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Elements of Purity 1

1 Purity in Practice

Roughly, a proof of a theorem is pure if it draws only on what is “close”
or “intrinsic” to that theorem. Other language commonly found in the math-
ematical literature says that a proof is pure if it avoids what is “extrinsic,”

EENT3 EENT3

“extraneous,” “distant,” “remote,” “alien,” or “foreign” to what is being proved.
The best way to start with understanding purity in mathematics is to see it
in practice. In this section we will present a case study from geometry, on
the classical theorem of Menelaus from planar Euclidean geometry as studied
by Einstein, and a second one from number theory, on Jacobi’s four squares

theorem.

1.1 Einstein on Purity in Geometry

We begin with a case study discussed by Luchins and Luchins (1990), from
which we take the translations in this section. In 1937 Albert Einstein corre-
sponded with his friend Max Wertheimer, the Gestalt psychologist, about “the
problem of axioms.” Seeking to understand Wertheimer’s problem better, Ein-
stein asked if Wertheimer wanted “to compare the value of two proofs which
are themselves based on the same system of (concepts and) axioms.” He added
that “in that case, surely, we are completely satisfied only if we feel of each
intermediate concept that it has to do with the proposition to be proved.”

To clarify this, Einstein then presents two proofs of the theorem of Menelaus
as “a pretty example of two proofs of different degrees of perspicuity.” The
theorem of Menelaus says that if AABC is a triangle, and ¢ is a line that crosses
the sides BC, CA, AB at three distinct points P, Q, R, then

AR BP CO

RB PC Q4

Figure 1 shows the basic configuration of the theorem.

Einstein then gives two proofs of Menelaus, one of which he calls “ugly”,
the other “elegant”. The first proof brings in additional, seemingly unrelated
constructions, while the second proof restricts itself to what is mentioned in
Meneleus’ theorem.

The “ugly” proof relies on what he calls the “principle of similarity”, other-
wise known as the theorem of Thales (Euclid V1.2; see Figure 2). It says: let
AABC be a triangle and let DE be parallel to BC, cutting the other two sides at
D and E. Then ‘% = g—lé.

The “ugly” proof then goes as follows. Augment the Menelaus configuration
by a line OA4 parallel to the transversal PR (see Figure 3). By one application
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2 The Philosophy of Mathematics

A

B C P

Figure 1 Theorem of Menelaus.

A

Figure 2 Theorem of Thales.

B C P (0]

Figure 3 “Ugly” proof of Menelaus.

of Thales, we get that g—g = f,’—g. By a second application of Thales, we get that

RB _ BP
9 = po- We have that

co _rC  RB_BP
04 PO~ AR PO’
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Elements of Purity 3

Solving both for PO and then setting both equal, we have

Q4-PC _ AR-BP
CO ~ RB

Rearranging terms, we get

25 PC @ =
This is the theorem of Menelaus.

For the “elegant proof,” Einstein uses the “principle that two triangles with
a common (or supplementary) angle are related as the products of the adjacent
sides,” and writes it in an equation involving a proportion of the triangles them-
selves and the adjacent sides. See again Figure 1. For the triangles A4ARQ and
ABRP, Einstein uses this principle to get

AARQO AR - OR
ABRP ~— BR-RP’

But what is an equation involving a triangle? A triangle is not a quantity. If
we read the “principle” as involving the areas of triangles, however, then it can
be understood as an application of the trigonometric formula for the area of a
triangle. This formula says that for a triangle A4BC with angle Z4ABC = 0, we
have that

1
area(AABC) = 3 -AB - BCsin 6.
For AABC and ADEF with a common angle Z4ABC = /DEF = 6, we then have

area(AABC)
area(ADEF) ~

“AB-BCsin® AB-BC
.DE - EFsin DE-EF’

NI [N —

If £ABC and /DEF are supplementary, then sin(Z4BC) = sin(£DEF).
The “elegant proof™ applies the formula

area(AABC)  AB-BC
area(ADEF) ~ DE - EF

three times, on the triangles formed by the vertices of the given triangle with
the corresponding segments of the transversal. It then multiplies the resulting
equations together, giving the conclusion of Menelaus.

First, apply the formula to AARQ and ABRP, where /ARQ and /BRP are
supplementary, obtaining

area(AARQ) AR - OR
area(ABRP) ~ RB-PR’
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4 The Philosophy of Mathematics

Next, apply the formula to ABRP and AQPC, with common angle 2/QPC,
obtaining

area(ABRP) _ PR-BP

area(AQPC) ~ QP - PC’

Finally, apply the formula to AQPC and AARQ, with common = opposite angle
LAQR, obtaining

area(AnQPC) QP - CQ

area(AARQ) ~ QA - OR’
We then have

area(AARQ) AR - OR

area(ABRP) ~ RB - PR’

area(ABRP)  PR-BP

area(AQPC) ~ QP - PC’

area(AQPC) QP - CQ

area(ADARQ) ~ QA - OR’
Now multiply both sides of these three equations together. The left-hand side
reduces to 1 because in the three terms being multiplied, the area of the three

triangles occurs once in a numerator and once in a denominator. We thus obtain

_AR-QR PR-BP QP-CQ
" RB-PR QP-PC QA-QR

_AR-QOR PR-BP QF CQ
" RB-PR QF-PC Q4O

RB PC 04’
cancelling the segments OR, PR, QP of the transversal that appear in both
numerators and denominators of the expressions. We have thus obtained the
conclusion of Menelaus.

Why does Einstein call the first proof “ugly” and the second proof “elegant”?
Einstein replies: “Although the first proof is somewhat simpler, it is not satis-
fying. For it uses an auxiliary line which has nothing to do with the content of
the proposition to be proved.” By contrast, “the second proof ... can be read off
directly from the figure.”

The thought is that the auxiliary line in the first proof'is unrelated to the “con-
tent” of the theorem of Menelaus, and this renders it ugly. He clarifies this in his
comment about the second proof, saying that it can be “read off directly” from
the triangle given in the theorem of Menelaus. Every element of the second
proof is part of the given triangle and thus contains nothing extraneous to the
content of the theorem. The first proof augments the Menelaus configuration by
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Elements of Purity 5

a line parallel to the given transversal, whereas the second adds nothing to the
configuration. Einstein judges that this use of an additional element, not part
of the original configuration, is to be avoided if we seek “‘elegant” proofs. He
thus deems his second proof “better” because it avoids what is extraneous to
what is being proved, and is more elegant because of its relative minimality.

Einstein’s remarks are the occasion to introduce the central concern of this
Element, purity of methods. Roughly, a proof of a theorem, or a solution to
a problem, is pure if it draws only on what is “close” or “intrinsic” to that
theorem or problem. Since this rough reckoning of purity invokes a notion of
distance, purity can come in degrees; and if a threshold is set, proofs involving
what is more remote than that threshold can be said to be impure tout court. In
Einstein’s case, the distance between proof and theorem is measured by what
belongs to the “content” of the theorem of Menelaus, and the purer proof is
better because it is more elegant than the less pure proof. These remarks frame
two focal questions for investigating purity constraints. Firstly, how is purity
to be measured? Secondly, why is purity, measured this way, valuable? As we
will see, purity constraints of many different kinds arise in mathematical prac-
tice. For each such constraint, the nature of its measure of purity should be
determined, and the reasons for preferring such proofs should be examined.

Let us look more closely at the first question in Einstein’s case. In a follow-
up letter to Wertheimer, Einstein seeks to specify his measure of purity more
fully. He expresses discomfort even with the second, “better” proof. “A certain
uneasiness remains, however, even in the better proof,” he writes, “since we
don’t see a priori what the segments on the transversal are supposed to have
to do with the matter. We use them in the proof, and then they are cancelled
out.” These segments of the transversal aren’t mentioned in the theorem (even
though the transversal itself is). Moreover, though they are used in the proof,
they cancel each other out during a calculation, furthering the sense that they
are unnecessarily brought into the proof. Einstein may be suggesting that since
the segments on the transversal are not explicitly mentioned in the statement of
Menelaus, they are not permissible in a pure proof of it. While until now the
notion of content used in his purity has remained vague, here Einstein moves
away from a potential semantic understanding of it toward a syntactic under-
standing. On this measure, only what is explicitly mentioned in a statement can
be used in a pure proof.

Many other proofs of the theorem of Menelaus are known (compare
Chemla 1998), and many fail Einstein’s purity constraint. For instance, we can
add auxiliary perpendiculars to the original configuration and apply principles
of similarity to arrive at the conclusion. We can also use coordinate methods
as in Cartesian geometry. Both of these methods go beyond the content of the
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6 The Philosophy of Mathematics

theorem in Einstein’s sense, as neither these perpendiculars nor coordinates are
part of the formulation of Menelaus as considered here.

1.2 Purity in Number Theory: Jacobi’'s Four Squares Theorem

At the end of the nineteenth century, Friedrich Engel (1890) published a short
book on taste in mathematics. Engel is today best known as the coauthor with
Sophus Lie of the monumental three-volume Theorie der Transformations-
gruppen (1888, 1890, 1893), which gave a detailed introduction and treatment
of what would soon be known as Lie groups. But Engel was also an astute
commentator on mathematics, as Engel (1890) reveals. Near the end, Engel
considers the state of number theory at the end of the nineteenth century:

Number theory deals with the properties of integers, so one should actually
demand that it prove all of its theorems without leaving the realm of integers.
But there is still a long way to go before she can do that. A good number of
apparently extremely simple theorems have hitherto only been able to be
proved with the use of an enormous apparatus of transcendent means, of
theorems from the theory of elliptic functions, and the like. (p. 20)

Engel here describes the status of purity in number theory, pointing to elemen-
tary arithmetic theorems proved by transcendental means. In this section we
will describe one such theorem, though as we will see, it is not one that eluded
purely arithmetic proof. The case, Jacobi’s four squares theorem, will rather
show how this impurity came to be brought to a celebrated result of number
theory and how the actors involved in this case thought of it.

In 1621 Claude Gaspar Bachet de Méziriac published a Latin edition of Dio-
phantus’ Arithmetic, in which, in addition to his translation, Bachet added his
own commentaries. In Book IV, Problem 31, he comments that every positive
integer can be written as the sum of four squares, verifying the result explicitly
up to 120 and saying that he verified it up to 325. He adds that it “can easily be
extended to any number of squares” (compare Diophantus 1621, p. 242).

Bachet’s conjecture almost immediately captured the imagination of math-
ematicians. Fermat (1894) agreed with Bachet that Diophantus had known the
theorem, writing in a letter to Mersenne in 1636 that Bachet had verified it
experimentally but had no proof (pp. 65—66). In 1638 Descartes (1898) too
wrote of the conjecture to Mersenne, saying that it was “doubtlessly one of
the most beautiful that one could find concerning numbers” but that he knew
no proof and that he judged it so difficult that he did not dare to start look-
ing for one (p. 256). Fermat learned of Descartes’ remarks and seems to have
taken that as further motivation to solve it himself. Noting Descartes’ difficul-
ties with the problem in a letter to Carcavi in 1659, Fermat (1894), claims to
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Elements of Purity 7

have found a proof by his method of infinite descent, but does not give the
proof (p. 433). (Incidentally, it was in a copy of Bachet’s edition of Diophan-
tus that Fermat wrote his infamous marginal comment on what would become
known as his Last Theorem.) Euler then worked on the problem but it was only
in 1770 that Lagrange, building on Euler’s work, published the first proof (see
Lagrange 1772).

After seeing that every positive integer can be written as the sum of four
squares, we can ask in how many different ways it can be done. For instance,
Bachet observed that 39 can be writtenas 1 +1+1+36 = 12+ 1%+ 12 + 6 and
as 1+4+9+25 = 12422 +3%+52. Are there any other combinations that work?
Jacobi (1829) turned to this question and solved it (p. 106). The result he proved
is now known as Jacobi's four squares theorem: the number of representations
of n as a sum of four squares is 8 times the sum of the positive divisors of n
that are not divisible by 4. It follows that 39 can be represented in 8 - 56 = 448
ways, since the positive divisors of 39 are 1,3, 13,39 and their sum is 56.

To see a little more clearly how this works, let’s consider a simpler example,
8. The positive divisors of 8 are 1,2,4, and 8, and of these, 1 and 2 are not
divisible by 4. Jacobi’s four squares theorem says that 8 is representable in
(1 +2)-8 =24 ways as the sum of four squares. Trivially 0 is a square, and 4
is a square in two ways, as 2% and as (-2)?. So, 8 can be written as the sum of
four squares in the following four ways: 0 + 0 + 2% + 22, 0+ 0 + (=2)> + (=2)?,
0+0+2%+(-2)%, 0+0+(-2)% +22. Order matters here, so these cases need to
be distinguished. Similarly, there are six total places where the 4s can go: the
last two places as we have seen, the second and fourth places, and so on. Since
for each of these placements of the 4s there are four ways that the numbers can
be summed, as we saw earlier, we obtain 6 times 4 equals 24 ways, as Jacobi’s
result says.

While this purely arithmetic result is simple to state, the proof that
Jacobi (1829) presents in Fundamenta nova theoriae functionum ellipticarum
uses, as the name indicates, the theory of elliptic functions. Elliptic functions
in Jacobi’s hands were obtained by inverting elliptic integrals, which were
introduced in attempts to find the arc lengths of ellipses. In this development,
elliptic functions were thought of as functions of complex variables, though
Jacobi’s treatment of complex variables in this work was purely formal rather
than a development of complex analysis (compare Gray 2015, pp. 88—89).
Nevertheless, Jacobi’s proof of his four squares theorem was breathtakingly
transcendental. He defines an elliptic function known today as a theta function,
a function of a complex variable, and shows that it is periodic. As this is a
periodic function, he can then find a Fourier series representing this function.
From this series he can read off a power series whose coefficients, following
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8 The Philosophy of Mathematics

the work of Euler, have a combinatorial interpretation: they give the number of
ways a positive integer can be represented as the sum of four squares (compare
Hardy and Wright 1979, chapters 19 and 20).

In so doing, Jacobi brings methods that seem to be quite remote from
elementary arithmetic to bear on a simply stated arithmetic theorem. In his
announcement of the theorem in Jacobi (1828), he writes that this result “seems
to be difficult to prove by the known methods of number theory” and that
his proof “by the theory of elliptic functions is entirely analytic” (p. 191). He
lauded his proof as having bridged two domains previously thought distant.
In Jacobi (1848), he wrote: “Between analysis and number theory, which were
long thought to be completely separate disciplines, more and more frequent and
often unexpected connections and transitions have recently been discovered. A
rich source of mutual relationships between the two, which will remain unex-
hausted for a long time, is the analysis of elliptic functions” (p. 61). He saw his
work on the four squares theorem in this light.

At the same time, he recognized that not everyone would be satisfied with
an analytic proof of this elementary result. In Jacobi (1834), he observes:

This theorem is clear even at first glance by comparing the formulas that [
have shown in Fundamenta nova theoriae functionum ellipticarum. But for
the sake of the men of arithmetic, not advocating analytic developments,
I will show the matter here, in place of the above-mentioned propositions,
starting solely from the theorems that concern the composition of numbers
into two squares. You can extract such a demonstration without much trouble
from the analysis that we have used on page 109. The less it is concealed,
the more likely it can provide a handle for others to further refine the method
that I use in what follows. (p. 167)

If he is not himself troubled by the distance between the theorem and the
proof, he acknowledges that others might be, the “virorum arithmeticorum,”
and accordingly gives a new, purely arithmetic proof. This new proof applies
a result about the representation of positive integers by two squares that
was known to Fermat and proved by Euler by purely arithmetic means (see
Euler 1758). Moreover, Jacobi observes that his new proof was “concealed”
by the analysis, but can be revealed without difficulty, and that this revela-
tion might help mathematicians skilled in arithmetic make further progress on
purely arithmetic problems.

Jacobi continued to apply his transcendental methods to number-theoretic
problems and also continued to try to translate these proofs into purely arithme-
tic terms. He commented on these parallel aims again in Jacobi (1848). Firstly,
he argued for the value of his transcendental proofs:
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Elements of Purity 9

The derivation of these arithmetic propositions from the analytic devel-
opments not only increases the supply of arithmetic proofs, but also the
propositions themselves are found in a new, remarkable form. In an earlier
case, in which a fundamentally arithmetic theorem resulted as the corollary
of an elliptic formula, this theorem received an essentially different version,
which gave it a more general character and increased importance. (p. 65)

By grounding an arithmetic result in a transcendental context, the result gains
in generality, as it is now seen to be part of a wider conceptual network. Again,
such impurity is not necessary, since purely arithmetic proofs are also available
by “translating” the transcendental proof into arithmetic terms:

In the following I have tried to derive the properties of the numbers result-
ing from analytic developments also from well-known arithmetic theorems,
which every time gives a purely arithmetic proof for the analytic formula.
Although these arithmetic proofs of results obtained by analytical means do
not present any essential difficulties, they are sometimes of a complicated
nature. (p. 67)

Thus, while purely arithmetic proofs can be found without difficulty, they can
be more complex than the transcendental proofs, though Jacobi does not specify
what kind of complexity he has in mind.

Jacobi thus reveals a certain ambivalence about the apparent impurity of his
transcendental proof: on the one hand, it bridges what were earlier thought
to be distinct branches of mathematics and is valuable for doing so; on the
other hand, this “bridge” can be translated into purely arithmetic terms without
too much difficulty, using the aforementioned combinatorial interpretations of
power series by Euler. However, these translations can be more complex than
the original impure proofs; but still, the pure proofs can be useful in helping
experts in arithmetic advance their arithmetic studies.

Mathematicians after Jacobi continued to refine his new methods. Eisenstein,
who was involved in a controversy with Jacobi over their proofs of certain
reciprocity laws (see Collison 1977), found another purely arithmetic proof of
Jacobi’s four squares theorem, but judged his results to not be mere translations
of transcendental methods: “In my investigations these propositions are proved
by purely arithmetic considerations, and appear as special cases of more general
propositions” (see Eisenstein 1847, p. 135). For similar reasons Dirichlet too
sought a new purely arithmetic proof of Jacobi’s theorem. In 1856 an extract
of a letter from Dirichlet to Liouville was published (Dirichlet 1856) in which
Dirichlet recalls a recent conversation they had had about Jacobi’s “beau” the-
orem. He observes that Jacobi “first proved by his elliptic series and has since
given an arithmetic demonstration ... [but] which Jacobi himself warned was
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10 The Philosophy of Mathematics

only a translation of the first proof” (p. 210). Dirichlet says he has already
looked for a long time for other principles on which to found the theorem,
but that is not the subject of his letter today. Instead, it is to simplify Jacobi’s
purely arithmetic proof by “exposing the arithmetic or rather algebraic fact that
forms its principal foundation.” While there may exist straightforward ways to
render the transcendental methods arithmetic, the pure proof resulting from
this translation is not particularly clear. Here he echoes Jacobi himself. There
is reason, says Dirichlet, to search for new proofs that are more clearly situated
within arithmetic, rather than awkwardly replicating the analytic structure in
arithmetic language.

