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The physical fidelity of turbulence models can benefit from a partial resolution of
fluctuations, but doing so often comes with an increase in computational cost. To explore
this trade-off in the context of wall-bounded flows, this paper introduces a framework
for turbulence-resolving integral simulations (TRIS) with the goal of efficiently resolving
the largest motions using a two-dimensional, three-component representation of the flow
defined by instantaneous wall-normal integrals of velocity and pressure. Self-sustaining
turbulence with qualitatively realistic large-scale structures is demonstrated for TRIS on
an open-channel (half-channel) flow configuration using moment-of-momentum integral
equations derived from Navier–Stokes with relatively simple closure approximations.
Evidence from direct numerical simulations (DNS) suggests that TRIS can theoretically
resolve 35 %−40 % of the turbulent skin friction enhancement for friction Reynolds
numbers between 180 and 5200, without a noticeable decrease or increase as a function
of Reynolds number. The current implementation of TRIS can match this resolution while
simulating one flow through time in ∼1 minute on a single processor, even for very large
Reynolds numbers. The framework facilitates a detailed apples-to-apples comparison of
predicted statistics against data from DNS. Comparisons at friction Reynolds numbers
of 395 and 590 show that TRIS generates a relatively accurate representation of the
flow, while highlighting discrepancies that demonstrate a need for improving the closure
models. The present results for open-channel flow represent a proof of concept for TRIS
as a new approach for wall-bounded turbulence modelling, motivating extension to more
general flow configurations such as boundary layers on immersed objects.
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1. Introduction
The wide range of scales involved in turbulent boundary layers and other forms of
wall-bounded turbulence, common to many engineering and natural flows, presents a
difficult challenge to computational modelling and prediction efforts. The cost of direct
numerical simulations (DNS) rises rapidly with increasing Reynolds number, making its
use for practical applications computationally infeasible for the foreseeable future. The
large-eddy simulation (LES) framework, meanwhile, provides a potential alternative, but
wall-resolved LES remains quite costly at high Reynolds numbers (Spalart 2000; Choi
& Moin 2012; Yang & Griffin 2021). Consequently, Reynolds-averaged Navier–Stokes
(RANS) models remain relevant and popular. Even with wall-modelled LES or hybrid
RANS–LES techniques, scale-resolving simulations can be costly (even prohibitively so)
for turbulent boundary layers and immersed bodies at large Reynolds number (Goc, Bose
& Moin 2020).

The RANS-based integral methods for turbulent boundary layers, which pre-date
the explosion of computer performance over the past half-century (Kline et al. 1968),
provide a significant reduction in computing cost by seeking a solution for (averaged)
quantities integrated in the wall-normal direction across the turbulent boundary layer. For
aerodynamic and hydrodynamic boundary layers over immersed bodies, integral methods
can be coupled with potential flow solvers to provide rapid prediction, albeit at reduced
physical fidelity, e.g. Drela (1989). The use of depth-averaged equations is similarly
common in many other wall-bounded turbulence scenarios, e.g. Ungarish (2010).

Compared with RANS-based methods, approaches that partially resolve turbulent
fluctuations (e.g. LES) potentially offer a substantial advantage in physical fidelity
because of their inherent ability to capture non-local behaviour in the large-scale motions.
Large-scale motions (LSMs) and very-large-scale motions (VLSMs), sometimes referred
to as superstructures, play a prominent role in wall-bounded turbulence. Compared with
the turbulent layer thickness (i.e. boundary layer thickness, channel height, pipe radius,
etc.), the streamwise lengths of these motions are comparable to and much longer than the
turbulent layer thickness and their wall-normal heights are of the order of the turbulent
layer thickness (Brown & Thomas 1977; Monty et al. 2007, 2009; Lee, Sung & Zaki
2017). Furthermore, these large streaky structures possess a significant portion of both the
Reynolds shear stress and turbulent kinetic energy (Guala, Hommema & Adrian 2006;
Balakumar & Adrian 2007). The prominence and significance of these structures raises
a motivation for numerical approaches to develop a framework around (V)LSMs. To
successfully develop a reduced-order model, it is imperative to encapsulate the essential
dynamics of these structures.

The dynamics of streamwise-oriented fluctuations in wall-bounded turbulence received
more earlier attention in the context of buffer-layer streaks in the near-wall region (Kline
et al. 1967). It was shown, using DNS on a minimal flow unit, that these turbulent
motions of the low-speed structures self-sustain independent of the flow in the outer region
(Jiménez & Moin 1991; Jiménez & Pinelli 1999). Further DNS analysis demonstrated
the presence of streamwise counter-rotating vortices (Kim, Moin & Moser 1987). The
interplay between streamwise rolls and streaks is crucial for the self-sustaining process
of near-wall streaks (Jiménez & Moin 1991). Specifically, these rolls produce a ‘lift-up’
effect that generates the observed low-/high-speed streaks. Due to instabilities and/or
nonlinear interactions, the streaks become wavy and breakdown. Then, by nonlinear
physical mechanisms that result in the breakdown of the streaks, new streamwise vortices
are formed to repeat the cycle through another iteration. This is the classical understanding
of a self-sustaining process for buffer-layer streaks in the near-wall region (Hamilton, Kim
& Waleffe 1995).
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Adding the log layer and outer region to consideration, the role of the (V)LSMs
introduces additional complexities. The fundamental mechanism for producing and
sustaining large-scale turbulence has been a topic of significant interest. One possibility
is that the (V)LSMs require the interaction with the flow in the inner region. Kim &
Adrian (1999) hypothesised that a group of hairpin vortices merges to develop the large-
scale structures. Studies using particle image velocimetry have made some observations
to this effect (Adrian, Meinhart & Tomkins 2000; Jodai & Elsinga 2016), and other DNS
studies have also observed merging of the small-scale structures to form larger ones
(Toh & Itano 2005; Hwang et al. 2016). However, significant evidence is now available
suggesting that there exists a similar self-sustaining mechanism for LSMs and VLSMs
(Cossu & Hwang 2017; Lee & Moser 2019; Zhou, Xu & Jiménez 2022). For example,
Hwang & Bengana (2016) observed that the dynamical structure of the large-scale streaks
is strikingly similar to that of the near-wall streaks. Even though a wealth of knowledge
on (V)LSMs is provided by these and other studies, encapsulating these motions in a
reduced-order modelling framework remains a significant opportunity.

This paper explores the possibility of turbulence-resolving integral simulations (TRIS),
that is, LES-like integral methods in which the wall-normal integration is instantaneously
carried out across the entire turbulent layer thickness. By reducing the description of
the turbulent flow from three to two dimensions, a significant cost savings may be
possible while still capturing the physics of (V)LSMs. To the authors’ knowledge,
this instantaneous wall-normal integral approach has not been previously proposed or
investigated, as it differs substantially from both LES and the common RANS-based
integral methods. At the outset, however, it is not clear (i) how much of the turbulence can
still be captured in this two-dimensional (2-D) representation, and (ii) how unsteady, 2-D,
Navier–Stokes-based evolution equations can be developed which support self-sustaining
turbulence with realistic structure. This paper provides an answer for these two questions
in the simplified context of an open-channel (half-channel) flow.

