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Abstract. In this paper, we consider the preservation of stability by using the notion of twisted
stability. As applications, (1) we show that moduli spaces of stable sheaves on K3 and abelian
surfaces are irreducible and (2) we compute Hodge polynomials of some moduli spaces of
stable sheaves on Enriques surfaces.
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0. Introduction

Let X be an Abelian surface or a K3 surface over C. Mukai introduced a lattice
structure ( , ) on H®(X,7) := @ H*(X, 7) by

(x, ) iz—/xv/\y
X

=/(x1Ay1—xOAyz—szyo), (0.1)
X

where x;€ H*(X, 7) (resp. y;€ H*(X, 7)) is the 2ith component of x (resp. y) and
x¥'=xyp — x1 + x. It is now called the Mukai lattice. For a coherent sheaf E on
X, we can attach an element of H®(X,7Z) called the Mukai vector v(E) :=
ch(E)+/tdy, where ch(E) is the Chern character of E and tdy is the Todd class of
X. For a Mukai vector ve H’(X, 7) and an ample divisor H, let M y(v) be the moduli
space of stable sheaves E with the Mukai vector v(E) = v and Mg(v) the moduli
space of semi-stable sheaves. An ample divisor H is general with respect to v, if
the following condition holds:

(g) for every u-semi-stable sheaf £ with v(E) = v, if F C FE satisfies
(e1(F), H)/tk F = (c\(E), H)/TK E,
then ¢;(F)/tk F = ¢|(E)/rk E.

The preservation of the stability by the Fourier-Mukai transform on X was investi-
gated by many people (e.g. [BBH2, B-M, Mu5, Y4]). In [Y4], we introduced the
twisted degree of coherent sheaf E by degy(E) =deg(F® GY) = (ci(EQ GY), H),
where G is a vector bundle on X. Then we showed that the Fourier—Mukai transform
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preserves Gieseker semi-stability, if the twisted degree is 0 and the polarization H is
general. In this paper, we shall generalize our results to the case where H is not
general. In this case, the Fourier-Mukai transform does not preserve Gieseker
semi-stability. This fact is closely related to the following fact: If H is not general,
then Gieseker semi-stability is not preserved by the twisting E+—E ® L, where L is
a line bundle. Thus Gieseker semi-stability depends on the choice of L. In order
to understand this phenomenon, Matsuki and Wentworth [M-W] (also by Ellingsrud
and Gottsche [E-G] and Friedman and Qin [F-Q)]) introduced the notion of L-twisted
semi-stability, where L is a (Q-line bundle. Hence we shall propose a formulation
for our problem by using the twisted semi-stability. In Section 2, we shall show that
the Fourier-Mukai transform preserves a suitable twisted semi-stability, if X is an
Abelian surface (Theorem 2.3).

In [Y4], we showed that My(v) is deformation equivalent to a moduli space of
torsion free sheaves of rank 1, if v is primitive and the polarization H is general.
In Section 3, we shall give another proof of this result by using results proved in
Section 2. Moreover we shall show the following.

THEOREM 0.1. Let X be an Abelian surface or a K3 surface. Let ve H(X, 7.) be a
Mukai vector of tk v>0. Then My(v) is a normal variety, if (v*) >0 and H is general
with respect to v.

In Section 4, we shall consider the Fourier—-Mukai transform on an Enriques
surface associated to (—1)-reflection. In particular, we shall show a similar result
to Theorem 2.3 (Proposition 4.3). As an application, we shall compute the Hodge
polynomials of some moduli spaces (Theorem 4.6).

This paper is the first half part of [Y5].

1. Preliminaries
1.1. TWISTED STABILITY FOR TORSION FREE SHEAVES

Let X be a smooth projective surface and K(X') the Grothendieck group of X. We fix
an ample divisor H on X. For Ge K(X) ® Q with rk G >0, we define the G-twisted
rank, degree, and Euler characteristic of x€ K(X) ® Q by

rkg(x) = rk(GY ® x),

dega(x) := (c1(GY ® x), H), (1.1)

26(x) == 2(G” ® x).

For teQ., we get

degg(x)  deg,(x) 16(X)  Yi6(X)
tkg(x)  rkg(x) tkg(x)  rkig(x)’

(1.2)

We shall define the G-twisted stability.
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DEFINITION 1.1. Let E be a torsion free sheaf on X. E is G-twisted semi-stable
(resp. stable) with respect to H, if

xc(F(nH)) < 1G(E(nH))
tka(F) —  rtkg(E)

n>0 (1.3)
for 0 C F'C E (resp. the inequality is strict).

For a Q-divisor o, we define the a-twisted stability as the Ox(x)-twisted stability.
This is nothing but the twisted stability introduced by Matsuki and Wentworth
[M-W]. 1t is easy to see that the G-twisted stability is determined by o = det(G)/
rk G. Hence the G-twisted stability is the same as Matsuki-Wentworth stability.

DEFINITION 1.2. For xe K(X), we set
1(x) := (rk x, c1(x), x(x)) e Z & NS(X) & 7. (1.4)

Let M%(7)* be the moduli stack of G-twisted semi-stable sheaves E with y(E)=y and
Mg(y)s the open substack consisting of G-twisted stable sheaves. For usual stability,
ie., G=0y, we denote M (p)* by My(y)*.

Remark 1.1. We take a sufficiently large integer m so that

(i) H'(X, E(mH)) ® Oy — E(m) is surjective for all Ee M 5(y)*",

(i) H'(X, EmH)) =0, i>0 for all Ee M 5(y)*".

We set N :=dim H(X, EmH)), Ee M§(y)*. We shall consider the quot scheme
0= Quotzx (—mHY® 1X/C parametrizing all quotients Oy(—mH)®"¥ — E with
WE)=1y. Let O be an open subscheme of Q consisting of all quotients
Ox(—mH)®Y — E such that

(1) Eis a G-twisted semi-stable sheaf with respect to H with y(E) =y,
(i) H°(X, 0%") — H(X, E(mH)) is isomorphic.

Then M ,5"(y)” is a quotient stack of Q* by the natural action of GL(N) on Q*:
M) =10"/GLW)]. (1.5)

Remark 1.2. Let ¢(G)/tk G = aH + 8, acQ, fe H- be the orthogonal decom-
position. Then the twisted semi-stability condition only depends on f, i.e., Mf,(y)” =
MyO)™.

THEOREM 1.1 [M-W] (also see [E-G)).

(i) There is a coarse moduli scheme M g(y) of S-equivalence classes of G-twisted
semi-stable sheaves.
(i) Mg(y) is projective.
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(iii) For different G,G’, the relation between ]\715())) and Mg(y) is described as
Mumford-Thaddeus type flips:

My () M7 () My ()
N\ v N e (1.6)

—G12 —@
MHL_ ™) MHM(V)

where G = Gy, G' = G,,.

DEFINITION 1.3. M§(y) is the open subscheme of M g(y) consisting of G-twisted
stable sheaves and My(y)"™* the open subscheme consisting of p-stable sheaves.
Usually we denote M S’((y) by My(y) and M3*(y) by Mu(y).

Since u-stability does not depend on G, M y(y)" ™’ is a subscheme of ]Wg(y) forall G.

DEFINITION 1.4. For a pair (H,G) of an ample divisor H and an element
GeK(X)® Q, (H, G) is general with respect to y, if the following condition holds
for every Ee M (7)™

For0C FCE,

16(FH))  16(E(nH)
kg(F)  1kG(E)

implies that y(F)/rk F = y(E)/rk E.

n> 0 (1.7)

The following is easy (cf. [M-W]).

LEMMA 1.2. For an ample divisor H and y€7. ® NS(X) & 7, there is a general
(H, G).

2. Fourier—Mukai Transform on Abelian and K3 Surfaces
2.1. FOURIER-MUKAI TRANSFORM
Let X be a K3 surface or an Abelian surface. Let E be a coherent sheaf on X. Let

o(E) == ch(E)y/tdy
=r1k(E)+ ci(E)+ (x(E) — erk(E))oy € H(X, 7) (2.1)

be the Mukai vector of E, where ¢ = 0, 1 according as X is an Abelian surface or a
K3 surface and gy is the fundamental class of X, i.e, fX py = 1. For these surfaces, it
is common to use the Mukai vector of E instead of using y(E). Hence we use the
Mukai vector in this Section. For a Mukai vector v, we define Mg(v)”, M g(l)), ..
as in Section 1.
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Let vy :=r1 +c1 + a0y, ¥1 >0, c; e NS(X) be a primitive isotropic Mukai vector
on X. We take a general ample divisor H with respect to v;. We set Y := My(v;).
Then Y is an Abelian surface (resp. a K3 surface), if X is an Abelian surface (resp.
a K3 surface).