1.3 Summing up the Case Studies

In these two case studies two type of purity seem to be involved. Einstein looks
for a proof that does not draw on resources beyond what is needed to determine
the content of the theorem he is proving. Jacobi, by contrast, looks for a proof
that stays within the domain or branch of the theorem he is proving. We will go
on to call the former type of purity “topical” and the latter, “geographical.” We
will come to distinguish other types of purity as well, and discuss how these
types of purity are related.

1.4 Purity of Proof vs. Purity of Definition

In this Element we will focus on treating purity of proof. But purity concerns
arise for other mathematical practices as well, such as definition. For instance,
Samuel Eilenberg and Norman Samuel Eilenberg and Norman Steenrod (1945)
sought an axiomatic definition of the concept of homology group in algebraic
topology, invoking purity as a constraint on their search:

The usual approach to homology theory is by way of the somewhat compli-
cated idea of a complex. In order to arrive at a purely topological concept, the
student of the subject is required to wade patiently through a large amount of
analytic geometry. Many of the ideas used in the constructions, such as ori-
entation, chain and algebraic boundary, seem artificial. The motivation for
their use appears only in retrospect. (p. 117)

The purely algebraico-topological concept of homology group should not be
defined using analytic geometry, they write, alluding to its development by
Henri Poincaré with its attachment to particular topological spaces. Never-
theless, their interest in a topologically pure definition of homology group
was linked to their interest in topologically pure proofs. In their textbook
(Eilenberg & Steenrod 1952, p. x), they add that “Proofs based directly on
the axioms are usually simple and conceptual. It is no longer necessary
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Elements of Purity 11

for a proof to be burdened with the heavy machinery used to define the
homology groups.” Their pure definition of homology group thus leads to top-
ologically pure proofs. The quest for “good” definitions in mathematics is
frequently linked to the values realized by proofs from such definitions (see
Tappenden 2008), and so we will continue to focus principally on purity of
proof.

1.5 Looking Ahead

In this Element we will investigate the apparent preference for pure proofs that
has persisted in mathematics since antiquity, alongside a competing preference
for impurity. In Section 2, we’ll give a brief history of purity in mathematics.
We’ll then, in Section 3, discuss several different types of purity, based on sev-
eral different measures of distance between theorem and proof. In Section 4
we’ll discuss reasons for preferring pure proofs, for the varieties of purity con-
straints presented in Section 3. In Section 5 we conclude by reflecting briefly
on purity as a preference for the local and how issues of translation intersect
with the considerations we have raised throughout this Element.

2 A Brief History of Purity

In his biographical notice for Kurt Gédel, Georg Kreisel (1980) wrote about
Hilbert’s interest in purity, putting it in historical context in the following way:

Hilbert was quite conscious of ... an age-old ideal of Methodenreinheit, as he
stressed in the peroration to Hilbert (1899); ‘age-old’ in that it goes back to
the time of the Greeks when Archimedes was criticized for using properties
of space to prove theorems about the plane; cf. Knorr (1978). For elementary
theorems, you use elementary cuts. Number theorists will think of heated but
inarticulate arguments about impure methods, analytic number theory at one
time, 1-adic cohomology now. Incidentally, though this was not stressed by
Hilbert himself, his later, much more famous consistency programme is also
a particular case of this search for pure methods: so-called finitist theorems
should have finitist proofs (of which old-fashioned school mathematics is

typical). (p. 163)

As Kreisel indicates, the search for purity and its counterideal, impurity, has
been a part of mathematical practice since antiquity. Despite the profound
changes in mathematical practice and in philosophical conceptions of it since
then, it remains so today. In this section we will come to see better why this is.

Thinking about purity requires that we attend to what Jean-Michel Salanskis
has called the “geographicity” of mathematics: that mathematics is divided into
branches and has always been (cf. Salanskis 2008). As Salanskis observes, the
“map” of mathematics is as unstable and relative as are maps of Europe or the
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12 The Philosophy of Mathematics

world across the centuries. Given that at any time mathematics is divided into
branches in one way or another, each branch can be expected to develop its own
local practices and norms. This kind of “internal regionalization” as Salanskis
puts it, or “localism” as we prefer to put it, is a feature of debates about purity
over time.

This concern had a central place in Aristotle’s theory of knowledge. In the
Posterior Analytics, he says that

Understanding must be knowledge of a necessary nexus, and therefore must
clearly be obtained through a necessary middle term; otherwise its possessor
will know neither the cause nor the fact that his conclusion is a necessary con-
nexion. ... It follows that we cannot, in demonstrating, pass from one genus
to another. We cannot, for instance, prove geometrical truths by arithmetic.

Reasoning which crossed generic lines in this way was termed metabasis
and could not provide for understanding. Such demonstrations could provide
knowledge, but not of the best kind that he called scientific (epistemg). Purity
for Aristotle was thus an ideal of proof. The value of pure proofs, Aristotle
indicates, is rooted in their revelation of a necessary connection between the
subject and predicate of the theorem proved. Since a premiss of an Aristotelian
demonstration is supposed to express the essence of the subject concerned, as
Michael Detlefsen (2008) explains:

A pure proof provided knowledge that the predicate of its conclusion (the
minor term of the proof’) held of its subject (the major term) solely because of
what the subject in itself was. It showed the very whatness (i.e. the essence)
of the subject of a theorem to be the ‘cause’ of its having the property
expressed by its predicate. (p. 180)

Aristotle’s theory of knowledge thus supported the idea that individual math-
ematical disciplines were autonomous, with their own distinct first principles
(see Steinkriiger 2018).

Ancient mathematicians had a keen awareness of the geographicity of math-
ematics, reflected in Aristotle’s mathematical example of kind-crossing. They
were also attentive to other aspects of the organization of mathematics that gave
rise to different understandings of purity. Proclus (1992) attends to one such
understanding in his commentary on book I of the Elements. He notes Euclid’s
attention to what is more “elementary” in geometry and observes that the Ele-
ments is organized by the search for proofs of less elementary propositions by
more elementary ones. In so doing, results are established with clarity and gen-
erality (p. 61). This type of purity is, on the face of it, rather different from
the “topical” purity of Aristotle, concerned with mathematical genera. Proclus
talks instead of an elemental purity, in which a proposition should be proved

Downloaded from https://www.cambridge.org/core. IP address: 3.144.123.19, on 26 Dec 2024 at 21:45:51, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009052719


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009052719
https://www.cambridge.org/core

Elements of Purity 13

using only what is no less elementary than that proposition. For instance,
Proclus remarks on the efforts in antiquity to prove the parallel postulate rather
than take it as a hypothesis, because of its lack of self-evidence relative to the
other postulates. He then shows how Book I of the Elements is organized in
three parts: a first part on triangles, a second part on parallelograms, and a third
part demonstrating the “kinship” of triangles and parallelograms by showing
they have similar properties to each other and, finally, by relating the two in
the Pythagorean theorem (/bid., pp. 68—69). This organization induces prefer-
ences for certain proofs over others; for instance, Proclus lauds Euclid’s proof
of Proposition 21, about triangles, for not using parallel lines, suggesting that
others at the time used parallels (/bid., p. 256). In avoiding the less-elementary
notion of parallel line in favor of the notions and methods already treated in
Book I at that point, Euclid’s proof of .21 is elementally pure.

The development of algebra at the birth of the modern era would bring
a shock to the Aristotelian model of knowledge and thus of purity (see
Klein 1992, Rabouin 2009). René Descartes pioneered the application of alge-
bra to geometry by canonizing the following method: first express the problem
by algebraic equations, then solve these equations by algebraic manipulations,
and finish by translating these algebraic solutions back into geometrical terms.
However, some mathematicians judged such use of algebra in geometry to
be “rather far” from the problems at hand. A noteworthy example was Isaac
Newton, despite his mastery of such application. As he wrote in his Lucasian

Lectures on Algebra:

Equations are expressions belonging to arithmetical computation and in
geometry properly have no place except in so far as certain truly geomet-
rical quantities (lines, surfaces and solids, that is, and their ratios) are stated
to be equal to others. Multiplications, divisions and computations of that sort
have recently been introduced into geometry, but the step is ill-considered
and contrary to the original intentions of this science: for anyone who exam-
ines the constructions of problems by the straight line and circle devised
by the first geometers will readily perceive that geometry was contrived as
a means of escaping the tediousness of calculation by the ready drawing of
lines. Consequently these two sciences [arithmetical computation and geom-
etry] ought not to be confused. The Ancients so assiduously distinguished
them one from the other that they never introduced arithmetical terms into
geometry; while recent people, by confusing both, have lost the simplicity
in which all elegance of geometry consists. (Newton 1972, p. 429)

While Newton thought algebra should not be part of geometrical proofs, he
allowed a role for algebra in the discovery of new mathematical theorems.
Here he drew on the classical distinction between the methods of synthesis and
analysis (see Panza 1997). In an undated manuscript, Newton (2022) writes:
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14 The Philosophy of Mathematics

The Ancients invented their Propositions by Analysis & Demonstrated them
by synthesis, & admitted nothing into Geometry before it was demonstrated
synthetically. I followed their example that the Propositions in that book
might be admitted into Geometry. For the glory of Geometry is its certainty
& nothing is to be admitted into Geometry before it be made as certain plane
& evident as art can make it.

The importance of synthetic demonstrations in geometry, to be given in purely
geometrical rather than algebraic terms, is for Newton also a matter of their
certainty. He seems to have judged the deductive logical structure of Euclidean-
style demonstrations from first principles to have the power to convince their
readers with certainty of their conclusions, whereas analysis is only capable of
showing how to discover a synthetic proof.

Descartes too saw a role for the methodological distinction between anal-
ysis and synthesis. His procedure for geometrical problem solving reflected
this duality, requiring firstly the translation of the geometrical problem into
algebraic language, then carrying out algebraic manipulations without regard
for their geometrical content in order to find quantities that could be used to
solve the original geometrical problem, and finally demanding the geometrical
construction of these quantities in a way that could be expressed as a classi-
cal Euclidean-style synthetic proof. But Descartes and Newton differed about
the epistemic significance of these two steps. While Newton insisted that only
the synthetic, purely geometrical proof gave certainty of the theorem thereby
proved, Descartes emphasized the knowledge given by the algebraic discovery.
In his published work he gave almost no attention to synthesis.

However, this move away from purity came with a new understanding of the
branches of mathematics whose boundaries purity was meant to respect. In La
geomeétrie, Descartes (1902) characterized the ancients’ support for purity as a
result of their ignorance of deeper mathematical unities:

Here I beg you to note in passing that the hesitation of the ancients to use
arithmetic terms in geometry, which could only proceed from not seeing their
relation clearly enough, caused a great deal of obscurity and difficulty in the
way they explained themselves. (p. 378)

In a letter to Mersenne two years later, he explained that the link between
algebra and geometry was even more profound: “Those who know the con-
junction that is between geometry and arithmetic, cannot doubt that all one
can do by arithmetic can also be done by geometry; but to want to make this
understood to whose who conceive of them as completely distinct sciences, this
would be a waste of time [oleum et operam perdere]” (February 9, 1639; see
Descartes 1898, p. 504).
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Descartes seems to have thought that he had uncovered the unity of algebra
and geometry, but that this unity eluded explanation in any terms that could
be understood by a doubter. If Descartes is right, the application of algebra
to geometry is in fact pure, for algebra and geometry belong ultimately to one
and the same branch of mathematics. This will be a recurring theme: pushes for
impurity rest on cases for unification, and so, ironically, are pushes for purity
within a mathematics sufficiently reconceptualized. We will return to this in
Section 3.2.

The Cartesian application of algebra to geometry presaged a lively debate in
the nineteenth century on purity in geometry to which we now turn. On one
side of this debate were those who wanted to continue mixing algebra and
geometry. For instance, Joseph-Louis Lagrange wrote that “as long as alge-
bra and geometry have been separated, their progress has been slow and their
usages limited; but when these two sciences are united, they have lent each
other strength and have advanced together rapidly towards perfection” (see
Lagrange 1876, p. 271). Lagrange’s view was the by-now widespread view that
impure methods in geometry afforded considerable gains in simplicity and effi-
ciency, and were valuable for this reason. Joseph Gergonne and Julius Pliicker
were two other geometers advocating this side of the debate, as discussed by
Jemma Lorenat in Lorenat (2015). We will return to this view in Section 4.5.

On the other side of this debate were those who took the point that pure
methods in geometry have their particular advantages, as a reason to advocate
for purity in geometry. Two representatives of this side are Michel Chasles and
Jacob Steiner; Nicolas Michel discusses Chasles’ stance in Michel (2020), and
Lorenat discusses Steiner’s in Lorenat (2016). Another was Sylvestre-Francgois
Lacroix, whose textbook on the differential and integral calculus was translated
into English by Charles Babbage, John Herschel, and George Peacock, thereby
playing an essential role in bringing British mathematics up to date with what
had been happening abroad (see Fisch 1999). In this text Lacroix (1797) writes:

Do not believe that by thus insisting on the advantages of algebraic analysis, |
want to put synthesis and geometric analysis on trial. I think, on the contrary,
that we neglect too much today the study of the ancients; but I would not want
to mix, as one does in almost all works [today], geometrical considerations
with algebraic calculations; it would be better, it seems to me, if each of these
ways of doing things were carried out in separate treatises, as far as it can
go; and if the results of both were to clarify each other, corresponding, so to
speak, to the text of a book and its translation. (p. xxvi)

Lacroix maintains that algebra and geometry should be developed and used
separately even if they can be translated between one another. Their mutual
translatability was no longer contested, and as a consequence each could shed
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16 The Philosophy of Mathematics

light on the other, but each domain should remain its own discipline with its
own methods.
A pair of British geometers in the 1930s framed this debate in political terms:

Those on the extreme right would not admit that any proof of a geometri-
cal theorem by algebraic methods was a valid proof, though they admitted
that these methods might be used to suggest problems for the pure geome-
ter. Those on the extreme left did not indeed condemn the methods of Pure
Geometry as invalid, but they certainly despised them as elephantine. (See
O’Hara and Ward 1937, p. 3)

They continue by noting that this debate had practical consequences:

An interesting example of the division of opinion is shown in the editorial
policies of two of the leading mathematical journals of a century or more
ago. Crelle s Journal would never admit to its pages any algebraic proof of a
geometrical theorem; Liouville s Journal, on the other hand, refused to print
anything but algebraic proofs of geometrical theorems. (/bid., p. 3.)

A recent monograph by Massimo Mazzotti has shown how a group of Neapoli-
tan mathematicians in the early nineteenth century advocated for the separation
of geometry from algebraic analysis, prioritizing the kind of knowledge engen-
dered by the former, as part of a wider social, political and economic reaction
against French revolutionary politics (see Mazzotti 2023).

Another political take on the geography of mathematics and purity as a
preference for what is local emerges in the search for a pure proof of the fun-
damental theorem of algebra. John Dawson (2006) remarks that the search for
proofs of this result about roots of polynomial equations “that aim to minimize
the use of analytical or topological concepts” is an example of a purity proj-
ect (p. 279). The mathematician Helmut Hasse (1930) discussed this case in an
article on what he called “the new algebraic method.” He described this method
as “the striving fo reduce a given area of mathematics to its most general and
therefore simplest conceptual foundation elements and to construct and extend
it with their help alone” (p. 20). He adds that “every mathematical discipline
has a certain fundamental attitude of a philosophical nature that need not be
spelled out but is nevertheless decisive for the character and development of
the discipline.” Each branch of mathematics has its own identity, and the alge-
braic method requires that we prove its truths from foundations of that branch
alone. In this way, Hasse’s algebraic method seems to encapsulate the search
for purity.

To illustrate his algebraic method, Hasse turns to the solution of rational
algebraic equations. The “natural means” for solving such equations, he says,
are the usual algebraic operations, but the classical theory “goes outside the
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realm of these natural means...it enters the realm of complex numbers and
uses aids from analysis to prove the so-called fundamental theorem of alge-
bra...[drawing on] the essentially new concept of limit” (p. 19). The modern
algebraic method critiques and seeks to remedy this, by removing the reliance
on analysis. He lauds the work of Emil Artin and Otto Schreier on real-closed
fields as having accomplished this:

Now if there exists a development [4ufbau] of the theory of algebraic equa-
tions that eschews the limit concept and relies solely on the elementary
arithmetic operations, then such a development must, of course, be pre-
ferred to others. Such a development, with the additional qualities of clarity
and simplicity, relies on abstract field theory...[and] has actually been done
by Artin and Schreier. [By their work] real algebra and the fundamental
theorem of algebra regain their citizenship rights [Biirgerrecht] in algebra.
(Hasse 1930, p. 20)

This last phrase, “citizenship rights,” resonated in 1930s Germany. Hasse him-
self was a conservative who would become a Nazi sympathizer (and perhaps
party member) in G6ttingen and Berlin.

In the Nazi era in Germany there was a movement of “Deutsche Math-
ematik,” led by world-class mathematicians like Ludwig Bieberbach and
Oswald Teichmiiller, identifying talents for particular branches of mathematics
with racial archetypes and “denigrat[ing] nongeometric mathematics, espe-
cially algebra, as insufficiently volkisch” (see Segal 2003, p. 489). As Sanford
Segel documents, Bieberbach’s Nazi-era journal Deutsche Mathematik would
publish about three times as many pure geometry articles as related journals
like Mathematische Annalen (29 percent versus 10.8 percent of the articles pub-
lished and 31.3 percent versus 10.1 percent of the pages of these journals) while
only a third as many articles in impure geometry, mixed with analysis, topol-
ogy or algebra (2.4 percent versus 6.4 percent of the articles and 2.9 percent
versus 6.0 percent of the pages). “It seems fair to say,” writes Segal, “that the
density of geometry articles in Deutsche Mathematik is roughly twice that of
the other journals, and the geometry is far more ‘pure’.”