The rest of the paper is organised as follows. The governing equations for TRIS
are introduced for an open-channel flow configuration in § 2. Then, § 3 estimates the
theoretical ability of TRIS to capture a certain fraction of active turbulence using open-
channel and full-channel DNS data with 180 � Reτ � 5200. Closure approximations for
the TRIS equations are introduced in § 4. Results from their implementation in § 5
demonstrate self-sustaining fluctuations with realistic structure, allowing a detailed apples-
to-apples evaluation against open-channel DNS data for Reτ = 395 and 590. A concluding
discussion is provided in § 6.

2. Instantaneous moment-of-momentum evolution equations
In this section, evolution equations for TRIS are derived from the Navier–Stokes equations
and boundary conditions for an open-channel flow, a useful surrogate with a similar
structure to boundary layers. This configuration shares the general characteristics of wall-
bounded turbulence while allowing for homogeneity in the wall-parallel direction and
simple boundary conditions at the top of the domain (opposite to the no-slip wall). This
choice provides a simple starting point for developing the TRIS framework without the
added complexities of spatial development and interaction with a potential flow; the details
for including these effects in the context of external boundary layer flows are an important
topic for future work.

To guide the derivation, the notation will distinguish between wall-normal and wall-
parallel components. Using a 2-D index notation, the indices correspond to the streamwise

1014 A40-3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 1
0.

3.
72

.2
5,

 o
n 

14
 Ju

l 2
02

5 
at

 0
4:

05
:1

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
32

4

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2025.10324


T. Ragan, M. Warnecke, S.T. Stout and P.L. Johnson

(i = 1) and spanwise (i = 2) directions, such that implied summation only applies over the
wall-parallel directions. Therefore, the notation used here is u1 = u, u2 =w and v along
with x1 = x , x2 = z and y for the streamwise, spanwise and wall-normal components of
velocity and position, respectively. The conservation equations for incompressible flow are
non-dimensionalised by the height of the open channel (h) and friction velocity (uτ ). The
bottom wall of the open channel (y = 0) is a no-slip, no-penetration boundary whereas a
no-penetration, zero-vorticity boundary condition is applied at the top wall (y = 1). Using
this notation, the incompressible Navier–Stokes equations for conservation of mass, wall-
parallel momentum and wall-normal momentum are

∂ui

∂xi
+ ∂v

∂y
= 0, (2.1)

∂ui

∂t
+ ∂ui u j

∂x j
+ ∂uiv

∂y
= − ∂p

∂xi
+ 1

Reτ

(
∂2ui

∂x j∂x j
+ ∂2ui

∂y2

)
+ δi1, (2.2)

∂v

∂t
+ ∂vu j

∂x j
+ ∂vv

∂y
= −∂p

∂y
+ 1

Reτ

(
∂2v

∂x j∂x j
+ ∂2v

∂y2

)
. (2.3)

Here, Reτ = ρuτh/μ is the friction Reynolds number for a fluid with density ρ and
viscosity μ. The Kronecker delta, δi1, is the dimensionless imposed pressure gradient that
drives the flow and p is the dimensionless pressure field that enforces (2.1).

Flow fields are integrated in the wall-normal direction and represented as zeroth and
first moments, respectively,

〈φ〉0 (x1, x2, t)=
∫ 1

0
φ(x1, y, x2, t)dy, 〈φ〉1 (x1, x2, t)=

∫ 1

0
2yφ(x1, y, x2, t)dy.

(2.4)
Thus, the zeroth moment is an unweighted wall-normal integral and the first moment is a
wall-normal integral linearly weighted by wall-normal distance to favour events occurring
further from the wall. In addition to wall-normal integration, the fields are also low-pass
filtered in the wall-parallel directions, φ̃, where the filter width corresponds to the 2-D
grid spacing to be used for TRIS.

The filtered zeroth and first moments of (2.1) are

∂ 〈̃ui 〉0

∂xi
= 0,

∂ 〈̃ui 〉1

∂xi
= 2〈̃v〉0, (2.5)

where the zeroth moment of the wall-parallel velocity, 〈̃ui 〉0, is a 2-D, two-component
(2D/2C) vector field with zero divergence. The no-penetration condition at the upper
boundary has been applied in the first moment of the mass equation. The first moment
of the wall-parallel velocity, 〈̃ui 〉1, is also 2D/2C and has divergence equal to (twice) the
zeroth moment of the wall-normal velocity, 〈̃v〉0. In this way, the inclusion of the first
moment provides a three-component (2D/3C) description of the zeroth-moment velocity
field.

The first moment of mass conservation, (2.5), compactly describes the relationship
between streamwise rolls and sweeps/ejections (characterised by ∂ 〈̃u2〉1/∂x2 and 〈̃v〉0,
respectively) that are responsible for the formation of streamwise-oriented streaks. This
relationship is illustrated in figure 1, which views a streamwise roll–streak flow pattern
in the spanwise-normal plane. In this view, a clockwise roll corresponds to a positive
first moment of spanwise velocity, 〈̃u2〉1 > 0, and a counter-clockwise roll corresponds
to 〈̃u2〉1 < 0. The negative or positive gradients in between two counter-rotating rolls
correspond to negative or positive wall-normal velocities, in accordance with (2.5).
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y

x2

Streamwise roll Streamwise roll Streamwise rollStreamwise roll

Sweep Sweep

High-speed

streak
High-speed

streak

Low-speed

streak

Ejection

〈v∼〉0 < 0 〈v∼〉0 > 0 〈v∼〉0 < 0

〈u2〉1 > 0

∂〈u2〉1/∂x2 < 0 ∂〈u2〉1/∂x2 > 0 ∂〈u2〉1/∂x2 < 0

〈u2〉1 < 0 〈u2〉1 > 0 〈u2〉1 < 0

∼ ∼∼
∼∼∼∼

Figure 1. View in the flow direction of the large-scale streamwise rolls generating regions of high- and low-
speed streaks, which correspond to sweeps and ejections, respectively. The profiles located at the streamwise
rolls represent the local spanwise velocity. This phenomenon encapsulates the effect of (2.5) (right).

These sweeps and ejections, respectively, transport fluid across the mean velocity gradient
leading to high- and low-speed streaks in between the rolls. Thus, the implementation
of (2.5) allows for the proper relationship between streamwise rolls and streaks that
participate in the classical picture of the self-sustaining process.

The dynamics of the zeroth-moment velocity fields is given by the zeroth moment of
(2.2), also including the wall-parallel filtering

∂ 〈̃ui 〉0

∂t
+ ∂〈ũi u j 〉0

∂x j
= −∂ 〈 p̃〉0

∂xi
+ 1

Reτ

∂2 〈̃ui 〉0

∂x j∂x j
− τ̃i + δi1, (2.6)

where τ̃i is the instantaneous (dimensionless) wall shear stress (2D/2C). Equation (2.6)
lacks an explicit representation of the turbulent momentum flux in the wall-normal
direction. The dynamics of the first-moment velocity field is obtained by applying the
first moment to (2.2) along with wall-parallel filtering

∂ 〈ũi 〉1

∂t
+ ∂〈ũi u j 〉1

∂x j
= 2 〈ũiv〉0 − ∂ 〈 p̃〉1

∂xi
+ 1

Reτ

∂2 〈ũi 〉1

∂x j∂x j
− 2ũi,top

Reτ
+ δi1, (2.7)

where ũi,top is the wall-parallel velocity vector (2D/2C) at the top of the open channel
(where a Neumann boundary condition is imposed on wall-parallel velocity components
and a no-penetration condition is imposed on the wall-normal component). The first
moment of the momentum equation includes an explicit representation of turbulent
wall-normal momentum flux, namely, the zeroth moment of the Reynolds shear stress,
〈ũiv〉0.

