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Abstract

We provide an explicit formula for all primary genus-zero r-spin invariants. Our
formula is piecewise polynomial in the monodromies at each marked point and in
r. To deduce the structure of these invariants, we use a tropical realisation of the
corresponding cohomological field theories. We observe that the collection of all
Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) relations is equivalent to the relations
deduced from the fact that genus-zero tropical CohFT cycles are balanced.
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1. Introduction

This article achieves two distinct goals: The first is to establish a connection between the com-
binatorial properties of the genus-zero part of any cohomological field theory (CohFT) and its
tropicalisation. The second is to apply this analysis to the CohFT of r-spin Witten classes (see
Section 2 for a discussion) and obtain a detailed understanding of the corresponding numerical
invariants. We first discuss this second goal, which allows for simple and concrete statements,
and then we enlarge the scope to discuss the more general combinatorial journey that led to
these results.

A genus-zero r-spin invariant wr(�m), often denoted (τm1 · · · τmn) in the literature, is an inter-
section number on a moduli stack of n-pointed, genus-zero r-spin curves obtained by integrating
the Euler class of the Witten bundle over a connected component of the moduli stack. Here, r is
a positive integer, and �m= (mi)∈ (1, 2, . . . , r)n, with

∑n
i=1mi = (n− 2)(r+ 1), which is called

a numerical monodromy vector . These intersection numbers have a rich tradition: originally pro-
posed by Witten [Wit93], they were developed for many reasons, including their CohFT structure
[JKV01], their setting in mirror symmetry as an enumerative theory for the Landau-Ginzburg
model (C, μr, x

r) [FJR11], and their applications towards tautological relations [PPZ19]. Our
first main result gives a closed formula for (primary) genus-zero r-spin invariants.

Theorem 1 (See Theorem 5.1). The genus-zero r-spin invariant of a numerical monodromy
vector �m= (m1, . . . , mn) is

wr(�m) =
1

2 · rn−3

∑
S⊆[n]∑

i∈S mi�(|S|−1)r+n−2

(−1)1+|S|
n−3∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)
. (1)

Viewing m1, . . . , mn, r as being a list of variables, one may think of wr(�m) as a function
defined on the integral lattice points of an unbounded polyhedron Mn in Rn ×R. Formula (1)
implies that wr(�m) is a piecewise-polynomial function of degree n− 3. The chambers of polyno-
miality are polyhedra that overlap in affine linear strips of width n− 4. The precise statements
and the equations for the walls are given in Corollary 5.2. Previously, it was known that wr(�m)
is a piecewise polynomial when n= 3, 4 [JKV01, Prop. 6.1]. It was also known that wr(�m) is
equal to the dimension of sl2(C)-invariant subspace of a certain tensor product of symmetric
powers of the standard representation of sl2(C) [PPZ19, Thm. 2], and it is the genus-zero part
of the r-KdV hierarchy [JKV01].

We also unveil properties of genus-zero r-spin invariants that are not apparent from their
expression in (1). For a fixed value of r, the dominance order is a partial ordering on the
monodromy vectors �m that, roughly speaking, says they become smaller as they get closer to
the small diagonal of Rn, equivalently, as the entries of �m get more equidistributed (see Section 6
for a precise definition). We show that genus-zero r-spin invariants are monotonic with respect
to this partial ordering.

Theorem 2 (See Theorem 6.2(1)). For any fixed r, n, the function wr(�m) is weakly order-
reversing with respect to the dominance ordering. That is,

�m� �m′ =⇒ wr(�m)�wr(�m
′). (2)

In [PPZ19, Prop. 1.4] the authors use character theory of sl2(C) to show that for a mon-
odromy vector of length n, wr(�m) = 0 if mi � n− 3 for any of the entries of �m; we give a direct
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Genus-zero r-spin theory

combinatorial proof of this fact. This vanishing, together with Theorem 2, implies the following
positivity statement:

Theorem 3 (See Theorem 6.2(2)). For any r and �m, we have wr(�m)� 0, with wr(�m) �= 0 if and
only if n− 2�mi � r− 1 for all i.

Notably, the formula for genus-zero r-spin invariants is more complicated than the closed
formula for open r-spin invariants found in [BCT18, Theorem 1.2].

All these structure results about genus-zero r-spin invariants follow from a collection of linear
recursive relations, proved in Theorem 4.1. Such relations may be derived in two equivalent ways,
which leads us to discussing the first stated goal of this article.

Genus-zero r-spin invariants are degrees of the zero-dimensional cycles for the CohFT of
Witten classes and comprise the numerical part of the CohFT. Very roughly speaking, a CohFT
(see [Pan18] for precise definitions) is an infinite collection of Chow classes on moduli spaces of
curves that are self-referential with respect to restriction to boundary strata; this means that
the intersection of a CohFT class with a stratum

Δ= gl∗

(∏
i

Mgi,ni

)
is equal to the pushforward via the corresponding gluing morphism of (a linear combination of
products of pullbacks via the coordinate projections of) CohFT classes from the factors. The
basic linear equivalence among the three boundary points of M0,4

∼= P1 may be pulled-back via
forgetful morphisms and/or pushed-forward via gluing morphisms and then intersected with a
CohFT class and integrated to obtain a collection of relations among the numerical CohFT
classes. Such relations are called WDVV relations, and they are familiar tools in and around
Gromov-Witten theory, where they are, for example, responsible for the associativity of the
quantum product [FP97]. One way to obtain the recursions in Theorem 4.1 is via WDVV.
Another way is to study the tropicalisation of the CohFT. We summarize here the discussion in
Section 3:

Tropical geometry [BIMS15, Mik06] provides a combinatorialisation of standard algebraic
geometry concepts, and in the last few decades, it has found interesting applications to enu-
merative geometry (e.g. [Mik05, GM07, GKM09]) and tautological intersection theory of moduli
spaces of curves (e.g. [Mik07, Rau16, KM08, Gro18, CGM22]). The moduli space of tropical
curvesM trop

g,n [ACP15, CCUW20] may be identified with the boundary complex ofMg,n. For any
Chow class α∈Ak(Mg,n), its tropicalization α

trop is a codimension-k weighted cone subcomplex
of M trop

g,n , where each codimension-k cone of M trop
g,n is weighted by the intersection number of α

with the corresponding k-dimensional stratum of Mg,n. If Ω is a CohFT class, then it follows
from the strata restriction properties that the coefficients of Ωtrop are functions of numerical
CohFT invariants. In other words, the tropicalization of a CohFT is completely controlled by
its numerical part (Proposition 3.10).

In genus zero, the moduli space of curves is a tropical compactification [Tev07, GM10], mean-
ing thatM0,n admits an embedding into a (non-proper) toric variety XΣ such that the boundary
stratification of M0,n coincides with the restriction of the toric boundary of XΣ. It follows that
M trop

0,n may be identified with Σ and, therefore, viewed as a balanced fan inside the vector space
NR, spanned by the cocharacter lattice of the torus of XΣ. There is a natural isomorphism
ϕ :A∗(M0,n)→A∗(XΣ), and the tropicalisation αtrop of a cycle α∈A∗(M0,n) coincides with the
Minkowski weight presentation of ϕ(α) [FS97, Kat09].
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This in turn implies that αtrop satisfies the balancing condition (12), which translates into a
collection of linear equations on the weights of the cones of αtrop. When α is a CohFT class, one
then obtains equations among the numerical CohFT invariants. Our next result relates these
equations to the relations obtained from WDVV.

Theorem 4 (See Theorem 3.12). The collection of balancing equations for all tropical cycles
Ωtrop imposes the same constraints as all WDVV relations on the numerical invariants of Ω.

The statement of this theorem can be made precise (but probably unnecessarily confusing) by
saying that the two sets of equations cut down the same subvariety in some countable dimensional
affine space coordinatised by the discrete invariants indexing the classes of arbitrary CohFTs.
It could also be explained in working terms: If one is trying to reconstruct numerical CohFT
invariants recursively given some initial conditions, doing so is equivalent to using the set of
relations coming from WDVV or the balancing equations. The proof of Theorem 3.12 shows
just how tight the connection is: Balancing at the cone point for 1-dimensional tropical cycles
corresponds to WDVV relations obtained by pull-back via forgetful morphisms, and balancing
along faces of higher dimensional cycles correspond to WDVV relations pushed-forward via
appropriate gluing morphisms.

The tropicalisation of the moduli space of r-spin curves has been studied in [CMP20, APS22],
where the authors identify a skeleton of the Berkovich analytification of algebraic r-spin curves
with a cone complex parameterising tropical r-spin curves. Our perspective is to directly trop-
icalise the cycles of the r-spin CohFT, bypassing the need for a tropical version of the theory
of Witten classes on moduli spaces of tropical r-spin curves. Once a theory of tropical vector
bundles and Chern classes is established, it would be natural to try to exhibit the tropicalisation
of a genus-zero r-spin Witten class as the Euler class of a tropical version of the Witten bundle.

This article is written with the intention of its being accessible to readers from different math-
ematical communities, with the goal of stimulating hopefully productive interactions. Section 2
provides background and intuition on the CohFT of r-spin Witten classes, which is aimed at
readers from tropical enumerative geometry. Section 3 gives background on tropical intersection
theory, which is aimed at algebraic geometers interested in intersection theory on moduli spaces.
Section 4 derives recursions among genus-zero r-spin numerical invariants, and these recursions
are used in Section 5 to prove Theorem 1. In Section 6, we study the monotonicity of genus-zero
r-spin invariants with respect to the dominance ordering.

2. The r-spin cohomological field theory

We are interested in computing r-spin invariants, which are defined as intersection numbers over
moduli spaces of roots of line bundles on curves. The literature on r-spin curves is both technical
and full of conflicting conventions; hence we provide in this section a self-contained overview of
this story. Since our focus is combinatorial, we sweep technicalities under the rug when possible.

2.1 Moduli of r-spin curves

Fix an integer r� 2. Let (C, p1, . . . , pn)∈Mg,n be a smooth n-marked curve of genus g, and fix
m1, . . . , mn ∈ {1, . . . , r} such that

2g− 2 + n−
n∑

i=1

mi ∈ rZ. (3)
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Genus-zero r-spin theory

An r-spin structure of type �m := (m1, . . . , mn) on C is a line bundle L on C together with an
isomorphism

ϕ :L⊗r ∼−→ ωC,log

(
−

n∑
i=1

mipi

)
,

where ωC,log = ωC(
∑n

i=1 pi) is the log canonical bundle of C. We refer to mi as the monodromy
of L at pi; the terminology arises from an equivalent formulation of r-spin curves in which
p1, . . . , pn are orbifold points of C and mi is the monodromy of L at pi. We call �m (subject to
the condition (3)) a monodromy vector and call the data (C, pi, L, ϕ) a (smooth) r-spin curve.

Remark 2.1. The integers mi are off by one from some standard references on r-spin curves (e.g.
[JKV01, BCT19, PPZ19]) but match others (e.g. [Chi08b, FJR11, FJR13]).

For an r-spin curve of type �m, by the existence of ϕ, we immediately see

deg L=
2g− 2 + n−∑n

i=1mi

r
∈Z. (4)

We denote by M r
g,n(�m) the moduli stack of smooth r-spin curves of type �m, and let M r

g,n =⊔
�mM r

g,n(�m). There is a natural compactificationM
r
g,n =

⊔
�mM

r
g,n(�m) due to Abramovich-Jarvis

and Chiodo [AJ03, Chi08a]—though other compactifications exist [Jar98, Jar00, CCC07]. In the
language of [Chi08a], the stackM

r
g,n(�m) is the moduli stack of stable r-spin curves , i.e. r-th roots

L of ωC,log on nodal orbicurves C with Z/rZ-orbifold structure at marked points and nodes (and
nowhere else), where mi is the monodromy of L at pi. This space admits a (finite flat surjective)
forgetful map ρ :M

r
g,n(�m)→Mg,n; see [Chi08a, Thm. 4.2.3].