Each issue of the first volume of Deutsche Mathematik, in 1936, started
with a page containing only a quotation. As Segal notes (p. 394), two issues
started with the same quote from Kant: “Foreign words betray either pov-
erty, which must be concealed, or negligence” (44 XV, p. 369). One of these
two issues, number 4, included a laudatory note for the avowed Nazi Theodor
Vahlen written by Friedrich Engel, whose interest in purity we discussed in
Section 1 (see Segal 2003, p. 396). The historian of ideas John Theodore
Merz (1903), in his essay on the development of mathematics in the nineteenth
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century, remarked on the connection between German preferences for linguistic
purity and mathematical purity:

In this way the great geometrician, Jacob Steiner, e.g., refused the assistance
of analysis in the solution of geometrical problems, conceiving geome-
try as a complete organism which should solve its problems by its own
means....Mathematical rigorists in this sense would look upon the use of
mixed methods or operations not belonging to the same group with that kind
of disfavor with which we should regard an essayist who could not express
his ideas in pure English, but was obliged to import foreign words and
expressions. It is interesting to see that the country which has offended most
by the importation of foreign words—namely, Germany—is that in which
this purism in mathematical taste has found the most definite expression.
(p. 632)

The linguist Deborah Cameron (1995) has given the name “verbal hygiene” to
the desire to police language use for failure to adhere to norms such as avoiding
foreign terms inasmuch as is possible. In Arana and Burnett (2023) we have
begun to investigate the parallel highlighted by Merz between verbal hygiene
and what we call “mathematical hygiene,” the desire to police mathematical
practices for failure to adhere to norms such as purity and explanatoriness. In
both cases we can look at the reasons offered for such policing and observe the
role of ideologies in their justification.
Anand Pillay (2021) has noted the ideological associations with purity:

In the background, and related to purity of methods, is the notion of “authen-
ticity” (of a topic, subject, method, in mathematics). “Authenticity” has an
identity politics connotation, where it is about using the right words, or slo-
gans, by which the faithful can recognize one another and exclude those who
do not belong. (p. 194)

Pillay says he prefers the term “integrity” for this pursuit, “where one seeks the
essential mathematical content and ideas and tries to avoid too much mixing
up of notions which are only superficially connected.” Pillay’s word choices
remind us that the language we use for our reasons for norms such as purity
matter: that the associations these norms have with wider ideologies may give
us additional reasons to pursue these norms, or to eschew them.

Continuing on from this sociopolitical interlude, we return to purity in geom-
etry in the nineteenth century. There is a third side of this debate that was
not then widely taken, but finds amongst its adherents L. E. J. Brouwer a lit-
tle later: the view that Descartes seemed to come to, that geometry had been
arithmetized and thus that no principled line can be drawn between pure geom-
etry and algebraic geometry. As Brouwer (1913) put it, “since Descartes we
have learned to reduce all these geometries to arithmetic by means of the
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calculus of coordinates” (p. 86). On this view, the coordinate methods char-
acteristic of applications of algebra to geometry are, against appearances, pure,
because geometry is reducible to the arithmetic of coordinates. How this reduc-
tion should be understood will concern us again later as we reflect on the
significance of set-theoretic reductions for purity.

The debate on purity in the nineteenth century thus raised a rich variety
of philosophical problems, involving epistemology, semantics, ontology, and
methodology, among others. It is no wonder, then, that it played a role in the
turn to foundations during the nineteenth and twentieth centuries, to which we
now turn.

Bernard Bolzano’s work on the foundations of analysis involved purity, nota-
bly in his search for a nongeometric proof of the intermediate value theorem
of real analysis. This theorem says that for a real function f continuous on a
closed bounded interval [a, b], for every u such that f(a) < p < f(b), there is
a v such that @ < v < b, with f(v) = u. Bolzano objected, in particular, to
the use of the following proposition to prove this theorem: every continuous
line of simple curvature of which some ordinate values are positive and some
negative must intersect the x-axis at a point between the positive and negative
ordinate values. He described this as a “truth borrowed from geometry,” and
he regarded the borrowing as illicit. He explained himself as follows:

Itis... an intolerable offense against correct method to derive truths of pure
(or general) mathematics (i.e. arithmetic, algebra, analysis) from considera-
tions which belong to a merely applied (or special) part, namely, geometry.
Indeed, have we not felt and recognized for a long time the incongruity of
such metabasis eis allo genos? Have we not already avoided this when-
ever possible in hundreds of other cases, and regarded this avoidance as a
merit? ... [I]f one considers that the proofs of the science should not merely
be certainty-makers [Gewissmachungen], but rather groundings [Begriin-
dungen], i.e. presentations of the objective reason for the truth concerned,
then it is self-evident that the strictly scientific proof, or the objective rea-
son, of a truth which holds equally for a/l quantities, whether in space or
not, cannot possibly lie in a truth which holds merely for quantities which
are in space. (See Bolzano 1999, p. 228, with slightly modified translation
from Detlefsen and Arana 2011, pp. 4-5)

Bolzano’s epistemology of mathematics was thus Aristotelian in character,
identifying the best, “scientific” proofs in mathematics as those proceeding
from objective grounds, and preserving the Aristotelian injunction against
impurity (see Detlefsen 2008 and Detlefsen 2010 for more detailed treatments
of Bolzano on purity). Bolzano’s quest for purity was thus part of his founda-
tional project, concerning not only the proper organizational of mathematical
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domains, but also the quality of knowledge resulting from proofs in systems so
organized.

Among Bolzano’s readers was the mathematician Richard Dedekind, who
followed Bolzano in seeking purity in his pursuit of the foundations of math-
ematics. In his work on the foundations of real analysis, Dedekind stressed
that “I demand that arithmetic shall develop out of itself,” noting that “com-
parisons with non-arithmetical notions have furnished the immediate occasion
for the extension of the number-concept...but this is certainly no reason for
introducing these foreign notions [ fremden] into arithmetic itself, the science
of numbers” (see Dedekind 1872, p. 771). In a letter to Rudolf Lipschitz dated
October 6, 1876, he insists that he can develop the arithmetic of the real num-
bers “without any interference of foreign things [ fremdartiger Dinge]” (see
Dedekind 1932, p. 470). Here Dedekind echoed Bolzano, in looking to extrude
foreign notions, especially geometrical notions, from the foundations of analy-
sis. Instead, he sought a purely arithmetical theory of real number, noting that
“every theorem of algebra and higher analysis, no matter how remote, can be
expressed as a theorem about natural numbers — a declaration I have heard
repeatedly from the lips of Dirichlet” (see Dedekind 1888, translation from
Ewald 1999, p. 792).

Dedekind’s reference to Dirichlet is consistent with Dirichlet’s pursuit of an
arithmetic proof of Jacobi’s four squares theorem that we saw in Section 1. But
Dirichlet was not interested in purity in the way Dedekind was. We remarked
in Section | that Dirichlet wanted to make Jacobi’s purely arithmetic proof
simpler. He did not indicate that he saw particular value in the pursuit of
purity otherwise. Indeed, Wilfried Sieg has problematized Dirichlet’s interest
in purity, noting that he lauded the merit of impurity in number theory (see
Ferreirds and Gray 20006, p. 342). This illustrates that one can value both purity
and impurity, for different reasons. As we will discuss later, the fact that the-
orems admit multiple proofs mean that we can hold opposing values in our
proving practices, sometimes favoring one value, sometimes another.

Dedekind also worked to find a pure proof of the Riemann—Roch theorem,
which his friend Riemann had proved using the topological concept of conti-
nuity in the form of the Dirichlet principle (see Arana 2007). With Heinrich
Weber, Dedekind showed in 1882 how to express the Riemann—Roch theo-
rem in algebraic terms, involving fields of algebraic functions defined on a
Riemann surface, itself thought of algebraically. Applying Dedekind’s ideal-
theoretic approach to algebraic number theory, Dedekind and Weber were able
to give a purely algebraic proof of the Riemann—Roch theorem. Dedekind and
Weber thus achieved an algebraic proof of an algebraic theorem, but doing so
required a reconceptualization of the Riemann—Roch theorem as an algebraic
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theorem. We will see further examples of such conceptual transformations of
theorems in the pursuit of purity.

Gottlob Frege’s understanding of purity echoed Bolzano’s, even if his appli-
cation of it was quite different. In the Grundlagen, Frege (1980) identified some
proofs of theorems as “the ultimate ground upon which rests the justification for
holding it to be true” (§3). He believed that these “canonical” proofs of arith-
metic truths would show the intimate connection of arithmetic and logic. If we
can show that arithmetic is logic, he says, we will have identified “the kind of
ground on which their proof rests” (§17). On this, he quotes Leibniz’s (1996)
Nouveaux Essais: such proofs show “the connexion and natural order of truths,
which is always the same” (IV.7). In order to reveal such an objective order
of truths, proofs of arithmetic theorems must be purified of geometrical con-
tent. Frege (1984) explained that the “reluctance” of mathematicians to accept
complex numbers was

facilitated by geometrical interpretations; but with these, something foreign
was introduced into arithmetic. Inevitably there arose the desire of once
again extruding these geometrical aspects. It appeared contrary to all reason
that purely arithmetical theorems should rest on geometrical axioms; and it
was inevitable that proofs which apparently established such a dependence
should seem to obscure the true state of affairs. The task of deriving what
was arithmetical by purely arithmetical means, i.e. purely logically, could
not be put off. (pp. 116-117)

Frege’s logicist program was thus also a programmatic call for purity.

Purity remains a concern to contemporary mathematicians. During the
nineteenth century, algebraic geometers became interested in the following
question: given an algebraic surface, characterize the families of surfaces that
intersect the given surface in curves of particular kinds. Geometers made prog-
ress on the case when these families of surfaces formed a kind of linearly
dependent system. As Babbitt and Goodstein (2011) explains, in 1905 Federigo
Enriques, a member of the celebrated school of Italian algebraic geometry, gave
a complete characterization of such families of surfaces intersecting a given
smooth algebraic surface in an irreducible and continuous system of curves.
He did not find his proof satisfying, however, because it was not purely geo-
metric. As he put it in a piece written with Enrico Castelnuovo, another member
of this school:

We have not succeeded in demonstrating this theorem using geometric meth-
ods...This result is therefore the fruit of a long series of researches, to which
the transcendental methods of M. Picard and the geometrical methods used
in Italy contributed equally. (See Picard and Simart 1906, pp. 489, 495; Gray
2012, p. 503)
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In fact, Enriques had not succeeded even in that; his proof was wrong, as
discovered by Severi in 1921, who then gave a new proof that was quickly seen
to be incorrect. A correct proof, entirely transcendental, had in the meantime
been given by Poincaré.

In a 1945 letter to Corrado Segre, looking back on these developments,
Castelnuovo lamented, “we would need to have a fully satisfying geometri-
cal demonstration” (see Babbitt and Goodstein 2011, p. 246). The historians
Aldo Brigaglia and Ciro Cilberto (1995) have stressed that Castelnuovo and
Enriques’ dissatisfaction with Enriques’ transcendental proof was for “philo-
sophical reasons”:

In fact, for Enriques and Severi, who were postulating a central role for the
projective algebro-geometric methods in mathematics, the missing resolu-
tion of such an essential problem in the theory of surfaces — which they
considered as their creation — was always an unacceptable humiliation. Thus
they repeatedly returned to the consideration of this problem, even if they
never were definitively successful in resolving it. (p. 47)

In 1966 David Mumford gave a purely algebraic-geometric proof of the
result, using methods developed by Jean-Pierre Serre, Alexandre Grothendieck,
and Kunihiko Kodaira, thus finally meeting the purity challenge (see
Toffoli and Fontanari (2023) for another angle on this episode).

Purity concerns have also abounded in contemporary number theory. In the
next section we will discuss the use of complex analysis in proving the prime
number theorem. Here we discuss another celebrated example of impurity.
Andrew Wiles’ proof of Fermat’s Last Theorem has attracted considerable
attention for the distance between its simple arithmetic statement and its
difficult, varied proof. Like Jacobi’s work a century earlier, Wiles’ proof is in
part an application of elliptic functions (more precisely, elliptic curves), with
additional methods from algebraic geometry. Israel Kleiner (2012) underlines
the distance between its conclusion and its methods, noting that “the problem
belongs to number theory — a question about positive integers. But what area
does the proof come from? It is unlikely one could give a satisfactory answer,
for the proof brings together many important areas — a characteristic of recent
mathematics” (p. 60).

Wiles’ proof electrified the world, both for the historical significance of the
theorem, but also for the spectacle of the distance between its conclusion and its
methods. A notorious example of its reception in the media concerned colum-
nist Marilyn vos Savant in Parade magazine, distributed freely with millions
of Sunday newspapers each week in the USA until 2022. In her column of
November 21, 1993, vos Savant wrote that Wiles hadn’t succeeded, because
it relied (in its work on modularity) on non-Euclidean methods that could be
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used to square the circle, a known impossibility. She elaborated in her book
published that same year that Wiles’ proof “isn’t as satisfying as it could be”
(vos Savant 1993, p. 60) because it “inhabits a very different world from the
world inhabited by Fermat” (p. 16). Quoting a newspaper article featuring
Simon Kochen, Wiles’s department chair at Princeton at the time, she noted that
Wiles “was throwing the kitchen sink at it, using all kinds of techniques that
had been developed in recent years” (p. 17). Her book and her Parade column
caused an outcry by mathematicians, and in response in an amended edition of
her book in 1995 she stressed her view that we should try to “find a proof with
Fermat’s tools” (see Farrell, Farrell, and Rodgers 2016). Since Wiles’s “kitchen
sink” proof drew on so many elements alien to Fermat’s world, it would be
better, she maintained, to a find a proof closer to the theorem as understood by
Fermat.

Stripping away the misunderstandings and confusions, vos Savant’s view is
purist. Her view was put more succinctly by Colin McLarty, remarking that
“Fermat’s Last Theorem is just about numbers, so it seems like we ought to
be able to prove it by just talking about numbers” (cf. University 2013). The
quest for a pure proof of Fermat’s Last Theorem resonates with the impres-
sion that number theory to date has no statements that cannot be proved purely,
an impression that has been studied by mathematical logicians. Jeremy Avigad
states Harvey Friedman’s “grand conjecture,” that “every theorem published in
the Annals of Mathematics whose statement involves only finitary mathemati-
cal objects (i.e. what logicians call an arithmetical statement) can be proved in
elementary arithmetic” (see Avigad 2003), of which Fermat’s Last Theorem is
a special case. “Elementary arithmetic” here means a particular formal theory,
in short, first-order Peano Arithmetic with induction limited to bounded for-
mulas but with axioms asserting the totality of the exponentiation function. As
Avigad discussed, considerable evidence for this conjecture exists in proof the-
ory (see Arana 2014), but so far Fermat’s Last Theorem has eluded it. Recently
McLarty (2020) has made important progress toward this contemporary project
in purity, showing that the Grothendieck universes deployed in Wiles’ frame-
work can be replaced with methods of the same logical strength as finite-order
arithmetic.

For a final contemporary example, consider the Briangon—Skoda Theorem,
an important result in algebraic geometry (see Briangon and Skoda 1974). Let
R be either the formal or convergent power series ring in d variables and let
I be an ideal of R. Then /¢ C I, where 1 is the integral closure of an ideal I.
Of this result, Joseph Lipman and Bernard Teissier (1981) remark: “The proof
given by Briangon and Skoda of this completely algebraic statement is based
on a quite transcendental deep result of Skoda. ... The absence of an algebraic
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proof has been for algebraists something of a scandal — perhaps even an insult —
and certainly a challenge” (p. 97).

Lipman and Teissier then give an algebraic proof satisfying the challenge.
The “scandal ... insult... challenge” here is, in our terms, an impure proof of
a theorem for which, until then, no pure proof was known. Re-proving the
theorem in a purely algebraic way merited publication in the excellent and
mainstream Michigan Mathematical Journal.

In this section, then, we saw purity develop and transmute, in response to
mathematical and philosophical developments. With Aristotle, we saw how an
awareness of the geographicity of mathematics, in its division into branches,
was reflected in his injunction against kind-crossing. Proclus’ attention to the
organization of Euclid’s Elements highlighted a contrasting constraint, favoring
proofs employing what is no less elementary than what is being proved. In
what follows we will clarify these two conceptions of purity, on the one hand
concerned with the identity of the topics being studied, on the other hand with
the way statements are organized within a subject matter. In doing so, we will
distinguish several different varieties of these broad types of purity that have
occurred in practice.

3 Types of Purity

In the introduction to his textbook Algebre linéaire et géométrie élémentaire,
the Bourbakiste Jean Dieudonné (1969) advocated for purity in geometry in the
following way.

My last general remark concerns an aspect of modern Mathematics which is
in a way complementary to its unifying tendencies; it concerns its capacity
for sorting out features which have become unduly entangled. I am thinking
above all of the distinction (which has been felt quite sharply since Pon-
celet) between the “affine” type of geometric properties and “metric” type of
properties. From the logical standpoint, it is quite shocking to see these two
types of properties mixed up in a proper hotch-potch since the days when
traditional Euclidean geometry began. It is incredible that two such dispa-
rate concepts as that of parallelism and perpendicularity, to name but one
example, should have been placed on the same plane. In linear algebra, this
distinction emerges quite simply and naturally, the two types of property
depending respectively on two groups of axioms which are quite separate
from the very beginning. The results can then quite easily be developed, one
apart from the other. It may well be that some will find this insistence on
“purity” of the various lines of reasoning rather superfluous and pedantic;
for my part, I feel that one must always try to understand what one is doing
as well as one can and that it is good discipline for the mind to seek not only
economy of means in working procedures but also to adapt hypotheses as
closely to conclusions as is possible. (pp. 11-12)
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Here Dieudonné is occupied with the distinction between affine geometry and
metric geometry, wherein the former gives a central place to parallelism, and
the latter, to distance. Geometers in the nineteenth century came to distinguish
these two approaches and to see how much could be developed in each with-
out the other. Dieudonné calls the mixing of these approaches “shocking,” and
promotes detangling them for reasons of understanding and mental discipline.
We will discuss and evaluate reasons to value purity (and impurity) in Sec-
tion 4. In this section, we want to make better sense of what purity is. In this
passage Dieudonné says that it is a search for economy of means, means that
are maximally “close” to what is being proved.

In suggesting that purity is a matter of distance between theorem and the
means of proof, Dieudonné echoes the kinds of descriptions of it that we have
seen so far: that a proof of a theorem is pure if it draws only on what is

9

“close” or “intrinsic” to that theorem, or avoids what is “extrinsic,” “extra-

99 C 99 ¢

neous,” “distant,” “remote,” “alien,” or “foreign” to what is being proved. But
his description evokes different senses of purity that we should untangle. In
one sense, the means of proof of a theorem are close to that theorem if they
are contained in the theorem or belong to the branch of mathematics to which
it belongs. In another sense, they are close if they are no stronger than what is
being proved. This rough division of how purity can be understood will guide

our work 1in this section.