If X is an Abelian surface, then Y consists of u-stable vector bundles. By the proof
of [Y3, Lem. 2.1], the following Lemma holds.

LEMMA 2.1. Assume that H is general with respect to v;.

(1) If Y contains a non-locally free sheaf, then there is an exceptional vector bundle
Ey and vy = rtk(Ey)v(Ey) — 0. Moreover Y =2 X and a universal family is given by

& :=ker(E) K Ej — O,). (2.2)
(1) If' Y consists of locally free sheaves, then they are u-stable.

Assume that there is a universal family £ on X x Y. Let px: X x ¥ — X (resp.
py: X x Y — Y) be the projection. We define F¢: D(X') — D(Y) by

Fe(x) = Rpy(€ ® py(x)), xeD(X), (2.3)
and F¢: D(Y) — D(X) by

Fe(v) := RHom,, (£, py(), yeD(Y), (2.4)
where Hom,,, (—, —) = pxxHomop, ,(—, —) is the sheaf of relative homomorphisms.

Bridgeland [Br] showed that F¢ is an equivalence of categories and the inverse
is given by ]-25[2]. Fe is now called the Fourier—Mukai functor. We denote the ith
cohomology sheaf H(Fg(x)) by Fe(x).

Fe induces an isomorphism K(X) — K(Y) and an isometry of Mukai lattice
Fe: HY(X,7) — H(Y, 7). We also have a commutative diagram:

D(X) e D(Y)
KXx) 7 K(Y) 2.5)
HY(X,7) ™ HY,7).

For our purpose, the usual Fourier-Mukai functor F¢ is not sufficient. As in [Y4],
we introduce a functor He: D(X) — D(Y),, which is a composite of F¢ with the
taking dual functor Dy: D(X) — D(X),,:

He(x) := Fe o Dx(x)

(2.6)
= RHom,, (p}(x), &), xeDX).
By the Grothendieck—Serre duality,
He(x) = Fg o Dx(x) = Dy(RHom,, (&, py(x)))[—2]. 2.7)
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Hence H; gives an equivalence of categories and the inverse is given by

He(y) := RHom,, (pi(1).£),  yeD(Y ). (2.8)

‘He induces an isomorphism K(X') — K(Y) and an isometry H(X, Z) — H®(Y, 7).
We denote them by He. We denote the ith cohomology sheaf Hi(Hg(x)) by He(x).

2.2. PRESERVATION OF STABILITY

In [Y4], we considered the preservation of stability under H¢. By using the twisted
stability introduced by Matsuki and Wentworth [M-W], we shall generalize
[Y4, Sect. 8.2]. In order to state our theorem (Theorem 2.3), we prepare some nota-
tion. We set wi:=v(Eqxy) =r1 + ¢ +digy, x€X. We have an isomorphism
NS(X) ® Q — vi Ngy by sending DeNS(X)® Q to D +,-(D, c1)oycvi Ney.
Since Hg is an isometry of Mukai lattice, we get an isomorphism vi Mot —
wi N gy. Thus we have an isomorphism §: NS(X) ® Q — NS(Y) ® Q given by

dferw) = ar(pr. | ehe i (a0 + @@ cer ) ). 29)

For a Q-line bundle LePic(X)® Q, we choose a Q-line bundle L on Y such that
d(c1(L)) = ei(L). By a result of Li [Li] (or [BBH2]) and [Y4, Lem. 7.1], H is ample,
if Y consists of u-stable vector bundles. By [Y3, Lem. 2.1], Y consists of u-stable
vector bundles unless £ is given by (2.2). In this case, a direct computation (or [Li])
shows that H is ample.

We consider the following two conditions.
(#1) H is general with respect to wy.
(#2) &<y 1s stable with respect to H.

Remark 2.1. If X is Abelian or Y consists of nonlocally free sheaves, then the
assumption (#1, 2) holds for all general H. For another example, see [BBH1].

PROBLEM [Y4]. Is &y« y always stable with respect to H?

For a coherent sheaf E on X (resp. F on Y), we set deg(E) := (ci(E), H) (resp.
deg(F) := (¢;(F), H)). We consider the twisted degree degg (E) and degg,(F),
where G| := E|xxyyy and Ga := £ y. We also define the twisted degree of a Mukai
vector v by degg, (v) := degg, (E), where E€ K(X) satisfies v(E) = v.

LEMMA 2.2 [Y4, Lem. 8.3]. degg, (v) = degg, (He(v)).

Every Mukai vector v can be uniquely written as

1 1
v=1Ivy —apy + d[H+r(H, Cl)QX:| + [D +7(D’ Cl)QXi|, (2.10)
1 1
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where [, a,deQ, and DeNS(X)® QN H*.
It is easy to see that / = —(v, ¢y)/r1, a = (v, v;)/ry and d = degg, (v)/ (r1(H?)).

DEFINITION 2.1. For a Mukai vector v, we set /(v) := —(v, oy)/tk v, a(v) :=
(v, v1)/rk vy.
Since He(v1) = ¢y and He(wy) = gy, We get

1
Hg(ll)l —agy + |:dH+ D+ ’—(dH—{- D, Cl)QXi|)
1
U
=l@y—aw1+|:dH+D+r—(dH+D,cl)@Y] (2.11)
1
where ﬁeNS(X )y ® QN H*. We can now state our theorem.

THEOREM 2.3. We assume the condition (#1, 2) holds. Assume that degg, (v) = 0 and
(v), a(v)>0. Let & be an element of K(X)® Q such that v(g)€vi Moy, l(e)?)] < 1
and (H, ¢1(¢)) = 0. Then we have an isomorphism:

M@ — M He)", 2.12)

where & = He(e). In particular, if ¢1(G1)€ QH, then cl(Gz)eQ‘I:I and we have an
isomorphism Mp(v)* — M g(—He(v))".

Remark 2.2. If (v*) >0, then we see that a(v)>0.

The proof of Theorem 2.3 is almost the same as that in [Y4, Thm. 8.2]. Before
proving Theorem 2.3, we prepare three Lemmas.

LEMMA 2.4. Assume that degg (v) <0, or degs (v) =0 and a(v)>0. Then
Hom(&yxy), E) = 0 for all ye Y and E€ MS} (v)*.

Proof. Obviously the claim holds, if degg (v) <0. Hence, we assume that
degg, (v) = 0 and a(v) > 0. Since H is general with respect to vy, &|xxyy) is Gi-twisted
stable. Since E is Gi-twisted semi-stable, it is sufficient to show that —a(&€ xx)/
I(Exxpyy) > —a(v)/l(v). Since v(E xxyy) = v1, We get

—a(€ixxpyy)  —a)  a(v)

Exxpy) ) — Iv)

0. (2.13)

O

LEMMA 2.5. For a p-semi-stable sheaf E with degg (E) = 0, there is a finite subset
S C Y such that

Hom(E, € yx(y)) = 0 (2.14)

for all ye Y\S.
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Proof. 1f degg (E)>0, then Hom(E, £ xx() =0 for all ye Y. We assume that
degg, (E) = 0. Considering the Jordan-Hdlder filtration of E with respect to
u-stability, we may assume that E is p-stable. If &y is locally free, then by
Lemma 2.1, £ xxyy is p-stable, and hence EYY ¢ &£y, Therefore y is uniquely
determined by E. Next we assume that &xy is not locally free. Under the notation
of (2.2), if EYY # Ey, then clearly Hom(E, Ey) = 0. Hence Hom(E, & y«(y;) = 0 for all
ye Y. If EYY = Ey, then Hom(E, & xxy,;) = 0 for y € Y\Supp(EV/E). O

LEMMA 2.6. Let E be a coherent sheaf on X. Assume that

(1) Hom(E, & xxyy) = 0 except for a finite number of points yeY,
(i) Ext*(E, Exxpyy) =0 for all ye Y.

