shortcomings of the APM.

To qualitatively compare the output of the APM against the LES, figure 9 shows the
streamwise cross-sections of the flow through the centre of the farm. The capping inversion
separating the ABL from the free atmosphere is clearly visible. The displacement of this
capping inversion triggers internal gravity waves in the free atmosphere above it, and
these along with the pressure feedback from the inversion displacement itself cause a
significant velocity reduction upstream of the farm. The gravity waves within the free
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Figure 10. Top view of the lower-layer velocity perturbation in the x direction for the LES (a) and the APM
(b) output for the case H500-�θ5-Γ 4. The rectangles show the wind farm region. The dashed black lines show
the zero contour.

atmosphere are captured fairly well up to 5 km. Within the ABL, the resonant lee waves
described by Allaerts & Meyers (2019) are visible, especially above the IBL forming above
the wind farm. Notably, the APM states do not capture this IBL, as it only contains the
height-averaged flow within the layers. While the APM models the flow upstream and
throughout the farm fairly well, it does not accurately represent the farm wake structure.
This is to be expected, due to its inability to model IBL growth and limited turbulence
parametrization. Despite these shortcomings, the comparison shows decent agreement
between the APM and LES, especially for the stratification-related flow features.

Continuing this qualitative discussion, figure 10 shows the top view of the u′
1

perturbation velocity for both the APM and the LES-based state. Once again, the blockage
effect in front of the farm is clearly seen. From this top view, the resonant lee waves are
again visible. As noted by Lanzilao & Meyers (2024), linear theory accurately predicts the
length scale of these waves, as well as the angles of the characteristic lines emanating from
the farm (not visible). While the agreement for the lee waves’ length scales is good, the
APM does not consistently reproduce their location in all other flow cases, most notably for
the H300 cases with strong capping inversions and weak upper-atmosphere stratification (a
complete comparison of the lower-layer mesoscale velocity profiles through the centre of
the farm can be found in Appendix D). Additionally, figure 10 also shows the speed-up
of the flow around the farm, which is caused by the pressure gradient of the gravity
waves. However, the location of where the velocity perturbation becomes positive, shown
in dashed lines, is located too far downstream when compared with the LES.

Finally, by comparing the velocity deficits in figure 10, one sees that the APM slightly
underpredicts the velocity deficit in the first half of the farm and strongly overpredicts it
in the second half and the farm wake. To see this more accurately, figure 11(a) shows the
difference between the centreline velocity deficit for both the LES and APM results. At the
farm entrance, the APM captures the blockage fairly well, although the predicted velocity
is slightly too high. Halfway through the farm, the APM predicts that the velocity deficit
increases drastically, resulting in a lower velocity than the LES. As a result, the APM
overpredicts the farm wake as discussed above. The discrepancies in the velocity estimate
are reflected in the turbine-level velocity, as shown in figure 11(b). This is consistent across
most of the analysed cases, as shown in Appendix D, except for some H300 cases where
the location of strong resonant lee waves does not match the LES.
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Figure 11. Streamwise velocity deficits through the centre of the farm of the LES (solid, black) and APM
output (dashed, green) for the case H500-�θ5-Γ 4. (a) The mesoscale velocity deficit. (b) The average velocity
across a tube with the turbine diameter. The dotted lines denote the wind farm region.

Overall, we conclude that the APM captures the relevant physics well, and produces
realistic flow fields. It is worth noting that this good qualitative agreement between the
APM and LES has been achieved with minimal tuning. The only parameters fitted in this
work are those describing the wind-farm-induced turbulent momentum flux.

4.2.2. Power output
The aim of the APM is to provide the power predictions that include the effects of blockage
and other mesoscale phenomena on wind farm performance. These are farm-wide effects,
and are therefore best quantified using farm-wide metrics. We follow Allaerts & Meyers
(2018) by using the non-local wind farm efficiency ηnl, which is the ratio of the average
power output of the first-row turbines and an identical turbine operating on its own:

ηnl = P1

P0
. (4.5)

This P0 is the same power output that was used to scale the results in § 4.1.2. The non-local
efficiency captures the decrease in power output caused by the upstream effects of the
turbines operating in a farm. Within the studied dataset, there are large variations in ηnl,
with values going from roughly 1 for cases with minimal blockage to as low as 0.55 for
some cases. Additionally, following Allaerts & Meyers (2018), we define