3.1 Geographical Purity

In Section 2, we saw how purity can be formulated in terms of branches of
mathematics. The classic formation of this kind is Aristotle’s, writing that
“we cannot, in demonstrating, pass from one genus to another. We cannot, for
instance, prove geometrical truths by arithmetic.” Accordingly, we can define a
proof of a statement to be geographically pure if it draws only on what belongs
to the branch of mathematics to which the statement belongs.

Several of the examples of purity we have already surveyed are of this type,
like Jacobi’s and Bolzano’s. Ferraro and Panza (2012) have studied a case of
what we call geographic purity in Lagrange’s theory of analytic functions.
Lagrange sought to prove theorems of the infinitesimal calculus using only
“an algebraic, purely formal theory centered on the manipulation of (finite
or infinite) polynomials through the method of indeterminate coefficients”
(p- 96). He sought algebraic solutions for what he understood to be algebraic
problems, rather than those using principles of infinitesimals “foreign to the
spirit of analysis, which should have no metaphysics but that which consists
in the first principles and in the fundamental operations of calculation” (see
Lagrange 1799, p. 233, translation from Ferraro and Panza 2012, p. 97).
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26 The Philosophy of Mathematics

Talk of purity in number theory is often geographical. We can illustrate
this with an example that we will have reason to revisit. Legendre and Gauss
hypothesized that the number of primes up to an integer n, m(n), is approx-
imately @, but they did not prove it. The path to a proof opened with
Euler’s clever proof of the infinitude of primes, observing that when s = 1,

1 1 . .
Z — = 1_[ . Suppose there are finitely many primes; then the product
i ns , 11— p—s

is finite but the sum, the harmonic series, diverges. The infinitude of primes
follows by contradiction. Riemann built on Euler’s work, using the identity

. . . . 1 .
just described to define his “zeta” function, {(s) := Z — . This sum converges
n

n>1
absolutely for real-valued s > 1, and Riemann showed, by powerful new meth-

ods, how to extend it to complex-valued s # 1 (that is, to numbers s = a + bi,
where i = V=1 , and a and b are real numbers). Riemann’s work entailed, again
by complex analysis, that Legendre and Gauss’ hypothesis regarding the num-
ber of primes less than an integer » is equivalent to the nonexistence of zeros of
{(s) on the line Re(s) = 1. Hadamard and de la Vallée Poussin proved the latter,
independently, in 1896, using Riemann’s powerful complex-analytic methods.
Thus Legendre and Gauss’ hypothesis is now called the prime number theorem.
These complex-analytic proofs irked some number theorists. For instance,
A. E. Ingham (1932) remarked that “the solution just outlined may be held
to be unsatisfactory in that it introduces ideas very remote from the original
problem, and it is natural to ask for a proof of the prime number theorem not
depending on the theory of a complex variable” (pp. 5-6). Bram Pel (2023) has
shown how concern about the use of imaginary numbers in solving real-valued
integrals marked a dispute between Pierre-Simon Laplace and Siméon-Denis
Poisson in the early nineteenth century. We will comment a little later on the
“elementary” proofs of the prime number theorem found by Atle Selberg and
Paul Erdds, independently in 1949 —a discovery deemed important enough that
it contributed to Selberg’s winning a Fields Medal in 1950. For now, we remark
that the search for a pure proof of the prime number theorem is sometimes
expressed geographically. For instance, Harold Davenport (2008) writes:

We have already said that the proof of Dirichlet’s Theorem on primes in
arithmetical progressions and the proof of the prime number theorem were
analytical, and made use of methods which cannot be said to belong prop-
erly to the theory of numbers. The propositions themselves relate entirely to
the natural numbers, and it seems reasonable that they should be provable
without the intervention of such foreign ideas. (p. 27)

Geographicity emerges in the talk of what “belongs properly to” and what is
“foreign to” the discipline of number theory.
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We have adapted the term “geographical” from Jean-Michel Salanskis’ work
on the “geographicity of mathematics,” already introduced in the previous
section. Salanskis (2008) observes that mathematics has always been and con-
tinues to be divided into branches, but also that this division is “as shifting
and relative as the map of Europe or of the world” (p. 175). Even as the
ancient division of mathematics into arithmetic and geometry is reflected today
in the distinction between discrete and continuous mathematics, mathemat-
ics today admits more fine-grained divisions. According to the Mathematics
Subject Classification 2020, designed by the American Mathematical Society
and zbMATH Open (formerly Zentralblatt MATH), mathematics has more than
sixty branches, including number theory, algebra, analysis, and geometry, but
also branches that mix other branches, for example algebraic geometry and
analytic number theory.

The landscape of branches of contemporary mathematics sets limits on the
usefulness of geographical purity. Firstly, results belonging to several branches
that mark movement toward new fused branches do not by themselves pose
obstacles to the search for purity. As we saw in the previous section, algebraic
geometers can seek purity, avoiding analytic or topological means, for exam-
ple. Poincaré’s uniformization theorem — that every simply connected Riemann
surface is conformally equivalent to one of three Riemann surfaces: the open
unit disk, the complex plane, or the Riemann sphere — belongs at once to alge-
braic topology, differential geometry, and complex analysis. A geographically
pure proof of uniformization would draw on these branches but not others.
But these branches comprise a great deal of mathematics, and one might won-
der about the use of such a broad and tolerant notion of purity. An advocate
for the unity of mathematics in which the boundaries between branches have
been forgotten might say that they too advocate purity: mathematical proofs
for mathematical theorems, nothing more. This wide conception of purity is far
from the fine-grained distinctions characteristic of historical purity discrimina-
tions. Yet, as we have seen, mathematicians continue to make those fine-grained
distinctions.

Another concern for the local shows further limits of geographical purity.
A researcher might want to use only part of a particular discipline to prove a
result. For example, consider the infinitude of primes theorem: that for all natu-
ral numbers, there exists a greater prime number. The classical Euclidean proof
from Elements 1X.20 is purely arithmetic and is thus geographically pure. Let
us consider, though, an investigator who wants to prove the theorem without
addition, seeing it as extraneous. Neither primality nor the infinitude of natural
numbers seems to make use of addition. A prime number is a number divisible
only by 1 and itself, and divisibility is not an additive notion. As for infinitude,
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this rests on an ordering, which is also not an additive notion; simply thinking of
the numbers as following in discrete succession from 1 generates the ordering,
but the unary successor operation is not the full binary operation of addition.
This is a purity project, but not a geographical one, because the geographic
conception does not allow for such fine-grained distinctions within mathemati-
cal branches. The infinitude of primes is an arithmetic theorem, and arithmetic
includes addition as a basic operation. To make sense of this purity project, we
will need another conception of purity.

One might riposte that the multiplicative fragment of arithmetic is its own
discipline, studied by logicians as Skolem arithmetic. This purity project could
thus be framed geographically as the search for a proof of the infinitude of
primes in Skolem arithmetic. But one would be hard-pressed to find the study
of this fragment of arithmetic outside of mathematical logic. From the point
of view of school children and number theorists alike, Skolem arithmetic is a
curio rather than a branch of mathematics. Framing this purity project in terms
of geometrical purity seems to require taking a stance on the question of what
it takes to count as a branch of mathematics, a question that may strike us as
merely terminological.

3.2 Topical Purity

An example from geometry will point the way toward another conception of
purity better suited to these cases that geographical purity does not handle well.
The Sylvester—Gallai theorem says “that in any configuration of » points in
the plane, not all on a line, there is a line which contains exactly two of the
points” (Aigner and Ziegler 2010, p. 63). H. S. M. Coxeter (1948) sought a
proof of this result that avoided metric notions, remarking that “it seems to me
that parallelism and distance are essentially foreign to this problem, which is
concerned only with incidence and order” (p. 27). Coxeter (1989) acknowl-
edged that metric notions belong to geometry, observing that “etymologically,
‘geometry without measurement’ looks like a contradiction in terms” (p. 176).
On a geographic conception of purity, Coxeter’s purity project looks badly
framed, like our arithmetician looking for a nonadditive proof of the infini-
tude of primes. But Coxeter (1989) insisted that the concept of straight line
is not a metrical notion as some would understand it, as the shortest distance
between two points, but rather as an ordinal notion. He notes that what he
calls Euclid’s “famous definition,” that “a line (segment) is that which lies
evenly between its ends ... suggests the possibility of regarding intermediacy
as a primitive concept and using it to define a line segment as the set of all points
between two given points” (p. 176). Thus did Coxeter justify his view that the
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Sylvester—Gallai theorem “is concerned only with incidence and order,” and
his concomitant successful search for a purely incidence and order-theoretic
proof of it (see Arana 2008, p. 39, and Arana 2009, pp. 4-5).

As with the previous case, we can try to frame Coxeter’s quest geograph-
ically. Indeed, Coxeter called his fragment of geometry “ordered geometry,”
following earlier work of Pasch, Veblen, and Hilbert; in the latter’s Grundla-
gen der Geometrie, ordered geometry corresponds to the first two groups of
axioms taken together. As with Skolem arithmetic, though, ordered geometry
does not attract much interest besides that of logically-inclined geometers (see
Pambuccian 2009 and Pambuccian 2011).

We can avoid a decision on whether ordered geometry is genuinely a branch
of mathematics by following a methodological suggestion of Hilbert and adopt-
ing another conception of purity. In his 1900 address in Paris to the International
Congress of Mathematicians, Hilbert (1901) claimed that in solving a mathe-
matical problem we ought to use only the conceptual resources used in stating
that problem:

It remains to discuss briefly what general requirements may be justly laid
down for the solution of a mathematical problem. I should say first of all,
this: that it shall be possible to establish the correctness of the solution by
means of a finite number of steps based upon a finite number of hypothe-
ses which lie in the presentation of the problem and which must always be
exactly formulated. (p. 257)

In lectures given shortly before the Paris address, Hilbert (2004) emphasized
his view of purity in explaining his search for a purely planar projective proof
of the planar Desargues theorem (compare Arana and Mancosu 2012):

This theorem gives us an opportunity now to discuss an important issue.
The content [Inhalt] of Desargues’ theorem belongs completely to planar
geometry; for its proof we needed to use space. Therefore we are for the
first time in a position to put into practice a critique of means of proof. In
modern mathematics such criticism is raised very often, where the aim is to
preserve the purity of method [die Reinheit der Methodel], i.e. to prove theo-
rems if possible using means that are suggested by the content of the theorem.
(pp. 315-316)

Thus Hilbert judged a proof to be pure just in case it draws only upon what
is “suggested by the content of the theorem” being proved, or on what “lies
in” the presentation of the problem being solved; or, perhaps better, inasmuch
as it stays as close as possible to the conceptual resources used in under-
standing that theorem or problem. Since he judged that the “content of Desar-
gues’ theorem belongs completely to planar geometry,” he maintained that a
three-dimensional proof of it is impure in his sense. (See also Hilbert 1971,
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pp. 106-107, where Hilbert calls purity a form of the “ground rule” of his
method in this work.)

From Hilbert’s views we may extract the conception of purity we may call
“topical.” Following Hilbert’s fin de siecle stress on problems, we focus on
topically pure solutions to problems rather than solely on proofs of theorems.
We reprise here from Detlefsen and Arana (2011) the representation of prob-

b}

lems by ordered triples P = (7,/,, P, $), where ‘7’ stands for a “yes-no”
interrogative attitude; ‘P’ stands for a propositional content; and ‘¢’ stands for
a formulation of P. A problem is the subject of an investigation by what we
will refer to as an investigator, though an investigator need not be an individ-
ual human person, but could be a community of some sort. A formulation is
the means by which an investigator represents a content to herself. For exam-
ple, a community of English-speaking number theorists may ask whether every
even number greater than 3 is equal to the sum of two prime numbers — that
is, they may seek a resolution to the Goldbach Conjecture. In so doing, they
take a yes-no interrogative attitude to the content of this problem, formulated
in mathematical English.

We call the topic of a problem the family of commitments that together deter-
mine what its content is for a given investigator. These are the definitions,
axioms, and inferences such that if the investigator were to stop accepting any
one of them, then the content of the problem would not be what it is for her.
That is to say, the problem whose solution she had been seeking would no
longer be the object of her investigation. To put the point epistemically, their
understanding of the problem would be thereby changed. For example, if the
aforementioned number theory community were to rescind their commitment
that every natural number has a successor, then they would no longer under-
stand the natural numbers as an indefinitely extended sequence. Were this the
case, the Goldbach Conjecture would no longer have the same content as it did
for this community, since it would concern instead a finite sequence. By con-
trast, if this community stopped accepting that every rectangle has four right
angles, the content of the Goldbach Conjecture would remain unchanged for
them. Thus the axiom that every natural number has a successor belongs to the
topic of the Goldbach Conjecture for this investigator, but the definition of a
rectangle as a four-sided polygon with four right angles does not.

Our talk of rescinding commitments in mathematics may strike some as odd.
After all, we are talking about commitments to axioms, definitions, and rules
of inference, matters which seem to be “foundational.” Yet such rescinding is a
feature of mathematical life, even if in times of stability it is infrequent. Minor
changes in definitions are common, particularly as a concept is being isolated;
think of the changes in the definition of group surveyed in Wussing (2007).
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With the rise of non-Euclidean geometry, the geometry community rescinded
their uniform commitment to the parallel postulate, admitting it thereafter as
marking a special domain of geometry, that of Euclidean geometry. Rules of
inference too can be rescinded, as the case of Hermann Weyl’s time as an intu-
itionist shows (compare van Dalen 1995). Indeed, for a commitment to earn its
name, it must be something that is held but whose holding, at least implicitly,
requires agency; and such agency can be employed in differing ways.

The upshot of this analytic work is that we can now introduce another con-
ception of purity. A solution of a problem is fopically pure if it draws only on
what belongs to the topic of the problem. This makes sharper Hilbert’s view
that purity concerns solutions that use only “means that are suggested by the
content of the theorem,” the theorem whose proof constitutes a solution to a
problem under investigation.

Topical purity differs from geographical purity in that it limits what is pure
to what is contained within the problem’s topic, rather than to the entire branch
to which the problem (or theorem) belongs. In that way, topical purity is a
“local” purity constraint. We can then make sense of purity attributions where
the object of the investigation seems itself mixed. For instance, Poincaré’s
uniformization theorem says that every simply connected Riemann surface is
conformally equivalent to one of three Riemann surfaces: the open unit disk,
the complex plane, or the Riemann sphere. Uniformization belongs to each
of algebraic topology, differential geometry, and complex analysis, at mini-
mum, because Riemann surfaces are at once topological, geometrical, analytic,
and algebraic. No sense can be made of a geographical purity attribution for
uniformization, since it would require some single branch of mathematics con-
taining all these subjects that does not simply flatten their differences into some
indistinct unity. But the topic of uniformization entails no such difficulty, since
a topic need not be identified with any existing branch. On the topical concep-
tion, then, it becomes intelligible to talk of a pure proof of uniformization —
the search for which, we would claim, helps makes sense of Poincaré’s
work on the problem during the almost thirty-year period that the problem
occupied him (see Saint-Gervais (2010) for a detailed telling of this result’s
story).

Instances of topical purity abound. We saw it in Section 1 in Einstein’s exam-
ple from elementary geometry, where he remarked that “we are completely
satisfied only if we feel of each intermediate concept that it has to do with
the proposition to be proved.” Here Einstein localized his search for purity
to the proposition being proved, adding that impurity arises in his first proof
when it “uses an auxiliary line which has nothing to do with the content of the
proposition to be proved.”
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We can also look to number theory for examples of topical purity. Let’s look
again at the infinitude of primes, or for short, IP (recapitulating a longer discus-
sion in Arana 2014). Its topic includes definitions and axioms for the natural
numbers with an ordering, and primality. The wider public, as well as number
theorists, understands the natural numbers to begin with a first number 1, fol-
lowed by other numbers that are understood to be the successors of the numbers
that came before. These suppositions can be codified by axioms for succes-
sor and an induction axiom, following Poincaré’s argument that induction is
essential to understanding the natural numbers (see Poincaré¢ 1902). The order-
ing induced by successor is normally understood as linear and discrete, and
axioms specifying these too can be added. Finally, a natural number is nor-
mally understood as prime if it is greater than 1 and only divisible by 1 and
itself, so in addition to adding this definition to the topic of IP, we must add
axioms defining divisibility.

At this point we could stop, taking the topic as determined for an investi-
gator for whom divisibility is basic. We can understand such an investigator
as capable of assessing whether one natural number is divisible by another,
for instance by a combinatorial understanding of whether particular finite col-
lections can be partitioned into a certain number of partitions. Or we could
continue, from the perspective of an investigator who understands divisibility
in terms of multiplication: A number a is divisible by another b if there is a
number ¢ such that ¢ multiplied by b is a. In the latter case, the topic of IP
would also include axioms for multiplication. These are two different topics
and we need not choose between them, because each corresponds to a different
investigator. There is no single answer to the question of what a problem’s or
theorem’s topic is.

A first candidate for a topically pure proof of IP is the classical Euclidean
proof. If a = 1, then since 2 = S(1) is prime, where S is the successor function,
we know that there is a prime greater than @ = 1. So, suppose that a > 1.
Let p1,p2, . . .,p, be all the primes less than or equal to a, and let O = S(p; -
P2 -+ pn)- Then O has a prime divisor b that is not equal to any of the p;, and so
b > a. For our investigator who takes multiplication to be part of IP’s topic, this
proofis, at first glance, topically pure. It makes no use of addition and so makes
sense of the purity project we discussed in the last section as falling outside the
scope of geographical purity.

For our investigator who does not include multiplication, however, the
matter is more complex. The classical proof uses multiplication to compute
0, so this proof is not topically pure for our nonmultiplicative investiga-
tor. We are aware of no simple purely divisibility-theoretic proof of IP.
Cegielski has worked on axiomatic theories of the arithmetic of divisibility
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(see Cegielski 1984, Cegielski, Matijasevich, and Richard 1996), but these
theories include IP as an axiom. A more promising approach was developed
by Julia Robinson in Robinson (1949). She defines multiplication in terms
of just successor and divisibility; using this definition, we can translate the
classical proof of IP into a topically pure proof (according to our multiplico-
centric investigator). Robinson noted that this “mechanical” translation will
yield a proof from arithmetic axioms that are “complicated and artificial”
(pp- 102-103), notably longer than typical arithmetic axioms. She found a “sim-
ple and elegant axiom system” for successor and divisibility arithmetic, with a
second-order induction axiom; this theory has the same provable consequences
as the usual arithmetic theory as well as her “artificial” translated system. She
was unable to prove that the “simple and elegant” system with first-order induc-
tion has the same provable consequences, however, and to our knowledge this
remains open.