Then WIT) holds for E, that is, Hfg(E) =0 fori+#1, and ng(E) is torsion free.
Proof. Since p3(E) and £ are flat over Y, there is a complex of locally free sheaves
onY

0 L1412 S0 (2.15)

which is quasi-isomorphic to He¢(E). By our assumptions, (a) f, is injective except
for a finite number of points y€ Y and (b) g is surjective. Hence ker f = cokerg = 0,
which implies that WIT; holds. Since ker g is locally free, (a) implies that Hé(E )=
coker(V? — ker g) is torsion free. O

Proof of Theorem 2.3. We shall first treat the case where ¢ = 0. By the symmetry
of the condition, it is sufficient to show that WIT; holds for Ee/\/lg‘(v)” (ie.,
HL(E)=0,i+# 1)and H‘lg(E ) is G,-twisted semi-stable with respect to L. By Lemma
2.4, 2.5 and 2.6, WIT, holds for E and H}g(E) is torsion free. We shall show that
H‘lg(E ) is G-twisted semi-stable.

(D) Hé(E ) is u-semi-stable: Assume that H};(E ) is not u-semi-stable. Let
0CF CF2C~--CFA:H}(E) be the Harder-Narasimhan filtration of Hé(E ) with
respect to ,u-semi-stability. We shall choose the integer k& which satisfies
deng(F JFi1) = 0,i<k and degg,(Fi/Fi.1) <0,i>k. We claim that H2(Fy)=0
and H> (HE(E)/Fk) = 0. Indeed since F;/F;_;, i < k are u-semi-stable sheaves with
deng(F /Fi_1) = 0, Lemma 2.5 1mplles that HO(F /Fi—1),i < k are of dimension 0.
Since Hg(F/F, 1) are torsion free, Hg(F/F, 1) =0,i < k. Hence H #(F) =0. On
the other hand, by Lemma 2.4, we also see that HS(F /Fi_1) =0, i>k. Hence we con-
clude that ﬂé(H‘lg(E)/Fk) = 0. So F; and H}g(E)/Fk satisfy WIT| and we get an exact
sequence

0 — HE(HL(E)/F) — E — HL(F) — 0. (2.16)

By (2.11), degg, (HL(Fy)) = — degg, (Fi) < 0. This means that E is not y-semi-stable
with respect to L. Therefore H}g(E ) is u-semi-stable with respect to L.
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(I1) Hé(E ) is G,-twisted semi-stable: Assume that Hé(E ) is not G,-twisted semi-
stable. Then there is an exact sequence

0— Fy — HLE)— F, — 0 (2.17)
such that (i) F> is G,-twisted stable and (ii) —a(F»)/I(F>) < —a(H(E))/I(He(E)) =
—I(v)/a(v), where

(Da, ¢1)
r

v(F) = l(F)w) — a(F2)ey + <D2 + Qy>, DeNS(Y)® QN A

Since —a(F>)/l(F>) < —I(v)/a(v) < 0, Lemmas 2.4, 2.5 and 2.6 imply that ﬁg(Fz) =
Hé(Fz) = 0. We also obtain that Hg(Fl) = 0. Hence, we have an exact sequence

0 > HL(Fy) » E — HLF) — 0. (2.18)
Since ﬂ(lg(H(lg(E)) =E, ﬂ%(Fl) = 0. Thus WIT] also holds for F;. By (ii), we see that
—a() —a(HiF))  —a()  I(F)

o) (HAF)) M) alF)
_ —a(va(Fy) + (v)[(Fy)

l(v)a(F>)
This means that E is not Gj-twisted semi-stable. Therefore ng(E ) is G,-twisted
semi-stable.
We next treat general cases. Since |(v(¢)*)| < 1, we have an inclusion ./\/lg' Ty c
M (v and the complement consists of E which fits in an exact sequence:
0—-FE —-E—>E—0 (2.20)
where E) is a G-twisted semi-stable sheaf such that v(E)) = /jv; — aj0y + 01, 01 €
vi Noy N HE, a1/l = a(v)/l(v) and —(v(E)), v1 + &)/l > —(v, v1 + &) /l(v). Then we
see that —(&y, )/l >—(5,¢)/l(v), where §:=v— (l(v)v; — a(v)ey)€vy N oy N HL.
Applying H(lg to the exact sequence (2.20), we get an exact sequence

<0. (2.19)

0 — Hy(E2) — HE(E) — Hi(E) — 0. (2.21)
Since —(He(01), He(e))/ar > —(He(0), He(e))/a(v), we get that

—(o(HE(E), He(e)/ar < —(o(HE(E)), He(e))/a(v). (222)
Therefore Hg(E) is not (G, + He(e))-twisted semi-stable. O

PROPOSITION 2.7. Assume that My(v)** is an open dense subscheme of M y(v).
If degg, (v) =0, then He induces a birational map My(v)--- — My(He(v)) which is
described as Mumford—Thaddeus type flips:

My () My (v) M5 (He(v)

N/ N e (2.23)
MHI'Z(U) MH“(U)
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where o;, o; ;11 € NS(X) ® Q and o) =0, =0.

Proof. By Theorem 1.1, we have Mumford-Thaddeus type flips Mu(v)--- —
]\72‘ (v) and M%(Hg(v)) -+ = M (He(v)). By the proof of Theorem 2.3, we see that
‘He preserves S-equivalence classes of twisted semi-stable sheaves, and hence we have
an isomorphism Mf,' (v) = ﬂgz(Hg(v)). Therefore we get our claim. O

EXAMPLE 2.1. Let X be a K3 surface and H an ample divisor on X. Assume that
H* =7.D and (D?) = —2n, n>2. We set v =2+ (1 — 2n)gy. Then there is a non-
trivial extension

0— I.(D)—> E— Ox(—-D) — 0, (2.24)

where x € X. We can easily show that F is a stable sheaf with v(£) = v. We consider
the Fourier-Mukai transform defined by £ = Ip ® p5Ox(D). Since Ext*(E, &) =
Hom (€,, E)" # 0, E does not satisfy WIT; with respect to Hg. In this case, we
get the following diagram

J— _D j—
My (v) > My (v) = Mp(He(v))
/ (2.25)
M (v)
where t = 1/4n.
Remark 2.3. Let (X, H) be a polarized K3 surface which has a divisor ¢ such that

(HH =2, (H=-12, (H,0)=0 (2.26)

and H°(X, Ox(¢ +2H)) = 0. Then Y := My(2 + € — 3gy) is isomorphic to X and
there is a universal family £ on X x Y. In [B-M], Bruzzo and Maciocia showed that
the Fourier—Mukai transform F¢ gives an isomorphism

Mu(14+ (1= nm)oy)™ 2 Mg ((1+2n) — nl + (1 = 3n)oy)". (2.27)

Moreover every element E of M ,;,((1 +2n) — nl + 1- 3n)gy) fits in a non-trivial
extension

0—-EFE - E—0Oy—0 (2.28)

where E'e M (n(2 — € — 30y))". Then we can show that E > E¥ induces an iso-
SS

morphism M (1 +2n) — nl + (1 = 3m)ay)” — ML (1 +2n) + 0l + (1 - 3m)gy)”.
Thus we get an isomorphism

M (1+ (1 = moy)” = MP((142m) +nl +(1 = 3n)y)”, (2.29)

which is nothing but the isomorphism given by Hgv.
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3. Irreducibility of My(v)
3.1. A SPECIAL CASE OF THEOREM 2.3

We shall give an application of Theorem 2.3. Let X be an Abelian surface or a K3
surface such that NS(X) = Ze ® 7f, (¢*) = (f?) =0 and (e,f) = 1.

COROLLARY 3.1. Assume that (1) X is an Abelian surface, Y is the dual Abelian
surface and € is the Poincaré line bundle on X x Y, or (2) X is a K3 surface, Y = X and
E is the ideal sheaf of the diagonal A C X x X. Assume that e + kf is an ample divisor.
We set D := e — kf. Then Hg induces an isomorphism of stacks

Mo (r+ D —agy )" — Mg, 5(a—cD —roy)”, 3.1)

where r,a>0 and ¢ = 0. Moreover, if k is a sufficiently large integer depending on
rand {(r+cD —agy %), then

Meinf (r+¢D = agy)” = Mg, i(a—cD —roy )™ (32)
if0<n—k<«1, where n € Q.

Remark 3.1. Semi-stability with respect to e+ nf, n € Q is defined by H =
m(e + nf) € NS(X), m>0. We also remark that ¢ + nf, 0 < n — k <« 1 is general with
respect to a — ¢D — rgy.

