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Abstract

Background. There is growing evidence that gray matter atrophy is constrained by normal
brain network (or connectome) architecture in neuropsychiatric disorders. However, whether
this finding holds true in individuals with depression remains unknown. In this study, we
aimed to investigate the association between gray matter atrophy and normal connectome
architecture at individual level in depression.
Methods. In this study, 297 patients with depression and 256 healthy controls (HCs) from
two independent Chinese dataset were included: a discovery dataset (105 never-treated
first-episode patients and matched 130 HCs) and a replication dataset (106 patients and
matched 126 HCs). For each patient, individualized regional atrophy was assessed using nor-
mative model and brain regions whose structural connectome profiles in HCs most resembled
the atrophy patterns were identified as putative epicenters using a backfoward stepwise regres-
sion analysis.
Results. In general, the structural connectome architecture of the identified disease epicenters
significantly explained 44% (±16%) variance of gray matter atrophy. While patients with
depression demonstrated tremendous interindividual variations in the number and distribu-
tion of disease epicenters, several disease epicenters with higher participation coefficient than
randomly selected regions, including the hippocampus, thalamus, and medial frontal gyrus
were significantly shared by depression. Other brain regions with strong structural connec-
tions to the disease epicenters exhibited greater vulnerability. In addition, the association
between connectome and gray matter atrophy uncovered two distinct subgroups with different
ages of onset.
Conclusions. These results suggest that gray matter atrophy is constrained by structural brain
connectome and elucidate the possible pathological progression in depression.

Introduction

Modern neuroimaging studies reveal that patients with depression exhibit widespread gray
matter volume (GMV) abnormalities almost spanning the whole brain (Depping et al.,
2016; Schmaal et al., 2016, 2017). These findings raise an open question whether these struc-
tural abnormalities follow some pattern or are just irregularly distributed. Brain regions are not
isolated but form a highly interconnected network, or ‘connectome’, that enables efficient
communication among brain regions to support diverse behavioral and cognitive functions
(Bullmore & Sporns, 2009). Recent studies propose that pathological propagation of brain dis-
orders is also constrained by brain connectome architecture (Yau, Zeighami, Baker, Larcher, &
Vainik, 2018; Zhou, Gennatas, Kramer, Miller, & Seeley, 2012).

https://doi.org/10.1017/S0033291723003161 Published online by Cambridge University Press

https://www.cambridge.org/psm
https://doi.org/10.1017/S0033291723003161
https://doi.org/10.1017/S0033291723003161
mailto:zzuzhangyong2013@163.com
mailto:fccchengjl@zzu.edu.cn
mailto:qiancui26@gmail.com
mailto:chenhf@uestc.edu.cn
mailto:chenyuanshizt@163.com
https://orcid.org/0000-0001-7331-0315
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0033291723003161&domain=pdf
https://doi.org/10.1017/S0033291723003161


An increasing number of studies demonstrate close association
between pathological propagation and connectome topology in
brain disorders. Neurodegenerative diseases, such as Parkinson’s
and Alzheimer’s diseases, are hypothesized to involve prion-like
spread of toxic misfolded protein aggregates through transneuro-
nal transport (Frost & Diamond, 2010). In neurodegenerative dis-
eases, through modern neuroimaging methods, a series of studies
propose that pathological perturbations may begin with focal ‘epi-
centers’ whose normal connectome architecture derived from
normal population resembles the pattern of brain tissue volume
loss and then propagate to unaffected brain regions with strong
connections to the putative disease epicenters (Brown et al.,
2019; Yau et al., 2018; Zeighami et al., 2015; Zhou et al., 2012).
These disease epicenters are preferentially anchored to brain
‘hub’ regions playing key roles in efficient communication
among brain regions (Larivière et al., 2020). What is more, the
normal connectome architecture can forecast longitudinal gray
matter atrophy in neurodegenerative diseases (Brown et al.,
2019). In addition to neurodegenerative diseases, recent works
report that the association hold true in other conditions, such
as normal aging and schizophrenia. For example, age-related
thickness differences are found to be constrained by connectome
architecture (Petersen et al., 2022). In schizophrenia, Wannan
et al., demonstrate that cortical thickness reductions are more
likely among brain regions with stronger structural covariance
connections, providing a potential explanation for the irregularly
distributed cortical thickness reductions (Wannan et al., 2019).
Shafiei et al., further establish that structural tissue volume loss
is constrained by structural and functional connectome topology
with a putative disease epicenter in the anterior cingulate cortex
(Shafiei et al., 2020). These studies elucidate how the pathological
perturbations propagate from the putative disease epicenters to
affected brain regions, deepening our understanding of wide-
spread pathophysiological effects and facilitating targeted treat-
ment to prevent pathological progression in these diseases. In
depression, studies consistently report progressive structural
abnormalities in cortical and subcortical brain regions (Han
et al., 2021b; Morris et al., 2019; Schmaal et al., 2016, 2017;
Verduijn et al., 2015). However, whether structural abnormalities
are associated with connectome topology remains unknown in
depression.