This mention of induction turns us to a second matter concerning the topical-
ity of proofs of IP. Our definition of a topic also included the inference rules that
determine the identity of a problem or theorem. Logicians differentiate between
several different versions of arithmetic induction; each of these will determine a
different topic, for an investigator who accepts that version of induction. Classi-
cal first-order induction suffices for the (Robinsonian) Euclidean proof as does
intuitionistic first-order induction and second-order induction; thus, the Euclid-
ean proof is topically pure for each of these three topics. Turning to finitary
arithmetic as a topic of IP, where the induction axiom is limited to primitive
recursive arithmetic (following Tait 1981), the Euclidean proof can again be
seen to be topically pure. This is because it inducts on no formula of arithme-
tic complexity higher than XV, and 7%, the arithmetic theory with induction
limited to Z?, is typically thought equivalent to primitive recursive arithmetic
(see Hajek and Pudlak 1998, pp. 44—47). Finally, taking feasible arithmetic as a
topic of IP, matters are cloudier. On Parikh’s identification of feasible arithme-
tic with /Ap, where induction is limited to formulas with bounded quantifiers,
it is open whether there is a topically pure proof of IP. We do know that the
Euclidean proof fails in this setting, since /A does not prove that every product
of primes exists (see D’Aquino 1992, p. 13).

In this example, we have seen how we need not settle on any particular topic
as being the “right” one, but can instead identify many different topics, each of
which license different proofs as being topically pure or impure. This is typical.
As we saw earlier, Coxeter thought that distance did not belong to the topic of
the Sylvester—Gallai theorem, because straight lines should be defined in terms
of betweenness. By contrast, Legendre (1794) held that “the line is the shortest
path from one point to another” (p. 1). This would give rise to a metrical topic
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for the Sylvester—Gallai theorem, on which the metrical solution by L. M. Kelly
presented by Coxeter would in fact be topically pure (see Coxeter 1948, p. 28;
also Arana and Mancosu 2012, section 4.6).

The question of what exactly is contained in a problem’s topic is difficult.
We can see some of this difficulty in Alexander Paseau’s study of proofs of
the compactness theorem in mathematical logic (see Paseau (2010); also see
section 2 of Arana 2009). The compactness theorem for first-order logic says
that if every finite subset of a set of first-order sentences has a model, then
the set itself has a model. Students of logic learn Leon Henkin’s proof of this
result, one step of which hinges on adding elements to the model being con-
structed that “witness” the truth of existential sentences in this model. Paseau
asks whether Henkin’s use of witness completion is intrinsic to compactness.
One could argue “that the notion of a witness is intrinsic to understanding the
existential quantifier, part of the language of which the first-order compactness
theorem is about” or that “witness-completeness is intrinsically connected to
the concepts in the statement of compactness, because the latter says that some
set of sentences has a model, and to exhibit a model one needs to be able to
refer to its elements” (p. 77). It is not clear, however, on what terms such argu-
ments are to be made. Paseau concludes that “the extent to which a proof uses
notions foreign to the theorem it proves can be unclear, even indeterminate,
so that questions of intrinsicness can be correspondingly difficult to answer or
unanswerable.”

Indeed, one might resist the notion of topic, that there is anything definite that
is “suggested by the content of the theorem.” Penelope Maddy (2000) derides
Solomon Feferman’s interest in “teasing out ‘what is implicit in the concepts
and principles’ in a given theory” (p. 417, quoting Feferman 1998, p. 122), as
well as what is “part of the very concept of set,” as “philosophical niceties.”
Instead, she argues that we should take what she calls a “naturalistic point of
view” in making sense of mathematical practices, drawing instead on “specifi-
cally mathematical considerations, considerations directly linked to the goals
of the particular practice in question” (p. 415). In fact, our discussion of topics
here does exactly that. Topical purity is one goal, among others, of particular
mathematical practices, and we can observe how the actors of these practices
make judgments about what is and is not topically pure by how they carry out
their purity-seeking practices. From this we can see how the actors “tease out”
the topics of their problems.

We can attempt to get a foothold on these worries by turning to a plausibly
topically impure proof of IP, Hillel Furstenberg’s topological proof. The proof
(presented and discussed in some detail in Detlefsen and Arana 2011, §§4-5)
proceeds by putting a topology on the integers with arithmetic progressions as
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the basic open sets. After showing that these open sets are in fact also closed,
one supposes that there are finitely many primes, looking for a contradiction.
The union of all sets of products of primes is then a finite union of closed sets
and thus closed, and contains all integers except +1. Then {—1, 1}, as the com-
plement of a closed set, is open, a contradiction since the basic open sets are all
infinite. This proof is topically impure for any investigator for whom commit-
ments about topological notions like open set and basis set do not play a role
in determining the content of IP.

In response, one might observe that Furstenberg’s proof employs only point-
set topology, formulable in a weak subsystem of set theory. Reinhard Kahle
and Gabriele Pulcini have highlighted Idris Mercer’s recasting of Fursten-
berg’s proof into a proof where “no topology on Z ever comes into play” and
in which its topological notions are “replaced by easy results involving the
basic set-theoretic operations of union and intersection” (see Mercer 2009; and
Kahle and Pulcini 2018, p. 132). Kahle and Pulcini conclude that Furstenberg’s
proof is only a case of “apparent impurity,” whose “resort to such extraneous
notions is nothing else but an avoidable roundabout.” They judge set theory, at
least this basic part, to belong to IP’s topic, and thus hold that Mercer’s proof
is topically pure.

By adding set theory to the topic of an arithmetic theorem, Kahle and Pulcini
are in sync with what we may call “set-theoretic descent”: that all mathematics,
deep down, is about sets. For IP, one might think that a result about the natural
numbers is really a result about the sef of natural numbers; or that mathematical
induction is a rule of inference only for inductively defined sets. More gener-
ally, one might hold that set theory is the “basis” of mathematics, in that the
content of every mathematical problem or theorem is fully determined by its
set-theoretic articulation. As John Burgess (2022) puts it:

Set theory provides a framework for the rigorous development of all mathe-
matics. Each branch, group theory or field theory or whatever, is concerned
with some special kind of set-theoretic structure, groups or fields or what-
ever, and the “axioms” of the theory are merely the definition of the class of
structures in question. (p. 28)

On this view, all of mathematics is “about” sets, no matter how things may
appear, and so naturally set theory will belong to every problem’s topic.

This kind of view, that formulations of ordinary mathematics occlude its real
content, is not exclusive to set-theoretic descent. Let us return to Fermat’s Last
Theorem. Briefly, a nontrivial integral solution to the equation of Fermat’s Last
Theorem that is greater than 2 can be understood as giving rise to an elliptic
curve, whose “modularity” — “a kind of two-dimensional generalization of the
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familiar sine and cosine functions from trigonometry” (see Harris 2019) — is
established by a result known as the modularity theorem (formerly known as
the Shimura—Taniyama—Weil conjecture). Before Wiles, number theorists knew
that the elliptic curve in question, if modular, would have certain properties
that it in fact does not have. Wiles and Richard Taylor were able to prove the
modularity theorem in the case needed for Fermat. Thus no nontrivial integral
solution greater than 2 to the equation of Fermat’s Last Theorem is possible.
Writing about the modularity theorem, the number theorist Barry Mazur (1991)
observes:

One of the mysteries of the Shimura-Taniyama-Weil conjecture, and its
constellation of equivalent paraphrases, is that although it is undeniably a
conjecture “about arithmetic,” it can be phrased variously, so that: in one
of its guises, one thinks of it as being also deeply “about” integral trans-
forms in the theory of one complex variable; in another as being also “about”
geometry. (p. 596)

Mazur asserts that the modularity theorem is doubtlessly an arithmetic propo-
sition, but one that can be reformulated in other terms, involving quite different
parts of mathematics.

Mazur’s recognition that theorems admit multiple comprehensions lets us
accommodate the urge behind set-theoretic descent and other views about the
clash between “face value” and what we might call “deeper” contents. We
need not concede that the deeper content is the “truer” content, what a prob-
lem or theorem is “really” about. Instead, we can simply conclude that different
topics for whatever problem is in question have been found: a basic topic, com-
posed of what determines the problem’s content taken at face value, and a deep
topic, including the set theory that can be used to define this content. Indeed,
there might be many different levels of set-theoretic analysis that can define
this content, some of which use intermediate definitions like that of union or
intersection, as in Mercer’s set-theoretic reformulation of Furstenberg’s proof,
others using fewer and fewer auxiliary definitions in favor of just the primi-
tive notions of set and membership. These different degrees of what we might
call “analytic depth” will determine different topics. Rather than the exclusiv-
ist view that one of the deeper topics is the “right” one for every investigator,
that an investigator who does not pursue a higher degree of analytic depth has
misunderstood her own problem, we want to keep a place for the investigator
who wants to solve a problem with means limited to its basic topic.

We might wonder if the urge to identify the “true” content of problems or
theorems with deep contents are driven by inferentialism, the view that contents
are determined by their roles within inferential practices. If one identifies the
content of a mathematical claim in terms of its inferential connections, then
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one is forced to identify the content of a mathematical claim with what we have
called the “deep” content. However, if a mathematical claim has only this deep
content, then, as we will argue, there is no way to make sense of the importance
of topical purity in mathematical practice. Given that we must make sense of
the importance of topical purity in mathematical practice if we are to take that
practice seriously, we must reject inferentialism about content.

We begin this argument by looking at how some philosophers have taken
contents to be deep contents. Daniel Isaacson has argued that some sentences
that appear to be purely arithmetic on face value in fact have hidden or tacit
“higher-order,” i.e. infinitary, nonarithmetical content. Gédel sentences and the
Paris—Harrington sentence are arithmetically equivalent to sentences express-
ing metamathematical properties of arithmetic by means of Godel coding (see
Paris and Harrington 1977). Moreover, these sentences are

shown to be true by an argument in terms of truths concerning some higher-
order notion, and in each case also a converse holds, so that the only way in
which the arithmetical statement can be established is by an argument which
establishes the higher-order truth. The relationship of coding constitutes a
rigid link between the arithmetical and the higher-order truths, which pulls
the ostensibly arithmetical truth up into the higher-order. (Isaacson 1996, pp.
220-221)

As a result, Isaacson maintains that “the understanding of these sentences rests
crucially on understanding this coding and our grasp of the situation being
coded” (p. 214). The key is the provable equivalence between the Godel sen-
tences and the coded metamathematical statements, since this shows that these
sentences all have the same inferential role in whatever theory their equivalence
can be demonstrated. (John Baldwin has added that this can be treated model-
theoretically by replacing the notion of inferential role of a given statement
with the collection of its models: see Baldwin 2018, p. 33, chapter 12.)
Michael Hallett has echoed Isaacson’s argument for a different theorem, the
planar Desargues theorem. This theorem says that if two triangles lying in the
same plane are such that the lines connecting their corresponding vertices inter-
sect at a point, then the intersections of their corresponding sides are collinear
(see Figure 4). As documented at length in Arana and Mancosu (2012), a pro-
jective proof of this planar result was known in solid (that is, three-dimensional)
geometry since Desargues, by proving a solid version of Desargues’ theo-
rem and then projecting that result into the plane, but no purely planar proof
had been found by the end of the nineteenth century. As we chronicled in
Arana and Mancosu (2012), the search for a purely planar and projective proof
of this result occupied many, including Karl Georg Christian von Staudt, Felix
Klein, Giuseppe Peano, and David Hilbert. It also gave rise to a fascinating
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Figure 4 The planar Desargues theorem.

pedagogical debate in Italy about whether planar and solid geometry should be
taught together — “fusionism” — or separately. Hilbert clarified the matter in the
last years of the nineteenth century, bringing the methods developed for prov-
ing the independence of the parallel postulate from the other Euclidean axioms
to bear on planar Desargues. This work was the context for his remarks on top-
ical purity that we quoted earlier in this section. We will narrate this work now
in order to give and respond to Hallett’s argument.

Say that a plane is Desarguesian if it satisfies the planar Desargues theorem.
Hilbert showed that if a planar geometry satisfies the planar incidence axioms,
the order axioms, and the parallel axiom, in his axiomatization of geome-
try, then that plane is not necessarily Desarguesian. But if all the axioms of
incidence are used, not only the planar axioms but also the spatial axioms (like
that there are at least four points not lying in the same plane), then that plane is
necessarily Desarguesian. Hence planar Desargues is a necessary condition for
a plane’s being an element of a spatial geometry; or to put it another way, for a
plane’s being “embeddable” into space. Hilbert also showed that planar Desar-
gues is a sufficient condition for a plane’s being embeddable into space. That is,
he showed that a plane satisfying the planar incidence axioms, with order and
parallels, and also satisfying planar Desargues, will also satisfy the spatial inci-
dence axioms. Hilbert proved this by showing firstly, given a planar geometry
satisfying the planar incidence, order, and parallel axioms, how to construct its
“algebra of segments,” and that if this plane satisfies planar Desargues, multi-
plication in this algebra is associative, so that this algebra is an ordered division
ring. Thus, if a plane is Desarguesian, then that plane is “coordinatized” by a
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division ring. He secondly showed how this ordered division ring can be used
to construct a model of the spatial incidence, order, and parallel axioms, that
is, a model of spatial geometry. (In fact, order is inessential for these results.)
As a consequence, Hilbert (2004) said, “[planar] Desargues is a necessary con-
dition for the plane’s being regarded as a plane in space ... the only thing that
distinguishes the plane from space, and we could say that everything that can
be proven in space can now be proven with Desargues in the plane” (p. 240).
That is, Desargues’ theorem can be used as a replacement for Hilbert’s spatial
axioms; it has the same provable consequences as those axioms in Hilbert’s
axiomatic system. Or, to put it another way, a plane’s being Desarguesian is a
necessary and sufficient condition for that plane’s being embeddable in a spatial
geometry.

While spatial considerations would seem “at first sight” to be impure for
proving Desargues’ theorem, Hallett (2008) infers from Hilbert’s work that they
are not, for Desargues’ theorem is in fact a theorem with spatial content, albeit
hidden or tacit spatial content. As he puts it:

What this shows is that that [sic] the Planar Desargues’s Theorem is a suffi-
cient condition for the orderly incidence of lines and planes, in the sense that
it can be used to generate a space. We thus have an explanation for why the
Planar Desargues’s Theorem cannot be proved from planar axioms alone:
the Planar Desargues’s Theorem appears to have spatial content. (p. 229)

In contrast to Hilbert’s view that “the content of Desargues’ theorem belongs
completely to planar geometry,” Hallett maintains that Hilbert’s work shows
that planar Desargues has spatial content. From this, Hallett (2008) concludes:

The examples we have considered show that often we have to adopt a
non-elementary point of view in order to achieve results about apparently
elementary theorems. ... [T]hey also show that apparently elementary propo-
sitions contain within themselves non-elementary consequences, often in a
coded form. (p. 249)

Hallett does not further explain his theory of tacit content, but in a footnote
to this last sentence he notes that “[t]here is surely here more than an anal-
ogy with the ‘hidden higher-order content’ stressed by Isaacson in connection
with the Godel incompleteness phenomena for arithmetic,” citing Isaacson’s
paper.

Isaacson holds that Godel sentences have higher-order content, despite being
expressed in purely arithmetical terms, in virtue of having the same inferential
role as sentences expressed in higher-order terms. Hallett takes the same posi-
tion with Desargues’ theorem, replacing “higher-order” with “spatial.” They
both echo Carnap (1937) in Logical Syntax of Language, who wrote, “[t]he
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question whether two sentences have the same logical sense is concerned only
with the agreement of the two sentences in all their consequence-relations”
(p- 42). Carnap contrasts this “logical” construal of meaning with “psycholog-
ical” construals of meaning for which the “images” associated with a sentence
are determinative. On our reading, Isaacson and Hallett are adopting Carnap’s
notion of logical content as the “hidden” content of the theorems they are
studying. As Hallett (2008) puts it, “Hilbert’s axiomatic method abandons the
direct concern with the kind of knowledge the individual propositions repre-
sent because they are about the primitives they are, and concentrates instead
on what he calls ‘the logical relationships’ between the propositions in a the-
ory” (p. 212). Thus Hallett sees Hilbert’s “organizational” practice as yielding
a way to determine the content of theorems of axiomatic geometry: their con-
tent is determined by their inferential role within axiomatic theories. He reads
Hilbert’s results as showing that planar Desargues plays the inferential role of
a spatial sentence, and concludes that it has (tacit) spatial content. As a result,
the classical spatial proof of planar Desargues draws only on what is “sug-
gested by the content of the theorem.” and is thus topically pure, in Hallett’s
judgment. A similar conclusion could be drawn for Godel sentences and the
Paris—Harrington statement (though Isaacson does not do so).

In response, we again invoke the distinction between basic and deep topics.
These equivalencies that we have been discussing do not force this distinction
to collapse. If the content of the planar Desargues theorem were spatial, even
if only tacitly, it would seem to follow that an investigator with no beliefs or
commitments concerning space (such as a character of Edwin Abbott’s (1884)
novel Flatland) could not understand Desargues’ theorem. But this is implau-
sible, since Desargues configurations are purely planar phenomena, and thus
the sort of thing that Flatlanders normally understand. This is why efforts to
conflate basic and deep content fail: they take the results of lengthy enquiries
for starting points. The mathematician who said that Fermat’s Last Theorem is
really about elliptical modular functions did not mean that a student encoun-
tering number theory for the first time must first master complex analysis and
algebraic geometry before trying to understand a problem about Diophantine
equations. Rather, knowledge of this identification is the result of years of
effort.

Furthermore, slippage from basic to deep topics threatens to obliterate topical
purity as a genuine constraint. Indeed, Hallett says as much in his introduc-
tion to Hilbert’s 1898—1899 lectures, declaring that Hilbert’s work “reveals
that Desargues’ planar Theorem has hidden spatial content, perhaps showing
that the spatial proof of the Planar Theorem does not violate ‘Reinheit’ after
all” (see Hilbert 2004, p. 197). If we were to replace basic topics with deeper
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ones systematically in this manner, seeing that topical purity is in these cases
assured, then the continuing importance of purity as an epistemic objective
would cease to be intelligible. That would be a significant loss on our part as
philosophers of mathematics; it would be to withdraw our claim to make sense
of the practice we purport to study in order to promote the philosophical agenda
of inferential role semantics for mathematics.

