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ENTIRE FUNCTIONS WITH SOME DERIVATIVES 
UNIVALENT 

S. M. SHAH AND S. Y. TRIMBLE 

1. Introduction. This paper is a continuation of the author's previous 
work, [6; 7], on the relationship between the radius of convergence of a power 
series and the number of derivatives of the power series which are univalent 
in a given disc. 

In particular, let D be the open disc centered at 0, and l e t / be regular there. 
Suppose that \np}%Li is a strictly-increasing sequence of positive integers such 
that each / (^} is univalent in D. Let R be the radius of convergence of the 
power series, centered at 0, that represents/. In [7], we investigated the con­
nection between R and [np}%Li. We showed that, in general, 

(1.1) lim inf (mn2. . . npf
,Up S 4#. 

P->oo 

In the present paper, we both improve and simplify (1.1). We show that if 
\imv^œnv/nv+i = 1 or if np+2 — 2np+i + np = o{np), then / is entire. 

We shall use the following result from univalent function theory. If/ is de­
fined by 

oo 

f GO = z + J2 a*?*-

and if it is univalent in D, then there is a constant, C, such that 
(1.2) \ak\ £ Ck, 

for k = 2, 3, . . . . The Bieberbach conjecture is that C = 1. It has long been 
known that C S e [2, pp. 10-11; 5, p. 218]. Recently, it has been shown that 
C S A / 7 / 6 [1]. For our results, the exact value of C is immaterial, so we 
shall not assign a particular value to it. Often, we shall work with the deriva­
tives of a function, F, which is defined by 

CO 

In this case, if F(n) is univalent in D, then (1.2) becomes 

(1.3) (n + k)\\An+k\ S Ck(kl)(n + l)!|i4n+1 | 

for k = 2, 3, 
Finally, we remark that we shall often be dealing with subsequences. For 

ease of notation, we shall write a(np) and n(pk) for anp and npk. 
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2. R e l a t i o n s b e t w e e n R a n d {np}%Li. In a previous result, (1.1), the 
constant , 4, appears on one side of the inequali ty. In our present work, we 
shall encounter other such constants . In order to eliminate these constants 
from our final conclusions, we need the following lemma. 

LEMMA 1. Let {np}™=\ be a strictly-increasing sequence of non-negative integers. 
Let 

a = hm ml —— . 

(1) 7 / l i m supp_>œ(np_i/np) < 1, then \imp^œ(p/np) = 0. 
(2) Suppose that 0 < a < 1 and that e > 0. Then there is a subsequence, 

{n(pk)}T=u of {«„}"_,„ such that a — e ^ lim inf k ̂ [n (p k-1) / (npk)] and lim 
supk->œ[n(pk-i)/n(pk)] < 1. 

Proof. T h e proof of (1) is straightforward. T o prove (2), let /x be chosen so 
t h a t a < 1 — jix < 1 and ixa < e. Let n{p\) = Wi. Assume t h a t w ( ^ ) has been 
chosen. Let n(pk+i) be the smallest integer in the sequence, {np}JLi, such t h a t 

"(/>*) ^ -, 
" 7 7 — \ = 1 ~ M-

Clearly, lim supk_>œn(pk)/n(pk+i) < 1. Suppose tha t , for some k, 

/ 9 1 N »(Pfc) <: 
(2.1) —r- S a — e. 

w(p*+i) 

Now the definition of n(pk+ï) implies t h a t 
n(Pt) 

n(pk+1 - 1) 

Hence, 

> 1 - /x. 

n(pk+i — 1) a — e 

»(£*+i) 1 - /x 

Using the definition of /x, it follows tha t , if (2.1) were t rue for an infinite 
number of k, then 

i- • r n(pk+i — 1) 
hm inf — ̂ f~—r— < a. 

*-*» n(pk+i) 

This is impossible. Hence, (2.1) can be t rue for only a finite number of k. 
This implies t ha t a — e fg lim inîk_^O0n(pk)/n(pk+i). T h e proof of the lemma 
is complete. 

T h e following lemma is of a technical na tu re and will be useful in simplifying 
a certain inequali ty in the proof of our theorem. 
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LEMMA 2. Let {np)P°s=i be a strictly increasing sequence of non-negative integers. 
Then, for each p ^ 2, 

ff (»m ~nj+ l)1/(n"+2) < (1 + np/pY/np ^ 2. 

Proof. First , note tha t for c > 0 and y > 0, it follows tha t log y ^ cy — 1 — 
log c. So, for c > 0, 

log ff ( " m - » , + l ) 1 / ( B"+ 2 ) ^ z r X ô Z K»>f i - nj + 1) - 1 - log c] 
j=i nv ~r £ j=i 

<c + ^- (c - 1 -loge). 
nP 

Let c = p/(np + £ ) . Using the fact t ha t (1 + l/x)x increases with x for 
0 < x ^ 1, the conclusion follows. 