Equations (2.6) and (2.7) contain unclosed terms that need to be modelled: τ̃i , 〈ũi u j 〉0,
〈ũi u j 〉1, 〈ũiv〉0 and ũi,top. The divergence of (2.6) and (2.7) provide elliptic equations for
the pressure moments, 〈 p̃〉0 and 〈 p̃〉1

∂2〈 p̃〉0

∂x j∂x j
= −∂

2〈ũi u j 〉0

∂xi∂x j
− ∂τ̃ j

∂x j
, (2.8)

∂2〈 p̃〉1

∂x j∂x j
= 2[ p̃top − p̃bot ] − ∂2〈ũi u j 〉1

∂xi∂x j
+ 4

∂〈ũiv〉0

∂xi
. (2.9)

The zeroth moment of (2.3) has been used to simplify (2.9). Here, p̃top and p̃bot are the
pressures at the top and bottom of the open channel, respectively, and their difference must
be modelled to close the system of equations.
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3. Turbulence resolution estimate
Before introducing closure models for (2.6)–(2.9), it is worthwhile to consider how much
of the turbulent motions can theoretically be captured in this 2D/3C representation of the
flow. This is accomplished by asking a more specific question in terms of the turbulent
enhancement of the skin friction coefficient, C f = 2/u2

top, relative to a laminar flow with
the same Retop = utop Reτ . The φ operator denotes a Reynolds average, and the fluctuation
about the mean is φ′ = φ − φ.

Subtracting (2.7) from (2.6) and averaging, assuming statistical stationarity and
homogeneity in the wall-parallel directions

1 = 2
utop

Reτ
+ 2

〈 − u′v′〉
0 =

4
Retop

+
〈
−4u′v′

〉
0

u2
top

C f
= C f,lam + C f,turb

C f
, (3.1)

where C f,lam = 4Re−1
top is the skin friction coefficient of a laminar open-channel flow,

therefore C f,turb = −4〈u′v′〉0/u2
top represents the turbulent enhancement of the skin

friction coefficient relative to the laminar state. This type of equation was previously
introduced as the angular momentum integral (AMI) equation by Elnahhas & Johnson
(2022) for spatially developing boundary layers. The turbulent enhancement, C f,turb, is
partially resolved by the 2D/3C zeroth-moment velocity vector field, 〈u′v′〉0 = 〈̃u〉′0〈̃v〉′0 +
〈u′′v′′〉0, where φ′′ = φ′ − 〈φ̃〉′0 is the unresolved portion of a fluctuating field when
integrated in the wall-normal direction and filtered in the wall-parallel directions. Thus,
the turbulent skin friction enhancement is the sum of a resolved and unresolved portion,
C f,turb = C f,res + C f,unres .

Note that the skin friction in terms of the velocity at the top of the open-channel domain
corresponds more closely to the typical definition for boundary layer flows, whereas
friction factors based on the bulk velocity (flow rate) are more common for internal flows
such as pipes and channels. The reason for the choice depends on the context. Internal
flows are typically analysed in terms of flow rates whereas the potential flow velocity (or
edge velocity) is more relevant for boundary layer contexts. Thus, the choice of this C f
definition reflects an interest in analysing the open-channel flow as one would treat the
engineering context of an external boundary layer. The alternative choice to analyse the
open-channel flow in terms of friction factor based on bulk velocity (flow rate) would
lead to the use of the Fukagata–Iwamoto–Kasagi (FIK) equation (Fukagata, Iwamoto &
Kasagi 2002; Nikora et al. 2019; Duan et al. 2021), which is derived from the second
moment of momentum equation and contains the first moment of the Reynolds shear
stress. Elnahhas & Johnson (2022) discuss the similarities and differences between the
AMI and FIK equations in more detail.

Direct numerical simulation was used to compute the terms in the AMI equation,
including the resolved and unresolved components of the Reynolds shear stress, for
180≤Reτ≤5200 on a domain size of Lx = 8π and Lz = 3π . The lower friction Reynolds
number flows (Reτ = 180, 395, 590) were simulated using a second-order, staggered
finite difference code (Lozano-Durán et al. 2018) for both full-channel and open-channel
configurations and the data for the larger Reynolds numbers (Reτ = 1000, 5200) are full-
channel simulations from the Johns Hopkins Turbulence Databases (Lee & Moser 2015;
Graham et al. 2016). Note that (3.1) is equally valid for the bottom half of a full-channel
flow where utop corresponds to the average centreline velocity and h is the half-height
of the full channel. The results using a spectral cutoff filter with kcut h = 16 applied to
the streamwise and spanwise directions are shown in figure 2, kcut = π/δ, where δ is the
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Figure 2. Decomposition of the total skin friction in (3.1). The circular and triangular markers are associated
with the authors’ open-channel and full-channel flow simulations, respectively. The star marker corresponds to
full-channel flow simulations from previous work (Moser, Kim & Mansour 1999; Lee & Moser 2015; Graham
et al. 2016). The colours black, purple, red and green represent the total, unresolved and resolved skin friction
by turbulent enhancement and laminar skin friction, respectively. The purple and red dashed lines are at values
of 5/8 and 3/8, respectively.

coarsened grid spacing representative of the filtered field. In this analysis, the isotropic
cutoff filter of kcut h = 16 is chosen based on the grid resolution used in § 5. Finer wall-
parallel resolution does not significantly increase C f,res (Ragan, Warnecke & Johnson
2025). The estimated statistical convergence error, following Shirian, Horwitz & Mani
(2023), is approximately equal to or smaller than the size of the symbols used, and is
further discussed in Appendix A. There is no noticeable difference between open-channel
and full-channel flow results for friction Reynolds numbers 180 to 590, providing the basis
to use full-channel flow datasets at higher Reynolds numbers (1000 and 5200) to estimate
the AMI results for the open-channel configuration.

As expected, the laminar skin friction decays with increasing Reτ , so the sum of
the resolved and unresolved components of the total turbulent enhancement approaches
unity. The unresolved portion generally increases with Reτ and appears to approach an
asymptotic value based on the available data. Assuming the observed trends continue,
it may be estimated that the TRIS equations derived in § 2 can resolve approximately
35 %−40 % of the turbulent skin friction enhancement at large Reynolds numbers using
a numerical resolution of ∼h/5 in the wall-parallel directions. This theoretical estimate
is based on DNS data for open-channel and full-channel flows, and it is not tied to any
particular implementation of closure models for TRIS.