Remark 2.2. When g= 0 (and necessarily n� 3), the forgetful map ρ is a bijection. It is not
an isomorphism for stack-theoretic reasons—due to the fact that r-spin curves admit extra
automorphisms—but we can largely ignore this subtlety for our purposes.

An important aspect of M
r
g,n(�m)—similarly to Mg,n—is its recursive structure, which we

briefly describe here. On a stable r-spin curve (C, pi, L, ϕ), each node η of C locally looks like
the quotient of an ordinary node V (xy) by an action of Z/rZ via

(x, y) �→ (ζx, ζ−1y),

where ζ is an r-th root of unity. Under this identification, L is locally the quotient of V (xy)×C

by Z/rZ, acting by

(x, y, t) �→ (ζx, ζ−1y, ζat)

for some a∈ {1, . . . , r}. Exchanging the roles of x and y would instead give an action t �→ ζbt,
where a+ b= 0 (mod r). We thus have a well-defined notion of the monodromy at η, after
picking a branch of the node.

Example 2.3. Consider a genus-g stable r-spin curve (C, p1, . . . , pn, L, ϕ) of type (m1, . . . , mn),
with exactly two irreducible components C1 and C2 of genera g1 and g2, joined at a single node
η. Denote by J ⊆ [n] the set of marked points on C1 (so Jc is the set of marked points on C2).
We additionally mark the two preimages pJ ∈C1 and pJc ∈C2 of η under the normalization map
and pull back L to each component. This yields the following two smooth r-spin curves

(C1, {pi}i∈J ∪ {pJ}, L, ϕ) and (C2, {pi}i∈Jc ∪ {PJc}, L, ϕ)
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with monodromies mJ , mJc ∈ {1, . . . , r} at pJ and pJc , respectively, where
1

mJ ≡ 2g− 2 + (|J |+ 1)−
∑
i∈J

mi (mod r) and mJc ≡ 2g− 2 + (|Jc|+ 1)−
∑
i∈Jc

mi (mod r).

(5)

Example 2.3 illustrates the recursive boundary stratification of M
r
g,n(�m), which compatibly

matches the well-known recursive boundary stratification ofMg,n. If D
r
g1,g2,J

⊆M
r
g,n(�m) denotes

the divisor of stable r-spin curves generically of the type in the example, we have a bijection

Dr
g1,g2,J →M

r
g1,|J |+1({mi}i∈J ∪ {mJ})×M

r
g2,|Jc|+1({mi}i �∈J ∪ {mJc}).

This bijection is compatible with the decomposition of the corresponding boundary divisor DJ ⊆
Mg,n as a product

2

DJ
∼=Mg1,|J |+1 ×Mg2,|Jc|+1. (The bijection is not an isomorphism because

the stack structure on the two sides is different.)

Example 2.4. We may similarly consider the locus in M
r
g,n(�m) associated to any fixed combi-

natorial type of curve (i.e. fixed dual graph Γ). We may carry out a similar analysis to that
in Example 2.3, again via the normalisation map, with one caveat, illustrated in an example
as follows: If Dloop ⊆M

r
g,n(�m) denotes the closure of the locus of stable r-spin curves C with

one irreducible component with a self-node η (so that Γ has a single vertex with a self-loop),
then the monodromies at the branches of η are not uniquely determined; we instead get a
bijection:

Dloop →
r⊔

k=1

M
r
g−1,n+2(�m∪ {k, r− k}).

Adapting the ideas from Examples 2.3 and 2.4, one can characterise any stratum inM
r
g,n(�m)

recursively.

2.2 Genus-zero Witten classes and r-spin invariants

In this section we describe the natural class of intersection numbers on M
r
g,n(�m) that we are

interested in, restricting to the case g= 0. The Witten bundle is the derived pushforward

Wr
0,n = (R1π∗Lr

0,n)
∨,

where Lr
0,n is the universal line bundle on the universal curve Cr

0,n
π→M

r
0,n. We denote byWr

0,n(�m)

the restriction of the Witten bundle to M
r
0,n(�m)⊆M

r
0,n.

A standard argument (see [JKV01, Prop. 4.4]) shows that R0π∗Lr
0,n = 0. This fact depends

crucially on having mi � 1 for all i. Applying Riemann-Roch and (4) yields

rankWr
0,n(�m) =−1 +

2− n+
∑

imi

r
. (6)

Definition 2.5. The (genus-zero) r-spin Witten class with monodromy vector �m is

Wr(�m) = r · ρ∗
(
e(Wr

0,n(�m))
)∈A∗(M0,n),

1There is a small subtlety here involving the dimension of the Witten class when mJ = r, which we may ignore
by Proposition 2.10 below. See [BCT19, Sec. 3.2] for details.
2If g1 = g2 and n= 0 one must take a quotient of the product, and the same is true for r-spin curves above.
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where e denotes the Euler class, and ρ :M
r
0,n(�m)→M0,n is the (bijective, by Remark 2.11)

forgetful map. The (primary, genus-zero) r-spin invariant associated to the monodromy vector
�m= (m1, . . . , mn) is

wr(�m) :=

∫
[M0,n]

Wr(�m) = r ·
∫
[M

r

0,n(�m)]
e(Wr

0,n(�m)).

In the literature, wr(�m) is often denoted 〈τm1 · · · τmn〉. Note that wr(�m) �= 0 only if
rank Wr

0,n(�m) = dimM
r
0,n(�m) = n− 3, or equivalently, only if∑

i

mi = (n− 2)(r+ 1). (7)

In this case, we say �m is numerical . This is true when Wr(�m) is a zero-dimensional cycle on
M

r
0,n(�w); in general, Wr(�m) is a cycle of dimension 1

r ((n− 2)(r+ 1)−∑imi).

Remark 2.6 The factor of r in Definition 2.5 is essentially a matter of convention—see [JKV01,
Cor. 3.9] and the succeeding discussion.

Remark 2.7. The Witten bundle, Witten class and r-spin invariants may also be defined in higher
genus; we briefly mention some of the history. Jarvis, Kimura and Vaintrob first gave a collection
of axioms for—but not a construction of—a virtual r-spin class, as a collection of cohomology
classes on each boundary stratum of each moduli space M

r
g,n(�m) of r-spin curves [JKV01, Def.

4.1]. They proved that any virtual r-spin class defines a cohomological field theory (CohFT) (see
Section 2.3) by pushing forward to Mg,n and also that any virtual r-spin class agrees with the
Witten class defined above in genus zero [JKV01, Rem. 4.2.4].

In [Wit93, Sec. 1.3], Witten had earlier outlined an analytic construction of r-spin invariants.
Fan, Jarvis, and Ruan [FJR11, FJR13] carried out and generalised this construction and proved
that it defines a virtual r-spin class in the sense of [JKV01]. As desired in [JKV01, Rem. 4.2.5],
an algebraic construction soon followed, constructed by Polishchuk and Vaintrob [PV16] using
matrix factorizations, which has been generalised to enumerative theories associated to general
gauged linear sigma models [CFFG+18, FK20].

2.3 Properties of r-spin classes and numerical invariants

We now list the properties of the classes Wr(�m) that we will need. Propositions 2.8-2.13 come
directly from [JKV01].

Fix a monodromy vector �m. Recalling Example 2.3, let DJ ⊆M0,n be the closure of the locus
of curves with two components, C1 and C2, connected at a node η, with C1 containing the marks
in J . As before, let pJ ∈C1 and pJc ∈C2 be the preimages of η under normalisation, and define
mJ , mJc ∈ {1, . . . , r} by

mJ ≡ (|J | − 1)(r+ 1)−
∑
i∈J

mi (mod r) mJc ≡ (|Jc| − 1)(r+ 1)−
∑
i∈Jc

mi (mod r). (8)

Note that (8) is equivalent to (5) when g= 0. The particular form of (8) will be convenient; see
Proposition 2.14.

Proposition 2.8. [JKV01, Axiom C2, Cor. 3.9]. We have

Wr(�m)|DJ
=Wr((mi)i∈J ∪ {mJ})�Wr((mi)i∈Jc ∪ {mJc}),

where � denotes the product of pullbacks from the factors of DJ
∼=M0,|J |+1 ×M0,|Jc|+1.
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Remark 2.9. In genus zero, Proposition 2.8 is essentially the defining property of a cohomological
field theory, so we’ll refer to it as the CohFT property. See Section 3 for further discussion.

Proposition 2.10. [JKV01, Axiom 4]. If �m is a monodromy vector and mi = r for some i,
then Wr(�m) = 0.

Remark 2.11. In the physics literature, a marked point pi is referred to as Ramond ifmi = r (and
as Neveu-Schwarz otherwise); hence Proposition 2.10 is often referred to as Ramond vanishing.

The following follows from [JKV01, Axiom 5].

Proposition 2.12. Let �m be a numerical monodromy vector of length n� 4 with mi = 1 for
some i. Then wr(�m) = 0.

Proposition 2.13. [JKV01, Prop. 6.1]. The 3-point and 4-point r-spin invariants are as follows:

1. For any numerical r-spin monodromy vector �m= (m1, m2, m3), we have wr(�m) = 1.

2. For any numerical r-spin monodromy vector �m= (m1, m2, m3, m4), we have

wr(m1, m2, m3, m4) =
1

r
min(m1 − 1, m2 − 1, m3 − 1, m4 − 1, r−m1, r−m2, r−m3, r−m4).

Proposition 2.14. Let �m= (m1, . . . , mn) be an r-spin monodromy vector with n> 4 such
that Wr(�m) is a 1-dimensional cycle, i.e.

∑
imi = (n− 2)(r+ 1)− r. Then for J ⊆ (1, . . . , n)

with 2� |J |� n− 2, the restriction Wr(�m)|DJ
is nonzero only if the following two inequalities

hold: ∑
i∈J

mi < (|J | − 1)(r+ 1) and
∑
i∈Jc

mi < (|Jc| − 1)(r+ 1).

Proof. Let mJ , mJc be as in (8). Without loss of generality, suppose that
∑

i∈J mi � (|J | − 1)
(r+ 1), so, in particular,

mJ +
∑
i∈J

mi > (|J | − 1)(r+ 1).

Then, by (6), we have

rankWr((mi)i∈J ∪ {mJ})> |J | − 2 = dimM0,|J |+1,

and so Wr((mi)i∈J ∪ {mJ}) = 0 for dimension reasons. By Proposition 2.8, Wr(�m)|DJ
= 0. �

3. Tropical realizations of classes from cohomological field theories.

In this section we recall some notions about the tropical intersection theory of M trop
0,n and its

relation to the intersection theory ofM0,n. We define the tropicalisation of a CohFT, and then we
restrict our attention to genus zero and describe the relationship between the balancing condition
for tropicalised CohFT cycles and the WDVV relations. Basics of tropical moduli spaces that
are assumed here may be found in [SS04, Mik07, GKM09, ACP15].

3.1 Tropicalization of cycle classes in M0,n

The moduli space M0,n of rational, stable, n-pointed curves is a tropical compactification of
M0,n [Tev07]: The noncompact space M0,n may be realised as a closed subvariety of a torus T .
Denote the cocharacter lattice of T by NT . The tropicalisation of M0,n lives inside the vector
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Genus-zero r-spin theory

space Q[n] :=NT ⊗Z R as a balanced fan, which is naturally identified with M trop
0,n , the moduli

space of rational, stable, tropical n-pointed curves (Fact 3.2). Given a Chow class in M0,n,
one may define (Definition 3.4) its tropicalisation, a weighted subfan of M trop

0,n that satisfies the
balancing condition. We review the aspects of this story that we will be using and refer the
reader to [KM08, Kat09] for proofs. Some extended examples are included for the benefit of the
unfamiliar readers.

