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ON THE NON-EXISTENCE OF OPTIMAL SOLUTIONS AND THE OCCURRENCE
OF “DEGENERACY” IN THE CANDECOMP/PARAFAC MODEL
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The CANDECOMP/PARAFAC (CP) model decomposes a three-way array into a prespecified num-
ber of R factors and a residual array by minimizing the sum of squares of the latter. It is well known that
an optimal solution for CP need not exist. We show that if an optimal CP solution does not exist, then any
sequence of CP factors monotonically decreasing the CP criterion value to its infimum will exhibit the
features of a so-called “degeneracy”. That is, the parameter matrices become nearly rank deficient and the
Euclidean norm of some factors tends to infinity. We also show that the CP criterion function does attain
its infimum if one of the parameter matrices is constrained to be column-wise orthonormal.
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1. Introduction

The Canonical Decomposition (CANDECOMP) (Carroll & Chang, 1970) and the Paral-
lel Factor Analysis (PARAFAC) model (Harshman, 1970) are identical methods for component
analysis of three-way arrays. The CANDECOMP/PARAFAC (CP) model assumes that a three-
way array containing, for example, scores of cases on variables measured at several occasions is
the sum of a systematic part and a residual part, where the former is the sum of R factors. The
CP model has been applied in various disciplines such as linguistics (Harshman, Ladefoged, &
Goldstein, 1977), psychology (Meyer, 1980; Krijnen & Ten Berge, 1992), marketing (Harshman
& DeSarbo, 1984), chemometrics (Smilde, 1992; Leurgans & Ross, 1992), and neuroimaging
(Andersen & Rayens, 2004; Beckmann & Smith, 2005).

Let ◦ denote the outer vector product, i.e., for vectors x and y we define x ◦ y = xy′. For
three vectors x, y, and z, the product x ◦ y ◦ z is a three-way array with elements xiyj zk . The CP
model can be written as

X =
R∑

r=1

ar ◦ br ◦ cr + E, (1)

where X is the I × J × K three-way data array; ar , br , and cr are the vectors of the r th factor
in each of the three modes; and E is the residual array. The vectors ar , br , and cr are found by
minimizing the sum of squares of E. We refer to the latter as the CP criterion function. A CP
solution is usually denoted by a triplet (A,B,C), where the parameter matrices contain the
vectors ar , br , and cr as r th columns.

In this paper, we consider the real-valued CP model. The three-way rank of X is usually
defined as the minimal number of rank-1 arrays whose sum equals X, where a rank-1 array is the
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outer product of three vectors. Hence, it follows from (1) that the CP model assumes X is the sum
of R rank-1 arrays and a residual array. The smallest R for which X satisfies the CP model with
residuals E equal to zero, is by definition equal to the three-way rank of X. Moreover, CP tries
to find the best three-way rank-R approximation of X.

For estimating the CP parameters (A,B,C), several alternating least squares type of algo-
rithms are available (Harshman, 1970; Carroll & Chang, 1970; Ten Berge, Kiers, & Krijnen,
1993; Krijnen & Ten Berge, 1992). Other CP algorithms can be found in Hopke, Paatero, Jia,
Ross, and Harshman (1998) and Tomasi and Bro (2006). See also the Multilinear Engine of
Paatero (1999).

One of the most attractive features of the CP model is the rotational uniqueness of its solu-
tions. Kruskal (1977, 1989) showed that, for a fixed residual array E, a CP solution (A,B,C)

is unique up to rescaling/counterscaling and jointly permuting columns of the three parameter
matrices if

kA + kB + kC ≥ 2R + 2, (2)

where kA, kB , and kC denote the k-ranks of the component matrices. The k-rank of a matrix is
the largest number x such that every subset of x columns of the matrix is linearly independent.
For an accessible proof of (2), see Stegeman and Sidiropoulos (2007).

To avoid the scaling indeterminacy in a CP solution, the columns of two component matrices
can be set to unit length. Throughout the paper, we impose this restriction on A and B .

It is well known that the practical use of the CP model is complicated by the occurrence of
“degeneracies” while running a CP algorithm. In such cases, the CP criterion function decreases
very slowly, some factor magnitudes seem to increase without bound, and the parameter matrices
become nearly rank deficient (Harshman & Lundy, 1984, p. 271; Kruskal, Harshman, & Lundy,
1983, 1985, 1989; Mitchell & Burdick, 1994). Such degeneracies are a problem for the analysis
of three-way arrays, since the obtained CP solution is hardly interpretable. Degeneracies can be
avoided by imposing orthogonality and non-negativity restrictions on the parameter matrices; see
Theorem 2 and Lim (2005).