We remark tha t if nv = p, then the left-hand-side of the inequality in the 
conclusion of Lemma 2 is just 2(p~1)/(p+2). Hence, the number, 2, on the right-
hand-side of this inequality cannot in general be reduced in size. 

T H E O R E M . Letf be regular in D. Let {np}^i be a strictly increasing sequence of 
non-negative integers such that f(Up) is univalent in D. Suppose that f is defined by 
a power series, expanded about 0, with a radius of convergence, R. Let a = 
lim inip^np/rip+i. 

(1) If a = 1, then R = co, i.e., / is entire. 

(2) If 0 < a < 1, then R ^ ce**"-»/(1 - a). 

(3) lfa = 0, thenR ^ 1. 

(While pa r t 3 is obvious, it is included for completeness and to emphasize the 

fact t ha t lima^o+^a / (o !-1V(l — a) = 1.) 

Proof. Suppose tha t 
CO 

k=0 

Using (1.3) it follows tha t , for p = 1, 2, . . . and for k = 2, 3, . . . , 

(2.2) \a(nP + k)\ ^ - ^ ^ ^ \<nP + 1) | . 

Let k = np+i — np + 1 and induct on p. Then for p = 2, 3, . . . , 

\ainp + 1) | S T—T-jTf I I 0 ; + i - nj + l)(nj+1 - n^ + 1)!, 
\np -\- i). j=i 

where D* = (tii + 1)! \a{n\ + 1) | . Combining this with (2.2), we conclude 
tha t , for 2 ^ p and for 2 S k ^ np+1 — np + 1, 

CvD*kk] r^ 
(2.3) | a ( ^ + * ) | ^ ^ + ^ ' , 1 1 (nj+1 - tij + l)(nj+1 - ns + 1)!. 
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There are two positive numbers, A and B, such that, if n is a positive integer 
larger than 1, then [4, p. 183] 

An*(n/e)n < n\ < Bn*(n/e)n. 

Using this on the right-hand-side of (2.3), taking the (nv + &)th root of both 
sides of the resulting inequality, and applying Lemma 2 to part of right-hand-
side of this, it follows that for 2 ^ p and for 2 ^ k ^ np+i — np + 1, 

(2.4) \a(np + k) l /Up+fc) < 
D*BPC 

A \np + k) J 
/(np+lc) 

1 + M U-— n (nj+1 - fij + 1) (nj +i—nj) /(np+k) 

P I L_ " p 

Now we maximize the expression in the second set of brackets on the right-
hand-side of (2.4). Let 

and let b = nv. Define </> for x > 0 by 

</>(x) = 
(ax*) a;\l/(6+ar) 

6 + X 

Then a1/& is the only value of x for which <f> vanishes. Further, this yields a 
minimum for 0. I t follows that the maximum of <j> on any closed interval occurs 
at one of the endpoints. Hence, for 2 ^ p and for 2 ^ k ^ nv+\ — np + 1, 

7/t/(np+fc) p— 1 

— — n (w/+i - »j + 1 ) ^ 1 - ^ ^ ^ 

| ^ l / ( w p + 2 ) p - 1 

max n (» J + i -» i + 1 ) ^ ^ - ^ ^ ^ , 

+1+1) I 

np+i + 1 J = I 
(• 

Making obvious simplifications in this, and then using it on the right-hand-side 
of (2.4), we have that, if 2 g p and if 2 ^ k ^ «p+i — n„ + 1, 

i<iK+£)r(%'+t) < L ^ \», + */ J \ + p ) 
lAl/np p - 1 

(2.5) Xmax — f l (»«-i - «^ + l)(",+x"*,')/*", 
lp j=\ 

1/np+i V ) 

^ I l (»m - % + i)("'+l-^)/B"+1 
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Finally, letting p = lim supp_^œp/np and using (2.5), we have that 

(2.6) ~ = lim sup \ak\
1/k = lim sup {\a(np + k)\1/(n'M :2£p, 

2 S k ^ np+1 ~np + \] 

1 p-i 

S K lim sup - J ! (nj+i - n3 + i)<»'+'-»'>/»*, 

where 

1, p = v 

fM)'7-'>* 
, L . - 0 = ° 

J I 1 1 - 4 -

To get the right-hand-side of (2.6) in terms of a, we need the following 
inequality [3, p. 7]: If {xp}^=i is a strictly-increasing sequence of positive 
numbers such that lim^^x^ = 00 , and if {yp}%=i is a sequence of real numbers, 
then 

lim sup %> g lim sup *hJZJh=l . 
P-^oo %p p->œ %P Xp—1 

For our application, let xp = np and let 

P-I 

Jv = 12 i(nJ+i - nj) log (nJ+i - nJ + 1)] - nP log np. 