4. Closure approximations
To perform a TRIS calculation, a few unclosed terms in (2.6)–(2.9) need to be
approximated in terms of the resolved 2-D fields. The present objective is to demonstrate
the sufficiency of the framework presented in § 2 for supporting self-sustaining turbulent
fluctuations with realistic structure. To this end, a simple closure is presented by writing
the wall-parallel velocity as ũi = Ui + U ′′

i , where Ui (x1, y, x2, t) is interpreted as the
mean velocity profile conditioned on the local resolved state defined by 〈ũi 〉0(x1, x2, t)
and 〈ũi 〉1(x1, x2, t). For now, this conditional mean profile is modelled using a skewed
Coles profile (Coles 1956)

Ui =
[

1
κ

lny +
(

1
κ

lnRe∗ + B

)]
ei,∗ +

[
2Π
κ

sin2
(π

2
y
)]

ei,Π , (4.1)
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where κ = 0.41 is the inverse log slope and B is the log vertical intercept, parameters
that are pre-set. The local friction Reynolds number is Re∗(x1, x2, t) and Π(x1, x2, t) is
the local wake parameter. The 2-D unit vectors ei,∗(x1, x2, t) and ei,Π (x1, x2, t) align
with the local wall shear stress and wake correction, respectively, allowing for skew
in the instantaneous velocity profile. Specific details on the alignments are provided in
Appendix B. The local values of Re∗, Π , ei,∗ and ei,Π are uniquely determined at each
point in the x1 − x2 plane given the local resolved state defined by the zeroth and first
moments, 〈̃ui 〉0 = 〈Ui 〉0 and 〈̃ui 〉1 = 〈Ui 〉1, where it is assumed that the integral moments
of the fluctuations about the conditionally averaged velocity profiles are neglected.

Equation (4.1) is evaluated at y = 1 to close ũi,top. The local wall shear stress τ̃i is tied
to the log portion of the assumed profile in (4.1)

τ̃i =
(

Re∗
Reτ

)2

ei,∗. (4.2)

The zeroth and first moments of ũi u j are closed by decomposing the term into a portion
that is resolved by the Coles profile and unresolved (σ0,i j and σ1,i j )

〈ũi u j 〉0 = 〈UiU j 〉0 + σ0,i j , 〈ũi u j 〉1 = 〈UiU j 〉1 + σ1,i j . (4.3)

The resolved portion can be directly computed from the assumed profile, while the
unresolved part is modelled by a wall-parallel eddy viscosity approximation (Smagorinsky
1963), σ0,i j = CsΔ

2√〈Smn〉0〈Smn〉0〈Si j 〉0 and σ1,i j = CsΔ
2√〈Smn〉1〈Smn〉1〈Si j 〉1, where

Cs = 0.78 is chosen to be a small value that is still large enough to ensure stability, Si j is
the wall-parallel strain rate tensor and � is the grid spacing (filter width). The resolved
portions, 〈UiU j 〉0 and 〈UiU j 〉1, are linearised about reference (mean) values for the log
offset, B, and the Coles wake strength, Πre f , which are set to match the mean zeroth and
first moments of the streamwise velocity computed from DNS.

The 〈ũiv〉0 term is also decomposed into a resolved and unresolved component

〈ũiv〉0 = 〈Ui 〉0〈̃v〉0 + 〈˜u′′
i v

′′〉0. (4.4)

Here, 〈˜u′′
i v

′′〉0 is modelled using an eddy viscosity with an attached eddy scaling

− 2
〈̃
u′′

i v
′′〉

0 = Cuv

[
1 + (1 − CΠ)Πre f

]
ei,∗ + CΠΠei,Π

1 +Πre f
, (4.5)

where Cuv is set using the AMI balance (the purple symbols in figure 2) and CΠ is tuned to
allow for the correct amount of resolved Reynolds shear stress, 〈Ui 〉0〈̃v〉0 (the red symbols
in figure 2). Lastly, the pressure difference between the top and bottom of the open channel
is closed by assuming a linear pressure profile at each location, p̃top − p̃bot = 6[〈 p̃〉1 −
〈 p̃〉0]. A detailed derivation of these closure approximations is available in Appendix B.

5. Results

5.1. Numerical implementation and self-sustaining turbulence
A Python code was developed to solve (2.6)–(2.9) together with the closure models
described in § 4 using a pseudo-spectral approach on a doubly periodic domain of
size Lx = 8π and Lz = 3π to match the DNS domain. The maximum dimensionless
wavenumber is kmax h = kcut h = 16 in the wall-parallel directions, such that the grid
spacing based on collocation points is Δ= π/16 ≈ 1/5 (five grid points per half-channel
thickness). Initially (t = 0), 〈̃u〉0 is set to a uniform field based on the approximate
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Reτ 180 395 590 1000 5200 104 105 106

CΠ 5.93 2.68 2.25 1.92 1.69 1.68 1.68 1.68
Cs 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
Cuv 0.407 0.540 0.563 0.600 0.625 0.625 0.625 0.625
Πre f 0.344 0.203 0.162 0.162 0.162 0.162 0.162 0.162
B 4.68 4.97 5.07 5.07 5.07 5.07 5.07 5.07

Table 1. Values of tuning (and set) parameters in TRIS at various Reτ (established in § 4, additional details
provided in Appendix B).

Reτ 180 395 590 1000 5200 104 105 106

DNS TRIS DNS TRIS DNS TRIS DNS TRIS DNS TRIS TRIS TRIS TRIS

〈̃u〉0 15.7 15.6 17.6 17.5 18.6 18.5 20.0 19.8 24.1 23.8 25.4 31.0 36.6
〈̃u〉1 17.3 17.2 19.0 18.9 20.0 19.9 21.3 21.2 25.4 25.2 26.8 32.4 38.0

C f,res/C f 0.38 0.38 0.36 0.36 0.37 0.37 0.34 0.35 0.39 0.36 0.36 0.39 0.37
C f,unres/C f 0.41 0.41 0.54 0.54 0.56 0.56 0.61 0.60 0.59 0.63 0.63 0.63 0.63
C f,lam/C f 0.21 0.21 0.10 0.10 0.07 0.07 0.05 0.05 0.01 0.01 0.01 0.00 0.00

Table 2. Verification of TRIS implementation and parameter selection for reproducing target values from DNS.

mean velocity, 〈̃u〉1 and 〈w̃〉0 are initialised to zero, while 〈w̃〉1 is initialised with white
noise. As the simulation advances from the structureless initial conditions, a statistically
stationary state emerges with self-sustaining fluctuations. The details of the structure
and statistics observed in TRIS simulations are shown below. For now, it is emphasised
that the TRIS equations comprising instantaneous zeroth and first-order moments of
momentum described in § 2 produce self-sustaining fluctuations when used with the
relatively straightforward closures described in § 4. Earlier attempts by the authors to
generate self-sustaining turbulence without the first-moment equation were unsuccessful.

5.2. Choice and verification of model parameters
Results in this section are presented for a choice of model parameters shown in table 1.
These model parameters are tuned to provide accurate values for the results reported in
table 2. Note that the parameter tuning at Reτ = 1000 and 5200 relies on full-channel
DNS. Results in figure 2 verify that full-channel DNS data provide a good proxy for open-
channel flow for the quantities used in the parameter tuning.

For Reynolds numbers larger than those with available DNS data, the parameters from
Reτ = 5200 are used. The only exception is that CΠ is adjusted to close the AMI equation
as the viscous term continues to decrease toward zero with increasing Reτ (a very small
effect). To verify the successful selection of model parameters according to the above
procedure, table 2 shows the target DNS values and the TRIS results. The average zeroth
and first moments of streamwise velocity increase with increasing Reτ because the flow
variables are normalised by friction velocity and length scales. The statistics in table 2 and
the remainder of § 5 are calculated over 128 large-eddy turnover times, h/uτ .