Synthetic data for which degeneracies occur in the CP model were considered by Kruskal
et al. (1983) and Paatero (2000). Stegeman (2006, 2008a, 2008b) analysed the structure of de-
generacies for all I × J × 2 arrays and several I × J × 3 arrays. It is claimed but not generally
proven that in case of degeneracy the CP criterion function does not have a global minimum, that
is, does not attain its infimum (Kruskal et al., 1983, 1985). For a synthetic 2 × 2 × 2 array it is
shown that this is indeed true (Ten Berge, Kiers, & De Leeuw, 1988; Stegeman, 2006). De Silva
and Lim (2006) showed that for R = 1 there always exists an optimal CP solution, while for
2 ≤ R ≤ min(I, J,K) there always exists an array X of three-way rank R + 1 which has no
optimal CP solution. Also, the same authors show that all 2 × 2 × 2 arrays of three-way rank 3
have no optimal CP solution for R = 2.

Apart from the (unrestricted) CP model, degeneracies also occur in other component models
(DeSarbo & Carroll, 1985; Krijnen & Ten Berge, 1992; Stegeman, 2008b). Zijlstra and Kiers
(2002) showed that degeneracies do not occur in component models which yield rotationally
indeterminate components.

Here we show that there is a close relation between the occurrence of CP degeneracies and
the non-existence of an optimal CP solution. In Section 3, we investigate the situation where
the CP criterion function does not attain its infimum. We show that any sequence of (A,B,C)n
which monotonically decreases the CP criterion function to its infimum will exhibit the features
of a degeneracy. This implies that any CP algorithm minimizing the CP criterion function will
yield a degeneracy if the CP model does not have an optimal solution for a particular array X. In
Section 4, we consider orthogonality and non-negativity restrictions under which the CP criterion
function attains its infimum. Hence, under these restrictions degeneracies do not occur in the CP

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 05:12:40, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


W.P. KRIJNEN, T.K. DIJKSTRA, A, STEGEMAN 433

model and (we hope) an interpretable CP solution is obtained. Section 5 contains a discussion of
our results. In the next section, we introduce some notation.

2. Notation

In matrix notation, the CP model is

Xk = ADkB
′ + Ek, for k = 1, . . . ,K, (3)

where Xk is the kth I × J frontal slice of X, Ek the kth I × J residual matrix, and Dk the
diagonal matrix with row k of the matrix C as diagonal. For our purposes, it is convenient to
rewrite the model. Let ⊗ be the Kronecker product and “vec” the operator that stacks the columns
of a matrix one underneath the other. Let x = vec(vecX1, . . . ,vecXK) contain the data, e =
vec(vecE1, . . . ,vecEK) the residuals, and θ = vec(vecA,vecB,vecC) the q = R(I + J +K)

parameters, where θ lies in R
q . We denote the CP criterion function by f (θ).

Let the Euclidean norm of a vector and the Frobenius norm of a matrix be denoted by the
symbol ‖ · ‖. As mentioned earlier, we restrict A and B to have columns of length 1. Let C̃
have the unit length columns c̃r = cr‖cr‖−1, r = 1, . . . ,R. The factors f r = (c̃r ⊗ br ⊗ ar ),
r = 1, . . . ,R, which have unit length, are collected as columns in the matrix F . The magnitude
or, more specifically, the Euclidean length dr = ‖cr‖, r = 1, . . . ,R, of the factors is collected in
d = (d1, . . . , dR)′. It follows that

‖θ‖2 = ‖d‖2 + 2R. (4)

By (3) and vec(arb
′
r ) = br ⊗ ar , we have x = Fd + e. For the CP criterion function f , we have

f (θ) = ‖x − Fd‖2. (5)

An optimal CP solution is defined as a vector θ̂ ∈ R
q which globally minimizes f (θ). Various al-

ternating least squares algorithms have been constructed to minimize f . These yield a sequence
{θ1, θ2, . . .} = {θn} of parameter vectors, which monotonically decreases the CP criterion func-
tion, i.e., f (θn) ≥ f (θn+1). The monotonicity of the sequence {f (θn)} is assumed throughout
this paper. This is guaranteed to hold for alternating least squares algorithms. But practical ex-
perience shows that many other CP algorithms also yield monotonically decreasing sequences
{f (θn)}. For an element θn of a sequence of CP updates, we denote the corresponding matrices
as An, Bn, C̃n, and the factors and their lengths as F n and dn, respectively.