On the other hand, although neuroimaging studies have con-
sistently identified widespread GMV abnormalities in depression,
their findings are not uniform (Chen et al., 2016; Han et al.,
2022d). The reason is that mental disorders including depression
are heterogeneous disorders and patients with mental disorders
exhibit high interindividual variation in structural abnormalities
(Kessler et al., 2003; Yu et al., 2019). To handle with the neuro-
anatomical heterogeneity, a series of methods are proposed,
such as revealing more homogeneous subgroups (Beijers,
Wardenaar, van Loo, & Schoevers, 2019; Han, Xu, Guo, Fang,
& Wei, 2022a, 2022b; Lynch, Gunning, & Liston, 2020) and
even inferring individual-level structural differences (Han et al.,
2022d; Marquand, Rezek, Buitelaar, & Beckmann, 2016). These
studies suggest that the group-level neuroanatomical differences
are not representative of most patients (Lv, Di Biase, Cash, &
Cocchi, 2020; Sun et al., 2021). In this context, one the limitations
of these studies investigating the association between brain con-
nectome architecture and structural brain abnormalities is that
most of them just focus on the association at group level
(Shafiei et al., 2020; Wannan et al., 2019), whether their findings
hold true at individual level remains unknown.

In this study, we investigated the association between healthy
connectome architecture and gray matter atrophy at individual
level in depression. Two independent datasets were included
this study: a discovery dataset (105 never-treated first-episode
patients with depression and matched 130 healthy controls
[HCs]) and a replication dataset (106 patients with depression
and matched 126 HCs). First, the gray matte volume (GMV)
was measured with voxel based morphometry analysis (VBM)
(Ashburner & Friston, 2000) and individualized differences
were derived with normative model (Marquand et al., 2016)
that could infer individual-level GMV differences by measuring
its deviates from the healthy distribution (Marquand et al.,
2016). Then, we identified the putative disease epicenter(s) for
each patient and significantly shared disease epicenter(s) across
patients in depression. According to the previous relevant studies,
we hypothesized that these shared disease epicenter(s) were
anchored to brain ‘hub’ regions. Third, we assumed that brain
regions with stronger connections with the identified disease epi-
center(s) would show greater vulnerability to disease.

Methods

Participants

Two independent datasets were included in this study: a discovery
dataset and a replication dataset. All results reported in the main
text were based on the discovery dataset and reproduced on the
replication dataset. The discovery dataset included 105 never-
treated first-episode patients with depression and matched 130
healthy controls (HCs) recruited from the first out-patient ser-
vices of Department of Psychiatry, the First Affiliated Hospital
of Zhengzhou University. The protocol to recruit the discovery
dataset was approved by the research ethical committee of the
First Affiliated Hospital of Zhengzhou University. The replication
dataset included 106 patients with depression and matched 126
HCs. The protocol to recruit the replication dataset was approved
by the research ethical committee of the University of Electronic
Science and Technology of China. All patients were under depres-
sive state. All study protocols were performed according to the
Helsinki Declaration of 1975 and written informed consents
were obtained from all participants before the experiment.

In the discovery dataset, patients were diagnosed according to
Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition (DSM-IV) for depression by one chief physician and one
well-trained psychiatrist. The exclusion criteria included:
comorbidity of other mental/psychotic disorders and a history of
manic symptoms. The clinical states and severity of symptoms
were evaluated using the 17-items Hamilton Depression scale
(HAMD). Healthy controls (HCs) were recruited from the commu-
nity through poster advertisement. None of them presented a his-
tory of serious medical or neuropsychiatric illness or a family
history of major psychiatric or neurological illness in their first-
degree relatives. Patients and HCs were all Han Chinese and
right handedness. For all participants (both HCs and patients),
the additional exclusion criteria included: (1) taking drugs, such
as anesthesia, sleeping and analgesia in the past 1 month; (2) sub-
stance abuse; (3) a history of brain tumor, trauma, surgery, or other
organic body disease; (4) suffering from cardiovascular diseases,
diabetes, hypertension; (5) contraindications for MRI scanning
and (6) other structural brain abnormalities revealed by MRI scan.

In the replication dataset, 106 patients with depression were
recruited from the Clinical Hospital of Chengdu Brain Science

Psychological Medicine 1319

https://doi.org/10.1017/S0033291723003161 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291723003161


Institute, University of Electronic Science and Technology of
China. All patients were interviewed by two experienced psychia-
trists using the Structured Clinical Interview for DSM-IV-TR-
Patient Edition (SCID-P, 2/2001 revision) for depression. The
24-Item Hamilton Depression Scale was used to evaluate the clin-
ical state. The exclusion criteria included: comorbidity with schizo-
phrenia, mental retardation, personality disorder or anxiety, a
history of loss of consciousness, substance abuse, and serious med-
ical, neurological illness. All patients were treated with one of the
selective serotonin and serotonin–norepinephrine reuptake inhibi-
tors. HCs (n = 126) were recruited from the community through
poster advertisements and interviewed using SCID (nonpatient
edition). No healthy participant had a history of serious medical
or neuropsychiatric illness and a family history of major psychiatric
or neurological illness in their first-degree relatives.