The ambient space. The vector space Q[n] has dimension
(
n−1
2

)− 1; we describe it by giving
it a (non-canonical) set of generators and relations. Fix k ∈ [n]. Then the set of pairs {i, j} with
i, j �= k gives a system of

(
n−1
2

)
vectors rk{i,j} generating Q[n]. Their Z-span gives the integral

lattice in Q[n], and they are subject to the unique relation (up to scaling):∑
{i,j}∈[n]\{k}

rk{i,j} = 0∈Q[n]. (9)

In other words, the vectors rk{i,j} may be thought of as the primitive vectors generating the rays

for the fan of projective space P(
n−1

2 )−1.

The embedding of M trop
0,n in Q[n]. The space M trop

0,n is a cone complex parameterising stable
metric trees with “legs” labeled by [n]. (A leg is a labeled half-edge incident to a vertex, usually
taken to have infinite length.) For each topological type of tree Γ, one has a cone isomorphic to

R
|E(Γ)|
�0 corresponding to all possible edge lengths, and the cones are glued together along faces by

declaring a graph with an edge of length zero equivalent to the graph obtained by contracting
of that edge. The abstract cone complex M trop

0,n admits a natural embedding into Q[n], which
we now describe: We first give the image vI ∈Q[n] of primitive vectors generating the rays of

M trop
0,n ; these correspond to trees with a single edge of length one, separating the set of legs into

two parts—I, Ic—both of size at least 2. Without loss of generality, we assume that k �∈ I. We
declare

vI =
∑

{i,j}⊆I

rk{i,j}. (10)

Given this information, the image of M trop
0,n in Q[n] is determined by multi-linearity. A point

x∈Q[n] of (the image of) M trop
0,n corresponds to an n-marked metric tree Γ. Each edge e∈E(Γ)

produces a two-part partition Ie, I
c
e of the set of indices, where we again assume k �∈ Ie. If le

denotes the length of the edge e, then

x=
∑
e∈E

levIe . (11)

Remark 3.1. Both the vector space Q[n] and the embedding of M trop
0,n may be described in a

canonical way (i.e. without choosing a distinguished index k); see [KM08, Section 2]. The choice
of k provides a non-canonical system of generators that makes both statements and computations
more concrete.

Balancing. A pure d-dimensional weighted fan Σ in a vector spaceQ with an integral structure
is called balanced if for every face τ of dimension d− 1, one has∑

σ
τ

w(σ) uτ/σ = 0∈Q/〈τ〉R, (12)

9
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Renzo Cavalieri et al.

Figure 1. The space M trop
0,4 inside Q[4] as a balanced fan.

where the sum ranges over all d-dimensional cones σ of Σ that contain τ as a face; w(σ) is the
weight of the cone σ; and uτ/σ is a primitive normal vector to τ in σ, i.e. a primitive vector in
the quotient space 〈σ〉R/〈τ〉R ⊆Q/〈τ〉R.
Fact 3.2. (For a proof, see [GKM09, Thm. 3.7]). The space M trop

0,n ⊆Q[n], with the weight
function w(σ) = 1 for all top dimensional cones σ, is a balanced fan of pure dimension n− 3.

Example 3.3. We illustrate the ideas presented in the simplest nontrivial example, M trop
0,4 , drawn

in Figure 1. The vector space Q[4] is 2-dimensional, presented as generated by three vectors.
Choosing k= 4, the generators are r4{1,2}, r

4
{1,3}, and r4{2,3}, and the relation is

r4{1,2} + r4{1,3} + r4{2,3} = 0. (13)

One may define a linear isomorphism Q[4]

∼=−→R2 by identifying the first two generators with the

standard basis vectors; the third generator becomes the vector (−1,−1). The rays of M trop
0,4 are

spanned by the primitive vectors v{1,2}, v{1,3}, v{2,3}, which in this simple case are equal to the

corresponding vectors r4{1,2}, r
4
{1,3}, r

4
{2,3}, generating Q[4]. Since M

trop
0,4 is a one-dimensional fan,

balancing needs to be checked only at the vertex (the unique 0-dimensional face). Since all rays
are given weight one, the balancing equation (12) is readily seen to reduce to (13) in this case.

Tropicalisation of Chow Classes. While tropical intersection theory is an actively developing
field [Mik06, AR10, Kat09, Sha13, Gro18] we make use of a limited portion of it, which we
recall in the context of M0,n. We refer the reader to [Kat09] for proofs and for a more complete
treatment.

If Y ⊆M0,n is a pure k-dimensional cycle that meets each boundary stratum in the expected
dimension, then its tropicalisation is supported on the k-dimensional cones of M trop

0,n , with the

coefficient of a given cone σ⊆M trop
0,n equal to the intersection number of Y with the corresponding

boundary stratum Δσ ⊆M0,n [Kat09, Prop. 9.4]. By the moving lemma, one may apply this
construction directly to Chow classes, to obtain the following.
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Definition 3.4. Let α∈Ak(M0,n) be a codimension-k Chow class. Define the tropicalization
αtrop of α to be

αtrop =
∑
σ

(∫
M0,n

Δσ · α
)
σ, (14)

where one may sum over all cones of M trop
0,n , but where the coefficients are nonzero only for

codimension-k cones.

Fact 3.5. [Kat09, Lem. 8.13]. The weighted fan αtrop ⊆Q[n] from Definition 3.4 is balanced.

We refer to a balanced weighted subfan of M trop
0,n as a tropical cycle.

Example 3.6. We consider the case n= 5 and give an example of how to check the balancing
condition along a ray. We then construct the tropicalisation of the boundary divisor classD{1,2} ∈
A1(M0,5) and show that it is a pure 1-dimensional weighted balanced fan.

The vector space Q[5] is 5-dimensional; choosing k= 5, we have six generators r5{i,j}, with
i, j �= 5, which agree with six of the ten primitive vectors spanning the rays of M trop

0,5 , i.e.

v{i,j} = r5{i,j} fori, j �= 5. (15)

By (10), the primitive vectors for the remaining four rays of M trop
0,5 are

v{1,2,3} = r5{1,2} + r5{1,3} + r5{2,3},

v{1,2,4} = r5{1,2} + r5{1,4} + r5{2,4}, (16)

v{1,3,4} = r5{1,3} + r5{1,4} + r5{3,4},

v{2,3,4} = r5{2,3} + r5{2,4} + r5{3,4}.

Each 2-dimensional cone ofM trop
0,5 is spanned by two rays, and its image in Q[5] is determined

by the images of the rays. We next check that given all 2-dimensional cones of weight 1, the
fan M trop

0,5 is balanced along the ray τ spanned by v{1,2,3}; see Figure 2. There are three 2-
dimensional cones containing τ , denoted σ{1,2}{4,5}, σ{1,3}{4,5}, σ{2,3}{4,5}. One may check that
for each σ{i,j}{4,5}, a normal vector to τ is uτ/σ{i,j}{4,5} = v{i,j}. Then (12) becomes

v{1,2} + v{1,3} + v{2,3} = 0∈Q[5]/〈v{1,2,3}〉R, (17)

which follows from (15), (16). Thus M trop
0,5 is balanced along v{1,2,3}.

Consider the class D{1,2} ∈A1(M0,5) of the divisor generically parameterizing stable curves
with two components, one containing the first two marks, the other containing the other marks.
We construct its tropicalisation Dtrop

{1,2} and check that it is balanced.

The intersections of boundary strata inM0,n are well understood (see, for example, [Cav16]).
The intersection numbers of D{1,2} with all boundary divisors are as follows:

deg(D2
{1,2}) =−1,

deg(D{1,2} ·D{3,4}) = deg(D{1,2} ·D{3,5}) = deg(D{1,2} ·D{4,5}) = 1,

and the intersection numbers of D{1,2} with the remaining 6 boundary divisors are all zero.
By Definition 3.4, we have

Dtrop
{1,2} = 〈v{3,4}〉R�0

+ 〈v{1,2,3}〉R�0
+ 〈v{1,2,4}〉R�0

− 〈v{1,2}〉R�0
. (18)
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Table 1. The computation that Dtrop
{1,2} is a balanced cycle. The first four rows

of the tables present the coefficients of the linear combination that expresses
each of the weighted primitive vectors in terms of the generators r5{i,j}. The
last row, which adds up the previous ones, computes equation (12) at the
origin: one obtains the relation among the r5{i,j}’s.

r5{1,2} r5{1,3} r5{1,4} r5{2,3} r5{2,4} r5{3,4}
v{3,4} 0 0 0 0 0 1
v{1,2,3} 1 1 0 1 0 0
v{1,2,4} 1 0 1 0 1 0
−v{1,2} −1 0 0 0 0 0
sum 1 1 1 1 1 1

Figure 2. A local picture of M trop
0,5 around the ray τ = 〈v{1,2,3}〉R�0

. The red trees drawn next
to the rays τ, 〈v{2,3}〉R�0

and the two dimensional cone σ{2,3}{4,5} show the tropical curves
parameterized by those cones.

To check that Dtrop
{1,2} satisfies the balancing condition at the origin, we write each of the primitive

vectors of the rays of Dtrop
{1,2} as linear combinations of the generators r5{i,j} using (10). The

computation is done in Table 1. Indeed, Table 1 shows that the sum of the weighted primitive
normal vectors of the rays of Dtrop

{1,2} can be expressed as
∑

{i,j}∈[5]\{5} r
5
{i,j}, which is equal to

zero by (9). See also Example 3.7 below.
We now show how to use the balancing condition to obtain explicit linear relations among

the coefficients of a tropical cycle on M trop
0,n . We describe the process for a 1-dimensional tropical

cycle, which is the case that will be used the most later on.
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Genus-zero r-spin theory

Consider a 1-dimensional tropical cycle A=
∑

I aI〈vI〉R�0 on M trop
0,n . We are using the nota-

tion introduced in this section; that is, we have fixed k ∈ [n], and we write vI =
∑

{i,j⊆I} r
k
{i,j}

for the image in Q[n] of the tropical curve with one edge of length one, separating the marks into
sets I, Ic with k ∈ Ic. The origin is the only zero-dimensional cone of A, so checking balancing
for this cycle amounts to verifying that∑

I⊆[n]�{k}
2�|I|�n−2

aIvI = 0∈Q[n]. (19)

We use the same mark k to pick a set of generators for Q[n], and we rewrite each of the vI using
equation (10), so the left-hand side of (19) becomes:

∑
I⊆[n]\{k}
2�|I|�n−2

aI

⎛⎝ ∑
{i,j}⊆I

rk{i,j}

⎞⎠=
∑

{i,j}∈[n]\{k}

⎛⎜⎜⎝ ∑
{i,j}⊆I⊆[n]\{k}

|I|�n−2

aI

⎞⎟⎟⎠ rk{i,j} =
∑

{i,j}∈[n]\{k}
Bk

{i,j}r
k
{i,j},

(20)

where the notation Bk
{i,j} is defined by the second equality. Equation (20) equals the zero vector

if and only if for every pair {i1, j1}, {i2, j2} with i1, j1, i2, j2 �= k, we have

Bk
{i1,j1} =Bk

{i2,j2}. (21)

We observe that (21) is a linear homogeneous equation in the coefficients of the tropical cycle
A. We call any such equation a balancing relation.

There is a simple description for the coefficient Bk
{i,j}: It is obtained by adding the coefficient

a{i,j} of the ray 〈v{i,j}〉R�0 and the coefficients of the 2n−3 − 2 rays 〈vI〉R�0 adjacent to it
3

such
that i, j ∈ I.
Example 3.7. We illustrate how to use (21) concretely. As in Example 3.6, let n= 5 and choose
k= 5. By (20) we have

B5
{1,2} = a{1,2} + a{1,2,3} + a{1,2,4},

B5
{3,4} = a{3,4} + a{1,3,4} + a{2,3,4},

so (21) in this case yields

a{1,2} + a{1,2,3} + a{1,2,4} = a{3,4} + a{1,3,4} + a{2,3,4}.