3. When an Optimal CP Solution Does not Exist

Here, we present a result for the case where the CP model does not have an optimal solution,
that is, the CP criterion function f does not attain its infimum. We have

Theorem 1. If the CP criterion function f does not attain its infimum and f (θn) ↓ inff , as
n → ∞, then ‖θn‖ → ∞.

Proof: Suppose that f does not attain its infimum, {θn} is a sequence such that f (θn) ↓ inff ,
and {θn} has a bounded subsequence {θnk

}. It follows that the latter has a further subsequence
{θnki

} such that limi→∞ θnki
= θ̂ for a certain limit point θ̂ ∈ R

q (Rudin, 1976, p. 51). Hence, by
continuity of f ,

lim
i→∞f (θnki

) = f
(

lim
i→∞ θnki

)
= f

(
θ̂

) = inff. (6)
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That is, f attains its infimum, a contradiction. It follows that {θn} does not have a bounded
subsequence. Therefore, the infimum over all subsequential limits of ‖θn‖ is infinite, so that
‖θn‖ → ∞, as n → ∞. �

Suppose an optimal CP solution does not exist. If a CP algorithm is used which is de-
signed to minimize the CP criterion function (and does terminate with a suboptimal solution),
then the Euclidean norm of the parameter vector θn diverges to infinity as the iterations of
this CP algorithm increase without bound. It follows from (4) that ‖dn‖ → ∞, as n → ∞.
Hence, there are factor magnitude(s) which diverge to infinity as the number of iterative steps
increases without bound. Equivalently, this means that given any fixed large number M , there
exists a finite number of iterative steps N such that ‖dn‖ > M for all n ≥ N . This is also ob-
served when degeneracies occur while running a CP algorithm and was proven analytically for
degeneracies occurring for I × J × 2 arrays and some I × J × 3 arrays by Stegeman (2006,
2008a, 2008b).

Next, we relate the non-existence of an optimal CP solution to near linear dependency of the
factors and near rank deficiency of the individual parameter matrices. Let evmin(F

′
nF n) be the

smallest, evmax(F
′
nF n) be the largest eigenvalue, and κ(F n) = ev1/2

max(F
′
nF n)/ev1/2

min(F
′
nF n) be

the condition number of F n (Ortega & Rheinboldt, 1970, p. 42). We have the following corollary
to Theorem 1.

Corollary 1. If the CP criterion function f does not attain its infimum and f (θn) ↓ inff , as
n → ∞, then evmin(F

′
nF n) → 0, as n → ∞.

Proof: From the triangle inequality and f (θn) ↓ inff , it follows that

‖F ndn‖ ≤ ‖x − F ndn‖ + ‖x‖ = f (θn)
1
2 + ‖x‖ ↓ (inff )

1
2 + ‖x‖. (7)

Hence, the sequence {‖F ndn‖2} is bounded. That is, there exists a positive number M such that
‖F ndn‖2 ≤ M for all n. From

0 ≤ evmin
(
F ′

nF n

)‖dn‖2 ≤ ‖F ndn‖2 ≤ M, (8)

and (4) it follows that

0 ≤ evmin
(
F ′

nF n

) ≤ M

‖dn‖2
= M

‖θn‖2 − 2R
. (9)

By Theorem 1, ‖θn‖2 → ∞, so that evmin(F
′
nF n) → 0, as n → ∞. �

Since F ′
nF n is positive semidefinite with unit diagonal elements, 1 ≤ evmax(F

′
nF n) ≤ R.

Hence, by Corollary 1, κ(F n) → ∞. Furthermore, Corollary 1 implies the following corollary.

Corollary 2. If the CP criterion function f does not attain its infimum and f (θn) ↓ inff , as
n → ∞, then the smallest singular value of each column-wise normalized parameter matrix
tends to zero, as n → ∞.

Proof: Suppose that f does not attain its infimum. From the definition of F ′
nF n and elementary

properties of the Kronecker product, F ′
nF n = A′

nAn ∗ B ′
nBn ∗ C̃

′
nC̃n follows, where ∗ is the

element-wise Hadamard product. Since A′
nAn,B ′

nBn and C̃
′
nC̃n are positive semidefinite with
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unit diagonal elements, it follows for all n that

max
{
evmin

(
A′

nAn

)
, evmin

(
B ′

nBn

)
, evmin

(
C̃

′
nC̃n

)} ≤ evmin
(
A′

nAn ∗ B ′
nBn ∗ C̃

′
nC̃n

)
(10)