Scan acquisition

Discovery dataset

The functional and T1-weighted anatomical images were acquired
on 3-Tsela GE Discovery MR750 scanner (General Electric,
Fairfield Connecticut, USA). The scanning parameters of T1-
weighted anatomical images were as follow: repetition time =
8164 ms, inversion time = 900 ms, echo time = 3.18 ms, flip
angle = 7 degrees, voxel size = 1 × 1 × 1 mm3, resolution matrix =
256 × 256, slices = 188, thickness = 1.0 mm. Functional images
were obtained using an echo-planar imaging sequence. The para-
meters were as follow: TR/TE = 2000/40 ms, 32 slices, matrix
size = 64 × 64, voxel size = 3.75 × 3.75 × 3.2 mm3, flip angle = 90°,
slice thickness = 4.0 mm, gap = 0.5 mm, and total 180 volumes.

Replication dataset

The structural and functional images were acquired on a 3-Tesla
GE Discovery MR750 scanner (General Electric, Fairfield
Connecticut, USA). Structural T1-weighted images with 3D
spoiled gradient echo scan sequence with the following para-
meters: TR/TE = 5.92/1.956 ms, voxel size = 1 mm × 1mm × 1
mm, slice thickness = 1 mm, no gap, flip angle = 12°, matrix
size = 256 × 256, and 156 slices. Functional images were obtained
using an echo-planar imaging sequence with the following para-
meters: TR/TE = 2000/30 ms, 43 slices, matrix size = 64 × 64,
voxel size = 3.75 × 3.75 × 3.2 mm3, flip angle = 90°, slice thickness
= 3.2 mm, no gap, and total 255 volumes.

Data preprocessing

Functional images were preprocessed using SPM12 (https://www.
fil.ion.ucl.ac.uk/spm/software/spm12/) and Data Processing
Assistant for Resting-State fMRI package (DPABI, http://www.
restfmri.net). Preprocessing steps included: removing the first 10
volumes, slice timing and realignment. Subjects were excluded if
the translational and rotational displacement exceeded 3.0 mm or
3.0°. None of the participants were removed for this criterion.
Then, functional images were then normalized to the standard
EPI template (voxel size 3 × 3 × 3mm3). Then images were
smoothed using a 6 × 6 × 6mm3 full width at half maximum
(FWHM) Gaussian kernel and detrended to reduce low-frequency
drift. Band-pass filtered (0.01–0.1 Hz) to remove high-frequency
physiological noise. Nuisance covariates including Friston 24
motion parameters (Satterthwaite et al., 2012), white matter signal

and cerebrospinal fluid signal were regressed out. Finally, the out-
liners were placed with the best estimate using a third-order spline
fit to clean the portions of time course. Outliners were detected
based on the median absolute deviation, as implemented in
3dDespike (http://afni.nimh.nih.gov/afni) (Allen et al., 2014). For
each subject, the mean frame-wise displacement (FD) was calcu-
lated (Han et al., 2017, 2018). There was no significant difference
in terms of mean FD between patients with depression and HCs
with two sample t test ( p values >0.05 for these two datasets).

Voxel based morphometry analysis

GMV was measured with VBM analysis (Ashburner & Friston,
2000). This procedure was done using the recommended pipelines
with the Computational Anatomy Toolbox (CAT12, http://dbm.
neuro.uni-jena.de/cat12/). We just briefly described the main steps
here. The structural images were segmented into gray matter, white
matter, and cerebrospinal fluid and normalized into Montreal
Neurological Institute space (voxel size 1.5 mm× 1.5mm×
1.5mm). The structural images were nonlinearly modulated and
smoothedwith an 6mm full width at half maximumGaussian kernel
(Ashburner, 2009; Han et al., 2021b) (Fig. 1a). The total intracranial
volume (TIV)was also obtained for the following analysis. The Image
Quality Rating (IQR) combing image noise contrast ratio, inhomo-
geneity contrast ratio and root mean square was recorded to assess
images quality (Brown et al., 2019; Han et al., 2023a; Han et al.,
2022a, b).

Determination of individualized gray matter atrophy pattern

For each patient, we obtained personalized gray matter atrophy
pattern for each patient with depression using normative model
by evaluating its deviates from the normal distribution.
Following the previous studies (Bethlehem, Seidlitz, Romero-
Garcia, & Trakoshis, 2020; Shan et al., 2022), we trained a
Gaussian process regression model to predict regional GMV
from age and sex in HCs and then applied the trained model to
infer regional GMV of patients. For each brain region, the
Z-score was obtained by quantifying the deviation between the
true GMV and the predicted one then normalized by the uncer-
tainty of prediction (see the equation below).