Importantly, it is demonstrated here that the theoretical resolution of 35 %−40 % of
the Reynolds shear stress can be achieved with the present TRIS formulation, however
simple it may be. Without significant effort to optimise the computational runtime, a flow
through time for a domain of length Lx = 8π takes ∼1 minute on a single processor with
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Full-channel (DNS)

Open-channel (DNS)

Open-channel (TRIS)

Full-channel correlation
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Open-channel (DNS)

Open-channel (TRIS)

0

0.002

0.004

0.006

(a) (b)

Figure 3. Friction factor plotted against the bulk Reynolds number (a) and skin friction plotted against the
Reynolds number based on utop (b). The dashed lines plot full-channel correlations (Dean 1978). The grey
solid line plots the friction factor correlation for an open-channel flow (Bellos, Nalbantis & Tsakiris 2018).

a desktop computer. Furthermore, simulations up to Reτ = 106 were performed without
increase in computational cost. Note that these results are for a specific domain size and
grid resolution, and that the CΠ coefficient require retuning for different choices of grid
spacing and domain size.

The validity of model parameter extrapolation to high Reynolds number is verified
by inspecting TRIS results for the friction factor, f = 2/〈u〉2

0, as a function of bulk
Reynolds number, Reb = Reτ 〈u〉0, in figure 3. Here, the friction factor is compared with
the correlation from Dean (1978) (dashed lines). The successful alignment of TRIS with
DNS up to Reτ = 5200 and with the empirical correlation at all Reτ demonstrates the
success and robustness of the choice of parameters in table 1.

5.3. Flow structure
The flow structure in TRIS is now inspected by comparison with the DNS data. For an
apples-to-apples comparison, only the open-channel flow DNS data (180 � Reτ � 590)
are considered in this subsection. First, an instantaneous snapshot from open-channel
DNS is integrated in the wall-normal direction and filtered using the spectral cutoff filter
corresponding to the TRIS grid resolution. The TRIS simulation reaches a statistically
stationary state with streamwise-oriented streaky structures that exhibit the self-sustaining
dynamics, as shown in figure 4(a,b). The TRIS results on the right-side column are
in comparison with (filtered) zeroth-moment fields from DNS on the left-side column.
Results at Reτ = 590 are visually similar to the Reτ = 395 snapshots shown here.

In order to emphasise flow structure, all fields in figure 4 are standardised (denoted
with a superscript s), i.e. fluctuations normalised by their standard deviation. While 〈̃u〉s

0
(a,b) exhibit relatively realistic streaky structure, 〈w̃〉s

0 and 〈̃v〉s
0 (c–f , respectively) do not

show similar streaks in the TRIS results, in agreement with the flow structure observed
from the DNS results. Similarly, 〈 p̃〉s

0 and 〈̃u〉0〈̃v〉0 (g–j, respectively) do not contain
streamwise-oriented streaks. These TRIS results demonstrate that the 2-D-based integral
moment equations, derived from the Navier–Stokes equations, are sufficient to generate
self-sustaining turbulence with qualitatively realistic structure in a 2D/3C representation.

For a quantitative evaluation of the present TRIS formulation (in terms of results that
are not set or tuned via closure parameter manipulation), the streamwise and spanwise
(co-)spectra of the Reynolds shear stress and three kinetic energy components are shown
in figure 5 for Reτ = 395 and Reτ = 590. Here, ki is non-dimensionalised by the height
of the open channel, h. Figure 5(a,b) shows the co-spectra for the Reynolds shear stress.
The sum of the co-spectra over all streamwise (k1 = kx ) or spanwise (k2 = kz) modes is the
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Figure 4. Instantaneous snapshots of the standardised (denoted by a superscript s) 〈̃u〉0, 〈w̃〉0, 〈̃v〉0 and 〈 p̃〉0
fields in descending order at Reτ = 395. The covariance field, 〈̃u〉0 〈̃v〉0, is normalised by its mean. Snapshots
are based on the field imposed by a spectral cutoff filter of kcut h = 16 for DNS (a,c,e,g,i) to match the grid
resolution of TRIS (b,d,f ,h,j). Videos of the temporal evolution of these fields are available in the supple-
mentary material. For TRIS specifically, a Python code running the time progression of these fields through
Jupyter notebook is available at https://www.cambridge.org/S0022112025103248/JFM-Notebooks/files/
figure-4.

zeroth moment of the Reynolds shear stress as it shows up in the AMI balance, (3.1), which
matches the DNS by means of parameter tuning. More interestingly, the TRIS results show
a good degree of success in replicating the shape of the distribution of the Reynolds
shear stress as a function of both streamwise (red) and spanwise (blue) wavenumbers.
In keeping with the structure observed in figure 4, the co-spectrum peaks at the lowest
streamwise wavenumber and at an intermediate spanwise wavenumber. The TRIS results
thus reproduce this basic structure, although the spectrum peaks at a larger spanwise
wavenumber compared with DNS, which is related to the observation from figure 4 that
the typical streak width is generally under-predicted by the current TRIS formulation. The
TRIS and DNS results do not show significant sensitivity to Reτ .

Figure 5(c–h) show the spectra for each of the three components of kinetic energy:
Streamwise (c,d), spanwise (e,f ), and wall normal (g,h), respectively. The shapes of the
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Figure 5. Streamwise (red) and spanwise (blue) spectral distributions of the resolved shear, streamwise,
spanwise and wall-normal Reynolds stress components and resolved pressure in descending order at Reτ = 395
(a,c,e,g,i) and Reτ = 590 (b,d,f ,h,j). The Fourier transform, φ̂ of the resolved component is multiplied by
its complex conjugate, φ̂∗. The solid and dashed lines represent DNS and TRIS, respectively, and ki is
non-dimensionalised by the height of the open channel, h.

spectra of the streamwise and spanwise velocity components produced by the present TRIS
formulation are generally similar to the DNS results, but with lower overall magnitude.
That is, the root-mean-square of 〈̃u〉0 and 〈w̃〉0 are under-predicted by TRIS. For the wall-
normal velocity component, the shape of the TRIS spectra with respect to k1 is relatively
accurate. However, TRIS shows a peak at the highest resolved k2, which is significantly
different than the DNS spectrum. As a result, the 〈̃v〉0 root mean square shows an over-
prediction by TRIS. Figure 5(i,j) illustrates the resolved pressure spectra. Here, the TRIS
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Figure 6. Two-dimensonal spectral distribution of the resolved Reynolds shear stress, streamwise, spanwise
and wall-normal variances, and pressure across panels (a)–(e), respectively. Results are plotted at Reτ = 395
and the Fourier transform, φ̂, of the resolved component is multiplied by its complex conjugate, φ̂∗. The dashed
black line is a linear line with a slope of unity and a vertical intercept of zero (k2 = k1). In each panel, the
spectral fields of DNS and TRIS are on the left and right, respectively. Streamwise (k1) and spanwise (k2) are
non-dimensionalised by the height of the open channel, h.

pressure spectra are relatively realistic, although not perfect, with an indication that the
magnitude of the large-scale pressure fluctuations are under-predicted.