(Schur, 1911; Styan, 1973). An application of Corollary 1 completes the proof. �

Since the smallest singular value of each normalized parameter matrix tends to zero, it fol-
lows that the smallest singular value is arbitrarily small if the number of iterations of the CP
algorithm are sufficiently large. In this sense the normalized parameter matrices are nearly rank
deficient for n sufficiently large. Since the largest singular value of each column-wise normalized
parameter matrix lies between 1 and R1/2, Corollary 2 implies that κ(An) → ∞, κ(Bn) → ∞,
and κ(C̃n) → ∞. That is, the condition number of each normalized parameter matrix tends to
infinity as the number of iterative steps increases without bound. These phenomena were proven
analytically for degeneracies occurring for I × J × 2 arrays and some I × J × 3 arrays by
Stegeman (2006, 2008a, 2008b).

If R = 2, a geometric interpretation of Corollary 1 can be given as follows. Since we may
assume d1n > 0 and d2n > 0 without loss of generality, and F n has unit column length, it follows
that

‖F ndn‖2 = ‖dn‖2 + 2d1d2 cos(f 1n,f 2n). (11)

Therefore, {‖F ndn‖2} bounded, {‖dn‖2} unbounded, d1n > 0, d2n > 0, evmin(F
′
nF n) =

1 − | cos(f 1n, f 2n)| → 0, as n → ∞, implies that cos(f 1n, f 2n) → −1, as n → ∞. (If
cos(f 1n, f 2n) → 1, as n → ∞, it would follow that ‖F ndn‖2 → ∞, which is contradictory.)
Hence, the angle between the factors tends to 180°. More specifically, the two factors may be
represented as two vectors on the boundary of a unit “ball” in R

q of which the end points tend
to positions on a straight line that contains the center as well. This is in line with what is usually
observed when a degeneracy occurs while running a CP algorithm: the factors involved nearly
cancel out but still contribute to a better fit of the CP model.

In case the CP criterion function f does not attain its infimum, Theorem 1 and its corollaries
show the “degenerate” behavior of any sequence {θn} such that f (θn) ↓ inff . These results seem
to provide a mathematical basis for the detection of cases where the criterion function does not
attain its infimum. Indeed, if, for a large number of runs of a CP algorithm, the magnitudes of
some factors and the condition numbers of the parameter matrices increase to arbitrary large
values, then the conclusion that the CP criterion function does not attain its infimum seems
inevitable. However, such reasoning need not be valid for a small number of such sequences.
For example, cases are known where these phenomena occur in locally optimal neighborhoods
while the CP model does have an optimal solution. See, for example, Paatero (2000) who showed
this for a class of 2 × 2 × 2 arrays and Stegeman (2008b) who showed this for 5 × 3 × 3 arrays
of rank 5. In these cases, running the CP algorithm several times with different starting values
results in both degeneracies and optimal CP solutions.

4. Restrictions under which an Optimal CP Solution Exists

As mentioned earlier, De Silva and Lim (2006) showed that for 2 ≤ R ≤ min(I, J,K) there
always exists an array X of three-way rank R + 1 which has no optimal CP solution. In this
section we consider orthogonality and non-negativity restrictions under which the CP model
always has an optimal solution. Such constraints have been included in alternating least squares
CP algorithms (Kiers, 1989a, 1989b, 1991; Krijnen & Kiers, 1993; Bro & De Jong, 1997) and
can be included in the Multilinear Engine (Paatero, 1999).
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To show the existence of an optimal CP solution, we make use of level sets. Let L(γ ) =
{θ ∈ R

q : f (θ) ≤ γ } be a level set of the CP criterion function f (Ortega & Rheinboldt, 1970,
p. 98). Theorem 1 gives a condition under which f does not have a bounded level set. We need
the following lemmas, proven by Ortega and Rheinboldt (1970, p. 104).

Lemma 1. Let g : D ⊂ R
q → R

1, where D is unbounded. Then all level sets of g are bounded
if and only if limn→∞ g(θn) = ∞ whenever {θn} ⊂ D and limn→∞ ‖θn‖ = ∞.

Lemma 2. Let g : D ⊂ R
q → R

1 be continuous on the closed set D. Then g has a bounded level
set if and only if the set of global minimizers of g is nonempty and bounded.

Note that the CP criterion function f is continuous with an unbounded domain. The conti-
nuity of f implies that the level sets L(γ ) are closed. We have the following result.

Theorem 2. If one of the parameter matrices (A,B,C) is constrained to be column-wise ortho-
normal, then all level sets of f are bounded and the CP model has an optimal solution.