Zscore = GMVpredicted − GMVtrue

s

where σ was the square root of variance (estimated from the
Gaussian process regression). The positive Z-scores indicated
gray matter atrophy in patients with depression compared with
HCs and vice versa (Fig. 1b and 1c).

Healthy functional and structural covariance network
generation

In previous studies, both structural network measured with struc-
tural covariance and functional network measured with func-
tional connectivity were found to be associated with the tissue
volume loss in schizophrenia (Shafiei et al., 2020; Wannan
et al., 2019). Thus, we first investigated which one (structural net-
work or functional network) better recapitulated gray matter atro-
phy in depression.

Functional connectivity networks were generated by comput-
ing pairwise Pearson’s correlations between the average time
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series of 246 brain regions followed by Fisher’z transformation in
healthy population (http://www.brainnetome.org/) (Dong et al.,
2022; Fan et al., 2016). This brain atlas was chosen for its joint
validation using both functional and structural anatomy and con-
nectivity (Fan et al., 2016). Four brain regions were excluded for
low SNR (average SNR <100). As a result, we obtained a 242 ×
242 × N functional connectivity matrix for healthy group (N
was the number of HCs).

Structural covariance network was obtained by correlating
pairwise Pearson’s correlations between the average GMV of
246 brain regions in healthy population (Han et al., 2023c).
Age, sex and education level were first regressed from GMV
(Wannan et al., 2019). The obtained correlation coefficients
were transformed to Fisher’z scores to improve normality. To be
consistent with functional connectivity, brain regions with low
SNR identified before were also excluded. This yielded a structural
covariance matrix (242 × 242) for healthy group.

Identification of disease epicenters for each patient

According to previous studies, disease epicenter was the brain
region whose connectivity map in healthy group most resembled
the regional gray matter atrophy map (Brown et al., 2019; Yau
et al., 2018; Zeighami et al., 2015; Zhou et al., 2012).
Specifically, the brain region whose connectivity map showed
the highest correlation with the brain atrophy pattern (the epicen-
ter goodness of fit score, GOF) was selected as epicenter (Brown
et al., 2019). Although relevant researches typically hypothesized
that there was one single epicenter (Brown et al., 2019; Shafiei
et al., 2020; Zeighami et al., 2015), this hypothesis was untested
in depression. We investigated if there was one or multiple disease
epicenters (single-epicenter model or multiple-epicenter model)
in depression (Fig. 1d).

The following procedures were performed based on structural
and functional network respectively. For the single-epicenter
model, the disease epicenter was defined as the brain region with

the highest GOF. Specifically, for functional network, we performed
one-sample t test to obtain a single group-level statistical parametric
(t-statistic, 242 × 242) matrix. For structural connectivity, we used
the 242 × 242 (Fisher’Z) structural covariance network. For each
brain region and in each patient, its GOF was the Pearson’s correl-
ation between each row of connectivity map (t-statistic for functional
network or Fisher’Z for structural network, 242 × 1) and the regional
gray matter atrophy (Z scores, 242 × 1). For the multiple-epicenter
model, we performed a backfoward stepwise regression analysis to
explore the relationship between connectivity maps (structural or
functional network) and regional gray matter atrophy pattern (Z
scores, 242 × 1). Stepwise regression could automatically identify
important predictive variables eliminating the variables which are
marginal important and cause multicollinearity in consideration of
the highly correlation between regional connectome patterns
(Mayblyum et al., 2021). A set of brain regions were selected as puta-
tive disease epicenters. The performance of these models was evalu-
ated using a linear regression where connectivity maps of the
identified disease epicenter(s) were independent variables and gray
matter atrophy pattern was dependent variable. The explained vari-
ance (R2) and its significance ( p value) were recorded. The perform-
ance of these models was compared using paired t test.

For the identified disease epicenter(s), we investigated whether
they were significantly shared by patients with depression above
chance using permutation testing (1000 times). For each identi-
fied disease epicenter, we counted how many patients (N_true)
shared it. For each permutation, a random network preserving
the degree, strength weight and distributions of true one (struc-
tural or functional network) was constructed (Rubinov &
Sporns, 2011) and disease epicenter(s) was identified based on
the random network. Similarly, we counted the number of
patients (N_rand) sharing it. The p value was defined as the
ratio of N_rand larger than N_true. Finally, disease epicenter(s)
whose p value (corrected for Bonferroni) was less than 0.05 was
considered to be significantly shared by patients with depression
(Fig. 1e).