Remark 3.2. The assumption a>0 is very weak, because of the inequality
(D?) < 0.

Proof. By Theorem 2.3, we get the first claim. We next show the second claim. We
note that (D?) = —2k < 0. By Lemma 5.2 in Appendix, e + kf is a general polari-
zation with respect to r+ c¢D —agy. The same is true for e+ nf, n>k. Hence,
Meiig(r + ¢D — agy)™ = Meyyr (r+cD—ag X)‘“ In order to prove our claim, it
suffices to show that M, e — ¢D —roy)® M pila— ¢D — roy)*. We first show
that M, (a— ¢D— roy) C M(,Jrn/(a ¢D— rQY)SS For EeMka(r +¢D — agy)”,

assume that Hy(E)e M, ¢D —ro Y)“\Meﬂf(a ¢D — roy)*. Then there is
an exact sequence

e+kf (a

0— Fy — HYE)— F, — 0 (3.3)

such that F, is semi-stable with respect to ¢ + nf and

o (AOEE)E4) (. étni) G4
i N 'Hé(E) - rk F> '
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or

(c1(My(E)).o+nf) _ (er(F).o+nf)  2(He(E)) _y(F)
rk HL(E) B rk F, " rkHLE) kP

(i) (3.5)
Since O<n— k<1, (i) or (i1) implies that F; and F, are p-semi-stable with respect to
¢ + kf with (¢1(Fy),é+kf)= (c1(F), e+kf) 0. Hence, Hom(F;,£)=Hom(F,,£,)=0
except for a finite number of points of X.

If (i) holds, then Ext’(F, Eixxpyy) = Hom(E xxyy, F2)" =0 for all yeY, because
Exxpy)» YE€Y is a stable sheaf with respect to e+ nf with ¢1(€xxpy) =0 and
(c\(Fy), é + nf)/rk Fy < (—eD, é + nf) Tk HY(E) = —c(n — k)/rk HX(E) < 0. There-
fore F| and F, satisfies WIT; and we get an exact sequence

0— 7/-\(‘15(F2) — FE— ﬁ‘lg(Fl) — 0. (3.6)
By Lemma 2.2,
(ci(E).e+nf)  (ci(HAF)). e+ nf)
0 <) T H(IS(E) < b (3.7)

Since E is semi-stable with respect to ¢ + kf and (ci (HL(F2)), e + kf) = 0, —rk(F2)/
rk Hé(Fz) < -1k H(,lg(E)/rk E. Hence we see that

(c1(E), e+ nf) _ (c1 (Hg(Fz)) e+ nj)
tkE Tk HL(Fy)

(3.8)
This implies that E is not semi-stable with respect to e + nf. Therefore (i) does not
occur. If (ii) holds, then

cl(HY(E)) _ ci(F)
tk HYE) kP’

Then by (3.5), Hg(E ) is not semi-stable with respect to e+ kf which is a contra-
diction. Thus M, 7(a — eh— rQY)SS C M(,Jrnf(a D — }"QY)“ |

We next show that M, -(a — ¢D — roy)® C M, ki (a—cD— roy)¥. Assume that
there is an element Fe ./\/lé;rnf.(a eD— roy)” \Me_w (a — cD —rgy)*. Then we see
that there is an exact sequence

0> F—>F—>F,—0 (3.9)

such that (i) (¢1(F). é+nf) Tk F < (e1(F2). é +nf) /1k Fa, (i) (c1(F), é + kf ) /rk F =
(cl(Fz), e+ kf)[rk F>, (i) y(F)/tk F> y(F;)/tk F, and (iv) F, is semi-stable with
respect to ¢ + kf. We set ¢ = 0, 1 according as X is an Abelian surface or a K3 surface
as in Section 2. We note that

(a) &€)(xxy, X€X is stable with respect to ¢ + nf with (c1(5| e ) () y)) = (0,0,
(b) Fis semi-stable with respect to ¢ + nf with (e1(F), e+ nf) < 0and y(F)/rk F =
e—r/a<e.
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By (a) and (b), we get Ext>(F, Elxyxy) = Hom(E |y« v, F)” = 0 for all x€ X. By (iii)
and (iv), we see that Ext’(F», Emxy) = 0 for all xeX. Since F; and F, are p-semi-
stable sheaves of degree 0 with respect to ¢+ kf, Hom(Fy, & pxy) =
Hom(F,, £jxxy) = 0 except for a finite number of points x€ X. Lemma 2.6 implies
that WIT, holds for Fi, F, and F with respect to 'i‘\[g and we have an exact sequence

0 — HL(F) — HLF) = HL(F) — 0. (3.10)
In the same way as in the proof of Theorem 2.3, we see that £ := ﬂfg(F) is p-semi-
stable with respect to e + kf. Since e + kf'is general, we get ¢; (ﬂlg(Fz)) /rkﬂlg(Fz) =
ci (71[15(1; ) JtkHL(F). On the other hand, (i) implies that

(c1(E).e+nf) _ (er(He(F). et nf)

> 3.11
rk F rk F, ( )
By using (iii), we see that
(cl(E),e+nf)>(c1(H;(§)),e+nf) (3.12)
rk E rk Hp(F2)
which is a contradiction. Therefore our claim holds. O

Remark 3.3. If e+ kf is general with respect to r+c¢D — a9, and ¢>0, then
Hom(E, £,) =0 for all xe X and E€ M4y (r + ¢D — agy)*. Hence, Hé(E) is locally
free.

Remark 3.4. In general, é+ kf is not a general polarization with respect to
a—cD— roy. Indeed, let E be a nonlocally free p-stable sheaf with v(E) =
r+c¢D —agy on X. Assume that EYY/E = C,, xe X and a> 1. Then we get an exact
sequence

0 — Hy(E") — H(E) — H(Cy) — 0. (3.13)
It is easy to see that H%(L’Cx) =~ £.. Hence, é+kf is not general with respect to
a—cD —roy, if ¢>0.

3.2. APPLICATION TO THE DEFORMATION TYPE OF Mpy(v).

Let X be an Abelian surface or a K3 surface.

DEFINITION 3.1. Let v be a Mukai vector of rkv>0. Then we can write it as
v = m(v)v,, where m(v)€Z and v, is a primitive Mukai vector of rk v, > 0.

In [Y4], we showed that My(v) is deformation equivalent to a moduli space of
rank 1 torsion free sheaves, if v is primitive. Here we assume that rkv>0 and H is
general. We shall give a slightly different proof of this result, that is, we shall use
O’Grady’s arguments [O1, sect. 2]. One of the benefit of O’Grady’s arguments is that
we do not need to use algebraic space. This enables us to treat cases with non-
primitive Mukai vector. For this purpose, we need the following proposition.
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PROPOSITION 3.2. Let X| and X, be Abelian (or K3) surfaces, and let vy :=
lr+ &) +aioy, e H (X1, 7) and vy := l(r + &) + axoy, e H(X2, 7)) be primitive
Mukai vectors such that (1) L,r>0, (2) ged(r, &) =ged(r, &) =1, 3) (1) =
(v3) = 25, and (4) a1 = ay mod I. Then My, (v1) and M y,(vy) are deformation equivalent,
where H;, i = 1,2 are general ample divisors on X; with respect to v;.

The proof is due to O’Grady. For the convenience of the reader, we give an outline
of the proof.

Proof. We first assume that p(X;) = 2,7 = 1, 2. We note that the equivalence class
a; mod / does not change under the operation v; —v;ch L;, L; € NS(X;). Replacing v;
by v; ch L;, we may assume that (i) £; is primitive, (i) H/:= &; is ample (iii) (5?) =2k;>
(I ((v?) + 2(Ir)*) /4 and (iv) & belongs to the same chamber as H; belongs. Then
My, (v;) = My (v). Replacing H; by H], we assume that v; = I(r + H;) + a;0y,. Let X”
be an Abelian (or a K3) surface such that NS(X”) = Ze @ Zf with (¢*) = (f?) =0
and (e, /) = 1. We may assume that H/ := e + k; f'is an ample divisor on X”. We note
that (H}?) = (&) = 2k;. Since H/™ = 7(e — kif) and —((e — ki f)?) = 2ki> (Ir)* ((v*)+
2([1')2) /4, Lemma 5.2 implies that H; is a general polarization with respect to
vii= Ur + H}) + aigy,. Then we see that My, (v;) is deformation equivalent to My (v})
(cf. the proof of Proposition 3.6). We also note that there is no wall between H
and f Hence MH:'(U;-/) = M€+kf(U;'/)a k= max{kl, kz} Since 2k112 — 217'&1 = Zkzlz—
2lra, = 2s, we have ky, — ki = r(ap — ay)/l€7. By our assumption a; = a, mod /,
there is a line bundle L with ¢;(L) = (a» — a1)//. Then v{ch(L) = v}, which implies
that Mo s (v]) = Meqis(v5). Therefore My, (v1) is deformation equivalent to M g, (v2).