Proof: Suppose that A′
nAn = I for all n. Then it follows that F ′

nF n = A′
nAn ∗ B ′

nBn ∗
C̃

′
nC̃n = I . Hence, by the triangle inequality (Luenberger, 1969, p. 22),

f
1
2 (θn) = ‖x − F ndn‖ ≥ ∣∣‖x‖ − ‖F ndn‖

∣∣ = ∣∣‖x‖ − ‖dn‖
∣∣ → ∞ (12)

whenever ‖dn‖ → ∞, which is equivalent to ‖θn‖ → ∞ by (4). By Lemma 1 all level sets
of f are bounded. Let L(γ ) be a nonempty level set of f . Then L(γ ) is bounded and closed
and, hence, compact. Restricting f to L(γ ), it follows from Lemma 2 that f attains its infimum
on L(γ ). �

Also using level sets, Lim (2005) showed that the CP model has an optimal solution if the
parameter matrices are constrained to have non-negative elements. We will state it here without
a proof.

Theorem 3. If each of the parameter matrices (A,B,C) is constrained to have non-negative
elements, then all level sets of f are bounded and the CP model has an optimal solution.

Using the theory of level sets, Krijnen (2006) analyzed the existence of optimal solutions for
various factor models related to the CP model.

5. Conclusions and Discussion

We have analyzed the situation where the CP model does not have an optimal solution, i.e.,
the CP criterion function f does not attain its infimum. We showed that for any sequence of CP
updates {θn} such that f (θn) ↓ inff , it holds that ‖θn‖ → ∞, ‖dn‖ → ∞, κ(F n) → ∞, and,
by Corollary 2, κ(An) → ∞, κ(Bn) → ∞, and κ(C̃

′
n) → ∞. Hence, the sequence of parameter

vectors diverges to a CP “degeneracy”, i.e. the factors become nearly linearly dependent and the
individual parameter matrices become nearly rank deficient. Our result provides a general proof
of the claim by Kruskal et al. (1983, 1985) that degeneracies occur when no optimal CP solution
exists. Hence, any CP algorithm minimizing the CP criterion function will yield a degeneracy if
the CP model does not have an optimal solution for this particular array X. Moreover, our result
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can be used to detect a degeneracy while running a CP algorithm, e.g. by monitoring the smallest
singular values of the parameter matrices together with the factor lengths.

For I ×J ×2 arrays and some I ×J ×3 arrays, the occurrence of degeneracies while running
a CP algorithm was mathematically described by Stegeman (2006, 2008a, 2008b). Here, the
number of factors involved in the degeneracy and the type of rank deficiencies in the parameter
matrices follow from the characteristics of the limit point of the sequence of (A,B,C)n.

Apart from the work of Stegeman (2006, 2008a, 2008b) and De Silva and Lim (2006) no
general criteria are known to indicate whether degeneracies will occur while running a CP al-
gorithm for the CP model for a particular array X. However, our result may help research in
this direction, since it shows the importance of determining whether a CP model has an optimal
solution or not.

For the general situation considered in this paper, we may distinguish the following four
cases with respect to Corollary 2 and the k-ranks kA, kB , and kC in Kruskal’s condition (2).
Case 1, kA = kB = kC = R and Case 2, kA = kB = R, kC < R, are frequently encountered in
empirical applications of CANDECOMP/PARAFAC. In Case 1, all parameter matrices are nearly
rank deficient for large n by Corollary 2. In Case 2, An and Bn are nearly rank deficient for large
n by Corollary 2. Case 3, kA = R, kB < R, kC < R, is less common. In this case Corollary 2
is nontrivial in the sense that it implies that An is nearly rank deficient for large n. To our best
knowledge Case 4, kA < R, kB < R, kC < R, has not been encountered in an empirical setting,
but it was considered numerically (Harshman, 1972) and algebraically (Kruskal, 1976). In this
case it is obvious that the parameter matrices are singular and that the conclusion of Corollary 2
is trivial.

Note that by multiplications of orthonormal commutation matrices it can be arranged that
the order in the Kronecker product in (5) is altered (Magnus & Neudecker, 1979), so that the role
played by An, Bn, or Cn is interchanged. Hence, the four cases above cover all possibilities.

In order to guarantee that CP has an optimal solution, one can impose orthogonality or non-
negativity constraints on the parameter matrices (see Theorem 2 and Lim, 2005). Also, leaving
out one data slice in one of the modes or changing the preprocessing scheme may overcome the
problems of degeneracies.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License
which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and
source are credited.
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