None of that is to say that deep topics are not topics, or that theorems cannot
have hidden or tacit content. Rather, it is to say that basic topics make sense
of the commitments that must be engaged by an investigator to work with a
problem, to begin an inquiry with it, but not necessarily the commitments that
will allow her to understand the problem fully. What those commitments are
can only be found a posteriori, by means of investigation into problems.

Our point of view is that each problem can have many topics, and some
can generally be said to be more basic or deeper than others. There is, as far
as we can see, no precise way to measure this kind of depth (though we will
address one such candidate, reverse mathematics, in our discussion of elemen-
tal purity later). The question is then, which topic should be used to evaluate
topical purity claims? Our methodology is that this is a question of philosophi-
cal modeling. We can consider particular purity attributions and try to identify
the topic or topics that best match the actors’ practices. This is what we have
tried to do here in our examples. For instance, it would be hard to understand
why someone who accepted a spatial topic for planar Desargues would have
struggled so much with the question of whether topical purity is possible in
that case. We should then resist the claim that the best topic to study in making
sense of purity attributions about planar Desargues is a solid one. We can then
study what makes topical purity valuable in a more general way, treating the
topic of a problem as a parameter. Then any solution determined to be topically
pure for a given topic can be said to apport this particular value. This will be
our approach in Section 4.4.

All this being said, there has been some work in recent years trying to show
how the topics of problems can be more precisely determined. As we discussed
earlier, Baldwin has taken a model-theoretic approach to topics, as the collec-
tion of models of a statement. Kahle and Pulcini (2018) say that the topic of a
problem should include not only the objects that the problem is about, but also
the objects contained in the closure of the operations occurring in that problem
(p. 134). They call this collection of objects the “ontology” of the problem, the
smallest numerical domain closed under its operations, and similarly define the
ontology of a proof. Robin Martinot (2023) follows Kahle and Pulcini in focus-
ing on the objects that proofs and theorems are about, calling her precisification
of topical purity, “ontological purity.” Like Baldwin, and Kahle and Pulcini,
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she reads the ontology off the vocabulary and axioms of the statements and
proofs in question.

Kahle and Pulcini call a proof “operationally pure” if the ontology of the
proof is a subset of the ontology of the problem. For example, the operational
closure of addition and multiplication is the set of natural numbers; adding
the operations of subtraction and division, the operational closure becomes the
rational numbers. An operationally pure proof of IP can draw on the rationals,
then, even if the theorem ranges only over the natural numbers. In general,
topics construed operationally are more inclusive, with regard to objects, than
our basic topics.

These “ontological’ readings of topical purity are ways to try to make more
precise what are the topics of problems. As the authors acknowledge, they are
set-theoretically dependent ways of doing so, and this will distort topics in ways
we have already explained. It is unsurprising that Mercer’s recasting of Fursten-
berg’s proof of IP is pure on Kahle and Pulcini’s account, for they have built the
closures of union and intersection into IP’s topic. Their topics are accordingly
deeper than our basic ones in general.

3.3 Syntactic Purity

Another way to clarify purity is to treat it syntactically. In this section we will
discuss one attempt to do so, emerging from proof theory (and discussed more
fully in Arana 2009).

The setting is Gerhard Gentzen’s sequent calculus formulation of the first-
order predicate calculus without equality, where each step of a proof consists
of sequents Ay,...,4,, + Bi,...,B, where the 4; and B; are formulas. Proofs in
sequent calculus have axioms of the form 4 + A. The inference rules consist of
logical rules, the introduction and elimination rules for logical constants, plus a
few structural rules, mostly for switching formulas around. One structural rule
needs singling out, the “cut” rule, which has the form

I'=AA AT = A
r=A ’

where 4 is called the “cut formula.” Cuts are commonly compared to lemmas in
informal proofs. To prove I + A (say, concerning circles and lines), a cut uses
something about I', A, and something new, represented by A (say, concerning
right angles). More precisely, just as a lemma may draw on resources that are
not used elsewhere in the proof, in a cut inference the cut formula occurs in the
upper sequent but not in the lower sequent and hence is not a “subformula” of
the conclusion: the subformulas of a given statement are all the substrings of
the formulas comprising that statement that are themselves formulas.
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In this framework we can measure the distance between a theorem and a
proof by the number of formulas in a proof that are not subformulas of the
theorem. When this number is zero, we may call this proof Gentzenian pure,
and have in any case a measure of the degree of impurity of the proof, in this
syntactic sense. This purity measure is appealing because it is sharply determi-
nate when a proof is pure; indeed, it is decidable in the sense of the theory of
computation.

Gentzen’s interest in what we are calling Gentzenian purity was related to his
mathematical work. Gentzen showed that in the sequent calculus, every proof
of a statement can be transformed into a cut-free proof of that statement. This
result, known as cut-elimination, implies that every provable statement in the
sequent calculus has a proof such that all of the proof’s formulas are subformu-
las of the statement proved. Gentzen (1934—1935) described the importance of
this subformula property as follows:

The final result is, as it were, gradually built up from its constituent elements.
The proof represented by the derivation is not roundabout in that it contains
only concepts which recur in the final result... No concepts enter into the
proof other than those contained in its final result, and their use was therefore
essential to the achievement of that result. (pp. 88, 69.)

In Gentzen’s sequent calculus, every provable statement has a Gentzenian pure
proof. As the proof theorist Gaisi Takeuti (1987) added, “This means that any
theorem in the predicate calculus can be proved without detours, so to speak”
(pp- 21-22).

Being syntactic, this measure is sensitive to formulations. Consider again the
infinitude of primes (IP), that for all natural numbers a, there exists a natural
number b > a such that b is prime. This result can be formulated in the language
of first-order Peano arithmetic:

Ya3blb > a AVx[Ty(x-y=b) > (x =1Vx=0>)]]. 3.1

The familiar Euclidean solution can be formulated straightforwardly in the lan-
guage of first-order Peano arithmetic, but a sticking point, as we have seen
already for its informal analogue, will be its use of the successor function. No
such function symbol occurs in (3.1), and so no formula involving the successor
function is a subformula of (3.1). Thus a formalization of the Euclidean proof
that uses successor will be Gentzenian impure. We have already seen that the
Euclidean proof'is geographically pure and that the Robinsonian reformulation
of this proof using successor is topically pure. Gentzenian purity thus differs
from the other purity measures we have considered.

Another limitation of Gentzenian purity concerns its scope. Gentzen and
Takeuti’s enthusiasm stemmed from the fact that every provable statement in
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their formal systems has a Gentzenian pure proof, since cut-elimination implies
the subformula property. But as Jean-Yves Girard (1987) has observed, “The
cut-elimination theorem holds for predicate calculus, but fails for first-order
theories, as soon as they contain proper axioms” (p. 104). By “proper axioms”
Girard means nonlogical axioms like = 4 — B and = A , rather than the
axioms of the form 4 + A of Gentzen’s sequent calculus. He shows that there
is no cut-free proof of = B from = 4 — B and = 4 in sequent calculus, by
checking every way of proving = B from these axioms. As a result, there is
no Gentzenian pure proof of = B from = 4 — Band = 4.

In general, then, the guarantee of Gentzenian purity assured for purely
logical systems does not hold for systems with mathematical axioms. Sara
Negri and John von Plato (2001) have attempted to overcome this limitation
by developing a means of adding nonlogical axioms to sequent calculi while
preserving a subformula property (in chapter 6). Their strategy is to add axioms
not as initial sequents of proofs, but rather as new inference rules, in such
a way that cut-elimination is more or less preserved. They give a general
strategy for converting axioms into inference rules and prove that every (clas-
sical) quantifier-free theory can be converted to such an extension of sequent
calculus, where the theory’s axioms have been replaced with inference rules
following this general schema. Using this strategy, they obtain inference rule
extensions of sequent calculus for the first-order predicate calculus with equal-
ity, partial orders, and plane affine geometry, among others. They next prove
a cut-elimination theorem for such axiomatic extensions of sequent calculus
and obtain a version of the subformula property for these extensions. They
show that all the formulas occurring in proofs in the resulting systems are either
subformulas of the conclusion, or atomic formulas.

This might be thought to salvage something like Gentzen’s observation for
sequent calculi with nonlogical axioms and thus to provide for a syntactic mea-
sure of purity. However, Negri and von Plato’s methods at present only apply
to quantifier-free theories, and there is reason to think these methods cannot be
extended to all nonlogical theories. That is not to say that this strategy cannot
be carried out further or that other syntactic measures of purity cannot be devel-
oped. But we have seen how purity is frequently construed in terms of content,
as in Hilbert.

3.4 Logical Purity

At the start of this section we saw Dieudonné characterize purity as a search for
economy of means, means that are maximally “close” to what is being proved.
We observed that this characterization can be untangled into one sense of purity
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in which means of proof of a theorem are close to that theorem if they are
contained in the theorem or to the branch of mathematics to which it belongs.
This was the goal of our discussions of geographical, topical, and syntactic
purity. Dieudonné’s characterization can also be read as saying the means of
proof are close to the theorem if they are no stronger than what is being proved.
We now want to show how purity in this sense functions.

How we should understand “stronger” here is a chief concern. One such
sense has been evoked by Anand Pillay (2021), in a discussion of pure proofs
of the Sylvester—Gallai theorem:

There is a context consisting of points and lines in R? and a statement about
such points and lines. What do we have to know (in terms of assumptions)
about this context to prove the statement, and is there a minimum natural
collection of such assumptions, or axioms, (other than the statement itself)
needed? Of course, some properties of the basic notions of points and lines
(and incidence) will be needed, but maybe not everything about the real
field R. (p. 196)

Purity in this sense limits a proof to what is logically necessary for proving it.

In Arana (2008) we tried to make this purity constraint more precise, and
John Baldwin (2018) later improved upon our formulation (pp. 267-268). He
calls a collection of assumptions S “fully logically minimal” for a statement
P if there is a proof of P from S and there is no set of assumptions S” such
that there are proofs of all the elements of §” from S and a proof of P from
S’, but no proof of the elements of S from S’. He then defines a proof of a
statement P as logically pure if it draws only on assumptions from a collection
of assumptions that are fully logically minimal for P. While this shows one
way how talk of logical minimality can be made precise, Baldwin observes
that his notion of logical purity is a stronger version of the notion we called
“strong logical purity” in Arana (2008): a proof of a statement P from a set of
assumptions S, with background assumptions 7 that we call a “base theory,” is
strongly logically pure over T if there is a proof of (the elements of) S using P
and (the elements of) 7" as assumptions. That is, over the base theory 7, P and
S are logically equivalent.

Baldwin then observes that “strong logical purity has a long history including
Sierpinski’s equivalents of the continuum hypothesis in the 1920s, Rubin’s 101
equivalents of the axiom of choice,” as well as Victor Pambuccian’s “reverse
geometry” (Pambuccian 2001, p. 393; Pambuccian 2005, p. 19) and Harvey
Friedman and Stephen Simpson’s “reverse mathematics” (on which more soon;
see Friedman 1976, Friedman 1975, and Simpson 2009). “These are,” Baldwin
says, “searches for the weakest hypotheses in terms of proof theoretic strength”
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(p. 268). Similarly, Dieudonné’s view of purity as the search for proofs no
stronger than what is being proved can thus be seen as an instance of logical
purity.

3.5 Elemental Purity

There is another reading of strength of means of proof giving rise to a related
but distinct purity measure. When Coxeter (1989) decries Kelly’s solution to
the Sylvester—Gallai as impure, he adds that “it is like using a sledge hammer to
crack an almond” (p. 181). Strength here is not merely logical strength. What
it might be can be gleaned by reflecting on number theorists’ use of the term
“elementary.”

The term “elementary” in number theory goes back at least to Edmund Lan-
dau. In his textbook on prime number theory, Landau (1909) says he will show
how far one can get in proving the prime number theorem by “elementary
methods” [elementaren Methoden], by which he means, in addition to ordi-
nary arithmetic considerations, some real analytic means, namely finite sums
and properties of the logarithm, but must avoid the integral calculus and com-
plex analysis (p. viii). As already noted, this quest for an “elementary” proof of
the prime number theorem is widely acknowledged to have ended in success
with proofs by Atle Selberg and Paul Erdds (Selberg 1949 and Erdés 1949).
Selberg (1949) characterized his proof as “elementary” because “it uses prac-
tically no analysis, except the simplest properties of the logarithm™ (p. 305).
This usage has now solidified in number-theoretic practice, so that in contem-
porary number-theoretic textbooks like Nathanson (2000), elementary proofs
are defined as those that “do not use contour integrals, Cauchy’s theorem, or
other results from analytic function theory, but only basic facts about arithme-
tic functions and the distribution of prime numbers” provable by the means
Landau and Selberg singled out (p. 280).

What is elementary about these proofs? A senior number theorist told me,
in a personal communication, that an elementary proof is one that does not
use analytic continuation or the Fourier inversion theorem, which are con-
sidered “mysterious” and “deep” results of complex analysis. Elementary
proofs may use other less “deep” properties of analytic functions, however.
This epistemic reading of elementarity dates at least to Landau (1909), who
stressed that problems concerning the distribution of primes, including the
prime number theorem, are “also understandable by the layman” [auch dem
Laien verstdindlich] (p. v).

Here, though, there is ambiguity. Some proofs are hard to follow, on account
of their intricacy or length, although using concepts that are easy to understand,
while others are easy to follow although using concepts that are difficult to
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understand. Harold Diamond (1982) shows how this distinction colors the
language used to evaluate such proofs:

The approach to the prime number problem proposed by Riemann, using
a function of a complex variable generated by arithmetic data, came to be
called analytic. On the other hand, direct real variable treatment of arithmetic
data, such as the method of Chebyshev, came to be called elementary. We
shall follow this usage here. To avoid confusion, we shall (with apologies to
Sherlock Holmes) use the word simple for “easy to understand.” It will be
seen that some elementary arguments are far from simple. (p. 554)

On this view, a proof is not elementary on account of its length or its surveya-
bility (compare Floyd 2021, section 4.4). Rather, its elementarity is a function
of the difficulty of the components of the proof to comprehend.

Difficulty to comprend is a matter for the cognitive science of mathematics
(see Gilmore, Gobel, and Inglis 2018), but its research focuses on rudimen-
tary mathematics rather than the sort that occupies us here. We could instead
focus on interpretability strength, a perspective that emerged from work in
computability theory, proof theory, and descriptive set theory (see
Dean and Walsh 2017). As a most basic level we can follow Hilbert’s (1931)
attention to finitary reasoning, “the fundamental way of thinking that I hold
as necessary for mathematics and in general for all scientific thought, under-
standing and communication, and without which mental activity is not at all
possible” (p. 486). There is a connection here with “elementary” signifying
what is understandable by the layman as in Landau. Bill Tait (1981) called
this “a minimal kind of reasoning presupposed by all non-trivial mathemati-
cal reasoning about numbers” (p. 525) and identified the formal theory PRA
(for primitive recursive arithmetic) as formalizing this body of reasoning. To
this theory, we can add more axioms and arrive at proof-theoretically stronger
systems, as is done in reverse mathematics. Stephen Simpson has observed
that the “Big Five” theories studied by reverse mathematics correspond to
well-established epistemic foundational programs in the philosophy of math-
ematics: for instance, that RCA( corresponds to the constructivism of Errett
Bishop Bishop (1967), and ACAy to the predicativism of Weyl (1918) and
Feferman (2005) (see Eastaugh 2019 for a discussion of these correspon-
dences). Thus we have a series of formal theories graded by their interpretabil-
ity strength, and a story about how these degrees of strength can be assessed
epistemically.

Reverse mathematics seeks to answer what Simpson (2009) calls the “Main
Question”: “which set existence axioms are needed to prove the theorems
of ordinary, non-set-theoretic mathematics?” (p. 2). It works by identifying
proving logical equivalences between theorems and antecedently interesting
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set-theoretic theories like the aforementioned Big Five, over a logically weaker
base theory. Put thusly, reverse mathematics is a search for strongly logically
pure proofs. But it is more than that. The epistemic calibration by interpret-
ability strength mentioned earlier means that reverse mathematics identifies
the epistemically weakest assumptions capable of proving given results. It
does this by identifying what Denis Hirschfeldt calls the “combinatorial core,”
and what Benoit Monin and Ludovic Patey call the “computational content,”
of mathematical theorems (Hirschfeldt 2014, p. 2; Monin and Patey 2022,
p. 475).

So far we have looked at elementarity measured epistemically or cogni-
tively, that can be measured comprehensionally as with Landau and the number
theorists, or computationally as in reverse mathematics. Another way to mea-
sure elementarity, which we can call “ontic,” would order statements in terms
of some objective order of priority. Such a measure is characteristic of clas-
sical rationalist views held for instance by Aristotle, Leibniz, Bolzano, and
Frege, as we saw in Section 2, on which it is held that there is an objective
hierarchy of truths whose recapitulation and exhibition by “scientific demon-
strations” or “groundings” provide for understanding of the truth in question
(see Detlefsen 1988). There is a wide-ranging literature on grounding today
(see Correia and Schnieder 2012), and the notion has been applied by contem-
porary philosophers of mathematics, sometimes in the context of purity (see
Lange 2019 and Poggiolesi and Genco 2023).

We can now bring all this together to define another sense of purity. We say
that a proof of a theorem that only draws on what is more elementary than the
theorem is elementally pure. Having distinguished two measures of elementar-
ity, we can distinguish two notions of elemental purity. In the first sense, an
elementally pure proof of a theorem would involve only assumptions that are
cognitively prior to the theorem. We can understand or grasp the proof before
understanding or grasping the theorem. Dieudonné’s characterization of purity
as a search for economy of means is of this type. So is Hilbert’s consistency
program, as Kreisel (1969) suggested: “Hilbert’s idea was very much the same
as the widely current idea that an arithmetic theorem must have an arithmetic
proof, or even that a ‘simple’ statement, if it can be proved at all, must have a
simple proof. ... the autonomy of elementary mathematics” (p. 60).