Two-dimensional spectral comparisons between TRIS and DNS at Reτ = 395 are
also illustrated in figure 6, providing a holistic view on the resolved components
of the velocity variances/covariances and resolved pressure. The black dashed line,
k1 = k2, separates predominantly streamwise-oriented modes (upper left corner) from
predominantly spanwise-oriented modes (bottom right corner). Here, TRIS correctly
reproduces the relative shape of the u-v co-spectrum with its bias toward streamwise-
oriented structures, figure 6(a). It is noted, however, that the co-spectrum maximum is
slightly shifted to higher spanwise wavenumber in the TRIS results, in agreement with
the 1-D spectra shown above. Also, TRIS generally reproduces the shape of the wall-
parallel (streamwise and spanwise) velocity spectra well, figure 6(b,c). The streamwise
velocity is dominated by streamwise-oriented modes, while the spanwise velocity is more
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Reτ 180 395 590 1000 104 105 106

DNS TRIS DNS TRIS DNS TRIS TRIS TRIS TRIS TRIS

RMS{〈̃u〉0} 0.87 0.50 0.84 0.48 0.88 0.46 0.46 0.47 0.48 0.48
RMS{〈̃v〉0} 0.38 0.72 0.37 0.71 0.36 0.76 0.74 0.79 0.80 0.80
RMS{〈w̃〉0} 0.35 0.22 0.34 0.17 0.33 0.15 0.15 0.15 0.15 0.15
RMS{〈 p̃〉0} 1.01 0.79 0.97 0.61 0.93 0.62 0.61 0.66 0.67 0.68
RMS{〈̃u〉0 〈̃v〉0} 0.38 0.43 0.35 0.38 0.36 0.39 0.38 0.40 0.41 0.42
r(〈̃u〉0, 〈̃v〉0) −0.58 −0.53 −0.57 −0.53 −0.58 −0.53 −0.52 −0.49 −0.48 −0.48
S{〈̃u〉0} −0.14 0.21 −0.16 0.039 −0.19 0.011 0.019 0.032 0.038 0.050
S{〈̃v〉0} 0.22 −0.18 0.16 −0.59 0.18 −0.79 −0.73 −0.66 −0.65 −0.64
S{〈 p̃〉0} −0.21 0.25 −0.11 0.14 −0.076 0.096 0.082 0.072 0.060 0.072
S{〈̃u〉0 〈̃v〉0} −2.40 −2.92 −2.28 −2.74 −2.31 −2.72 −2.65 −2.56 −2.48 −2.55
K {〈̃u〉0} −0.19 −0.050 −0.19 −0.23 −0.23 −0.31 −0.28 −0.26 −0.27 −0.25
K {〈̃v〉0} 0.095 1.4 0.022 1.7 0.040 1.7 1.6 1.28 1.23 1.2
K {〈 p̃〉0} 0.50 1.23 0.47 0.97 0.42 1.25 1.11 1.01 1.00 1.00
K {〈̃u〉0 〈̃v〉0} 9.82 16.42 8.67 14.92 8.97 14.18 13.50 13.07 12.24 13.41

Table 3. Additional single-point statistics of TRIS and DNS at various Reτ : root-mean-square (RMS{φ}),
correlation coefficient (r(φ, ψ)), skewness (S{φ}) and excess kurtosis (K {φ}) are listed in descending order.
Direct numerical simulation data are available up to Reτ = 590 while TRIS data are up to Reτ = 106.

isotropic. As already observed, the magnitudes of these TRIS spectra are under-predicted.
As for the resolved wall-normal variance, the tendency of TRIS to over-predict the most
active wavenumbers is again observed. However, the shape of the wall-normal velocity
spectrum from TRIS is not altogether unrealistic (although significantly shifted to higher
wavenumbers). Lastly, the resolved pressure variance shows that pressure fluctuations
occur mostly at low spanwise and intermediate streamwise wavenumbers, corresponding
to short and wide structures as illustrated in figure 4(g,h). Also, TRIS presents a similar
behaviour, but the overall magnitude is under-predicted, as previously observed.

5.4. Single-point statistics
While the model parameters in table 1 were selected specifically to cause TRIS to provide
accurate statistics for the quantities shown in table 2, table 3 shows additional single-point
statistics for TRIS and open-channel DNS to further probe the quantitative accuracy of the
current TRIS implementation. First, the root-mean-square values for the zeroth moment of
the three velocity components and pressure are given. As evidenced in the above spectra,
the wall-parallel velocity fluctuation magnitudes are under-predicted while the wall-
normal magnitude is over-predicted. This trend is consistent across all wavenumbers for
all open-channel flow Reynolds numbers, 180 � Reτ � 590. The under-prediction of the
zeroth moment of pressure fluctuation magnitude may be related to the over-prediction of
the wall-normal velocity fluctuations. The root-mean-square values for the first moments
(not shown) have similar discrepancies between TRIS and DNS.

Direct numerical simulation shows that the zeroth moment of the streamwise and wall-
normal velocities have slight negative and positive skewness, respectively. (The skewness
of the spanwise velocity is zero due to symmetry.) Meanwhile, their excess kurtosis is
also close to zero, indicating small departures from Gaussianity. The probability density
function (PDF) of each of these velocity components is shown in figure 7(a). The TRIS
results, meanwhile, show a very small positive skewness for streamwise velocity and
a larger negative skewness and positive excess kurtosis for the wall-normal velocity.
Nonetheless, the TRIS PDFs appear relatively close to the Gaussian shape, so the
discrepancy with DNS is not strong. The zeroth moment of pressure in DNS has a slight
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Figure 7. Standardised (denoted with superscript ‘s’) PDFs of the zeroth moments of the streamwise and wall-
normal velocity (a) and zeroth moment of pressure and resolved shear stress (b). Solid lines correspond to DNS
and the dashed lines correspond to TRIS and comparisons are made for Reτ = 395.

negative skewness and mild positive excess kurtosis. Here, TRIS predicts a slight positive
skewness with a larger excess kurtosis. The pressure PDFs are compared in figure 7(b).

The root mean square of the product 〈̃u〉0〈̃v〉0 is relatively accurate in TRIS, while the
negative correlation coefficient of 〈̃u〉0 and 〈̃v〉0 is relatively well represented but under-
predicted in magnitude. The PDF of 〈̃u〉0〈̃v〉0 is shown in figure 7(b). The skewness of
〈̃u〉0〈̃v〉0 is strongly negative, which TRIS predicts quite well, though TRIS over-predicts
its excess kurtosis.

The statistical results of these higher Reynolds number simulations (1000 ≤ Reτ ≤ 106)
are shown in the last four columns of table 3. The root mean squares of 〈̃u〉0 and 〈̃v〉0
display an increasing trend with respect to Reτ . Beyond Reτ ∼ 1000, the TRIS predictions
show little variation in the single-point statistics as Reynolds number increases.

6. Concluding discussion
This paper introduces a framework for TRIS of wall-bounded flows. A proof-of-concept
demonstration is shown for an open-channel configuration using instantaneous moment-
of-momentum integral equations (derived from first principles) with closures based
on an assumed profile. The use of zeroth- and first-moment integral equations in a
2-D (streamwise–spanwise) domain provides a sufficient basis for reproducing the self-
sustaining process of large-scale streaks in wall-bounded turbulence. The resulting 2D/3C
TRIS simulations yield a qualitatively realistic structure for the three velocity components
and pressure fields. With a wall-parallel resolution of h/5, DNS evidence suggests that
the approach can directly resolve 35 %−40 % of the Reynolds shear stress responsible
for turbulent skin friction enhancement. This estimate is relatively constant across a wide
range of Reynolds numbers in open-channel and full-channel DNS, 180 � Reτ � 5200,
leading the authors to speculate that such resolution will hold for much larger Reynolds
numbers. The cost of TRIS is very low compared with established turbulence-resolving
techniques such as LES and DNS, with one flow-through time taking ∼ 1 minute on
a single processor for a channel flow, even at very large Reynolds number, using an
unoptimised Python code.
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The TRIS framework allows for apples-to-apples quantitative comparisons with DNS
data (or experimental data, if available), allowing for a detailed analysis of model accuracy.
Overall, the comparisons of spectra and single-point statistics underscore some areas of
accuracy for the present TRIS closure model while also highlighting some deficiencies.
In particular, the present closures allow for an unrealistically large magnitude of high
wavenumber wall-normal velocity fluctuations. The authors speculate that more accurate
closure models, e.g. for p̃top − p̃bot , could help TRIS produce a more accurate spectra of
wall-normal fluctuations with respect to spanwise wavenumber. This could in turn also
help yield a more accurate distribution of kinetic energy between the three components.
Further work developing physics-based models is deferred to future work.