ηf = ηnlηw, ηw = Pavg

P1
, (4.6a,b)

where ηf is the total farm efficiency and ηw is the wake efficiency, defined as the ratio
between the average power output of all turbines Pavg to that of the front-row average P1.
The farm efficiency is a measure the performance of a wind farm as a whole. The wake
efficiency links the farm and non-local efficiencies, and represents the combined effects
of the favourable pressure gradient across the farm and the turbine interactions within
it. Additionally, it is the classical way that wake effects have been quantified in the past.
Recent metrics that isolate the effect of turbine wake interactions may be of interest, but
are not considered further here (Kirby et al. 2022).
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Figure 12. Comparison of the farm (a), non-local (b) and wake (c) efficiencies as found by LES (horizontal
axes) for all cases with those predicted by the APM (green circles) and the uncoupled wake model (blue
squares).

Figure 12 shows the farm, non-local and wake efficiencies of the studied wind farm for
all cases, as obtained by LES, the uncoupled wake model and the APM. The uncoupled
wake model performs quite poorly, and its outputs do not vary significantly between the
different flow cases. This is to be expected, as the main difference between the flow cases
are the stratification levels in the capping inversion and the free atmosphere, which the
wake model does not take into account. As a result, the wake model cannot capture
the large variations and trends in the different efficiencies. The slight variance in its
predictions is due to small differences in the wind veer and shear, and turbulence intensity
at hub height. Additionally, it does not model any upstream effects, so ηnl is always 1.
This is offset by a consistent underestimation of the wake efficiency. While this results in
a roughly correct average farm efficiency when averaging over all cases, it is clear that this
is because the errors in ηnl and ηw cancel each other out.

In contrast, the APM captures the trends of both ηf and ηnl quite well. This is expected
after § 4.2.1, which found that the APM captures the general behaviour of the atmospheric
flow, and § 4.1.2, which showed that the VM method can provide good estimates for
the power output. Nevertheless, as discussed in § 4.2.1, the APM consistently slightly
overestimates the velocity in the entrance region. This results in an overestimation of
the non-local efficiency as well, leading to an offset between the APM and LES, and
an average error of 7 %. This is better than that of the uncoupled wake model, which
on average overestimates ηnl by 24 %. For three of the H1000 cases, where blockage
effects are very weak, the APM predicts a non-local efficiency above one, as its velocity
deficit becomes smaller than that of the uncoupled wake model. In contrast, the wake
efficiency is consistently underestimated, although the APM still significantly outperforms
the uncoupled wake model. The discrepancies in ηw are mainly due to the overestimation
of P1, the underestimation of the velocity in the second half of the farm and the issues
with the VM method found in the previous section.

The relation between the unfavourable pressure gradient upstream of the farm and the
favourable one throughout it, as reported by Lanzilao & Meyers (2024), results in a relation
between ηnl and ηw as well. Specifically, as ηnl decreases due to higher blockage, ηw
increases, as shown in figure 13. Despite this balancing effect, blockage is still detrimental
to the overall power output of the farm. Figure 13 also shows that the APM can reproduce
these trends, although the slopes are not exactly the same.

In conclusion, the APM is able to predict the variation of wind farm performance
across different flow cases. More importantly, it consistently and significantly outperforms
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Figure 13. Relation between ηnl and ηw, as found by LES (black), the APM (green) and the uncoupled wake
model (blue). The lines represent least-squares fits.

the uncoupled wake model, which is the default approach taken by the wind energy
community. Finally, we again want to emphasize that this has been achieved without any
power-based tuning of the model parameters.

5. Conclusion

This work presents a new version of the APM first introduced by Allaerts & Meyers (2019),
and improves the mesoscale parametrization of large wind farms. This was mainly done in
three ways. First, we added an explicit ad hoc parametrization of the increased momentum
entrainment above a wind farm, which allows for general turbine layouts. Second, we
presented a large-scale overhaul of the wake-model coupling. For this, a new method was
developed based on ensuring that the velocity fields of the APM and the wake model were
consistent with each other. Third, we found that dispersive stresses play an important role
at the farm entrance, and significantly contribute to the global blockage effect. Using the
wake-model coupling, these stresses can be easily incorporated into the APM.