In the second sense, an elementally pure proof would involve only assump-
tions that are metaphysically prior to the theorem. That is, in the order of being
(if not our understanding), the proof proceeds from the more basic to the less
basic. This second kind of elemental purity can be seen in Bolzano and Frege,
for example, in Section 2.
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4 Values of Purity

In his biographical memoir on Kurt Godel, Kreisel (1980) wrote the following
about purity:

The logical question is to settle to what extent purity of methods can be
achieved — in all of mathematics, parts of mathematics, in fact, in logic
or metamathematics itself. But this leaves open the philosophical ques-
tion whether purity of methods is at all basic, in the sense of fundamental,
to mathematical knowledge, the sort of thing one cannot know too much
about. (p. 167)

In this section we want to address this question, what is the value of purity for
mathematical knowledge.

4.1 Purity and Rigor
Kreisel continues:

But also there is the void created by simply not saying out loud what (knowl-
edge) is gained by impure proofs, for example by analytic proofs in number
theory: knowledge of relations between the natural numbers and the complex
plane or, more fully, between arithmetic and geometric properties....if this
conflicts with some ideal of rigour, so much the worse for the ideal (which
is being tested). (p. 167)

In addition to raising the parallel question of the value of impurity, which we
will address alongside the value of purity, Kreisel describes purity as an “ideal
ofrigour.” A rigorous proof can be characterized as a proof free of errors or one
with no gaps (compare Stanley Tanswell 2024, p. 5; Hamami 2014, p. 9). On
this view, an impure “proof” would not be a proof at all. In Section 2 we saw
Aristotle say that “we cannot, for instance, prove geometrical truths by arith-
metic.” We also saw Scaliger’s Aristotelian critique of Archimedes’ solution to
the quadrature problem by exhaustion as “worthless,” as summarized by van
Roomen. Such Aristotelian views hinge on the necessity of purity for demon-
strations capable of providing the best kind of knowledge, epistéme. Impure
proofs can play a different, inferior epistemic role, giving what Aristotle called
in Posterior Analytics A13 “knowledge of the fact” rather than “knowledge of
the reason why,” justifying belief in the conclusion without revealing the rea-
son why the conclusion necessarily holds (see Allen (2001) for a discussion of
what Aristotle calls “inferences from signs”).

Elemental purity in particular has been lauded for its contribution to rigor.
A chief reason we seek proofs is to obtain conviction in their conclusions.
A proof whose concepts are more mysterious than those of the conclusion,

Downloaded from https://www.cambridge.org/core. IP address: 3.144.123.19, on 26 Dec 2024 at 21:45:51, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009052719


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009052719
https://www.cambridge.org/core

50 The Philosophy of Mathematics

or whose steps are less evident than the conclusion, will be deficient in
providing such conviction. This is the context in which we should consider
Ingham’s remarks concerning a “Tauberian” theorem of G. H. Hardy and
J. E. Littlewood proved in Hardy and Littlewood (1919): “This theorem and
its relation to the theory of numbers were first investigated by Hardy and Lit-
tlewood, but their proof does not provide a proof of the prime number theorem,
since it depends explicitly on a theorem a little deeper than the prime number
theorem itself” (compare Ingham 1932, p. 39). Does not provide a proof of
the prime number theorem: Ingham suggests that an elementally impure proof
fails in one key task of a proof, namely in providing conviction of its conclu-
sion, on account of what Ingham judges to be a kind of circularity. Evidently
there is an elementary “proof” of the prime number theorem from Hardy and
Littlewood’s theorem, but since the proof of Hardy and Littlewood’s theorem
draws on “deeper” (on our reading, harder to comprehend and hence less evi-
dent) means than the prime number theorem, this elementary “proof™ fails to
be a proof at all. Whatever doubt one has in the prime number theorem, this
alleged proof does not provide sufficient evidence for assuaging that doubt.
In this regard, an elementally impure proof is circular. It instead enmeshes its
reader in further mystery. Elemental purity thus has the epistemic virtue of
avoiding this kind of circularity and thus contributing toward conviction in the
statement proved.

4.2 Purity, Understanding and Explanation

We now turn away from rigor and toward proofs giving the reason why. In Sec-
tion 3 we saw Dieudonné promote purity on the basis that “one must always
try to understand what one is doing as well as one can.” Understanding and
explanation are commonly linked by philosophers of mathematics, with explan-
atory proofs yielding understanding (see Tappenden 2005). As we discussed in
Section 3.5, philosophers have recently linked mathematical explanations and
proofs that “ground” their conclusions. Such work naturally turns to Bolzano,
whose interest in purity we discussed in Section 3 in the context of his project
of organizing domains of mathematical knowledge (see Rusnock 2022).
Several recent works, however, have shown how purity and explanation
come apart (see McCarthy 2021, Pincock 2023, pp. 37-38). We can focus,
for instance, on Mark Steiner’s account of explanation, and give examples of
proofs that are pure but not explanatory, and explanatory but impure. Steiner
argues that inductive proofs that the sum S(n) of the first n positive integers

n(n+1)
2

equals are not explanatory, but a similar kind of analysis to the one in

Section 3.2 for the infinitude of primes gives that bounded inductive proofs are
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topically pure (see Arana 2023, section 4). Marc Lange (2019) gives other such
examples with proofs by “brute force” that he argues can be pure but generally
not explanatory (section 2). Next, Steiner (1978) argues that complex-analytic
proofs of theorems about real-valued functions can be explanatory, but these
will generally not be (topically) pure (pp. 18-19).

Indeed, Patrick Ryan (2021) has argued that impurity, rather than purity,
makes for better explanations in mathematics. He argues that Hillel Fursten-
berg’s topically impure ergodic proof of Szemerédi’s theorem in additive
combinatorics is explanatory by revealing “the dichotomy between structure
and randomness” at the heart of the result (p. 34). Endre Szemerédi’s origi-
nal, purely combinatorial proof, by contrast, seems to be topically impure but,
according to Ryan, not explanatory (also see Arana 2015, pp. 168-170, for
a discussion of purity in the context of Szemerédi’s theorem). Ryan appeals
to the “simplicity and unification” afforded by Furstenberg’s proof and thus
aligns himself with the unification model of mathematical explanation exem-
plified by Philip Kitcher’s work (see Kitcher 1981 and Kitcher 1989). Similarly,
Ellen Lehet (2021) has argued that impurity can promote explanation, on
account of the “generality and unification that accompany these impure meth-
ods” (p. 79). Ryan and Lehet thus echo Suzanne Bachelard (1967), who
acknowledged purity as a regulative principle in contemporary mathematics,
but maintained that a too strict preference for purity over impurity would
sterilize the development of a unified mathematics (p. 32).

Lehet’s praise for the generality of impure proofs in contemporary mathe-
matics, particularly by means of category-theoretic proofs, should be put into
perspective. A topically pure proof will use only those resources required for
understanding the content of the theorem, and will thus draw on a minimum of
epistemic resources. A logically pure proof uses the logically weakest hypothe-
ses possible for its conclusion. These proofs will accordingly have wide range,
capable of application to a variety of settings with stronger hypotheses. The
case that impurity better provides for generality than purity is thus equivocal.

That pure proofs draw on minimal resources ensures other benefits. Topi-
cally pure solutions to problems require minimal epistemic resources for their
comprehension and transmission. Since such solutions draw only on those defi-
nitions, axioms, and inference rules that determine the content of the problem,
an agent who understands a problem has understood everything necessary to
understand and communicate a topically pure solution of it. Elementally pure
proofs minimize comprehensional resources in a different way, in that they
require nothing more difficult to comprehend than what is needed to compre-
hend the conclusion. Recall Kreisel’s characterization of Hilbert’s program,
quoted at the start of Section 2, that “finitist theorems should have finitist
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proofs.” Since finitary proofs were taken by the Hilbert school to be more
secure than infinitary proofs, the minimization of comprehensional resources
in finitism illustrates the value of elemental purity (as would a related point
about predicativist proofs of predicative theorems).

The geometer Corrado Segre (1891) wrote that in addition to the scien-
tific value of this minimality afforded by purity, it has “didactic” value (pp.
396-397). Augustus De Morgan (1849) observed similarly that the mixing of
geometry and algebra poses difficulties for students. As he wrote:

Those who introduce algebraical symbols into elementary geometry, destroy
the peculiar character of the latter to every student who has any mechani-
cal associations connected with those symbols; that is, to every student who
has previously used them in ordinary algebra. Geometrical reasoning, and
arithmetical process, have each its own office: to mix the two in elementary
instruction, is injurious to the proper acquisition of both. (p. 92)

To these pedagogical accounts of the value of purity, we can add Dieudonné’s
remark, in the now oft-mentioned quote at the start of Section 3, that purity
is “good discipline for the mind”. In Detlefsen and Arana (2011, pp. 5-6), we
called this an “intervenient” value of purity, in that it contributes to the train-
ing of the capacity to reason rather than to the distinctively epistemic value of
purity.

4.3 Geographical Purity and Local Knowledge

Until now we have said nothing specifically about the value of geographical
purity. Detlefsen (1990a) has written about Poincaré’s concern for “subject-
specific insight...the easy, loping stride of one familiar with the twists and
turns of a given local terrain” (pp. 502-503). Taking a branch of mathemat-
ics as a “local terrain,” geographical purity is thus a kind of localism about
mathematical knowledge, whose value we will now investigate.

Penelope Maddy (2001) described this localism as follows:

Mathematicians in fields other than set theory often feel that set theoretic
thinking doesn’t capture the special sensibility that is essential to their sub-
ject, that it doesn’t capture the way an algebraist, a topologist, or a geometer
thinks. This seems quite true. Set theory is an individual branch of mathe-
matics in its own right, with distinctive approaches and insights and methods
of'its own, approaches, insights and methods often quite different from those
of algebra, topology or geometry. (p. 18)

She stresses the locality of knowledge within particular branches, noting that
branches come with their own ways of thinking and working. Rather than
thinking of branches as divided by subject matters — algebra by groups, rings,
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modules, and fields; geometry by manifolds; set theory by sets — she says that
the essence of each branch consists in the “special sensitivity” practitioners of
that branch will come to acquire.

Gaston Bachelard (1966) drew attention to such localisms with his notion
of “regional rationalisms,” organizations of particular scientific practices.
Bachelard calls such regional developments “cultures” that are socially deter-
mined by the fact of internal consensus about the rational values within each
culture’s practices, about what that scientific culture’s goals are and how best
they can be accomplished (p. 133). He focuses on the regionality of cultures
of physics, leaving such a discussion for mathematics for a time when more
mathematicians are occupied with its foundations (p. 119) — a project that his
daughter, Suzanne Bachelard (1967), would begin in her study of purity and
impurity in representations of imaginary numbers by algebraic, geometrical,
and topological considerations.

Karine Chemla and Evelyn Fox Keller have brought renewed attention
to the notion of cultures in scientific practices, including mathematics, in
their book Chemla and Keller (2017). Adopting the term “epistemic cultures,”
from Karin Knorr Cetina’s work (see Knorr Cetina 1999) and from Keller’s
own earlier work, they identify antecedent work in that of Gilles-Gaston
Granger (1968), Alistair Crombie (1994) and Ian Hacking (1992) on styles of
scientific thought and practice (compare Mancosu (2021) and Rabouin (2017)
for recent work on mathematical styles). Chemla and Keller, even in the title of
their book, Cultures Without Culturalism, warn against cultural essentialisms,
such as identifying epistemic cultures with national or ethnic identities, as in
Orientalist explanations of Japanese science (see Ito 2017), or the Nazi Ludwig
Bieberbach’s identification of different mathematical “styles” as racially deter-
mined (see Segal 2003, pp. 361-368; we noted the practical consequences of
this latter identification in Section 1). Instead, an epistemic culture is, like for
Bachelard, a particular way of knowing and working.

We have spoken of “ways of knowing.” This matter deserves a full treatment
of its own, but we can give at least a hint of what we mean. Mathemati-
cians frequently observe that different parts of mathematics support different
ways of thinking. Timothy Gowers (2008a) has observed, for instance, that
“there is a definite difference between algebraic and geometric methods of
thinking — one more symbolic and one more pictorial — and this can have
a profound influence on the subjects that mathematicians choose to pursue”
(p- 2). While this sort of thinking was widespread into the nineteenth cen-
tury, and reinforced by Kant’s dichotomy of the forms of intuition, it was then
tainted by its associations with the scientific racism of the Nazis (as discussed
in the introduction). More recently this type of view has been cast in cognitive
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terms (see Lakoff and Nufiez 2000). The significance of this for the unity of
mathematics has been noted by A. R. D. Mathias (1992), speculating “that
the physiological separation by the brain of the processing of spatial from the
processing temporal thought supports the thesis that a complete unification of
mathematics is not possible” (p. 11).

Mathematicians commonly formulate projects in ways coherent with there
being different mathematical cultures: algebraic and geometric cultures,
for instance. Consider firstly Colin Rourke and Dennis Sullivan’s article,
Rourke and Sullivan (1971). They describe their purpose as finding a “geo-
metrical definition” of the Kervaire obstruction, a notion in topology, and state
their workings at a couple of points as finding a “more geometrical proof™
of particular statements. Secondly, consider Stéphane Sabourau’s article,
Sabourau (2010), in differential geometry. Responding to earlier work by Flo-
rent Balacheff, Sabourau aims “to present an alternative (more geometrical)
proof of the local extremality of the Calabi-Croke sphere, which does not rely
on the uniformization theorem” of Poincaré (p. 549). We could similarly give
examples of mathematicians seeking more algebraic proofs, more arithmetical
proofs, more topological proofs, more combinatorial proofs, and so on. The
point is that the disciplines of mathematics pertinent to geographical purity are
understood by many practitioners as cultures in the sense of Chemla and Keller.
Geographical purity is a localism, a preference for what is local to a particu-
lar mathematical culture in proving results deemed to belong to that culture. A
mathematician might hold that a geometric approach to a result affords differ-
ent knowledge than an algebraic approach, and so favor a geometric proof of a
geometric theorem for the particular kind of knowledge that proof promises.

4.4 Topical Purity and the Stability of Knowledge

We turn now to an epistemic value of topical purity, one we have called in
Detlefsen and Arana (2011) the stability account. In brief, we have argued that
pure proofs provide for enduring, stable knowledge of their conclusions. In the
following we will synthesize and amplify this view.

We have seen that the partisans of deep content often change the theorems
being proved. One seeks to prove a theorem about parabolas, for instance, but
after having grasped its connections with algebra, one arrives instead at a the-
orem about equations — a theorem with a good solution, perhaps, susceptible
to being generalized to other cases. All the same, we may have reasons to pre-
fer the original theorem and desire a solution to iz. This is to take a vectorial
conception of problem solving, wherein our investigations are directed toward
a particular problem. On this conception, a solution is a solution to a particular
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problem to the extent that it is directed at that problem and not some other. A
solution may succeed as a solution to some different problem while failing as
a solution to the problem toward which it was directed.

Problem solving (of which theorem proving is a chief means) aims to relieve
the “specific” ignorance represented by that problem. On this view, a problem is
an irritation, to be removed by solving the problem. By calling problem-solving
a “relief,” we stress the connection between the search for knowledge and the
satisfaction of desire that Aristotle identified in writing that all men by nature
desire to know. Just as the satisfaction of a desire is a relief, so is the resolution
of a problem.

Every solution to a problem, pure or impure, provides such relief. But how
stable is this relief? To describe stability as we understand it, we draw on the
following observation of Plato (1997b), from the Meno:

To acquire an untied work of Daedalus is not worth much, like acquiring
a runaway slave, for it does not remain, but it is worth much if tied down,
for his works are very beautiful. What am I thinking of when I say this?
True opinions. For true opinions, as long as they remain, are a fine thing
and all they do is good, but they are not willing to remain long, and they
escape from a man’s mind, so that they are not worth much until one ties them
down by (giving) an account of the reason why....After they are tied down,
in the first place they become knowledge, and then they remain in place.
(97e-98a, p. 895)

In Plato’s metaphor, the difference between mere true opinion and knowledge
is that true opinion is transient while knowledge perdures. I cannot know a
proposition while also believing that at some time in the future that that prop-
osition will be false or no longer justified. Similarly, to believe that a solution
solves a problem, I must also believe that it will continue to be a solution in
the future. We call this epistemic state stability and hold that the knowledge
engendered by a solution is best when it is stable. Solutions should thus be sta-
ble with respect to changes in our epistemic position; they should perdure as
solutions as long as the problem being solved perdures. We will make the case
that topically pure solutions engender knowledge that is more stable than the
knowledge engendered by topically impure solutions in general, and thus better
realize this ideal of knowledge.

The key to our case is the observation that there are two different ways to
solve a problem. Firstly, we may provide an answer to that problem. Secondly,
we may rationally dissolve that problem. This second type of solution arises
from inspection of the etymology of the verb “to solve,” from the Latin sol-
vere: to loosen, release, unbind. Both types of solutions eliminate the specific
ignorance represented by a problem, either by providing the desired knowledge,
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or by eliminating that ignorance as a source of desire for knowledge. When the
ignorance represented by a problem has been eliminated for an agent, by some
rational means, then that problem ceases to be a problem for her and thus has
been solved.

We have spoken of rational means of dissolving problems. More precisely,
we say that a problem has been dissol/ved when, on account of a change in
the investigator’s beliefs or attitudes concerning the problem’s content, that
problem no longer represents an ignorance for that investigator. For instance,
if I rescind my commitment that every natural number has a successor, then
I will no longer understand the natural numbers as a discrete sequence, and
thus I will have dissolved (for me) basic arithmetic problems like the infinitude
of primes. Then those problems are no longer problems for me, in that they
no longer represent specific ignorances that [ seek to relieve. When I dissolve a
problem in this fashion, then, I have solved that problem in our second sense. By
contrast, if I rescind my belief that every holomorphic function is analytic, my
understanding of the infinitude of primes does not change, and so the problem
is not dissolved.

We may now relink this discussion with the notion of a problem’s topic.
Any rescission of an element of a problem’s topic dissolves that problem for
that investigator, and hence that problem is no longer an ignorance for that
investigator. This is the case even though a different problem may have been
opened by this rescission, maybe even a better problem by some measures; but
the original problem has been closed by being dissolved.