In the moduli space M, of polarized K3 surfaces (or Abelian surfaces) (X, H ) with
(H?) = 2d, the locus {(X, H)e M,|p(X) =2} consists of countably many hyper-
surfaces. By using Grothendieck’s boundedness theorem, we see that

' ={(X,H)eM,| H is not general with respect to v;} (3.14)

is an algebraic subset of M. Hence if p(X;) = 1, we can deform (X;, H)) to (X, H})
such that p(X}) > 2 and H/ is general with respect to v;. Therefore we can reduce our
problem to the first case. O

Now we consider deformation type of My(v) for a primitive Mukai vector v. In
particular, we shall give another proof of [Y4]. For a Mukai vector v := I(r + ¢;)+
agy, € H*(X1,7) such that r>0, ged(r, ¢;) = 1 and ged(l,a) = 1, we set b = —a + [4,
k = —(c})/2 +rl, 2> 0 so that e + kf is ample. We consider X in the above nota-
tion. By Lemma 5.2, e+nf, 0 <n—k « 1 is a general polarization with respect
to I(r + (e — kf))) — boy (cf. Remark 3.1) Since —b = a mod /, Proposition 3.2 implies
that My(l(r + c1) + agy,) is deformation equivalent to M., (I(r + (e — kf)) — boy ),
where H is general with respect to v. By Corollary 3.1, we have an isomorphism

Mesar (0 + (e = Kf)) = boy) = M, +(b— (¢ — kf) — Irgy ). (3.15)
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Here we note that é+nf, 0<n—k<«1 is also general with respect to b—l(é—kf)—lrgy.
Since (b, /) = 1, Proposition 3.2 implies that M@er;(b — (e — kf) — Irgy) is deforma-

tion equivalent to M, s(b+(e—k'f)—boy), where b’ = Ir + 2/, k' = I’k + A/, ' > 0
and 0 < ' — k' < 1. Applying Corollary 3.1 again, we get an isomorphism

Meiwr(b+ (e = Kf) = boy) = My, (b — (= Kf) = bay). (3.16)

If /' is sufficiently large, then M, );(b’ —(e— k’fA' ) — boy) is deformation equivalent
to My (b — (6 —k"f) — 0y) and e + k"f is ample, where k" = Ir(1 — b) + I?k + X/
and 0 < n” — k" « 1. Since k” > 0, Corollary 3.1 implies that M, (1 4+ (e — k"f)—
b"oy ) is isomorphic to My (b' — (6 — k”f‘ ) — 0y ). Therefore My(v) is deformation
equivalent to the moduli space of rank 1 torsion free sheaves.

We shall next treat cases with nonprimitive Mukai vector.

LEMMA 3.3. Let v be a Mukai vector of tkv>0 and (v*)>0. Let H be a general
ample divisor with rerspect to v. We set

Mpu)?* .= {Ee My(v)” | E is properly semi-stable}. (3.17)

Then dim My (v)™ < (v*). Moreover inequality is strict, unless m(v) = 2 and (v*) = 8.
For the proof, see [Y3, Lem. 1.7].

PROPOSITION 3.4. Under the same assumptions, My(v)* is a locally complete
intersection stack which contains Mpy(v)’ as an open dense substack and the singular
locus is at least of codimension 2. In particular My(v)* is normal.

Proof. In the notation of Remark 1.1, we shall prove that Q* is a locally complete
intersection scheme. The following argument is due to Li [Li]. We take a quotient
Ox(—mH)®" — EcQ® and set K :=ker(Oy(—mH)®" — E). Then the Zariski
tangent space of Q* at this quotient is Hom(K, £) and the obstruction class for an
infinitesimal lifting belongs to the kernel of the surjective homomorphism
Ext!(K, E) = Ext*(E, E)1>H2(X, Oyx) ([Mu3]). In particular @ is smooth of dim-
ension (v?) 4+ 1+ N2, where Q° is the open subscheme of Q% parametrizing stable
quotient sheaves. By Lemma 3.3, the dimension of all irreducible components of Q*
are at most (v?) + 1+ N?. On the other hand, if we set s := dim Hom(K, E) and
t := dim Ext!(K, E) — 1, then locally Q% is defined by ¢ equations fi,...,f; in a
smooth scheme of dimension s. Since s —t=y(K,E)+1=N?>—¢(E,E)+1>
dim Q%, f1, ..., f; is a regular sequence, which implies that O* is a locally complete
intersection scheme.

If m(v) # 2 or (v?) > 8, then dim My (v)" < (v¥) — 1. Therefore the singular locus
is at least of codimension 2. If m(v) =2 and (v?) =8, then a general member of
Mpy(v)?¥ fits in a non-trivial extension.

0—-FE —-E—>E—0 (3.18)
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where E|, Ey € My(v/2)* and E| # Ej. Then E is simple, which implies that M g (v)*
is smooth at E. Therefore the singular locus is at least of codimension 2. For the last
claim, we use Serre’s criterion. O

DEFINITION 3.2. Let Y}, Y, be normal schemes. Then Y; ~ Y>, if there is a
proper and flat morphism ) — T over a smooth connected curve 7T such that every
fiber is normal and Y; =), for some ¢, €T. Deformation equivalence is an
equivalence relation generated by ~.

By the following lemma, the number of irreducible components is an invariant of
this equivalence relation.

LEMMA 3.5. Let T be a smooth curve and Y — T a flat and proper morphism.
Assume that every fiber is normal. Then the number of irreducible components of Y,,
te T is constant.

Proof. Since Y, is normal, every connected component is an integral scheme.
Hence the number of irreducible components of Y, is #°(Y;, Oy,). By the upper-
semicontinuity of 4°(Y,, Oy,), the number of irreducible components of Y, is upper
semi-continuous. On the other hand, by Zariski’s connectivity theorem, the number
of connected components of Y, is lower semi-continuous. Therefore we get our
lemma. |

By the same proof, we can show the following.

PROPOSITION 3.6. Under the same assumption as in Lemma 3.3, My(v) is defor-
mation equivalent to M y(m(v)(1 — ngy)), where n = (0[27)/2. In particular the number of
irreducible components of My(v) is determined by m(v).

Proof. Let T be a smooth curve over C and ¢: (X,L£) — T be a family of
polarized abelian or K3 surfaces. For a family of Mukai vectors ve R*¢,7 =
Uer H*(X,, Z), let Y Me(v) > T be the relative moduli space of semi-stable
sheaves on X,, t€ T of Mukai vector v, and 2, (v) the open subscheme consisting of
stable sheaves. Since T is defined over a field of characteristic 0, EU_EE(v)t = M, (v,) for
te T, where Mg, (v,) is the moduli space of semi-stable sheaves on X, (cf. [MFK,
Thm. 1.1]). Since gy, (,): P (v) — T is smooth [Mu3], it is flat. Assume that £, is
general with respect to v, for all € T. By Proposition 3.4, ¢,(v) is a dense subscheme
of M, (v). Since T is a smooth curve, V¥ is also flat. Therefore y: My(v) — T is a
proper and flat morphism. By Proposition 3.4, all M, (v,), t€ T are deformation
equivalent. Then our claim follows from the same argument as in m(v) = 1 case. []

3.3. IRREDUCIBILITY OF My(v)

We shall show that My(v) is irreducible. We may assume that X has an elliptic
fibration m: X — C. We also assume that there is a section ¢ of = and NS(X) =
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7.6 @ 7.f, where fis a fiber of m. We note that (¢?) = 0 or —2, according as X is an
Abelian surface or a K3 surface. By [Y4, Thm. 3.15], we have an isomorphism
Mok (r(1 — ngy)) = Mgy (w), where w = r((o + (n + €)f) + ¢y ). Hence, it is suffi-
cient to show that M, (w) is irreducible. From now on, we assume that r > 2.
By Proposition 3.4, we shall show that M, r(w) is irreducible.