The VM method was validated independently of the APM using a dataset of 27 LES
simulations set up by Lanzilao & Meyers (2024). The matching of the mesoscale velocity
fields resulted in a better approximation of the turbine-level velocity fields, and drastically
improved the power predictions when compared with the uncoupled wake model. This
good performance was consistent, with the coupled wake model outperforming its
uncoupled counterpart for all analysed flow cases. Additionally, we identified the main
sources of error as being the unidirectional approximation, and the accuracy of the wake
models in representing the turbine wakes. The former could easily be addressed in future
work, as the VM method is straightforward to extend to two-directional flow.

Additionally, we performed a momentum budget analysis on the LES results, and
found that the dispersive stresses are important to mesoscale wind farm flows. At the
farm entrance, their effect can be as strong as the peak pressure gradient, significantly
contributing to the global blockage effect. Since the APM filter results in a similar
resolution to numerical weather models, dispersive stresses are presumably also important
to incorporate in wind farm parametrizations for those models, and we recommend this
for future research.
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Finally, the improved APM was validated using the same LES data. The APM performs
well, as it captures most of the relevant mesoscale flow phenomena, especially when it
comes to stratification effects. There is good qualitative agreement between the LES and
the APM for the appearance of gravity waves, and the associated blockage, farm pressure
gradients, resonant lee waves and flow speed-up around the sides of the farm. However, the
reduced-order nature of the APM prevents it from capturing the IBL growth, and changes
in the ABL vertical structure. Moreover, the APM slightly overestimates the velocity in the
first half of the farm, and underestimates it in the second half. Despite this mismatch, the
good qualitative match allows the APM to model the effect of atmospheric stratification
on turbine power output. For all analysed metrics, the APM significantly outperforms
a standard engineering wake model. Regarding the effect of blockage on the front-row
turbines, the APM overestimates the wind farm’s non-local efficiency, but reproduces
very well the variation in this efficiency across all cases. This allows it to find the same
relation between the non-local and the wake and farm efficiencies as the LES. Given the
good performance of the underlying VM method, we expect any further improvement
to the APM to translate directly into more accurate power predictions. Additionally, this
was achieved without any power-based tuning. This makes the APM a promising tool for
studying the next generation of offshore wind farms.

Currently, the APM can still only simulate wind farms in highly idealized conditions.
In reality, the simple CNBL profiles used in this study are complicated by various
phenomena, such as ABL stability effects or mesoscale systems already present in the
atmosphere. Moreover, both atmospheric conditions and wind farm operational settings
are rarely steady state, with transient effects being important for control problems.
Finally, the current turbulence parametrization does not include the effects of background
turbulence intensity, and could be improved by an explicit modelling of turbulent transport
phenomena. Future work should extend the APM to include these flow features. The model
should also be further compared with experimental and operational data.
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Appendix A. Detailed derivation of the lower-layer continuity equation

This appendix derives the continuity equation for the lower layer of the APM. We
start by applying the filtering and height-averaging operations (2.1) and (2.5) to the
Reynolds-averaged, steady-state continuity equation. The former of these can simply be
brought into the divergence operator, which results in

〈∇ · ū〉1 = 0. (A1)

To obtain derivatives with respect to the height-averaged velocities, the integration of the
height-averaging operator is brought into the divergence operator, by changing the order
of operation using Leibniz’s differentiation rules (Allaerts & Meyers 2019). This gives

〈∇ · ū〉1 = 1
z1

[
∇h ·

∫ z1

0
ūh dz − ūh|z1 · ∇hz1

]
+ 1

z1

(∫ z1

0

∂w̄
∂z

dz
)

= 1
z1

[
∇h ·

∫ z1

0
ūh dz − ūh|z1 · ∇hz1

]
+ 1

z1
w̄|z1 . (A2)

By then applying the definition of the pliant surface z1 (2.3), we find the lower-layer
continuity equation for the APM (Allaerts & Meyers 2019). For upper-layer continuity
and the momentum equations, the procedure is analogous, and results in (2.8)–(2.10).