Figure 1. Study design schematic. (a) For each patient, gray matter volume (GMV) is measured using voxel based morphometry analysis. (b) and (c) The regional
GMV differences (Z scores) at individual level are obtained using normative model. (d) The optimal model (structural v. functional, single v. multi) is determined. (e)
The disease epicenters significantly shared by depression are identified. (f) The topological properties of the identified disease epicenters are examined. Disease
exposure is calculated and correlated with regional Z scores to investigate the possible pathological progression from the disease epicenters to other unaffected
brain regions.
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Topological properties of disease epicenters

Then, we examined the topological properties of the identified dis-
ease epicenter(s). Previous studies had established that brain ‘hubs’
were vulnerable to disease and propagated pathology to unaffected
brain regions (Fornito, Zalesky, & Breakspear, 2015; Zhou et al.,
2012). To test this hypothesis in depression, we examined whether
the identified disease epicenter(s) had higher degrees and participa-
tion coefficients than other brain regions (Fig. 1f).

The degree of a node in the weighted graph was defined as the
sum of its connection strengths (Rubinov, Ypma, Watson, &
Bullmore, 2015):

Di =
∑n
j[Ni

eij

where j was one of the connected nodes of node i (Ni) and eij was
the connection strength between node i and node j.

The participation coefficient (PC) of node i was defined as:

PCi = 1−
∑n
j[Ni

Dim

Di

( )2

Where m was one of the brain network M, Dim was the sum of all
connection strengths between i and network m and Di was the
degree as defined above (Yeo et al., 2011). PC of zero indicated
a node that only connects with other nodes in its own module,
whereas nodes with connections that were uniformly distributed
across all modules have a PC of one. In this study, brain regions
were grouped into Yeo-17 networks (Yeo et al., 2011). This pro-
cedure was conducted using brain connectivity toolbox (https://
www.nitrc.org/projects/bct/).

To investigated whether shared disease epicenters had signifi-
cantly higher degree and participation coefficient than other brain
regions. The mean degree and PC of disease epicenters shared by
patients with depression (identified in the previous step) were calcu-
lated and compared with those of randomly selected other regions
with the same number. This procedure was repeated 1000 times
and yielded a distribution of degree and PC of other brain regions.

Disease exposure

Then, we investigated the possible pathological progression from
the identified disease epicenters to other unaffected brain regions.
According to previous studies (Brown et al., 2019; Yau et al., 2018;
Zeighami et al., 2015; Zhou et al., 2012), we hypothesized
that regions with strong connections to disease epicenters would
exhibit greater vulnerability defined by atrophy severity
(Fig. 1f). For each patient and each region, the disease exposure
was calculated (Yau et al., 2018).

The disease exposure was defined as the following equation:

Disease exposure(i) =
∑N
j

Cij × Atrophy(j)

Where, Cij was the connection strength (structural/functional
connectivity strength) between unaffected brain region i with
the disease epicenter j. Atrophy( j) was the Z-score of disease epi-
center j. N was the number of the disease epicenters. Then, we cal-
culated the Pearson’s correlation coefficient between the disease
exposure and atrophy severity (Z-scores) for each patient.

It was possible that the correlation between local deformation
and the atrophy of connected neighbors was introduced by
spatially proximal nodes that trivially exhibited greater
co-deformation and greater connectivity. To rule out this possibility,
we calculated ‘spatial disease exposure’ measure which was derived
identically to the disease exposure except that the Euclidean distance
was used instead of structural/functional connectivity strength.

Clustering analysis

Finally, we investigated whether the association between brain
connectome architecture and gray matter atrophy pattern could
help to uncover homogeneous subgroups in depression. As we
found that structural multi-epicenter model best explained gray
matter atrophy (see results), this procedure was performed
based on structural network. Specifically, for each patient, the cor-
relation coefficients (242 × 1) between each row of structural net-
work (242 × 242) and regional gray matter atrophy (242 × 1, Z
scores) were calculated and treated as features. The k-means clus-
tering analysis was performed to uncover potential subgroups
where the optimal number of clusters was determined (between
2 and 10) according to silhouette values. The k-means clustering
was repeated 100 times to avoid local minima resulted from ran-
dom in initialization of centroid positions (Allen et al., 2014). The
squared Euclidean distance was used as the distance metric. We
investigated whether demographic characteristics (including ill-
ness duration, age of onset, and symptom severity) differed
among uncovered subgroups.

External validation and sensitivity analysis

To assess the reproducibility of our results, the main procedures
above were performed on an independent replication dataset.
Notably, in the replication dataset, patients had been treated
with antidepressants and had different age distribution. As fac-
tors, including IQR and educational level exhibited significant dif-
ferences in one of datasets (see results), we also investigated
whether they affected the performance of models (R2) and associ-
ation between disease exposure and gray matter atrophy using
Pearson’s correlation analysis.

Results

Demographic characteristics

The clinical demographics were presented in Table 1. There was
no significant difference in terms of age and sex between patients
with depression and HCs in both datasets. In the discovery,
patients had significantly lower IQR than HCs. In the replication
dataset, patients had significantly lower educational level com-
pared with their respective control group.