A related quasi-2D/3C approach to reduced-order modelling of self-sustaining wall-
bounded turbulence is the restricted nonlinear model (Thomas et al. 2014), which
resolves the flow in the spanwise and wall-normal directions while severely restricting the
representation of streamwise variations. In comparison, the TRIS approach is well suited
for extension to a more general class of flows that are not periodic in the streamwise (or
spanwise) direction.

A number of interesting extensions are possible. A multi-layer approach to TRIS could
be developed based on performing wall-normal integrals with respect to the inner, log
and outer layers, which can potentially capture more physics at the expense of higher
computational cost. Of course, identification of the region boundaries and specifying
appropriate interface conditions will require detailed study. Analysis by Kwon & Jiménez
(2021) on DNS of an isolated logarithmic region could provide instrumental insight into
modelling ideas for this approach. One potentially fruitful topic for future investigation is a
more detailed analysis of the production and transport of turbulent kinetic energy from the
perspective of instantaneous wall-normal integrals. This could provide more insight into
the shortcomings of the present closures and potential pathways for developing closures
with higher physical fidelity.

The ability of TRIS to resolve LSMs, which have important sensitivities to favourable
and adverse pressure gradients, motivates future development targeting engineering-
relevant flows. Future work will aim to formulate the TRIS equations for (external) bound-
ary layer flows. The wall-normal integral of velocity diverges for a semi-infinite domain,
so the formulation for boundary layers should be done in terms of velocity defect relative
to an irrotational outer flow solution. The AMI equation for boundary layers is formulated
this way (Elnahhas & Johnson 2022). The equations governing the instantaneous zeroth
and first moments of the velocity defect can be formulated and the free-stream pressure
gradient term would be formally closed. Lacking a no-penetration upper boundary, the
boundary layer TRIS formulation will need to account for interaction with an irrotational
free-stream flow with zero/non-zero pressure gradients and boundary layer induced
fluctuations. Also, the streamwise growth of a boundary layer (i.e. lack of streamwise
periodicity) will necessitate the development of realistic inflow boundary conditions,
which could be based on recycling–rescaling concepts used in LES and DNS (Lund, Wu
& Squires 1998; Spalart, Strelets & Travin 2006). We have avoided such complications in
the present formulation in order to focus on the proof of concept for TRIS itself in terms
of the self-sustaining dynamics. The 35 %−40 % resolution of the Reynolds shear stress
integral by TRIS shown in figure 2 will also need to be reassessed using DNS of spatially
developed boundary layers, although the authors expect any changes to be minor.

Importantly, a truly predictive approach (for engineering quantities of interest) requires
more work to establish physics-based closure models to improve the accuracy and general
applicability of TRIS compared with the present proof of concept.
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Appendix A. Verification and Statistical Convergence of Direct Numerical
Simulations
For the lower friction Reynolds number flows (Reτ = 180, 395, 590), the Navier–Stokes
equations are solved on a staggered Cartesian grid using a second-order central difference
scheme in the wall-parallel directions and an explicit third-order Runge–Kutta scheme
for time advancement (Lozano-Durán et al. 2018). Full-channel flow simulations were
executed and compared against Moser et al. (1999) to ensure proper spatial discretisation
for the open-channel flow application. These lower Reynolds number simulations were
run for twenty large-eddy turnover times. For the higher friction Reynolds number flows
(Reτ = 1000, 5200), velocity data were gathered from the John Hopkins Turbulence
Database (Lee & Moser 2015; Graham et al. 2016), where the solver uses a Fourier–
Galerkin pseudo-spectral method for the wall-parallel directions and a third-order
Runge–Kutta scheme for time advancement. These simulations were run for roughly one
large-eddy turnover time.

To ensure the viability of DNS executed by the authors, statistical quantities of the
mean velocity and root-mean-square profiles are compared against Moser et al. (1999).
Figure 8(a,b) illustrates that the current DNS simulations (at Reτ = 180, 395) accurately
capture mean velocity profiles for the full-channel flow. Here, the grey dashed lines
correspond to the fits of the viscous sub-layer and log-layer region. Figure 9(a,b) further
shows that, in the full-channel configuration, the root-mean-square statistics sufficiently
match with Moser et al. (1999). This analysis demonstrates sufficient spatial discretisation,
providing confidence in the accuracy of DNS on the open-channel configuration for
180 ≤ Reτ ≤ 590.

Further comparisons of the full-channel and open-channel configurations are illustrated
in figure 8(c,d) and 9(c,d). Here, the profile in the full-channel flow extends from the
bottom wall (no slip) to the centreline (no boundary condition) whereas the profile
in the open-channel flow extends from the bottom wall (no slip) to the top boundary
(no vorticity). Interestingly, the mean velocity profiles are statistically identical between
these two configurations. However, notable discrepancies are observed in the root-mean-
square velocity profiles for Reτ y � 125, caused by the no-penetration condition at the
top boundary. This boundary condition enforces the wall-normal fluctuations to be zero,
causing the streamwise and spanwise fluctuations to increase at the top wall.

The statistical convergence of the resolved skin friction, C f,res , in (3.1) is further
analysed. Since LSMs (contributing to C f,res) tend to have longer turnover times than
smaller scales (contributing to C f,unres), C f,unres is more statistically converged than its
resolved counterpart. As used by Shirian et al. (2023), the estimated statistical convergence
error (or standard error of the mean) is computed with

φerror = 1
N

√√√√ N∑
i=1

(
φi,w − φm

)2
, (A1)
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Figure 8. Reynolds-averaged mean velocity profiles of channel flows at Reτ = 180 (a,c) and Reτ = 395 (b,d).
The ‘Full-Channel (Previous)’ label (black circular markers) corresponds to the profiles gathered from Moser
et al. (1999) whereas the ‘Full-Channel (Present)’ and ‘Open-Channel’ labels (coloured lines and circular
markers, respectively) correspond to the author’s DNS data.

where N is the number of time windows, φi,w is the average quantity across a particular
time window and φm is the statistically converged average quantity (Ross 1998). According
to Shirian et al. (2023), estimates of the statistical error can reasonably be computed
across N = 4 windows with a window length of 10 turnover times on a full-channel
flow with a domain size of Lx = 2π and Lz = 1π . With the present DNS simulations
running on a domain size of Lx = 8π and Lz = 3π , which is 12 times larger than the
previously mentioned domain size, the number of windows and window lengths are
modified.

For the lower Reynolds number channel flow simulations (Reτ = 180, 395, 590), (A1)
of C f,res is computed across N = 20 windows with window lengths of 1 turnover time.
The estimated statistical error of C f,res is less than 1.0 %. Alternatively, for the higher
Reynolds number simulations (Reτ = 1000, 5200), the error of C f,res is computed across
N = 2 windows with window lengths of approximately 1 turnover time. It turns out that
the maximum φerror value of C f,res is approximately 2.0 %.