Appendix B. Wind-farm-induced momentum flux tuning

We fit the coefficients aτ and dτ to the 27 LES cases from Lanzilao & Meyers (2024)
used throughout this paper and summarized in tables 1 and 2. From this dataset, we have
constructed LES-based APM states, as described in § 2.4. This way, 〈ū〉1 and 〈ū〉2 are
known for all cases. Based on the associated precursor simulations, we compute D. We
then apply the Gaussian filter described in (2.2) to the vertical momentum fluxes, and
evaluate τ̄03 at z1 for all cases. This gives us data for the first two terms in (2.21), allowing
us to calculate �τwf directly from the LES. We average the resulting fields along the
spanwise direction within the wind farm boundaries, and fit the coefficients along the
streamwise direction. Figure 14 shows the LES profiles and the resulting fit for �τ̄wf ,
Gaussian-filtered onto the APM grid.

Appendix C. Solving procedure for the VM equation

This appendix discusses how the VM equation is solved.
Equation (3.12) is solved with a variational approach. Since 〈ū〉1 is known at the APM

gridpoints, we use a collocation method, so that the test functions are Dirac-delta functions
at the APM gridpoints inside Ωwf .

To discretize ub, we write it as a finite sum of shape functions:

ub =
Ns

x,N
s
j∑

i,j=1

ui,jφi,j(x, y), (C1)

where Ns
x and Ns

j are the number of shape functions in the x and y directions, respectively,
ui,j are a set of coefficients and φi,j(x, y) are generic first-order shape functions with
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Figure 14. Added wind farm momentum flux �τ̄wf as calculated based on the LES data of Lanzilao & Meyers
(2024). The line colours denote the boundary layer height. The fitted profile is indicated by the black line. The
dotted lines indicate the wind farm region.

compact support:

φi,j(x, y) = max
(

0,

(
1 − ||x − xi||

�xs

)(
1 − ||y − yj||

�xs

))
. (C2)

The shape function centres (xi, yj) are evenly spaced within Ωwf , so that

xi = xi−1 + �xs, yj = yj−1 + �xs, (C3a,b)

where �xs is the spacing between the shape function centres. This spacing is determined
by the parameter α, so that

α = �/�xs. (C4)

Choosing 0 < α < �/�x, with �x the APM grid spacing, results in a least-squares
formulation.

The choice of α has a large effect on the performance of the VM method. If α is too
low, the discretized ub does not have enough degrees of freedom to adequately reproduce
the variations in 〈ū〉1. However, a high value of α can lead to oscillations in ub on scales
below the filter length that do not correspond to variations in 〈ū〉1. By investigating the
error on the reproduced 〈ū〉1 for a range of α for the case H500-�θ5-Γ 4, we find that
α = 0.8 results in good performance.

Each APM gridpoint (xt, yt) then tests for the matching condition:

bt =
Ns

x,N
s
j∑

i,j=1

Ai,j,tui,j, (C5)

where bt is the right-hand side of (3.12) evaluated at (xt, yt) and Ai,j,t is given by

Ai,j,t = 1
z1

∫ z1

0

∫∫
Ωwf

G�(xt − x′, yt − y′)φi,j(x′, y′)f (z)
Nt∏

k=1

[1 − Wk(x′, y′, z)] dx′ dy′ dz.

(C6)
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Figure 15. Lower-layer velocity perturbations through the centre of the farm of the LES (solid, black) and
APM output (dashed, green) for all analysed cases. The dotted lines denote the wind farm region.
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Whether the Gaussian filter or the height-averaging operation is applied first in (3.12)
changes the resulting mesoscale velocity by less than 0.01U1. In solving the equation, the
height-averaging operator is applied first, as this is faster to compute. The integrals are all
computed numerically using numpy and scipy routines, sped-up with the numba package
(Lam, Pitrou & Seibert 2015).

Appendix D. Velocity comparisons for all analysed cases

Figure 15 shows the velocity deficits along the centreline of the farm for all analysed
flow cases. The APM consistently over- and underpredicts the velocity in the first and
second half of the farm, respectively, but otherwise captures the stratification effects quite
well. The largest errors occur for the cases with low, strong capping inversions and weak
atmospheric stratification above.
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