DEFINITION 3.3. For a purely one-dimensional sheaf L on X, Div(L) is the divisor
on X which is defined by the fitting ideal of L.

We set & =r(o+ (n+¢)f). Let Hilbi be the Hilbert scheme of curves C on X
such that ¢;(Ox(C)) = &. There is a natural map j: Mypr(w) — Hilbi sending
Le Mgy (w) to Div(L). We want to estimate the dimension of locally closed subsets
of Myirr(w):

Ny :={Le M, (w)|Div(L) is not irreducible}, (3.19)
N> :={L€ M, s (w)|Div(L) is not reduced}. '

Estimate of dim N;. We prepare some lemmas.

LEMMA 3.7. Let C;, i=1,2 be irreducible curves of genus g(C;) = 2. Then
(Ci,G) =2

Proof. If C; — C, or C, — C is effective, then (Cy, Cy) = (C%) =2or (C,Cy) =
(CH=2. If C;—Cy and C, — C; are not effective, then 0= y(Ox(C) — C2)) >
(C) — C3)?/2. Hence we see that (Cy, Cy) = 2. O

DEFINITION 3.4. For a Mukai vector ve H®(X, 7), M(v) is the stack of coherent
sheaves E of v(E) = v.

LEMMA 3.8. Let E be a purely one-dimensional sheaf such that Supp E consists of
genus g =2 curves. Then dim M(v(E)) = (0(E)*) + 1 at E, if H is general.

Proof. We set v:= v(E). Let M be an irreducible component of M(v) containing
E and let E’ be a general point of M. We consider the Harder—Narasimhan filtration
of E

0OCFCFC---CF,=E. (3.20)

We set v; = v(F;/F;_1). By our assumption, we may assume that Supp F;/F;_, consist
of curves of genus greater than 1. Hence, (v?) > 0. Moreover, by Lemma 3.7, (v;, v;) > 2.
Let F°vi,vs,...,0s) be the stack of filtrations (3.20) such that Hom(F;/F;_;,
F;/Fi_;) =0 for i <j. By [Y3, Lem. 5.2],

dim FO(v1, 2, ... v) = Y dim My (o)™ + D (v v7). (3.21)
i=1

i<j
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Since (v7) >0, we get dim M, 4r(v;))* = (v7) + 1. Hence we see that

) + 1 —dim Fv, va, ... v) = (00 + 1 — (Z(w?) + D+ (v, u,))
i=1

i<j

= (o) — (s — 1)>0. (3.22)
i<j
Since dim M(v) > (v*) + 1, we get our claim. O

LEMMA 3.9. Assume that X is a K3 surface. Let E be a purely one-dimensional sheaf
of DiV(E) = ro. Then dim M(v(E)) = (0(E)?) + 12 = —r* at E.
Proof. We set v:= v(E). Let M be an irreducible component of M(v) containing
E and let E’ be a general point of M. We consider the Harder—Narasimhan filtration
of E
OcFicFkhcC---CcF,=FE" (3.23)

We set v; = v(Fi/Fi—1). Then v; = r;o + a;0y. It is easy to see that g; is divisible by r;
and M k7 (v)” = {Og(ai/ri-1)®"}. Then dim M4 (v))” = —r?. As in Lemma 3.8,
let F'(v;,v,...,v,) be the stack of filtrations (3.23) such that Hom(F;/F;_,,
F;/Fi_1) =0 fori <j. By [Y3, Lem. 5.2],

dim FO(v1, va, .. v) = Y dim Mo (0™ + (v v7)
i=1

i<j

P

— 2 P

_—E ri—E 2riry = —r".
i=1

i<j

(3.24)

Therefore we get our claim. O

LEMMA 3.10. Let E be a purely one-dimensional sheaf on X such that v(E) = rf + agy,
or W(E) =ro + agy. Assume that (W(EY?) = 0. Then dim M((E)) = r at E.

Proof. We set v := v(E). Let M be an irreducible component of M(v) containing
E and let E’ be a general point of M. We consider the Harder—Narasimhan filtration
of £

OckhhchcC---CF=EF. (3.25)

We set v; = v(F;/F;—1). Then we see that (v7) = 0. As in the proof of Lemma 1.8 in
[Y3], we see that dim M,4r(v;)* = r;. By using [Y3, Lem. 5.2] again, we see that

dim -7:0(01, U, .., Ug) = Zdim Ma+kf(17i)ss + Z(Ui, vj) = Zl‘i =r. (3.26)
=1 i<j =1

Therefore we get our claim. OJ

For Nj, we get the following.
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PROPOSITION 3.11. dim N; <dim M (w).
Proof. Assume that Supp(L) is not irreducible. Then there is a filtration

OcFiCcFHCF =L (3.27)

such that (i) Div(F)) = ryo (ii) F»/F) is a pure dimension 1 sheaf of Div(F,/F)) = r, f
and (iii) F3/F, is a pure dimension 1 sheaf of Div(F3/F,) = C3, where C; consists of
curves of genus greater than 1. We set v; := v(F;/F;_1), i = 1, 2, 3. We note that the
set of y(F3/F,;) and y(F,/F)) are bounded. Indeed, if Div(L) = CUD with
#(CN D) < oo, then y(Lic(—D)/T)/(C,0+kf) < y(L)/(C+ D, g + kf), where T is
the 0-dimensional subsheaf of L,-(—D). Hence y(L,c/T(D)) is bounded above. Since
1(Lic/T(D)) is bounded below, y(Lc/T(D)) is bounded. Applying this fact to
1(F3/F,) and y(F3/F), we get our claim. By the proof of Lemma 3.8, we may assume
that F, # 0. We first note that Extz(F,-/E,l,E/Fj,l) = Hom(F;/F;_y, F;/Fi-1)” =0
for i # .

(I) We first treat the case where X is a K3 surface. Assume that F, # F;. By
Lemmas 3.8, 3.9, 3.10, we see that

codim F(vy, v, v3) = dim M7 (W)™ — <Zdim Meir(0)* + Z(v,-, ly))
i i

=wﬁ+1—Qw%+ﬁ»uw@+myuwb+n+§}mwo

i<j
ZZ(UI‘,U/?—V%—U

i<j
= —1} =12+ (110, 12f + C3) +(1f, C3). (3.28)

By our assumption, (c;(w), ¢) = 0. Hence (110, r2f + C3) = 2r2. By our assumption,
(f, C3)>0. Therefore —17 — 1y + (110, r2f + C3) + (r2f, C3) = 17 >0. We next assume
that /> = F5. Then we see that

codim F(v, 02) = =11 —ry + 1 + 1112 (3.29)

Since (¢;(w), g) = 0, ry = 2r;. Then —rf —r+14+rrn=r@ —2)+1=1,because
c1(w) is not primitive. Therefore we get our claim.

(IT) We next treat the case where X is an Abelian surface. Assume that F, # Fj.
Then

codim FO(vy, 02, v3) = —r — 12 + (110, 1o f+ C3) + (2 f, C3). (3.30)

Since Cj consists of curves of genus greater that 1, (¢, C3)>1 and (f, C3)> 1. Then
(—}’] —ry+ (I’]O‘, 7'2f+ C3) + (i’)j, C;))>0 If F2 = F3, then

codim F(vy, v5) = —ry —ry + 1 41117, (3.31)

Since ¢;(w) is not primitive, (r; — 1)(r, — 1)>0. Therefore we get our claim. |
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Estimate of dim N,. For an integer 4 > 2, let Hilbgr()n) be the locally closed subset
of Hilbi consisting of AC, where C is an integral curve. By Proposition 3.11, it is
sufficient to estimate the dimension of Hilbi(i). Let C be an integral curve. For
D = ACand w= D +rgy, we set

Mo-Jrkf(‘/V, D) = {LE Mg+kf(w) | DiV(L) = D} (332)
We fix a point xe C. We also set

L'eMyyy(w+0y), Div(L') =D

Poyky(w,w+oy, D)= 1L C L :
+i ( 2x- D) { LeMy y(w), L'/JL = Cy

}. (3.33)
Let m,, and m,.4,, be natural projections sending L C L' to L and L', respectively:

Po+kf(wsw+ QX’D)
z, N7,

M,,,-(w,D) M, (w+ey,D)

For LeMg ip(w,D), —dimExt' (Cy, L)+dimExt*(Cy, L)=y(C,,L)=0. Combining
the Serre duality, we see that dimExt!(C,, L) =dimExt*(C,, L)=dimHom(L, C,).
By the following lemma, dimz,'(L) < 4 — 1 and dim n;erX(L’) <A-1
LEMMA 3.12. Let x be a smooth point of C. Let L be a purely one-dimensional sheaf
such that Div(L) = AC. Then dim L ® C, < A.