We observe that this is consistent with our calculations in Example 3.6; for Dtrop
{1,2}, the above

equation reads:

−1 + 1+ 1= 1+ 0+ 0.

We illustrate B5
{1,2} and B5

{3,4} in Figure 3, and note it amounts to computing the sums of the
first and last columns of Table 1.

3.2 Balancing and reconstruction

In this section we apply the techniques of Section 3.1 to the genus-zero part of any cohomological
field theory (CohFT). At a basic level, a CohFT should be thought of as a way to obtain a

3Here vI and v{i,j} being adjacent means that they span a two dimensional cone in M trop
0,n .
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Figure 3. The Petersen graph gives a slice of the cone complex of M trop
0,5 , parameterising

tropical curves where the total length of all the edges is equal to one (unfortunately it is not
possible to draw a 2-dimensional projection of M trop

0,5 that would allow us simultaneously to
observe the combinatorial structure of the cone complex as well as the structure of a balanced

fan). The vertices correspond to the primitive vectors spanning the rays of M trop
0,5 and are

labelled by the corresponding vI ’s. In red we have the cycle Dtrop
{1,2}, where the coefficients

written next to the dots are the weights of the corresponding rays. Rays without a red dot
have weight 0. The sum of the coefficients in the shaded areas in green (resp. in blue) gives the
coefficient B5

{1,2} (resp. B5
{3,4}). One can observe the balancing relation B5

{1,2} =B5
{3,4} = 1 in

this case.

collection of Chow classes Ωg,n(v1, . . . , vn)∈A∗(Mg,n), indexed by elements vi of some vector
space, that behave recursively when restricted to any boundary stratum. We refer the reader to
the introductory paper [Pan18] for the precise definitions. Let Ω be an arbitrary CohFT over
a vector space V . In order to simplify the exposition and notation, we impose the following
assumption:

Assumption 3.8. There exists a basis {eα}α∈A of V such that any class of the form
Ωg,n(eα1

, . . . , eαn
) is of pure dimension, denoted dg,n,α1,...,αn

.

Assumption 3.8 is not conceptually necessary; one may decompose any mixed-degree class
Ωg,n(v1, . . . , vn) into its homogeneous parts, apply the constructions that follow to each homo-
geneous part and then formally add everything up. Assumption 3.8 essentially prevents having
to carry around these sums. Many CohFTs that are constructed from geometric properties of
curves satisfy Assumption 3.8, including the main example in this work, the CohFT of Witten’s
r-spin classes (see Section 2).

Definition 3.9. The numerical part ω of a CohFT Ω records the degree of the zero-
dimensional classes of Ω, i.e.

ωg,n(v1, . . . , vn) =

∫
Mg,n

Ωg,n(v1, . . . , vn). (22)

We call elements of the numerical part of a CohFT numerical CohFT invariants.
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Given a CohFT class Ωg,n(v1, . . . , vn) of pure dimension dg,n,v1,...,vn
, one may construct its

tropicalisation following Definition 3.4:

Ωtrop
g,n (v1, . . . , vn) =

∑
σ

(∫
Mg,n

Δσ ·Ωg,n(v1, . . . , vn)

)
σ, (23)

where the sum runs over all cones σ of M trop
g,n .

Proposition 3.10. The class Ωtrop
g,n (v1, . . . , vn) is supported on the (dg,n,v1,...,vn

)-dimensional
skeleton of M trop

g,n , and the nonzero coefficients are determined by the numerical part
of Ω.

Proof. The first part of the statement is simply a dimension count: Ωtrop
g,n (v1, . . . , vn) can intersect

only nontrivial strata of codimension dg,n,v1,...,vn
, which in turn correspond to cones of M trop

g,n of
dimension dg,n,v1,...,vn

. The second part follows from the splitting axioms for CohFTs (see [Pan18,
Sec. 0.3]), which imply that the restriction of the class Ωtrop

g,n (v1, . . . , vn) to a boundary stratum
Δσ = (glσ)∗([

∏
iMgi,ni

]) is equal to the pushforward of a linear combination of CohFT classes
pulled-back from the factors of

∏
iMgi,ni

. By Fubini’s theorem, the integral over Mg,n of each
summand splits as a product of integrals over the individual factors. Thus, for each factor, we
obtain a corresponding numerical CohFT invariant. �

Moduli spaces of tropical curves of positive genus cannot be given the structure of a balanced
fan in a vector space. Therefore for the remainder of the paper, we restrict to g= 0, where we
can exploit the additional structure of the balancing of tropical cycles.

Example 3.11. We illustrate a balancing relation for the r-spin CohFT with r= 10, using the
notation of Section 2 and Examples 3.6 and 3.7. Consider the Witten class W10(3, 4, 5, 5, 6).
By (6), W10(3, 4, 5, 5, 6) is a cycle on M0,5 of codimension 1 (and dimension 1).

We use the balancing condition for W10(3, 4, 5, 5, 6)
trop to deduce a relationship between

3- and 4-point 10-spin invariants. As in Example 3.6, we choose k= 5 to obtain six generators
r5{i,j} with i, j ∈ [4] = [5] \ {5}. We have by Definition 3.4

W10(3, 4, 5, 5, 6)
trop =

∑
I⊆[4]

2�|I|�3

aIvI ,

where aI =
∫
M0,5

DI ·W10(3, 4, 5, 5, 6). By (20) and (21), with (i1, j1) = (1, 2) and (i2, j2) = (3, 4),

we have B5
{1,2} =B5

{3,4}, where

B5
{1,2} =

∑
I⊆[4]

1,2∈I, |I|�3

aI = a{1,2} + a{1,2,3} + a{1,2,4}, (24)

and

B5
{3,4} =

∑
I⊆[4]

3,4∈I, |I|�3

aI = a{3,4} + a{1,3,4} + a{2,3,4}. (25)
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By the CohFT Axiom (Proposition 2.8), we have e.g.

a{2,3,4} =
∫
M0,5

W10(3, 4, 5, 5, 6)|D{2,3,4} =

∫
M0,5

(W10(4, 5, 5, 8)�W10(3, 6, 2))

=

(∫
M0,4

W10(4, 5, 5, 8)

)(∫
M0,3

W10(3, 6, 2)

)
=w10(4, 5, 5, 8)w10(3, 6, 2).

Here in the notation of Proposition 2.8, we have mJ = 8 and mJc = 2. Similarly we compute the
other terms of (24) and (25):

a{1,2} =w10(3, 4, 4)w10(5, 5, 6, 6) a{1,2,3} =w10(3, 4, 5, 10)w10(5, 6, 10)

a{1,2,4} =w10(3, 4, 5, 10)w10(5, 6, 10) a{3,4} =w10(5, 5, 1)w10(3, 4, 6, 9)

a{1,3,4} =w10(3, 5, 5, 9)w10(4, 6, 1).

Thus the equation B5
{1,2} =B5

{3,4} gives us a polynomial relation between genus-zero 10-spin
invariants:

w10(3, 4, 4)w10(5, 5, 6, 6) +w10(3, 4, 5, 10)w10(5, 6, 10) +w10(3, 4, 5, 10)w10(5, 6, 10) (26)

=w10(5, 5, 1)w10(3, 4, 6, 9) +w10(3, 5, 5, 9)w10(4, 6, 1) +w10(4, 5, 5, 8)w10(3, 6, 2).

We can generate a huge number of relations of this form between genus-zero 10-spin invariants,
both by varying i1, j1, i2, j2, and k and by considering the balancing of other (including higher-
dimensional) 10-spin Witten classes along various cones of M trop

0,n . Theorem 3.12 shows that
this collection of relations is equivalent to the WDVV equations, and in Section 4, we use the
balancing relations to give an efficient recursive algorithm for reconstructing any genus-zero
r-spin invariant. For the moment, we note that (26) is consistent with Proposition 2.13; indeed,
(26) reads

1 · 4 + 0 · 1 + 0 · 1 = 1 · 1 + 1 · 1 + 2 · 1.
In Figure 4, we have computed aI for all I and labeled the rays of M trop

0,5 accordingly. We have

then drawn the quantities Bk
{i,j} for all i, j ∈ [5] \ {k}, for k= 5 (left picture) and for k= 1 (right

picture). Pictorially, one can immediately confirm the balancing relations for B5
{i,j} and B1

{i,j}.

WDVV relations. InM0,4
∼= P1 we have the simple fact that any boundary divisor is equivalent

in the Chow ring to the class of a point. Choosing any two of the three boundary divisors and
subtracting them one obtains a relation, which we call a basic relation. Any relation obtained
by pulling back via forgetful morphisms or by pushing forward via gluing morphisms of a basic
relation is called a WDVV relation. Given a CohFT Ω on a vector space V , restricting a class
Ω0,n(v1, . . . , vn) to a WDVV relation and integrating produces a relation among the numerical
CohFT invariants that we also call a WDVV relation. Explicitly, the relation obtained from
pulling back a basic relation via some forgetful morphism has the following form: Denote by
{eα} a basis for V and by {eα} the dual basis with respect to the CohFT metric. Choose four
numbers, a, b, c, d, in the index set [n] and for a set I denote by �vI = {vi}i∈I :∑

α

∑
I⊆{[n]�{a,b,c,d}}

(
ω0,|I|+3(va, vb, �vI , eα)ω0,|Ic|+3(e

α, �vIc , vc, vd)

−ω0,|I|+3(va, vd, �vI , eα)ω0,|Ic|+3(e
α, �vIc , vb, vc)

)
= 0.

(27)

16

https://doi.org/10.1112/mod.2024.2
Downloaded from https://www.cambridge.org/core. IP address: 18.118.186.251, on 15 Mar 2025 at 01:33:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/mod.2024.2
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Genus-zero r-spin theory

Figure 4. The balancing relations B5
{i,j} = 4 (left picture) and B1

{i,j} = 7 (right picture) for the

tropicalization of W10(3, 4, 5, 5, 6). In each picture, the equally colored collections of vertices all
have the same sum. Example 3.11 confirms that the sums of the light-green and light-purple

collections of vertices in the left picture are both equal to 4. Note that we have named each ray
vI of M trop

0,5 (corresponding to a vertex of the Petersen graph) using the convention k �∈ I; this
is the only reason the vertex labels of the two pictures differ.

We now see that the numerical part of the WDVV relations has a natural analogue in the
tropicalisation.

Theorem 3.12. For any CohFT Ω, consider the numerical CohFT invariants as unknowns to
be determined; the following two collections of equations impose equivalent constraints among
the invariants of ω:

1. the balancing equations (21) for all tropical cycles Ωtrop
0,n (v1, . . . , vn).

2. the collection of all WDVV relations.

Proof of Theorem 3.12. We prove this statement in two steps: First we show that for a CohFT
class of dimension 1, the fact that its tropicalisation is balanced is equivalent to numerical WDVV
relations that are pull-backs of the basic ones via forgetful morphisms (and thus take the simple
form from equation (27)). Next we show that for a CohFT class of arbitrary dimension, its
balancing along a cone is equivalent to WDVV relations that also involve pushforwards with
respect to gluing morphisms.

Step I. Assume dimΩ0,n(v1, . . . , vn) = 1. Its tropicalisation can be written as a linear combi-
nation of rays:

Ωtrop
0,n (v1, . . . , vn) =

∑
a∈I⊆[n]�k
2�|I|�n−2

aI〈vI〉R�0
⊆Q[n], (28)

with

aI =
∑
α

ω0,|I|+1(�vI , eα)ω0,|Ic|+1(e
α, �vIc), (29)

where ω0,|I|+1(�vI , eα) and ω0,|Ic|+1(e
α, �vIc) are numerical CohFT invariants.