To explain how topically pure solutions more stably solve the problems
toward which they are directed, we need to discuss the rescission of solu-
tions. An investigator rescinds a solution to a problem when that investigator
no longer accepts one of the premises or inferences of that solution, and what
remains of that solution no longer determines the propositional content of that
problem. A recent example of rescission comes from symplectic geometry,
where Dusa McDuff and Katrin Wehrheim brought attention to errors in work
by Kenji Fukaya (see Hartnett 2017). In order to solve the Arnold conjecture,
a key problem in symplectic geometry about a kind of fixed point of symplec-
tic manifolds, Fukaya and his collaborator Kaoru Ono introduced the notion
of Kuranishi structures in Fukaya and Ono (1999). Their work on this notion,
however, was not sufficiently intelligible to the community working in sym-
plectic geometry to be widely accepted. In 2012 McDuff and Wehrheim made
public errors they had found in Fukaya and Ono’s work and began publishing
work that fixed the errors they had found (see McDuff and Wehrheim 2015).
These errors were not unique to Fukaya; indeed, Wehrheim pointed out that
some of McDuff’s own work contained errors as well, rooted in unclarity in the
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foundations of symplectic geometry as developed until then. While Fukaya did
not think that McDuff and Wehrheim’s work contributed any new ideas, calling
them a “mere technicality,” the community acknowledged that their work was
necessary to make precise what Fukaya had not. As a result, Fukaya’s methods,
suitably corrected, have been accepted by the symplectic geometry community,
though new methods for the problems arising from the Arnold conjecture have
also been developed.

In this episode we can see several moments of acceptance and rescission
by different communities. At first, imprecise ideas about symplectic mani-
folds seem to have been widely accepted by symplectic geometers at large.
Fukaya and Ono’s work advanced new ideas, but their imprecision blocked
their wider acceptance. McDuff and Wehrheim’s “whistleblowing” (adopting
their term) made a part of the community rescind their acceptance of many
of the methods they had earlier taken up, though Fukaya did not do so. After
McDuff and Wehrheim’s work, the wider community accepted the modified
Fukaya methods. We thus see how the messiness of mathematical practice can
involve rescission, change, and acceptance of modified methods, though we
make no claims about the purity of any of this work. (Thanks to Moon Duchin
for bringing this example to my attention.)

With the notion of solution rescission clarified, we may return to the question
of how topically pure solutions more stably solve the problems toward which
they are directed than topical impure solutions. This is because rescission of a
topically pure solution by an investigator will generally dissolve that problem
for that investigator. Since each premise and inference of a topically pure solu-
tion belongs to the problem’s topic, their rescission will dissolve that problem.
That is not necessarily so for topically impure proofs.

We have identified stability as an ideal of knowledge: knowledge that per-
dures through changes in our epistemic situation — an invariance condition on
knowledge. As we have seen, the knowledge of a theorem engendered by a
topically pure proof of that theorem perdures through changes in our episte-
mic attitude toward that theorem, but that is not necessarily so for topically
impure proofs. Thus, other things being equal, topically pure proofs are better
at providing stable knowledge of their conclusions than are topically impure
proofs.

4.5 The Simplicity of Purity and Impurity

Impurity, like purity, is valued by many mathematicians, as we have noted
throughout this work. Douglas Marshall has shown how thinking about impu-
rity, which he calls “internal applications of mathematics,” contributes to
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work on traditional questions in metaphysics and philosophy of science (cf.
Marshall 2023). We have been taking the view that purity and impurity can
coexist as values, since we can give multiple proofs of theorems. But whatever
advantages pure proof may have over impure proof would be countered by dis-
advantages if impure proof were systematically simpler than pure proof. We
will now address this possibility.

Such claims are common in the literature. Carlo Cellucci (1985) has claimed
that “the use of ‘impure’ methods leads to a marked improvement in efficiency”
(p. 173). In Section 2 we saw Lagrange’s call for the unity of algebra and geom-
etry on efficiency grounds. Jacques Hadamard (1945) famously observed that
“the shortest and best way between two truths of the real domain often passes
through the imaginary one” (p. 123).

We can distinguish two different questions concerning the simplicity of pure
and impure proof. Firstly, we can investigate whether impure proofs are gen-
erally simpler to verify than pure proofs of the same statement; that is, to check
the validity of a given proof candidate (see Detlefsen 1990b, p. 376f24; also
Detlefsen 1996, p. 87). Secondly, we can investigate whether impure proofs
are generally simpler to discover than pure proofs of the same statement.

Both questions can be approached by proof theory, though there is a consid-
erable literature pointing out the limitations of proof theory for philosophical
reflection on proofs in informal mathematical practice. In Arana and Stafford
(2023), section 5, we both discuss this literature and defend the significance
of proof theory for such questions. Briefly, at whatever level of granularity we
consider a proof, it will have some logical structure, and proof theory can be
applied to this structure. This is so even if there are other epistemic features of
proof to which proof theory cannot be made sensitive.

In Arana (2017) we addressed the first question, whether impure proofs are
generally simpler to verify than pure proofs of the same statement. In this
work we considered conservative extensions of the formal theory Primitive
Recursive Arithmetic (PRA) mentioned in Section 3.5, in which proofs of the-
orems of PRA can be given that are, arguably, impure. Specifically, we looked
at arithmetic extensions adding induction schemas for more inclusive classes
of arithmetical formulas, and set-theoretic extensions adding comprehension
principles for certain kinds of sets. The former make for cases of elemental
impurity, while the latter make for cases of topical impurity. To compare the
simplicity of proofs of theorems of PRA with proofs of these same theorems
in extensions of PRA, we consider the “speed-up” of proofs in extensions of
PRA. We say that theory 77 is at most a polynomial speed-up of 7, c T}
when for every ¢ provable in 7>, the length of the shortest proof (measured in
terms of total number of symbol occurrences) of ¢ in 77 is less than some fixed

Downloaded from https://www.cambridge.org/core. IP address: 3.144.123.19, on 26 Dec 2024 at 21:45:51, subject to the Cambridge Core terms of
use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009052719


https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009052719
https://www.cambridge.org/core

Elements of Purity 59

polynomial multiple of the length of the shortest proof of ¢ in 7}. Next, 7} is
said to have a roughly superexponential speedup over 7> C T when for every
¢ provable in 7>, the length of the shortest proof in 7, of ¢ is a superexponen-
tial multiple of the length of the shortest proof of ¢ in 7. Superexponential
speedups are considered to be significant, while polynomial speedups are not
(following the tradition in complexity theory; see Dean 2016, §2.2). Using
this notion of speedups, we showed that there is no evidence of a general pat-
tern of improvement in simplicity in moving from pure to impure proof, thus
answering the first question negatively.

In Arana and Stafford (2023) we addressed the second question, whether
impure proofs are generally simpler to discover than pure proofs of the same
statement. We discussed Alessandra Carbone’s topological measure of proof
simplicity, building on work of Richard Statman, for proofs in propositional
sequent calculus with rules permitting inferences with computations of binary
functions (see Carbone 2009; Statman 1974). Associating each proof with a
graph, this measure evaluates the simplicity of discovering a proof by the top-
ological genus of its associated graph. Carbone’s idea is that topological genus
is a measure of “discovermental complexity” because it is a measure of what
Statman calls the “global structural complexity” of a proof, since genus is a
property of a graph as a whole; and a high global structural complexity means
that the proof has many highly interconnected ideas of which the discoverer or
reader must keep track. Intuitively, then, the higher the genus of a proof, the
more difficult it is to discover that proof, on account of its convolutedness.

Recalling the identification of pure proofs with cut-free proofs that we saw in
Section 3.3, Carbone proves that there are pure (that is, cut-free) proofs of arbi-
trarily high genus. This can be taken to say that pure proofs may have arbitrarily
high “discovermental complexity.” Since no such result is known for impure
proofs, one can conclude that impure proofs may not have arbitrarily high dis-
covermental complexity, and thus, that impure proofs are generally simpler to
discover than pure proofs.

We nevertheless have good reasons to reject this conclusion. Firstly, it is
possible that Carbone’s main result is also obtainable for proofs with cut. In
that case, the epistemic asymmetry between pure and impure proofs would
be broken. Secondly, her present result applies only to propositional sequent
calculus, but an adequate formalization of ordinary mathematics would need
more expressive and inferential resources, including quantifiers and the ability
to begin proofs with nonlogical axioms. As we saw in Section 3.3, extending
the result to these wider contexts is likely to be difficult. Thirdly, the proofs
with large genus that Carbone builds have graphs with many edges, and this
is what makes them hard to comprehend. But this complexity is not a special
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feature of proofs with high genus. It will also be true of many fully formalized
proofs (in PA, say) that are not typically judged to be particularly complex.
Informal proofs that “correspond” to these formal proofs suppress a lot of the
intermediate logical steps that are generating complexity here, suggesting that
this complexity may be in part an artifact of formalization. Fourthly, Carbone’s
measure assigns a special kind of graph to proofs, what Sam Buss (1991) calls
a “logical flow graph”. But, we can argue, the genus of the logical flow graph of
a proof does not capture the global structural complexity of that proof, because
it ignores the structure introduced by the logical connectives, by definition.
Instead, the logical flow graph tracks where a formula is within the sequents of
a proof, its “flow” through the proof. But the application of logical rules have
structural effects on proofs. For instance, right A binds together two proofs,
one for each conjunct, but this structure is entirely missing from logical flow
graphs. Thus Carbone’s genus measure misses structural features of proofs that
should be tracked by a discovermental simplicity measure.

For both of the two questions about the relative simplicity of pure and impure
proofs, then, the evidence from proof theory is not definitive. That should not
mean that we dismiss the evocations of the efficiency of impure proof that we
have seen from Lagrange, Hadamard, and Cellucci. It is to say that attempts
to make their claims precise, by the best formal means we have today, are not
successful.

5 Conclusions

In the last section, we saw Kreisel question whether purity is “at all basic, in the
sense of fundamental, to mathematical knowledge, the sort of thing one cannot
know too much about.” We have tried in this Element to show that it is. Purity
has been an ideal of mathematical proof since antiquity and remains so today.
As we have seen, the study of purity brings in questions of mathematical prac-
tice, metaphysics, epistemology, semantics, methodology, and logic, as well as
psychology, pedagogy, sociology, and politics. We have distinguished several
different types of purity, and we have explored what is valuable about these
types of purity.

Let us recapitulate the types of purity we have canvassed. We began with
three types of purity concerned with measuring the proximity of proof to the-
orem in terms of the containment of that proof’s means in the theorem or to
the branch of mathematics to which it belongs. Firstly, a proof of a statement
is geographically pure if it draws only on what belongs to the branch of math-
ematics to which the statement belongs. Secondly, a proof is topically pure
if it draws only on what belongs to the content of the theorem it is proving,
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that is, on what must be grasped and accepted in order to comprehend that
theorem. Thirdly, a proof of a statement is Gentzenian pure if it consists only
of subformulas of that statement.

We then turned to two types of purity concerned with measuring the close-
ness of means of proof to theorem in terms of whether these means are stronger
or not than what is being proved. Firstly, a proof of a statement is logically pure
if it draws only on what is logically necessary for proving it. Secondly, a proof
of a statement that only draws on what is more elementary than the statement is
elementally pure. We discussed two ways to construe elementarity: as an epi-
stemic notion that can be measured comprehensionally or computationally, and
as an ontic notion in terms of some objective order of priority.

Next, we will briefly discuss some important open problems about purity.
We have seen how the question of what belongs to the content of mathemati-
cal statements is difficult to determine. The topic of a problem is the family of
commitments that together determine the content of that problem for a given
investigator. Settling what is the topic of a problem thus rests on settling what
is its content. We have distinguished basic content from deep content, in order
to avoid an inferentialism about content that trivializes topical purity, but that
distinction requires further clarity. We do not want to defend a “psychological”
view of content in terms of “images,” to use Carnap’s terminology. An alter-
native could be a fine-grained sort of truth condition that could be something
like a Fregean sense. When we consider the claims that “all triangles have three
sides” and “all triangles have interior angles summing to 180 degrees,” we see
that someone can grasp the content of both claims, be sure that the first one is
true, and yet doubt that the second one is true. By this Fregean argument, we
could conclude that they have different basic contents. This, at any rate, is an
idea to be developed.

Turning to a second open problem, we have seen how purity can be framed
as a preference for the local. A next stage of this work would be to investi-
gate further the interplay between this localism and the enduring importance of
reciprocity between mathematical subject matters. We have begun this with our
notion of deep content, but there is much more to do. One approach is by means
of the notion of translation. Logic gives us tools to model translatability with
the notion of interpretation. We say that a theory 7 is interpretable in another
theory 7™ if there is a way of translating the primitives of 7 into formulas of 7*
such that the induced map ¢ +— ¢* is such that if T proves ¢, then T* proves ¢*.
Two theories are mutually interpretable if each interprets the other. A canonical
example of interpretability is the representation of non-Euclidean plane geome-
tries in Euclidean space developed in the nineteenth century. Mathematicians
chose a way to translate “point” and “line” in a nonstandard fashion within
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Euclidean space so as to validate the non-Euclidean axioms. Other examples
are the interpretability of the axioms of groups in the axioms of fields, and of
the Peano axioms in Zermelo—Fraenkel set theory.

The connection between purity and interpretability has been started in
Arana (2017), Baldwin (2018), and Martinot (2023). But we must be care-
ful about the limits of this approach. Hilbert showed that the division ring
axioms are mutually interpretable (with parameters) with the axioms for Desar-
guesian projective planes. If interpretations preserve content, then Hilbert’s
result shows that statements concerning Desarguesian projective planes have
the same meaning as their translations concerning division rings. Thus purely
geometric talk of projective planes and purely algebraic talk of division rings
has the same meaning. This goes against five hundred years of thinking in math-
ematics, where algebraic thinking and geometric thinking have been thought to
be distinct, engendering different types of understanding.

Another approach, which may eventually lead to new formal notions of inter-
pretability, comes from reflecting further on translatability. Poincaré (1891)
described how we can think about the relation between Euclidean and non-
Euclidean geometries in terms of translatability:

Let us construct a kind of dictionary by making a double series of terms
written in two columns, each corresponding to each, in the same way that in
ordinary dictionaries the words of two languages that have the same meaning
correspond to each other. Let us then take the theorems of Lobachevsky and
translate them with the help of this dictionary like we translate a German
text with the help of a German-French dictionary. We will thus obtain the
theorems of ordinary geometry. (p. 771)

This metaphor of a “dictionary” has been adopted by algebraic geometers. As
just one example, Karen Smith and her coauthors describe Hilbert’s Nullstel-
lensatz in such terms: “This famous theorem is the first entry in a dictionary that
will help us translate statements about geometry into the language of algebra”
(see Smith, Kahanpai, Kekildinen, and Traves 2000, p. 19).

The dictionary metaphor is helpful because it suggests another approach to
translatability and purity. No dictionary can fully capture the meanings of lan-
guage. In Cassin (2004) and, ironically, in its English translation Cassin (2014),
Barbara Cassin and her team have drawn attention to the limits of translation,
noting in particular the difficulty of translating philosophical terms between
different European languages. A member of the team of English translators of
this work, Emily Apter, has shown how this difficulty holds more generally for
literary translation, and how it is situated within the social and political context
of globalism today (see Apter 2013). She advocates, alongside Cassin, for a
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pluralism of understanding of literatures, rather than a single “world” literature
whose differences are erased by translation.

Mathematicians, too, have sensed this possibility. In Section 4.3 we quoted
part of such a remark by Timothy Gowers (2008b), and here give the rest
of it:

It is often possible to translate a piece of mathematics from algebra into
geometry or vice versa. Nevertheless, there is a definite difference between
algebraic and geometric methods of thinking—one more symbolic and one
more pictorial—and this can have a profound influence on the subjects that
mathematicians choose to pursue. (p. 2)

In correspondence with his sister Simone, André Weil too developed such a
view by way of the metaphor of the Rosetta Stone. He writes of the liaisons
between number theory and geometry, in particular between algebraic num-
ber fields and the field of algebraic functions of a complex variable, brought
to prominence by Dedekind and Weber in their work on the Riemann—Roch
theorem. Weil stresses that these different “languages” can be translated to one
another, though only partially; filling in these partial translation tables consti-
tutes an important mathematical task for Weil. Doing so permits us to learn “the
art of passing from one to the other, and to profit in the study of the first from
knowledge acquired about the second, and of the extremely powerful means
offered to us, in the study of the latter” (see Weil 2005, p. 340). When we
encounter a difficulty in one language, we can try to translate the difficulty into
one of the other languages and see if the way is clearer there. Furthermore, new
results may be suggested from such translations; for instance, Alain Connes
created the subject of noncommutative geometry by translating noncommu-
tative algebra into geometry by means of the so-called “algebraic-geometric
dictionary” of contemporary algebraic geometry.

The upshot of Weil’s “Rosetta Stone” approach is that we may support
autonomous mathematical languages and ways of working while retaining
the possibility of translating to other autonomous languages. The translata-
bility expresses the unity between these languages, while the autonomy of
the individual languages expresses their disunity. This mirrors contemporary
approaches to cultural pluralism, in which individual cultures and languages
retain their autonomy while existing alongside other autonomous cultures and
languages, all the while interacting relatively frictionlessly through transla-
tion (think, for instance, of the cultural life of Belgium or Quebec). This unity
among disunity, characteristic of linguistic diversity today, is a model for the
interplay of unity and disunity in mathematics. As Patrick Suppes (1978) put it:
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Personally I applaud the divergence of language in science and find in it no
grounds for skepticism or pessimism about the continued growth of science.
The irreducible pluralism of languages of science is as desirable a feature as
is the irreducible plurality of political views in a democracy. (p. 6)

We advocate the same for mathematics.

We have seen in this Element another kind of pluralism, that of values.
Despite the reasons we have offered to value purity, many mathematicians con-
tinue to value impurity. This does not mean that the accounts of the value of
purity that we have given are wrong. Problem solving in mathematics admits
considerable variety, and there are typically many solutions to each problem
(Dawson 2015 and Ording 2019). Among this variety are pure and impure
proofs in the various senses that we have discussed. Purity and impurity are two
rational values of mathematical practice, but there are others, some of which
we have already discussed, like rigor and explanatoriness. We need not think
that there is just one “best” proof, because there can be many different proofs
of the same theorem, each good in a different way. And of course, there can
be bad proofs as well: any virtue theory must be at the same time a theory of
vices.

This pluralist conception of epistemic mathematical values echoes ongoing
trends in the philosophy of science, where for instance Hasok Chang (2012) has
promoted what he calls “epistemic pluralism.” As he puts it, “Each and every
scientist is driven by a set of epistemic values simultaneously. To pretend that
they are or should be devoted to the pursuit of only one epistemic value would
be foolish” (p. 274). The collaborative pursuit of multiple epistemic values,
such as unity and purity, contributes to a fuller understanding of mathematics.
It is important to cultivate a plurality of epistemic values in order to succeed as
a mathematical knower, because to know in the fullest sense requires knowing
in as many different ways as we can.
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