Proof. Let C’' be a germ of a curve intersecting C at x transversely. Let Oy , be the
stalk of Oy at x. We take a free resolution of L ® Oy .:

0095 OY = L® Oy, — 0. (3.35)

Then the local equation of Div(L) at x is given by det(A4). By restricting the sequence
to C’, we get a free resolution of L ® O¢ . Then dim(L ® O¢ ) is given by the local
intersection number (Div(D), C'), = 4. Therefore we get our claim. O

LEMMA 3.13. dim My (W + 0y, D) = (D?)/2 + 1.

Proof. By [Y4, Thm. 3.15], Msiir(w + @y ) is isomorphic to Moiir(r + f— rngy).
Since r + f— rngy is primitive, [Y4, Thms. 0.1 and 8.1] implies that it is irreducible.
For a smooth curve Ce Hilbi, the fiber of My ir(Ww+0y) = Hilbj;( is Pic"*1(C). It is
easy to see that Pic’*!(C) is a Lagrangian subscheme of Mgyir(w+0y). By
Matsushita [Mt], every fiber is of dimension (£2)/2 + 1. O

LEMMA 3.14. Let L be a stable sheaf of v(L) = w and Div(L) = D, and let L be a
coherent sheaf which fits in a nontrivial extension

0> L—->L—->C,—>0 (3.36)

where xeD. Then L' is stable.
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Proof. Assume that L' is not of pure dimension 1 and let 7 be the zero-
dimensional subsheaf of L'. Then T'— L' — C, must be injective. Hence, it is iso-
morphic, which implies that the exact sequence split. Therefore L’ is of pure
dimension 1. If L’ is not stable, then there is a subsheaf L, of L’ such that /(%l‘)>$,
where Div(L;) = 2;C. Hence 0 < y(L)A — (LA = (u(Ly) — DA — y(L)A1 + A — Ay.
Since y(L) = r is divisible by A and 41— A4; < 4, we get (x(L;) — )4 — y(L)A; = 0.
Thus /(LA‘—IQL) > @, which implies that L is not stable. Therefore L' must be stable. [

COROLLARY 3.15. dim Msi4r (w, D) < dim Popgr(W, w0y, D) < dim Mg 4r
w+oy, D)+ (A —-1).

Proof. By Lemma 3.14, w, is surjective. Since dim n;j_gx(x) <AiA-—1 for
X € Mspir(w+ 0y, D), we get our inequality. O

Since 4 > 2, we get that 24> — (A + 1+ 1)>0. Then

dim j 7' (Hilb5(1) < (CH/24+ 14+ 22(CH/2+14+ (A - 1)
<(PH2+1D(CH2+2
< JA(C*) + 2 = dim M, 10 (w). (3.37)

Combining Proposition 3.11, we get the following proposition:
PROPOSITION 3.16. We set

M1y (W) = {Le Moy (W)|Div(L) is an integral curve)
= Moy (9\(N1 U N). (3.38)

Then Mg irr(W)o is an open dense subscheme of Mgy ir(w).

PROPOSITION 3.17. M1y (w) is irreducible.

Proof. By Proposition 3.16, it is sufficient to show that Mg (w), is irreducible.
Let C be an integral curve. Then j~!(C) is the compactified Jacobian of C. By
[AIK], the compactified Jacobian of C is irreducible. Therefore Mg (W), is
irreducible. O

Combining all our results, we get the following theorem.

THEOREM 3.18. Let X be an Abelian surface or a K3 surface and let v be a Mukai
vector of tk v>0 and (v¥) > 0. Let H be a general ample divisor with respect to v. Then
Mpy()* is a normal and irreducible stack. In particular, My (v) is a normal variety.

Remark 3.5. In [02, O3], O’Grady studied the case where m(v) = 2. In particular,
he constructed a symplectic desinguralization of My(v), if (v*) = 8.
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4. Fourier—Mukai Transform on Enriques Surfaces

In this section, we consider the Fourier—Mukai transform on Enriques surface X. By
using the Fourier—Mukai transform, we shall compute the Hodge polynomials of
some moduli spaces of sheaves.

In our case, the Mukai vector v(x) of xe K(X) is defined as an eclement of
H*(X, Q):

k
o(x) := ch(x)y/tdy = rk(x) + ¢1(x) + (r ;x) oy + chg(x)) cH*X,0Q). (4.1
We also introduce Mukai’s pairing on H*(X, Q) by (x,y) := — [, x" A y. Then we
have an isomorphism of lattices:
1 0 0 1
(0(K(X)), (, ) = (0 _1> ® (1 0> ® Ex(—1). (4.2)

DEFINITION 4.1. We call an element of v(K(X)) by the Mukai vector. A Mukai
vector v is primitive, if v is primitive as an element of v(K(X)).

For a variety Y over C, the cohomology with compact support H(Y, Q) has a
natural mixed Hodge structure. Let e”9(Y) := Zk(—l)khI’*‘f(Hf,(Y)) be the virtual
Hodge number and e(Y) := Zp,q e”(Y)xPy? the virtual Hodge polynimial of Y.
By Remark 1.1, M/ (v)* is described as a quotient stack [Q*/GL(N)], where Q*
is a suitable open subscheme of Quot@,\« v We define the virtual Hodge ‘polynimial’
of M7 (v)* by

e(Mp(v)”) = e(Q%)/e(GL(N)) € QU(x, y). (4.3)

It is easy to see that e(Q*)/e(GL(N)) does not depend on the choice of O%. The
following was essentially proved in [Y1, Sect. 3.2].

PROPOSITION 4.1. Let X be a surface such that Ky is numerically trivial. Let (H, o)
be a pair of ample divisor H and a Q-divisor o.. Then e(Mj,(v)*) does not depend on the
choice of H and o, if (H, O()) is general with respect to v (cf. Defn. 1.4).

PROPOSITION 4.2. Let v be a Mukai vector such that rk(v) is odd. Then My(v)® is
smooth of dim My(v)’ = (v*) + 1.

Proof. For Ee My(v)’, we get det(E(Ky)) 2 det(E). If there is a nonzero
homomorphism E — E(Ky), then the stability condition implies that it is an
isomorphism. Hence, Ext’(E, E)Y=Hom(E, E(Ky))" =0. Since —y(E, E)=(0(E),o(E)),
Mpy(v)* is smooth of dim My(v)* = () + 1. O

For a Mukai vector v, let L, L, = L1(Ky )€ Pic(X) be line bundles on X such that
c1(Ly)(= ¢1(Ly)) = ¢1(v). Then we have a decomposition

Mu(0)” = Mpu(o, L)* | [ Mu(v, Lo)* (4.4)
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where My(v, L)*, i =1, 2, is the substack of Mg(v)* consisting of E such that
det(E) = L;. We also have a decomposition My(v) = My(v, L)) [[ Mu(v, L), where
My(v, L;) is the subscheme of My(v) consisting of E such that det(E) = L;.