Then 

3fr ~ 3V-i = j L _ nP-i ~ 1 \ + n^x/tip j ^ _ i 
^ — x^_i \ np / 1 — np_i/np

 g ^ 

Now the second expression on the right-hand-side of this equation is a de­
creasing function of np-.\/np. Further, l i m ^ i - ^ log x)/(l — x) = —1 and 
lim^o+fc log x)/(l — x) = 0. Hence, 

** ^ V 
V 

— 0 0 , a = 1 

V 7 en. 

lim sup ~ ^ \ log (1 — a) + T ^ — log a, 0 < a < 1 
kO, a = 0. 

Since 

2 i _ 1 ™ - J _ T\ (™ „„ _J_ i\(nj+i-nj)/nP log-7-n (»*.i-»y + D("'+1 

it follows from (2.6) that 

(0, a = 1 
1/i? ^ IK (I - a)aa/^~a\ 0 < a < 1 

(i£, a = 0. 
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To complete the proof, we must show that we can always assume that 
K = 1. Lemma 1 is used to do this. First of all, note that the only condition 
on the sequence, {np}p°=i, was that each/(np) be univalent in D. Any subsequence 
of {nv\™=\ clearly satisfies the same condition. 

If a = 0, it is obvious that we may let K = 1. Suppose 0 < a < 1. Let 
0 < e < a. The second part of Lemma 1 shows that there is a subsequence, 
{n(pk)}T=u such that a — e ^ lim mlk^œ[n(pk-1)/n(pk)'\ and 

lim s\ipk^[n(pk-i)/n(pky\ < 1. 

The first part of that lemma then implies that \imk^œk/n(pk) = 0. Applying 
what we have just proved to this subsequence, {n{pk)}™=i, it follows that 

\/R g (1 - a + e)(a - €)(«-«)/U-«+0. 

Since this is true for all sufficiently small e, the theorem is established. 

Our theorem is stated so as to get information about R when a is known. 
However, if R is known, then the theorem can be used to obtain a bound on a. 
For example, we have the following. 

COROLLARY 1. Let f and {np}%=\ be defined as in the theorem. Suppose that f 
cannot be extended to a function regular in a larger disc centered at 0. Then 

lim inf np-i/np = 0. 
P-^co 

Note that Theorem 6 in [7] shows that there do exist functions which satisfy 
the hypothesis of this corollary. Further, these functions show that the 
inequality in part (3) of the conclusion of the present theorem is sharp. 

If \\mp_>œnp-i/np = 1, then our result immediately shows that / is entire. 
From this, it follows that, if np — nv-\ = o(np)} then / is also entire. This is 
an improvement to the corollary to Theorem 3 in [7]. In fact, to insure t h a t / 
is entire, it is enough to put this condition on the second differences of the np. 

COROLLARY 2. Assume that f and {np)^=i satisfy the hypotheses of the theorem. If 

np+2 — 2np+i + np = o(np), 

then f is entire. 

Proof. We rewrite the hypothesis in three ways: 

(2.7) np+1 + np-x = [2 + o(l)]np. 

(2.8) np-2 - 2 ^ _ ! = [ - 1 + o(l)]np. 

(2.9) np+2 - 2np+1 = [ - 1 + o{l)]np. 

Multiplying (2.7) by 2 and adding it to (2.8), we have 

np-2 + 2np+1 = [3 + o(l)]np. 
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This implies the following: 

(A) If b S lim ml np^2/np, then lim sup np+i/np ^ (3 — b)/2. 

Multiplying (2.7) by 2 and adding it to (2.9), we have 

np+2 + 2^_i = [3 + o(l)]np. 
Hence, 

3 è lim sup ~ + 2 lim i n f ^ - = -—— + • 
n"~2 ~ - n"+1 l i m i n e lim sup -**± 

P->co Mp p-ïoo Mp 

This implies the following: 

(B) If \im sup np+i/np ^ a, then lim inf np^/np ^ a/(3a — 2). 
P->oo P->oo 

Next, we construct two sequences. Let b0 = 0. Assume that bm has been 
defined. Let am = (3 — 6m)/2 and let frw+i = am/(3am — 2). Using an induc­
tion argument, (A) and (B) show that lim mfp_^œnp^2/np ^ bm and that 

(2.10) lim sup tb±1 ^am 
P-ÏOD nP 

for all m. Further, the definitions of am and bm imply that 

4aw_i — 3 
(2.11) 

Sam 

Now (2.10) allows us to conclude that am g; 1 for all m. This and (2.11) imply 
that {am}m=o is a decreasing sequence and that limm_>œam exists. Using the 
latter fact in (2.11), it follows that \iu\m^O0am — 1. Finally, from (2.10), we 
conclude that \imp^œnp+i/np = 1. Hence, / is entire. 
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