Assume Ωtrop
0,n (v1, . . . , vn) is balanced, choose a, b, c, d∈ [n] and observe that the linear pro-

jection Q[n] →Q{a,b,c,d} restricts to the forgetful morphism F :M trop
0,n →M trop

0,4 , where the marks
that are remembered are a, b, c, d. A useful fact used in tropical intersection theory (see e.g.
[AR10, Sec. 4]) is that the pushforward of a weighted, balanced fan via a map of fans is also a
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weighted, balanced fan. We apply this fact to the map F above. Here, as Ω0,n(v1, . . . , vn) is a
sum of rays, its pushforward along F is a sum of rays inM trop

0,4 . SinceM trop
0,4 is an irreducible fan,

the only balanced weight functions are constant on all three rays, hence F∗(Ω0,n(v1, . . . , vn)) is
a constant times the sum of the three rays of M trop

0,4 .

The coefficient of the ray 〈v{a,b}〉R�0
in F∗(Ω

trop
0,n (v1, . . . , vn)) equals the sum of the coef-

ficients aI , where a, b∈ I and c, d∈ Ic, and similarly, the coefficient of the ray 〈v{a,d}〉R�0
in

F∗(Ω
trop
0,n (v1, . . . , vn)) equals the sum of the coefficients aI where a, d∈ I and b, c∈ Ic. Imposing

the equality of these coefficients and using (29), one obtains the WDVV relation (27). Thus we
have proven that satisfying balancing implies satisfying WDVV.

Conversely, assume that the WDVV relations are satisfied among the numerical invariants
of Ω. We want to show that Ωtrop

0,n (v1, . . . , vn) is balanced. By construction, vI is the primitive
vector for the ray 〈vI〉R�0

, and therefore this means showing that∑
I⊆[n]�k

2�|I|�n−2

aIvI = 0∈Q[n]. (30)

Note that we have fixed a k ∈ [n] to not double-count each ray. We may use (10) to rewrite:

∑
I⊆[n]\{k}
2�|I|�n−2

aIvI =
∑

{i,j}∈[n]\{k}

⎛⎜⎜⎝ ∑
{i,j}⊆I⊆[n]�{k}

|I|�n−2

aI

⎞⎟⎟⎠ rki,j . (31)

Subtracting the coefficient of rca,b and the coefficient of rca,d in (31), one obtains the WDVV
relation (27), which we are assuming holds. Since this happens for all choices of a, b, c, d∈ [n],
all the coefficients in (31) are equal so (30) holds, concluding the first part of the proof.

Step II. Let Ω0,n(v1, . . . , vn) be a CohFT class of pure dimension d, and let τ be a (d− 1)-
dimensional cone in M trop

0,n corresponding to a graph Γ. The corresponding stratum Δτ is iso-

morphic to a product
∏

v∈V (Γ)M0,nv
, where nv denotes the valence of the vertex v of Γ. Denote

by φ :
⋃

v∈V (Γ){v} × [nv]→P([n]) is the function that assigns to each half-edge h of Γ and is the
set of marks in the connected component of Γ v that contains h.

Choose a k ∈ [n], and for every vertex v denote by kv the unique element of [nv] such that
k ∈ φ([kv]).
Claim 3.13. For every Iv ⊆ [nv] not containing kv, the assignment

vIv �→ v∪i∈Ivφ(v,i)
, (32)

gives a linear injection

Φ :
⊕

v∈V (Γ)

Q[nv] →Q[n]/〈τ〉R. (33)

We defer the proof of the claim to not break the flow of this proof. For dimension reasons, the
CohFT class of dimension d restricted to the stratum associated to the cone τ can be nonzero
only if it decomposes as a sum over the vertices v of Γ, where each summand is a product of a
1-dimensional CohFT class Ω1

v supported on the vertex v with a multiple of the class of a point
on all the other vertices. In formulas, we have:
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Genus-zero r-spin theory

Ω0,n(v1, . . . , vn)|Δτ
=
∑

v∈V (Γ)

glΓ∗

⎛⎝cvπ∗v(Ω1
v)�

∏
w �=v

π∗w(pt)

⎞⎠ , (34)

where glΓ :
∏

v∈V (Γ)M0,nv
→M0,n is the gluing morphism, πv denotes the projection on the fac-

tor corresponding to vertex v and the coefficients cv are real numbers determined by the splitting
axioms. These coefficients are obtained from numerical CohFT invariants and the CohFT metric,
but this information will not be explicitly used in this argument.

Any d-dimensional cone σ in M trop
0,n of which τ is a face corresponds to a graph Γσ with an

edge contraction ceσ : Γσ → Γ. Denote by v̂ : {σ� τ}→ V (Γ) the function that assigns to each
d-dimensional cone σ the vertex ceσ(eσ) of Γ that is the image of the contracted edge. The
edge eσ also determines a two-part partition of the set of indices in [nv̂(σ)], i.e. a ray ρσ with

primitive vector vIσ in M trop
0,nv̂(σ)

⊆Q[nv̂(σ)]. By the CohFT splitting axioms, the restriction of

Ω0,n(v1, . . . , vn) to Δσ satisfies∫
Δσ

Ω0,n(v1, . . . , vn) = cv

∫
M0,nv̂(σ)

Ω1
v ·Δρσ

. (35)

We can now analyse the balancing condition along the face τ :

∑
σ
τ

Ω0,n(v1, . . . , vn)|Δσ
uτ/σ =

∑
v∈V (Γ)

cvΦ

⎛⎝ ∑
σ∈v̂−1(v)

(∫
M0,nv̂(σ)

Ω1
v ·Δρσ

)
vIσ

⎞⎠ . (36)

The vanishing of the left-hand side of (36) gives the balancing of Ω0,n(v1, . . . , vn) along the
higher-dimensional face τ ; on the right-hand side, this quantity is expressed as a sum over the
vertices v of Γ; inside the large parentheses, we recognise the weighted sum of normal vectors,
whose vanishing gives balancing for the 1-dimensional CohFT class Ω1

v at the cone point of
M0,nv̂(σ). Then we take the image via Φ, which is a linear injection by Claim 3.13. Thus (36)
shows that the balancing equation for a CohFT class along a higher-dimensional face τ reduces
to a collection of balancing equations for 1-dimensional CohFT classes. The theorem is proved
by invoking Step I.

Proof of Claim 3.13. This statement is well-known to the experts, but we include a proof here
since we are not aware of a reference to it in the literature. We begin by proving the codimension-
1 case. Let τ be a ray inM trop

0,n corresponding to a graph Γ with only one edge separating the legs
into two subsets, I and Ic. Without loss of generality, we assume that k �∈ I and that the marks
in I are adjacent to v1: those in I

c to v2. In this case, nv1
= |I|+ 1, and we denote the additional

mark (corresponding to the germ of the edge) by kv1
, following the notation in the proof of

Theorem 3.12. The 1-dimensional linear space of Q[n] containing the ray τ is spanned by the

vector vτ =
∑

i,j∈I r
k
i,j . The map Φ|Q[nv1

]
is a linear isomorphism onto its image in Q[n]/〈τ〉R: It

is defined by r
kv1

i,j �→ rki,j , and the image of the relation among the generators of Q[nv1
] is precisely

the vector vτ . Denoting by x the mark corresponding to the germ of the edge attaching to v2,
the map Φ|Q[nv2

]
is defined as follows:

rki,j �→ rki,j if i, j in Ic

rkj,x �→
∑
i∈I

rki,j if j in Ic,
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where we have already set vτ = 0. It is immediately necessary to check that the restriction
Φ|Q[nv2

]
is injective and that Φ(Q[nv1

] ⊕ 0)∩Φ(0⊕Q[nv1
]) = 0, proving the claim in the case

dim τ = 1. To prove the claim for a general cone τ of dimension d (corresponding to a graph
Γ), one can choose arbitrarily an ordering of the edges of Γ and can iterate this construction
d times, adding one edge at a time until Γ is obtained, thus composing all the resulting linear
injections. �

4. Recursive structure of r-spin invariants

In this section we introduce a recursion for r-spin invariants, deducible from either the WDVV
equations or (equivalently by Proposition 3.10) the balancing relations of tropical cycles. We will
use the recursion extensively in proving Theorems 5.1 and 6.2.

Theorem 4.1. Let �m= (m1, . . . , mn) be a numerical r-spin monodromy vector. Fix distinct
elements i, j, k ∈ [n] with mi > 1 and mj < r. Then

wr(�m)−wr(m1, . . . , mi − 1, . . . , mj + 1, . . . , mn) = (n− 3) · T i,j,k
r (m1, . . . , mn), (37)

where, for distinct elements i, j, k ∈ [n],

T i,j,k
r (m1, . . . , mn) :=

1

r

(
δmj+mk�r+1wr(mi − 1, m1, . . . , m̂i, m̂j , m̂k, . . . , mn, mj +mk − r)

− δmi+mk�r+2wr(mj , m1, . . . , m̂i, m̂j , m̂k, . . . , mn, mi +mk − r− 1)
)
, (38)

the symbol δa�b equals one when the inequality is satisfied and zero otherwise.

Remark 4.2. The left hand side of (37) is independent of k, which implies that T i,j,k
r (m1, . . . , mn)

is independent of k.

Proof. Since wr(�m) is invariant under permuting the entries of �m, we may assume that i= 1 and
j = 2. By Theorem 3.12, we may equivalently use either the WDVV equations or the balancing
condition for tropical cycles to carry out the proof. Let

�m∗ = (m∗
1, . . . , m

∗
n+1) = (m1 − 1, m2, m3, . . . , mn, 2),

and consider the 1-dimensional tropical cycle Wr(�m
∗). The balancing condition implies

Bn+1
{1,3}(Wr(�m

∗)) =
∑

J⊆{1,...,n+1}
2�|J |�n−1

1,3∈J, n+1�∈J

∫
M0,n

Wr(�m
∗)|DJ

=
∑

J⊆{1,...,n+1}
2�|J |�n−1

2,3∈J, n+1�∈J

∫
M0,n

Wr(�m
∗)|DJ

=Bn+1
{2,3}(Wr(�m

∗)).

Terms Wr(�m
∗)|DJ

, with {1, 2, 3} ⊆ J , appear on both sides of the above equation, so we may
remove them, thus obtaining a WDVV equation:∑

J⊆{1,...,n+1}
1,3∈J, 2,n+1�∈J

∫
M0,n

Wr(�m
∗)|DJ

=
∑

J⊆{1,...,n+1}
2,3∈J, 1,n+1�∈J

∫
M0,n

Wr(�m
∗)|DJ

. (39)

By the CohFT property (Proposition 2.8), we have:∫
M0,n

Wr(�m
∗)|DJ

=wr((m
∗
i )i∈J , m

∗
J))wr((m

∗
i )i �∈J , m

∗
Jc), (40)
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where mJ , mJc are as in (8). Note that by Proposition 2.14, (40) vanishes unless

(|J | − 1)(r+ 1)− r <
∑
i∈J

m∗
i < (|J | − 1)(r+ 1).

We now apply the following additional vanishing property, which we prove after finishing this
proof.

Claim 4.3. Let n� 5, and suppose that �m= (m1, . . . , mn) is a numerical r-spin monodromy
vector with mi = 2 for some i. Then wr(�m) = 0.

Since mn+1 = 2, Claim 4.3 and (40) imply that any term on either side of (39) with |Jc|> 4,
or equivalently |J |<n− 3, vanishes. The remaining terms on the left-hand side are:

• The term with J = [n+ 1] \ {2, n+ 1}, i.e.
wr(m1 − 1, m3, . . . , mn, m2 + 1)wr(m2, 2, r− 1−m2) =wr(m1 − 1, m2 + 1, m3, . . . , mn),

and

• The terms with J = [n+ 1] \ {2, k, n+ 1} for k ∈ {4, . . . , n}, namely
n∑

k=4

wr(m1 − 1, m3, m4, . . . , m̂k, . . . , mn, m2 +mk − r)wr(m2, mk, 2, 2r−m2 −mk)

=
1

r

n∑
k=4

δm2+mk�r+1 ·wr(m1 − 1, m3, . . . , m̂k, . . . , mn, m2 +mk − r).