We consider the Fourier-Mukai transform associated to (—1)-reflection. Let
vy :=r+c1 —(s/2)oy be a Mukai vector such that rk(vg)>0 and (vﬁ) =(H+
rs = —1. Since (c?) is even, r and s are odd. Let H be a general ample divisor with
respect to vy. Assume that there is a stable vector bundle E, with respect to H such
that v(Ey) = vy (cf. Corollary 4.7). Then we see that

Hom(Ey, Eg) = C, Ext!(Ey, E)) =0, Ext*(E,, Ey) =0. 4.5)
Let

evy: E(\)/ EO — OA, evy: Eo(Kx)v Eo(K)() — OA (46)

be evaluation maps. We define a sheaf £ on X x X by an exact sequence

(evy,eva)

0—)5—>Eg E()@E()(Kx)v X Ey(Ky) —— Op — 0. 4.7

Then &yxx (resp. Exxy}) 1s a stable sheaf with v(E 1y« x) = 2rk(Ep)v(Ep) — oy (resp.
V(€ xx(xy) = 2rk(Eo)u(Ep)” — gy). Thus & is a flat family of stable sheaves with
U(5|{x}><x) = 2rk(Ep)v(Ep) — Oy- By the construction of &, gl{x}xX(KX) = 5|{x}xx,
which implies that

Eth(S\{x}x){, EH-’C]XX) = HOl’n(ng}Xx, g\{x}xX(KX ))\/ ~ (C, (48)

Since (v(Eo)z) = —1, we see that (v(&(xx X)2> = 0. Hence, the Zariski tangent space is
two-dimensional:

Ext! (& )pxs Ejppgex) = CF2 (4.9)

Therefore X is a connected component of Mpy(v;), where v; = 2rk(Ep)v(Ep) — 0x-
Then He: D(X) — D(X),, is an equivalence of categories. As a corollary of this
fact, we get that My(v;) = X. By our construction of £, we see that

o(He(x)) = —(x" + 20(Eo) " (x, v(Eo))).- (4.10)

If By = Oy and v(E) =r+c1 + (s/2)oy, then v(Hg(E)) = s+ ¢ + (r/2)0y-
From now on, we assume that X is unnodal, i.e. there is no (—2)-curve. Let ¢ and
[ be elliptic curves on X such that (o,f) = 1. Then

HX(X,7),= (70 ® 7f) L Eg(—1) (4.11)
where H*(X, ), is the torsion free quotient of H*(X, 7).
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PROPOSITION 4.3. We set G):=&mxx and Gy :=Exxy. Assume that
degg,(v) =0 and l(v) := —(v, 0y)/tkv1 >0, a(v):= (v,v1)/tkv;>0. Let & be an
element of K(X)® Q such that v(s)€vi N oy, l(v(e)*)| < 1 and (H, ¢1(¢)) = 0. Then
He induces an isomorphism

MG @) > MEFH(Hew)", “12)

where & = He(e).

Proof. Since H is general with respect to v(Ey), we see that &y« x is Gi-twisted
stable. Then we see that Lemma 2.4 holds. We next show that Lemma 2.5 holds.
We may assume that E is u-stable. If EYY # Ey, Eo(Ky), then Hom(E, Ey) =
HOHI(E, E()(K}()) =0. If EVYY = E(), E()(K)(), then Hom(E, 5|{x}><X) =0 for XEX\
Supp(EY/E). Thus Lemma 2.5 holds. Then the same proof of Theorem 2.3 works
and we get our claim. OJ

COROLLARY 4.4. My(r— (1/2)0y. Ox) = Hilb\""* for a general H with respect
tor—(1/2)oy.

PROPOSITION 4.5. Assume that r,s>0. Then e(Mf(r+ci — (s/2)oy)) = e(M}
(s—c1—(r/2)oy)) for a general (H,a), if (c3) <0, i.e., (v*) <rs, where v=r~+c; —(s/2)0y-
In particular, if r> (v?), then we get our claim.

Proof. 1f (¢?) < 0, then the Hodge index theorem implies that there is a divisor H
such that (H, ¢;) = 0 and (H?)>0. By the Riemann—Roch theorem, we may assume
that H is effective. Since X is unnodal, H is ample. If Ey = Oy, then v(&(yxx) = 2.
Hence v satisfies assumptions of Proposition 4.3. Then we get an isomorphism

M+ e — (5/2)ex ) — M55 — 1 — (r/2)oy ) (4.13)

where (H, Oy +¢) is general with respect to v. By Proposition 4.1, we get our
claim. O

THEOREM 4.6. Let v=r+c; — (s/2)oyc H*(X, Q) be a primitive Mukai vector
such that r is odd. Then

e(M(v, L)) = e(Hilb{+D/?) (4.14)
for a general H, where L €Pic(X) satisfies ¢;(L) = c;. In particular,

(i) My(v) # 9 for a general H if and only if (v*)> —1.
(1) My(v, L) is irreducible for a general H.

Proof. We first assume that c¢; € Eg(—1). We set / = gcd(r, ¢;). Replacing v by
vexp(¢)), & € Eg(—1), we may assume that ¢;// is primitive and s> (v?). Since v is

primitive, ged(/, s) = 1. By Proposition 4.5, we get

e(Mu(r+c1 = (s/2)ey)) = e(Mpu(s — ¢ — (r/2)ex))- (4.15)
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Replacing v = r + ¢; — (s/2)oy by v/ =s—c; —(r/2)oy, we may assume that r> (v?).
By the same argument as above, we may assume that / = 1 and ¢ is primitive. We
set D=0 — ("Tz)f+ 1, where n € Eg(—1) satisfies that 2(y, ¢;) = s — 1. Then (D*) =0
and —s+2(c;,D)=—1. Since vexp(D)=r+(ci+rD)—1/20y, e(Mp(v))=
e(My(r + (c1 +rD) — 1/20y)). Since r> (v*), Proposition 4.5 implies that our claim
holds for this case.

We shall next treat the general case. We use induction on r. We set ¢| := djo+
drf + £. Replacing v by vexp(ko), we may assume that 0 < |d;| < r/2. We first
assume that d; # 0. We note that (c¢;,f) = d;. Replacing v by vexp(n), n€ Es(—1),
we may assume that s> (v*). Then by Proposition 4.5, e(My(v)) = e(Myg(s — ¢;—
(r/2)oy)) for a general H. We take an integer k such that 0 < r+2d1k < 2|d;| < r.
Then wvexp(kf) = s+ (—c + skf) — 1’ /20y, where r =r+2dk. Since s> (1?),
Proposition 4.5, implies that e(Mg(s + (—c; +skf) —1'/20y)) = e(M y(r' + (¢1 — skf)—
(s/2)oy)) for a general H. By induction hypothesis, we get our claim.

If d; = 0, then we may assume that 0 < |d»| < r/2. If |d,| >0, then we can apply
the same argument and get our claim. If d; = d> = 0, then ¢| € Eg(—1), so we get
our claim. O

COROLLARY 4.7. If (*) = —1, then there is a stable vector bundle Ey with respect
to H with v(Ey) = v.

Remark 4.1. By the proof, we also get the following: Let v be a primitive Mukai

vector such that rkv is odd. Then e(M g(mv)*) = e(Mg(m(l — (n/2)oy))*). where
n= (. ]

5. Appendix

Let X be an Abelian (or a K3) surface. In this appendix, we give a sufficient condi-
tion on H to be general with respect to v =r+ &+ agy.

LEMMA 5.1. Assume that there is an exact sequence
0—-FE —-F—E—0 (5.1

such that Ey and E, are p-semi-stable sheaves with v(E1) = ri + &, + a10y and v(E,) =
ra + & + aroy respectively. Then

2 2 2
€ ((2-8))-2. 52
rra " r rirz

where € = 0 or 1 according as X is an Abelian surface or a K3 surface.
Proof. We note that (v?)/r? = ((¢;/r))*) — 2a;/ri, i = 1, 2. Then we see that

https://doi.org/10.1023/A:1027304215606 Published online by Cambridge University Press


https://doi.org/10.1023/A:1027304215606

286 KOTA YOSHIOKA

(") _ (0]) 4 (v3) + 2(01, 12)
rir rir

=i<v2>+i<vé>+2<5—

1
1 ’
rira rirz r

oo
n r r
2 "
:_<(@_é> )+<rlj_r2<v%)+”+2r2(v§)). (5.3)
oo rr2 rry

By the Bogomolov inequality, we have (v?) > —2r?¢. Hence our claim holds. O
LEMMA 5.2. If
min{—(D?*)|DeNS(X), (D, H) =0, D # 0} > r*((t*) + 2r%)/4, (5.4)

then H is a general polarization with respect to v.
Proof. If H is not general with respect to v, then there is an exact sequence

0—-FE —-E—>E—0 (5.5)

such that (i) E; and E, are p-semi-stable sheaves with v(E;) =r + & + a9y and
v(Er) = 1 + & + angy respectively (i) méy —ri1&, # 0 and (iii) (&, — &, H) =0.
Since riry < 2/4, (5.2) implies that —((r2&) — 1)) < 2((1?) + 2r%)/4, which is a
contradiction. O
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