Gray matter atrophy is constrained by structural network of
focal disease epicenters

The performance (the explained variance, R2, mean ± S.D.) of
these four models was as follow: structural single-epicenter
model (0.12 ± 0.07), structural multi-epicenter model (0.44 ±
0.16), functional single-epicenter model (0.22 ± 0.03) and func-
tional multi-epicenter model (0.09 ± 0.05). The structural
multiple-epicenter model could significantly explain gray matter
atrophy pattern for each patient (p < 0.001, Bonferroni corrected)
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and performed significantly better than other models (Fig. 2). The
following results were all based on structural connectome.

Another question was that whether the identified disease
epicenters were also the most atrophied brain regions, like the
case in neurodegenerative diseases (Zhou et al., 2012). To
answer this question, we investigated whether the connectome
architecture of the identified disease epicenters showed closer
relationship with gray matter atrophy than that of brain regions
with maximal atrophy. Specifically, for each patient, the top N
(the number of the identified disease epicenters) atrophied
brain regions (according to Z scores) were selected. A linear
regression was built where connectivity maps of brain regions
with maximal atrophy were independent variables and gray
matter atrophy pattern was dependent variables and the
explained variance (R2) was also recorded. We found that the
connectome architecture of the identified disease epicenters
recapitulated the gray matter atrophy better than brain regions
with maximal atrophy did (for R2, paired t = 33.65, p < 0.001,
Fig. 2).

Using structural multiple-epicenter model, we identified
several disease epicenters for each patient. On average,
patients with depression had 8.45 (± 2.97) disease epicenters
(Fig. 3a). These disease epicenters exhibited tremendous
interindividual variations in terms of number and distribu-
tion of disease epicenters. However, some of them were sig-
nificantly shared by patients, such as the thalamus,
hippocampus, striatum, medial frontal gyrus and inferior
frontal gyrus (permutation testing p < 0.05, Bonferroni cor-
rected) (orange nodes in Fig. 3b). The details were included
in online Supplementary Table S1.

After identifying shared disease epicenters, we next sought to
their topological characteristics. We found that these shared dis-
ease epicenters had significantly higher PC than other brain
regions (permutation testing p < 0.001, Fig. 3c). However, there
was no significant difference between these shared disease epicen-
ters and other brain regions in terms of degree (permutation test-
ing p > 0.05). The corresponding results of the replication dataset
were included in online Supplementary Figure S1.

Table 1. Demographic and clinical characteristics

Discovery dataset Replication dataset

Depression (N = 105) HCs (N = 130) p Depression (N = 106) HCs (N = 126) p

Male, No. (%) 50.48% 45.38% 0.963a 44.34% 47.17% 0.725a

Age, mean (S.D.), y 20.30 (5.04) 21.05 (5.33) 0.256b 33.27 (12.26) 34.69 (14.35) 0.418b

Educational level, mean (S.D.), y 12.81 (5.13) 13.56 (4.49) 0.230b 14.40 (3.92) 12.75 (3.24) <0.001b

HAMD, mean (S.D.) 22.26 (6.19) - - 27.60 (7.87) - -

Illness duration, mean (S.D.), m 17.22 (18.80) - - 54.28 (66.61) - -

Year of onset, mean (S.D.), y 16.81 (4.40) - - 28.70 (11.55) - -

IQR 1.98 (0.14) 2.09 (0.29) < 0.001b 1.98 (0.11) 1.99 (0.10) 0.759b

Note: HC, healthy control; HAMD, Hamilton rating scale for depression; aχ2 test; btwo sample t test; IQR, Image Quality Rating.

Figure 2. The performance of models. The performance of models (explained R2) are compared using paired t test (all p values <0.001). Note, SS, structural single-
epicenter model; SM, structural multi-epicenter model; FS, functional single-epicenter model; FM, functional multi-epicenter model; SM-maximal atrophy, struc-
tural multi-epicenter model using connectivity maps of most atrophied brain regions.
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Brain regions with higher disease exposure show greater
vulnerability to disease

On average, the regional disease exposure significantly corre-
lated with gray matter atrophy pattern in patients with
depression (the Pearson’s correlation R, 0.50 ± 0.12, all
p values <0.05, FDR corrected, Fig. 3d). To further rule
out the effect of spatial proximity, we also defined the ‘spa-
tial disease exposure’ and calculated its correlation with atro-
phy pattern. There was no significant correlation between
‘spatial disease exposure’ values and regional gray matter
atrophy in depression (uncorrected p > 0.05 for each patient).
To ensure that the correlation was not driven by nodes
with high degree, the Pearson’s correlation between degree
distribution and averaged regional atrophy pattern
across patients was also calculated. As a result, the correl-
ation was not significant (the Pearson’s correlation R = 0.06,
p = 0.366).