Identical calculations show that the right-hand side of (39) is

wr(�m) +
1

r

n∑
k=4

δm1+mk�r+2 ·wr(m2, m3, . . . , m̂k, . . . , mn, m1 +mk − r− 1).

Combining all terms above yields

wr(�m)−wr(m1 − 1, m2 + 1, m3, . . . , mn) =

n∑
k=4

T 1,2,k(�m). (41)

Finally, we observe that the left-hand side of (41) is invariant under permuting m3, . . . , mn,
hence the right-hand side is also. It follows that the n− 3 summands on the right-hand side of
(41) are all equal, yielding (37).

Proof of Claim 4.3. Ifmi = r for some i∈ [n], then wr(�m) = 0, so assumemi � r− 1 for all i∈ [n].
Suppose m1 = 2. Define the monodromy vector

�m∗∗ = (m∗∗
1 , . . . , m

∗∗
n+1) = (2, m2 − 1, m3, . . . , mn, 2).

Analogously to (39), the balancing condition B3
{1,2}(Wr(�m

∗∗)) =B3
{1,4}(Wr(�m

∗∗)) for the 1-

dimensional tropical cycle Wr(�m
∗∗) implies the WDVV equation∑

J⊆{1,...,n+1}
1,2∈J, 3,4�∈J

∫
M0,n

Wr(�m
∗∗)|DJ

=
∑

J⊆{1,...,n+1}
1,4∈J, 2,3�∈J

∫
M0,n

Wr(�m
∗∗)|DJ

. (42)

First note that using the constraintsmi � r− 1,m1 = 2, n� 5, and
∑n

i=1mi = (n− 2)(r+ 1),
one can deduce that

mi +mj � r+ 3 for all distinct i, j ∈ {2, . . . , n}. (A)
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Second, using m∗∗
1 =m∗∗

n+1 = 2, m∗∗
i � r− 1 and

∑n+1
i=1 mi = (n− 1)(r+ 1)− r, we have that if

1, n+ 1∈ J , then∑
i∈Jc

mi � (n− 1)(r+ 1)− r− 4− (|J | − 2)(r− 1) = (|Jc| − 1)(r+ 1) + (2 |J | − 7).

Proposition 2.14 impliesWr(�m
∗∗)|DJ

= 0 if |J |� 4. If |J |= 3, thenWr(�m
∗∗)|DJ

could be nonzero
only if mJc = 1. But in this case, n� 5 implies |Jc|� 3, so Propositions 2.8 and 2.12 imply
Wr(�m

∗∗)|DJ
= 0. To summarize:

If |J |� 3 and {1, n+ 1} ⊆ J, then

∫
M0,n

Wr(�m
∗∗)|DJ

= 0. (B)

We now show that wr(�m) = 0 by induction on n, with base case n= 5. If n= 5, then a straight-
forward analysis using Proposition 2.8, Proposition 2.13, and Observations (A) and (B) imply
the following about the terms in the left-hand side of (42):

• When J = {1, 2}, we have
∫
M0,n

Wr(�m
∗∗)|DJ

=wr(2, m2 − 1, r−m2) ·wr(�m) =wr(�m).

• When J = {1, 2, 5}, we use (A) to see that
∫
M0,n

Wr(�m
∗∗)|DJ

= (1/r2) · δm2+m5�r+3 = 1/r2.

• When J = {1, 2, 6}, we use (B) to see that
∫
M0,n

Wr(�m
∗∗)|DJ

= 0.

• When J = {1, 2, 5, 6}, we use (B) to see that
∫
M0,n

Wr(�m
∗∗)|DJ

= 0.

By the same arguments, the right side of (42) has the following terms:

• When J = {1, 4}, we have
∫
M0,n

Wr(�m
∗∗)|DJ

=wr(2, m2 − 1, m3, m4 + 1, m5).

• When J = {1, 4, 5}, we use (A) to see that
∫
M0,n

Wr(�m
∗∗)|DJ

= (1/r2) · δm2+m3�r+2 = 1/r2.

• When J = {1, 4, 6}, we use (B) to see that
∫
M0,n

Wr(�m
∗∗)|DJ

= 0.

• When J = {1, 4, 5, 6}, we use (B) to see that
∫
M0,n

Wr(�m
∗∗)|DJ

= 0.

Thus (42) reduces to

wr(�m) =wr(2, m2 − 1, m3, m4 + 1, m5).

Iterating, we have

wr(�m) =wr(m1, m2 − j, m3, m4 + j, m5),

for all 0� j �min(m2 − 1, r−m4). In fact (1) implies min(m2 − 1, r−m4) = r−m4. Taking
j = r−m4, we conclude wr(�m) = 0 from Proposition 2.10. This completes the base case.

Now assume n> 5 and that the claim holds for all 5� n′ <n. The inductive hypothesis
implies that every term on both sides of (42) with 4� |J |� n− 2 vanishes. We now account for
the remaining terms on the left side of (42):

• When J = {1, 2}, we have
∫
M0,n

Wr(�m
∗∗)|DJ

=wr(�m).

• When J = {1, 2, i} for i∈ {5, . . . , n}, the inductive hypothesis shows
∫
M0,n

Wr(�m
∗∗)|DJ

= 0.

• When J = {1, 2, n+ 1}, we use (B) to see that
∫
M0,n

Wr(�m
∗∗)|DJ

= 0.

• When J = [n] \ {3, 4}, we use (B) to see that
∫
M0,n

Wr(�m
∗∗)|DJ

= 0.

We then account for the right side:

• When J = {1, 4}, we have that
∫
M0,n

Wr(�m
∗∗)|DJ

=wr(2, m2 − 1, m3, m4 + 1, m5, . . . , mn).
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Genus-zero r-spin theory

• When J = {1, 4, i} for i∈ {5, . . . , n}, the inductive hypothesis shows
∫
M0,n

Wr(�m
∗∗)|DJ

= 0.

• When J = {1, 4, n+ 1}, we use (B) to see that
∫
M0,n

Wr(�m
∗∗)|DJ

= 0.

• When J = [n+ 1] \ {2, 3}, we use (B) to see that
∫
M0,n

Wr(�m
∗∗)|DJ

= 0.

Thus (42) reads

wr(�m) =wr(2, m2 − 1, m3, m4 + 1, m5, . . . , mn).

As in the base case, we iterate to see wr(�m) =wr(2, m2 − j, m3, m4 + j, m5, . . . , mn) for 0� j �
min(m2 − 1, r−m4). Again, min(m2 − 1, r−m4) = r−m4 by (A). Taking j = r−m4, we obtain
wr(�m) = 0. �

We next use Theorem 4.1 to give direct proofs of two statements proved by Pandharipande-
Pixton-Zvonkine [PPZ19] using the representation theory of sl2(C). The first, which follows from
[PPZ19, Thm. 2], is the following divisibility statement.

Corollary 4.4. For any numerical monodromy vector �m of length n, wr(�m) is an integer

multiple of (n−3)!
rn−3 .

Proof. We induct on n. The base case n= 3 follows from 2.13. If n> 3, (37) expresses wr(�m)
as n−3

r · F , where F is a Z-linear combination in invariants wr(�m
′) with |m′|= n− 1. By the

inductive hypothesis, F is an integer multiple of (n−4)!
rn−4 , and the result follows. �

In Theorem 6.2, we will see that in fact wr(�m) is a nonnegative integer multiple of (n−3)!
rn−3 .

The second statement is the following generalization of Claim 4.3, which is [PPZ19, Prop. 1.4].

Corollary 4.5. Let n� 4, and suppose �m= (m1, . . . , mn) is an r-spin monodromy vector with∑n
i=1mi = (n− 2)(r+ 1). If mi � n− 3 for some i, then wr(�m) = 0.

Proof. We may assume m1 � n− 3. We proceed by induction on n and m1, with base cases
m1 = 1 (for all n) following from Proposition 2.13.

If n= 4 the base case is the only case, so let n> 4. Assume that the Corollary holds for
n′ <n and for n′ = n, m1

′ <m1. Since
∑

imi = (n− 2)(r+ 1), we may also assume without loss
of generality that m2 < r. By Theorem 4.1,

wr(�m)−wr(m1 − 1, m2 + 1, m3, . . . , mn) = (n− 3)T 1,2,3
r (m1, . . . , mn).

Both terms of T 1,2,3
r (m1, . . . , mn) contain an (n− 1)-pointed r-spin invariant. By induction on

n, both of these invariants are zero: the first term has an insertion m1 − 1� (n− 1)− 3, and the
second term has an insertion m1 +m3 − r− 1�m1 − 1� (n− 1)− 3. Thus

wr(�m) =wr(m1 − 1, m2 + 1, m3, . . . , mn).

By induction on m1, wr(�m) = 0. �

Our next goal is to prove Lemma 4.9, a reconstruction result for wr(�m), which we will use
in Section 5 to give a recursive proof of Theorem 5.1.

Definition 4.6. Let �m= (mi) and �m′ = (mi
′) be two monodromy vectors of length n. We say

that �m and �m′ are neighbors if there are i, j ∈ {1, . . . , n} so that

�m− �m′ = (d1, . . . , dn), where dk = δik − δjk,

or, equivalently, �m− �m′ is some permutation of the vector (−1, 1, 0, . . . , 0).
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Example 4.7. The two r-spin monodromy vectors (2, 2, r− 1, r− 1) and (2, 3, r− 2, r− 1) are
neighbors.

We need the following fact.

Lemma 4.8. Given two r-spin monodromy vectors �m and �m′ of length n, there exists a sequence

of monodromy vectors �m0 = �m, �m1, . . . , �mn−1, �mn = �m′ such that �mi and �mi+1 are neighbors for
all i.

Proof. This follows from a standard inductive argument. �

Lemma 4.9. Let D be the set of numerical monodromy vectors for a given r, and let w̃r :D→C

be a function such that:

(i) w̃r(�m) = 1 when |�m|= 3,

(ii) w̃r(�m) = 0 if |�m|� 4 and mi = r for some i∈ {1, . . . , |�m|},
(iii) w̃r satisfies the recursion (37).

Then w̃r =wr.

Remark 4.10. Lemma 4.9 is a slight variation of previous reconstruction lemmas in the literature.
In [JKV01, Prop. 6.2], property (iii) is replaced by the WDVV relations and a nonvanishing 4-
point invariant. In [PPZ19, Lem. 1.3], property (ii) is replaced with vanishing of w̃r(�m) if mi = 1
for some i. Lemma 4.9 is in a form particularly suited to proving Theorem 5.1.

Proof of Lemma 4.9. We prove that w̃r =wr by induction on the length n of the monodromy
vector. The base case n= 3 holds by Proposition 2.13. Let k > 3 and assume wr = w̃r holds for
all monodromy vectors of length less than k. By (ii) and Proposition 2.10, w̃r(�m) =wr(�m) if �m
is a length-k monodromy vector with mi = r for some i. (It is easy to see that there must exist
such a monodromy vector.)

By Theorem 4.1, if �m and �m′ are neighbors such that wr(�m) = w̃r(�m), and such that wr(�a) =
w̃r(�a) for all monodromy vectors �a of length less than |�m|, then wr(�m

′) = w̃r(�m
′). Combining

this with Lemma 4.8 implies that wr(�m) = w̃r(�m) for all monodromy vectors �m of length k,
proving the claim. �

5. Explicit piecewise-polynomial formula

In this section, we prove a closed formula for genus-zero primary r-spin invariants.

Theorem 5.1. For �m= (m1, . . . , mn) a numerical genus-zero r-spin monodromy vector, we
have the formula

wr(�m) =
1

2rn−3

∑
S⊆[n]∑

i∈S mi�(|S|−1)r+n−2

(−1)1+|S|
n−3∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)
. (43)

This immediately implies:

Corollary 5.2. wr(m1, . . . , mn) is a piecewise-polynomial function of the inputs
m1, . . . , mn, r. Precisely, the set

Kn := {(m1, . . . , mn, r) | 1�mi � r− 1,
∑

imi = (n− 2)(r+ 1)} ⊆Zn
>0 ×Z>0,
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of numerical n-pointed monodromy vectors is the set of lattice points of an unbounded polyhe-
dron Mn, and there is a finite wall-chamber decomposition of Mn such that in each chamber,
wr(m1, . . . , mn) is a polynomial.

Proof. This is immediate from the form of (43); the walls are the affine-linear spaces

LS := {(m1, . . . , mn, r) | ∑i∈S mi = (|S| − 1)r+ n− 3},
for subsets S ⊆ [n]. �

Remark 5.3. In fact, a stronger version of piecewise-polynomiality holds. The walls of the above
wall-chamber decomposition have “width n− 3” in the sense that if E and E′ are adjacent
chambers separated by a single wall LS and if P, P ′ ∈Q[m1, . . . , mn, r] are such that wr(�m) = P
after restriction to E and wr(�m) = P ′ after restriction to E′, then P and P ′ agree not only on
the wall LS but also on the set

{(m1, . . . , mn, r)∈Kn | (|S| − 1)r+ 1�
∑

i∈S mi � (|S| − 1)r+ n− 3}.
For the proof of Theorem 5.1, we introduce two pieces of notation:

Notation 5.4. For �m= (m1, . . . , mn), a numerical r-spin monodromy vector, let w̃r(�m) denote
the right-hand side of (43):

w̃r(�m) :=
1

2rn−3

∑
S⊆[n]∑

i∈S mi�(|S|−1)r+n−2

(−1)1+|S|
n−3∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)
. (44)

Therefore, our goal for the remainder of this section is to prove w̃r(�m) =wr(�m) for all r
and �m.

Notation 5.5. Let �m be a fixed n-pointed genus-zero r-spin monodromy vector. For a subset
S ⊆ [n], we say that S satisfies (∗1) (resp. (∗2)) if∑

i∈S
mi � (|S| − 1)r+ n− 2, (∗1)

∑
i∈S

mi � (|S| − 1)r+ n− 3. (∗2)

We will say that, e.g. S, satisfies (∗1) with respect to �m if �m is unclear from context. From (44),
it is clear why Condition (∗1) is useful: the usefulness of (∗2) will become clear in the proof of
Theorem 5.1.

Observe that if |S|� 1, then S necessarily satisfies (∗1), while if |S|� n− 1, then S cannot
satisfy (∗1).

We now state two lemmas that we will use in the proof, starting with the following well-known
combinatorial fact:

Lemma 5.6. Let T ⊆A be finite sets, and let F (x)∈C[x] with deg(F (x))< |A| − |T |. Then∑
T⊆S⊆A

(−1)|S|F (|S|) = 0. (45)

Proof. We reduce to the case T = ∅ by summing over S ⊆A \ T and performing the substitution
|S| �→ |S|+ |T | (which does not affect the degree of F ). We then reduce to the case F (x) = xj
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since the left-hand side of (45) is linear in F . Finally, the left-hand side of (45) is equal to∑|A|
k=0(−1)k

(|A|
k

)
kj , which (up to sign) counts surjections [j]→A by a famous inclusion-exclusion

argument. There are clearly no such surjections. �

In proving Theorem 5.1, we will apply Lemma 5.6 in the following form:

Lemma 5.7. Let n be a positive integer, let m1, . . . , mn−2 ∈C and let �k(x)∈C[x] be linear
functions for k= 1, . . . , n− 4. Then∑

S⊆{1,2,...,n−2}
(−1)1+|S|

n−4∏
k=1

((∑
i∈S

mi

)
− �k(|S|)

)
= 0. (46)

Proof. Consider the left-hand side of (46) as a degree-(n− 4) polynomial in formal vari-
ables m1, m2, . . . , mn−2, and denote this polynomial by G(m1, m2, . . . , mn−2). Fix integers
a1, . . . , an−2 � 0 with

∑n−2
i=1 ai � n− 4, and letM =

∏n−2
i=1 (mi)

ai . The coefficient of the monomial
M in G(m1, . . . , mn−2) is equal to ∑

S⊆{1,...,n−2}
S⊇{i:ai>0}

(−1)|S|FM (|S|),

where

FM (x) =
∑

B⊆{1,...,n−4}
|B|=∑

i ai

( |B|
a1, . . . , an−2

) ∏
k∈{1,...,n−4}\B

�k(x).

Then FM (x) has degree

deg(FM (x)) = n− 4−
n∑

i=1

ai <n− 2− |{i : ai > 0}| ,

By Lemma 5.6, the coefficient ofM in G(m1, . . . , mn−2) is zero. SinceM is arbitrary, G vanishes
identically as desired. �

Proof of Theorem 5.1 It suffices to show that w̃r(�m) satisfies conditions (i), (ii) and (iii) of
Lemma 4.9.

If n= 3, then for any �m, the only subsets S satisfying (∗1) are those with |S|� 1. Then
w̃r(�m) = 3

2 − 1
2 = 1 as desired, proving condition (i).

Next, suppose �m is a numerical r-spin monodromy vector of length n� 4, with mi = r for
some i∈ [n]. Suppose without loss of generality that i= n. Let S ⊆ [n− 1]. Observe that S
satisfies (∗1) if and only if S ∪ {n} satisfies (∗1) and the summands corresponding to S and
S ∪ {n} of w̃r(�m) are identical with opposite signs since |S ∪ {n}|= |S|+ 1. This shows that
w̃r(�m) = 0, proving (ii).

Next, suppose �m is a numerical r-spin monodromy vector of length n� 4 with mi = r for
some i∈ [n]. Suppose without loss of generality that i= n. Let S ⊆ [n− 1]. Observe that S
satisfies (∗1) if and only if S ∪ {n} satisfies (∗1), and the summands corresponding to S and S ∪
{n} of w̃r(�m) are identical with opposite signs since |S ∪ {n}|= |S|+ 1. This shows w̃r(�m) = 0,
proving (ii).

Finally, we must prove that w̃r satisfies (37). We do so by induction on n, with base case
n= 3. When n= 3, the calculation w̃r(�m) = 1 above implies that both sides of (37) vanish. For
n� 4, let
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�m∗ = (m∗
1, . . . , m

∗
n) = (m1 − 1, m2 + 1, m3, . . . , mn). (47)

Then we compute

w̃r(�m)− w̃r(�m
∗) =

n− 3

2rn−3

( ∑
S⊆[n]
(∗1)

1∈S, 2�∈S

(−1)1+|S|
n−3∏
k=2

((∑
i∈S

mi

)
− (|S| − 1)r− k

)
(48)

−
∑
S⊆[n]
(∗2)

2∈S, 1�∈S

(−1)1+|S|
n−4∏
k=1

((∑
i∈S

mi

)
−(|S| − 1)r− k

))
.

The factor n− 3 appears as the difference of a k= 1 factor and a k= n− 3 factor, from the
definition of w̃r. By induction, we have

T 1,2,3
r (�m) =

1

r

(
δm2+m3�r+1w̃r(m1 − 1, m4, . . . , mn, m2 +m3 − r) (49)

− δm1+m3�r+2w̃r(m2, m4, . . . , mn, m1 +m3 − r− 1)
)
.

Let �m∗∗ = (m1 − 1, m4, . . . , mn, m2 +m3 − r), where we index this tuple by the set
{1, 4, . . . , n, †} and let �m∗∗∗ = (m2, m4, . . . , mn, m1 +m3 − r− 1), where we index this tuple
by the set {2, 4, . . . , n, •}. Plugging in (44) to (49), we have four cases, according to whether
m2 +m3 � r+ 1 and whether m1 +m3 � r+ 2.

Case 1: m2 +m3 � r+ 1 and m1 +m3 � r+ 2. By (49) and the definition of w̃r, we have

T 1,2,3
r (�m) =

1

2rn−3

⎛⎜⎝ ∑
S′⊆{1,4,...,n,†}(*2) w.r.t. �m∗∗

(−1)
1+

∣
∣
∣S

′∣∣
∣
n−4∏
k=1

((∑
i∈S′

m∗∗
i

)
− (|S′| − 1)r− k)

−
∑

S′′⊆{2,4,...,n,•}(*2) w.r.t. �m∗∗∗

(−1)
1+

∣
∣
∣S

′′∣∣
∣
n−4∏
k=1

((∑
i∈S′′

m∗∗∗
i

)
− (|S′′| − 1)r− k)

⎞⎟⎠ . (50)

To clarify, e.g., in the first summation, we sum over all S′ that satisfy (∗2) with respect to �m∗∗,
as defined in Notation 5.5.

A subset S′ ⊆ {4, . . . , n} (satisfying (∗2) with respect to �m∗∗, and equivalently with respect
to �m∗∗∗) contributes to both sums in (50) with opposite signs. The contribution from a subset
S′ ⊇ {1, †} (satisfying (2) with respect to �m∗∗) cancels with an identical contribution from the
corresponding subset S′′ = (S′ ∪ {2, •}) \ {1, †} (which necessarily satisfies (∗2) with respect to
�m∗∗∗).

We now translate the sums over S′ and S′′ in (50) into sums over S. If a subset S′ ⊆
{1, 4, . . . , n, †} contains †, then S′ satisfies (∗2) with respect to �m∗∗ if and only if S :=
(S′ \ {†})∪ {2, 3} satisfies (∗2) with respect to �m. If instead S′ contains 1, then S′ satisfies
(∗2) with respect to �m∗∗ if and only if S := S′ satisfies (∗1) with respect to �m. Using these
observations (and similar calculations for S′′), we rewrite the sums in (50) as sums over subsets
of [n]:
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T 1,2,3
r (�m) =

1

2rn−3

⎛⎜⎜⎜⎜⎜⎝
∑
S⊆[n]
(∗1)

1∈S, 2,3�∈S

(−1)1+|S|
n−3∏
k=2

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

+
∑
S⊆[n]
(∗2)

2,3∈S, 1�∈S

(−1)|S|
n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

−
∑
S⊆[n]
(∗2)

2∈S, 1,3�∈S

(−1)1+|S|
n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

−
∑
S⊆[n]

1,3∈S, 2�∈S

(−1)|S|
n−3∏
k=2

((∑
i∈S

mi

)
− (|S| − 1)r− k

)
⎞⎟⎟⎟⎟⎠ . (51)

Combining the first and last sums in (51), as well as the second and third sums, and comparing
with (48), shows that (37) is satisfied. This completes Case 1.