The association between brain connectome architecture and
gray matter atrophy uncovers homogeneous subgroups

Finally, we sought to investigate whether the association
between connectome architecture and gray matter atrophy pat-
tern could help to uncover homogeneous depression sub-
groups. As a result, patients with depression were optimally
clustered into two subgroups (the corresponding silhouette
values were drawn in Fig. 4A). Subgroup 1 (N = 43) signifi-
cantly shared disease epicenters, such as thalamus, superior
frontal gyrus, anterior cingulate cortex and parahippocampal
gyrus (online Supplementary Table S2) while subgroup 2
(N = 62) shared disease epicenters, such as thalamus, superior
frontal gyrus, anterior cingulate cortex, striatum and
hippocampus (online Supplementary Table S3). The dis-
tribution of the disease epicenter was included in Fig. 4B.
These two subgroups exhibited significant differences in terms
of age of onset (two sample t = 2.48, FDR corrected p = 0.044,

Figure 3. Interindividual variation in the distribution and number of disease epicenters and topological characteristics of disease epicenters significantly shared by
depression. (a) Interindividual variation in the distribution and number of disease epicenters. (b) The distribution of disease epicenters. The node size represents
the number of patients sharing this disease epicenter. The orange nodes represent disease epicenters significantly shared by depression (permutation testing
p < 0.05, Bonferroni corrected). (c) Disease epicenters shared by depression exhibit higher participation coefficient than randomly selected other brain regions
(p < 0.001). The orange line represents the mean PC of shared disease epicenters and the histogram represents the distribution of mean PC of randomly selected
other brain regions. (d) Interindividual variation in the association between gray matter atrophy and disease exposure.
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cohen’d = 0.49, Fig. 4C). In the replication dataset, patients were also
divided into two subgroups (online Supplementary Figure S2).

External validation and sensitive analysis results

Most of our results could be reproduced in an independent data-
set where patients had patients had been treated with antidepres-
sants and had different age distribution. As the number (N = 31)
of patients with younger age of onset (< = 18) was limited, the dif-
ferences in terms of age of onset between the identified 2 sub-
groups tended to be significant (uncorrected p = 0.081, online
Supplementary Figure S2). There was no significant difference
between the performance of the optimal model (R2), or associ-
ation between disease exposure and GMV, and factors, including
IQR and education level (all uncorrected p values >0.05).

Discussion

This study provided new insights regarding how the connec-
tome architecture shaped gray matter atrophy in depression.
We had three main findings. First, the distributed gray matter
atrophy could be significantly explained by structural covari-
ance profiles of the putative disease epicenters with higher
participation coefficient in depression. Second, brain regions
with stronger structural connections with the identified dis-
ease epicenters showed greater vulnerability to depression.
Third, the association between connectome architecture and
gray matter atrophy uncovered two homogeneous subgroups
with difference age of onset. What’s more, these findings
could be reproduced in patients treated with medicine in an
independent replication dataset suggesting the robustness of
our findings.

Figure 4. The association between brain connectome architecture and gray matter atrophy uncovers two homogeneous subgroups. (a) The silhouette values for
number of subgroups. (b) The distribution of disease epicenters for each subgroup. The node size represents the number of patients sharing this disease epicenter.
The orange nodes represent disease epicenters significantly shared by depression (permutation testing p < 0.05, Bonferroni corrected). (c) These two subgroups
exhibited significant differences in terms of age of onset.
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Patients with mental disorders including depression demon-
strate distributed structural atrophy. Whether these affected
brain regions are irregularly distributed and how the pathological
perturbations progress from the initial targets to other affected
brain regions are of great concern. In schizophrenia and neurode-
generative diseases, recent studies reveal that patterns of structural
atrophy are highly structured and constrained by normal brain
network architecture of putative disease epicenter (Brown et al.,
2019; Shafiei et al., 2020; Wannan et al., 2019; Yau et al., 2018;
Zeighami et al., 2015; Zhou et al., 2012). In this study, we inves-
tigated this association in depression for the first time. Unlike
most of relevant studies where the authors just hypothesize that
these is only one disease epicenter, we first explored whether
the multi-epicenter model or single-epicenter model better reca-
pitulated structural atrophy pattern in depression. We found
that the structural atrophy pattern could be better explained by
the multi-epicenter model than single-epicenter model, suggest-
ing there are multiple potential disease epicenters in depression.
Although relevant studies report that gray matter abnormalities
are related to both structural covariance and functional network,
which one better recapitulate structural atrophy pattern in depres-
sion remains unknown (Shafiei et al., 2020; Wannan et al., 2019).
Our another finding was that gray matter atrophy was better
explained by normal structural covariance network relative to
functional network. Mental disorders are associated with dis-
turbed neurodevelopment trajectories among brain regions
(Han et al., 2023c; Han et al., 2022d; Kaiser, Andrews-Hanna,
Wager, & Pizzagalli, 2015; Lima-Ojeda, Rupprecht, & Baghai,
2018; Moberget et al., 2018; Sotiras et al., 2017; Yun et al.,
2020). Compared with widely used functional connectivity, struc-
tural covariance measures brain connectivity features on a larger
time scale (Evans, 2013) and potentially describes the coordinated
regional volumes between brain regions reflecting their common
development/maturation trajectories (Alexander-Bloch, Giedd, &
Bullmore, 2013; Han et al., 2023b; Wang et al., 2023; Yun, Jang,
Kim, Jung, & Kwon, 2015). Further analysis revealed that the
identified disease epicenters showed significantly higher partici-
pation coefficient than other brain regions, explaining what topo-
logical characters made these regions to be disease epicenters. In
our previous study, most of these brain regions, such as the hippo-
campus, thalamus and medial frontal gyrus, are found to exhibit
GMV differences since the beginning of the disease (Han et al.,
2021b). Another question is that whether the disease epicenters
are also the most atrophied brain regions, like the case in neuro-
degenerative diseases (Zhou et al., 2012). The normal connectome
architecture of the identified disease epicenters better explained
brain atrophy than that of the most atrophied brain regions argu-
ing that the disease epicenters were unnecessarily the most atro-
phied brain regions in depression. Taken together, our results
suggest that pathological perturbation may preferentially target
brain ‘hub’ regions probably due to their topological centrality,
high metabolic demands and greater exposure to a toxic agent
at the beginning of the disease in depression (Fornito et al., 2015).

In the neurodegenerative diseases, the pathological progression
follows the normal network architecture as the transneuronal
transport of toxic agents was associated with atrophy (Shafiei
et al., 2020; Warren et al., 2013; Yau et al., 2018). More import-
antly, the network architecture can forecast the longitudinal atro-
phy in neurodegenerative diseases (Brown et al., 2019; Yau et al.,
2018). In this study, we found that brain regions with strong
structural covariance connections to the disease epicenters exhib-
ited greater vulnerability. This finding provides a clue how the

pathological perturbations progress from the initial targets to
other affected brain regions. The mechanisms underlying this
finding might be that disrupted interactions impede trophic sup-
port or normal neuronal signaling finally lead to atrophy of brain
regions connected with disease epicenters (Fornito et al., 2015;
Shafiei et al., 2020; Wannan et al., 2019).

A growing body of research recognize that depression was a
highly heterogeneous disorder and the heterogeneity hamper neu-
roimaging studies reaching uniform findings in depression
(Bondar, Caye, Chekroud, & Kieling, 2020; Drysdale, Grosenick,
& Downar, 2017; Krishnan & Nestler, 2008). In neuroimaging
studies, researchers acknowledge that patients with mental disor-
ders exhibit tremendous inter-individual variation in morpho-
logical differences (Voineskos, Jacobs, & Ameis, 2020; Wolfers
et al., 2018) and that the individual-level and group-level differ-
ences can be distinct and even opposite (Han et al., 2022d; Liu
et al., 2021). However, most of previous studies investigate the
association between brain atrophy and brain network architecture
at group level (Shafiei et al., 2020; Wannan et al., 2019). Whether
their findings held true at individual level remain understudied.
For the first time, we investigated the association between mor-
phological atrophy pattern and connectome architecture at indi-
vidual level in depression. We elaborated this association at the
individual level and showed that patients with depression demon-
strated high inter-individual variation in the number and the dis-
tribution of disease epicenters. Using this individualized
association, we uncovered two homogeneous subgroups with dif-
ferent age of onset, capturing the one of the sources of clinical
heterogeneity. The age of onset is consistently recognized as an
important potential confounder, leading to conflicting findings
in depression (Chen et al., 2016; Han et al., 2021a; Han et al.,
2021b; Herzog et al., 2021; Mai et al., 2021). For example,
adult-onset depression is characterized by decreased volume in
widespread brain regions (Schmaal et al., 2016) while
adolescent-onset depression demonstrate increased volume in
distributed brain regions, possibly reflecting an increased environ-
mental sensitivity or delayed dendritic pruning (Blank &
Meyer, 2022; Nickson et al., 2016). Our results show that the asso-
ciation between morphological atrophy pattern and connectome
architecture also differ between adult- and adolescent-onset
depression. These results provide new insights into the neuro-
anatomical heterogeneity and facilitate precision medicine for
depression.

Our study has several limitations. First, we failed to record
enough clinical data to deeply investigated whether and how the
association between normal connectome architecture and gray
matter atrophy underlay the clinical manifestation in depression.
Second, only patients without other mental disorders comorbidities
were recruited in this study. Future studies could recruit more het-
erogeneous samples to investigate the effect of comorbidity on
these results. Third, in the replication dataset, all patients were tak-
ing medicine at the scan and we failed to record detailed informa-
tion on medicine. Even our results suggested that findings derived
from never-treated first-episode patients could be validated in
patients who had taken antidepressants, we could not deeply inves-
tigate whether and how antidepressants affected these results.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723003161.
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