Case 2: m2 +m3 � r and m1 +m3 � r+ 2. In this case, if a subset S ⊆ [n] satisfies 2, 3 �∈ S,
then by an easy calculation, S must satisfy (∗1) with respect to �m. Similarly, if 2, 3∈ S, then S
does not satisfy (∗1). Thus (48) reads:

w̃r(�m)− w̃r(�m
∗) =

n− 3

2rn−3

⎛⎜⎜⎜⎜⎜⎝
∑
S⊆[n]
(∗1)

1,3∈S, 2�∈S

(−1)1+|S|
n−3∏
k=2

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

+
∑
S⊆[n]

1∈S, 2,3�∈S

(−1)1+|S|
n−3∏
k=2

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

−
∑
S⊆[n]
(∗2)

2∈S, 1,3�∈S

(−1)1+|S|
n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)
⎞⎟⎟⎟⎟⎟⎠ . (52)

On the other hand, (49) reads as

T 1,2,3
r (�m) =−1

r
w̃r(m2, m4, . . . , mn, m1 +m3 − r− 1)

=
1

2rn−3

∑
S′′⊆{2,4,...,n,•}
(*1) w.r.t. �m∗∗∗

(−1)
1+

∣
∣
∣S

′′∣∣
∣
n−4∏
k=1

((∑
i∈S′′

m∗∗∗
i

)
− (|S′′| − 1)r− k

)
. (53)

28

https://doi.org/10.1112/mod.2024.2
Downloaded from https://www.cambridge.org/core. IP address: 18.118.186.251, on 15 Mar 2025 at 01:33:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/mod.2024.2
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Genus-zero r-spin theory

If a subset S′′ contains both 2 and •, then by the assumption m2 +m3 � r, S′′ does not con-
tribute to the sum. Using this and rewriting all sums in terms of subsets of [n] as above, we
obtain:

T 1,2,3
r (�m) =

−1

2rn−3

( ∑
S⊆[n]
(∗2)

2∈S, 1,3�∈S

(−1)1+|S|
n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

+
∑
S⊆[n]
(∗1)

1,3∈S, 2�∈S

(−1)|S|
n−3∏
k=2

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

+
∑
S⊆[n]
1,2,3�∈S

(−1)1+|S|
n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)⎞⎟⎟⎠ . (54)

Note that the first two sums in (54) match the first and third sums in (52). To prove that (37)
holds, it remains to prove

∑
S⊆{1,4,...,n}

(−1)1+|S|
n−3∏
k=2

((∑
i∈S

m∗
i

)
− (|S| − 1)r− k

)
= 0, (55)

where m∗
i is as in (47). Here we have written m∗

i because the second sum in (52), and the third
sum in (54) can be combined cleanly only after the substitution m1 �→m1 − 1. One sees that
(55) is a special case of Lemma 5.7. This completes Case 2.

Case 3: m2 +m3 � r+ 1 and m1 +m3 � r+ 1. This case is almost identical to Case 2.
Similar computations to those in Case 2 give

w̃r(�m)− w̃r(�m
∗) =

n− 3

2rn−3

( ∑
S⊆[n]
(∗1)

1∈S, 2,3�∈S

(−1)1+|S|
n−3∏
k=2

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

−
∑
S⊆[n]
(∗2)

2,3∈S, 1�∈S

(−1)1+|S|
n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

−
∑
S⊆[n]

2∈S, 1,3�∈S

(−1)1+|S|
n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)⎞⎟⎟⎠ . (56)
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and

T 1,2,3
r (�m) =

1

2rn−3

⎛⎜⎜⎜⎜⎜⎝
∑
S⊆[n]
(∗1)

1∈S, 2,3�∈S

(−1)1+|S|
n−3∏
k=2

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

+
∑
S⊆[n]
(∗2)

2,3∈S, 1�∈S

(−1)|S|
n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

+
∑
S⊆[n]
1,2,3�∈S

(−1)1+|S|
n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)⎞⎟⎟⎠ . (57)

From (56) and (57), we see that (37) is equivalent to∑
S⊆{2,4,...,n}

(−1)1+|S|
n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

)
= 0,

which is a special case of Lemma 5.7. This completes Case 3.

Case 4: m2 +m3 � r and m1 +m3 � r+ 1. In this case, if S ⊆ [n] satisfies 1, 3 �∈ S or 2, 3 �∈ S,
then S must satisfy (∗1). Similarly, if 2, 3∈ S or 1, 3∈ S, then S does not satisfy (∗1). Thus (48)
simplifies to:

w̃r(�m)− w̃r(�m
∗) =

n− 3

2rn−3

( ∑
S⊆{1,4,...,n}

(−1)1+|S|
n−3∏
k=2

((∑
i∈S

mi

)
− (|S| − 1)r− k

)

−
∑

S⊆{2,4,...,n}
(−1)1+|S|

n−4∏
k=1

((∑
i∈S

mi

)
− (|S| − 1)r− k

))
, (58)

while (49) is equal to zero. Again, Lemma 5.7 implies that both sums in (58) are equal to zero,
so (37) is satisfied, completing Case 4.

We have now checked that w̃r satisfies all of the conditions of Lemma 4.9, so we conclude
w̃r =wr. �

6. Monotonicity of genus 0 r-spin invariants

The techniques introduced also imply that genus 0 r-spin invariants satisfy a monotonicity
property, which is not obvious from the closed formula in the previous section.

Recall the dominance partial ordering on partitions of an integer N , where for partitions
�p= (p1, p2, . . .) and �p ′ = (p1

′, p2′, . . .) of N with p1 � p2 � · · · and p1
′ � p2

′ � · · · , we say that
�p� �p ′ if for all i� 0, we have p1 + · · ·+ pi � p1

′ + · · ·+ pi
′. That is, �p� �p ′ if �p is a “more balanced

distribution of N ’ than �p ′. If �p� �p ′, we say �p ′ dominates �p.

Remark 6.1. The dominance partial ordering is a fundamental structure of partitions (or, more
generally, vectors of real numbers with a fixed sum) and thus arises in many contexts inside (and
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outside) mathematics. See [MOA79] for a survey of such appearances. In algebraic geometry, the
dominance partial ordering is known for (among other things) its connections to the geometry
of Hilbert schemes of points on surfaces; see [Nak16].

Theorem 6.2. Genus-zero r-spin invariants satisfy the following properties:

1. For any r and n, wr is a weakly order-reversing function on n-part partitions of
(n− 2)(r+ 1) with respect to the dominance order. That is, if �m and �m′ are two numerical
r-spin monodromy vectors and �m� �m′, then wr(�m)�wr(�m

′).
2. For any numerical r-spin monodromy vector �m, wr(�m)� 0, with wr(�m) �= 0 if and only if
n− 2�mi � r− 1 for all i.

We prove the theorem in several steps, beginning with the following standard fact about the
dominance order (see [Bry73, Prop. 2.3]).

Fact 6.3. A partition �p is dominated by �p ′ if and only if there is a finite sequence

�p ′ = �p 0, �p 1, . . . , �p k = �p,

such that �p i is obtained from �p i−1 by replacing two parts a, b∈ �p i−1, where a< b− 1, with
nonnegative integers c= a+ 1 and d= b− 1, respectively. That is, �p i and �p i+1 are neighbours,
and �p i+1 dominates �p i. Intuitively, a “richer’ part (b) donates one “cookie’ to a “poorer’ part
(a) but only if doing so would not make b poorer than a.

Lemma 6.4. Suppose �m and �m′ are numerical r-spin monodromy vectors. If �m and �m′ are
neighbours and if �m� �m′, then wr(�m)�wr(�m

′).

Proof. We proceed by induction on n. The base case is n= 4, which follows from Proposition
2.36.

Fix n, and assume that both statements hold for k-pointed monodromy vectors if k < n.
Without loss of generality, write �m= (m1, . . . , mn) and �m

′ = (m1 − 1, m2 + 1, m3, . . . , mn), with
1<m1 �m2 < r as �m� �m′. For j ∈ {4, . . . , n}, we have, by definition,

T 1,2,j
r (m1, . . . , mn) =wr(�m

1)wr(�m
2)−wr(�m

3)wr(�m
4),

where:

�m1 = (m1 − 1, m3, . . . , m̂j , . . . , mn, m2 +mj − r) �m2 = (2, m2, mj , 2r−m2 −mj)

�m3 = (m2, m3, . . . , m̂j , . . . , mn, m1 +mj − r− 1) �m4 = (2, m1 − 1, mj , 2r+ 1−m1 −mj).

Note first that

(m1 − 1) + (m2 +mj − r) = (m1 +mj − r− 1) + (m2),

and that

m2 >max{m1 − 1, m2 +mj − r}�min{m1 − 1, m2 +mj − r}>m1 +mj − r− 1.

Thus, there is a finite sequence such as that in Fact 6.3 between �m3 and �m1. This proves �m1 � �m3,
so by the inductive hypothesis, we have

wr(�m
1)�wr(�m

3). (59)

Next, we prove wr(�m
2)�wr(�m

4). As both are 4-point invariants with an insertion of 2, both
are either 0 or 1

r . We need only to show that if wr(�m
2) = 0, then wr(�m

4) = 0. Indeed, using
Proposition 2.13 and the fact that m2 < r, wr(�m

2) = 0 implies that either 2r−m2 −mj � r or

31

https://doi.org/10.1112/mod.2024.2
Downloaded from https://www.cambridge.org/core. IP address: 18.118.186.251, on 15 Mar 2025 at 01:33:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1112/mod.2024.2
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Renzo Cavalieri et al.

mj = 1, which in turn implies that either 2r+ 1−m1 −mj � r or mj = 1. Thus, wr(�m
4) = 0. In

conclusion,

wr(�m
2)�wr(�m

4). (60)

By the inductive hypothesis, the expressions wr(�m
1), wr(�m

2), wr(�m
3) and wr(�m

4) are
nonnegative, so (59) and (60) imply T 1,2,j

r � 0. Thus,

wr(m1, . . . , mn)�wr(m1 − 1, m2 + 1, m3, . . . , mn), (61)

completing the proof. �

Lemma 6.5. Let �m= (m1, . . . , mn) be a monodromy vector with m1 = n− 2 and let n− 2�
mi � r− 1 for all i. Then wr(�m) = (n−3)!

rn−3 .

Proof. We proceed by induction on n, with base case n= 4 following from Proposition 2.13.
For n> 4, we apply Theorem 4.1 to �m, with (i, j, k) = (1, 2, 3). Since m1 = n− 2, by

Corollary 4.5, wr(m1 − 1, m2 + 1, m3, . . . , mn) = 0, so Theorem 4.1 reads

wr(�m) = (n− 3)T 1,2,3
r (�m).

We thus have

m2 +m3 − r= (n− 2)(r+ 1)− (n− 2)− r−
n∑

i=4

mi � (n− 2)(r+ 1)

− (n− 2)− r− (n− 3)(r− 1) = n− 3,

and

m1 +m3 − r− 1� (n− 2) + (r− 1)− r− 1 = n− 4,

which imply

T 1,2,3
r (�m) =

1

r
(1 ·wr(m1 − 1, m4, . . . , mn, m2 +m3 − r)− 0) =

1

r
· (n− 4)!

rn−4

by induction. Thus wr(�m) = (n− 3)T 1,2,3
r (�m) = (n−3)!

rn−3 . �

Proof of Theorem 6.2 Fix an n-pointed r-spin monodromy vector �m′ with �m′ � �m. According
to Fact 6.3, there is a finite sequence �m′ = �m 0 > �m 1 > · · ·> �m k = �m of neighbors, where �m i

is dominated by �m i+1. By Lemma 6.4, wr(�m
i)�wr(�m

i+1) for all i, so we conclude Wr(�m)�
Wr(�m

′). This proves statement (i).
Applying Lemma 6.4 repeatedly, we have

wr(�m)−wr(m1 − k, m2 + k, m3, . . . , mn)� 0,

for any k�min{m1 − 1, r−m2}. Taking k=min{m1 − 1, r−m2} gives wr(�m)� 0. This proves
the first half of statement (ii).

For the second half of statement (ii), the “if’ direction follows from Proposition 2.10 and
Corollary 4.5. For the “only if’ direction, suppose �m= (m1, . . . , mn) is a monodromy vector
such that n− 2�mi � r− 1 for all i, with m1 � · · ·�mn. It is easy to check, using Fact 6.3,
that �m is dominated by a monodromy vector �m′ with m1 = n− 2 and n− 2�mi � r− 1 for
i∈ {2, . . . , n}. (Roughly, m1 repeatedly “donates a cookie’ to a part mi < r− 1; such a part
is guaranteed to exist by

∑
imi = (n− 2)(r+ 1), and �m′ � �m follows from the assumption that

m1 �m2 � · · ·�mn). Thus, by statement (i) proved just above, it is sufficient to prove wr(�m)> 0
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in the case where m1 = n− 2 and n− 2�mi � r− 1 for all i. This is the immediate conclution
from Lemma 6.5. �
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