Higher confidence of the estimated error of the averaged C f,res is placed in the
lower Reτ values since more windows are available to compute over. The corresponding
estimated values for higher Reτ are (very) rough approximations since more velocity data
are required to accurately compute the absolute average (φm) of the resolved skin friction
by turbulent enhancement (i.e. more time windows are required).
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Figure 9. Root-mean-square profiles of channel flows at Reτ = 180, 395 (a–d respectively). ‘Full-Channel
(Previous)’, denoted by the black circular markers, corresponds to the profiles gathered from Moser et al.
(1999) while ‘Full-Channel (Present)’ and ‘Open-Channel’ (denoted by coloured lines and circular markers,
respectively) correspond to the author’s DNS data. In all panels, the streamwise, spanwise and wall-normal
components are distributed in descending order.

Appendix B. Detailed Derivation of Closure Models for TRIS
For demonstrative purposes, a simple closure is presented by assuming that the skewed
Coles wake velocity profile, (4.1),

Ui =
[

1
κ

lny +
(

1
κ

lnRe∗ + B

)]
ei,∗ +

[
2Π
κ

sin2
(π

2
y
)]

ei,Π , (B1)

captures the conditionally averaged wall-parallel profiles (Ui (x1, y, x2, t)=
〈ũi |〈ũi 〉0, 〈ũi 〉1〉). To capture the integral moments, (2.4) is applied to Ui , with the
assumption that the moment integrals of the profile fluctuations about the conditional
average (〈U ′′

i 〉0 and 〈U ′′
i 〉1) are negligible,

(B2)

Applying (2.4) on (4.1) generates the following relations:

〈Ui 〉0 =
[

1
κ
(lnRe∗ − 1)+ B

]
ei,∗ + Π

κ
ei,Π , (B3)

〈Ui 〉1 =
[

1
κ

(
lnRe∗ − 1

2

)
+ B

]
ei,∗ + Π

κ

(
1 + 4

π2

)
ei,Π , (B4)
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which are used to solve for lnRe∗, ei,∗, Π and ei,Π . Unit vectors, ei,∗ and ei,Π are defined
such that

τi = |τ |
{

e1,∗ = cos(θ∗) i = 1
e2,∗ = sin(θ∗) i = 2

Πi = |Π |
{

e1,Π = cos(θΠ) i = 1
e2,Π = sin(θΠ) i = 2

(B5)

where

θ∗ = tan−1
∣∣∣∣τ2

τ1

∣∣∣∣ sgn(τ2),

θΠ = tan−1
∣∣∣∣Π2

Π1

∣∣∣∣ sgn(Π2). (B6)

Note that κ = 0.41 is set for all TRIS simulations. The expressions for these terms are the
following:

lnRe∗ = κ

∣∣∣∣(π2

4
+ 1

)
〈ũi 〉0 − π2

4
〈ũi 〉1

∣∣∣∣ − κB + π2

8
+ 1, (B7)

ei,∗ =
(
π2

4 + 1
)

〈ũi 〉0 − π2

4 〈ũi 〉1∣∣∣(π2

4 + 1
)

〈ũi 〉0 − π2

4 〈ũi 〉1

∣∣∣ , (B8)

Π =
∣∣∣∣π2

4
κ(〈ũi 〉1 − 〈ũi 〉0)− π2

8
ei,∗

∣∣∣∣ , (B9)

ei,Π = 1
Π

(
π2

4
κ(〈ũi 〉1 − 〈ũi 〉0)− π2

8
ei,∗

)
. (B10)

With these formulations, the local values of the shear stress and top velocity are

τ̃i =
(

Re∗
Reτ

)2

ei,∗, (B11)

UT,i =
[

1
κ

lnRe∗ + B

]
ei,∗ + 2Π

κ
ei,Π , (B12)

respectively. The pressure is closed by assuming a linear pressure profile that leads to
the following relationship between the pressure boundary difference and pressure integral
moment difference:

p̃top − p̃bot = 6
[〈 p̃〉1 − 〈 p̃〉0

]
. (B13)

For simplicity, the wall-parallel nonlinear terms, 〈ũi u j 〉0 and 〈ũi u j 〉1, are split into the
resolved and unresolved components captured by the Coles profile

〈ũi u j 〉0 = 〈UiU j 〉0 + σ0,i j , 〈ũi u j 〉1 = 〈UiU j 〉1 + σ1,i j , (B14)
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where σ0,i j and σ1,i j are defined as

σ0,i j = CsΔ
2
√〈Smn〉0〈Smn〉0〈Si j 〉0, σ1,i j = CsΔ

2
√〈Smn〉1〈Smn〉1〈Si j 〉1. (B15)

Here, Si j is the strain rate tensor in the wall-parallel directions,Δ is the grid spacing of the
TRIS simulation and Cs = 0.78 is set for the eddy viscosity coefficient. The conditional
(resolved) components are quasi-linearised for robustness, defined as

〈UiU j 〉0 = A0(ei,∗e j,∗)+ B0(ei,∗e j,∗ + ei,Πe j,Π)+ D0(ei,Πe j,Π), (B16)
〈UiU j 〉1 = A1(ei,∗e j,∗)+ B1(ei,∗e j,∗ + ei,Πe j,Π)+ D1(ei,Πe j,Π), (B17)

where

A0 =
(

2Tre f − 2
κ

)
T +

(
2
κ2 − T 2

re f

)
, (B18)

B0 = Π

κ
Tre f + Πre f

κ
(T − Tre f )− Π

κ2

(
1 − Si(π)

π

)
, (B19)

D0 = 3Πre f

κ2

(
Π − 1

2
Πre f

)
, (B20)

A1 =
(

2Tre f − 1
κ

)
T +

(
1

2κ2 − T 2
re f

)
, (B21)

B1 =
(

1 + 4
π2

) (
Π

κ
Tre f

)
+ Πre f

κ
(T − Tre f )− 2Π

κ2

(
1
4

− 2 + Cin(π)
π2

)
, (B22)

D1 =
(

3 + 16
π

)
Πre f

κ2

(
Π − 1

2
Πre f

)
. (B23)

From these equations, T = 1/κlnRe∗ + B and the trigonometric integrals (Abramowitz
& Stegun 1964) are defined as

Si(π)=
∫ π

0

sin(x)
x

dx, (B24)

Cin(π)=
∫ π

0

cos(x)− 1
x

dx . (B25)

Here, Tre f = (1/κ)lnReτ + B and Πre f are the values at the reference condition.
Specifically, Πre f and B are set parameters matching the mean values of the streamwise
velocity moments from DNS (〈̃u〉0,ref and 〈̃u〉1,ref), values listed in table 3

Πref = π2

4
κ

(〈̃u〉1,ref − 〈̃u〉0,ref
) − π2

8
, (B26)

B =
(
π2

4
+ 1

)
〈̃u〉0,ref −

π2

4
〈̃u〉1,ref +

1
κ

[
π2

8
+ 1 − lnReτ

]
. (B27)

The 〈ũiv〉0 term is closed by splitting the resolved and unresolved components, as done in
§ 3

〈ũiv〉0 = 〈ũi 〉0 〈̃v〉0 + 〈̃
u′′

i v
′′〉

0, (B28)

where 〈ũi 〉0 = 〈Ui 〉0 is known from (B3) and 〈̃v〉0 is known from the right equation in
(2.5). The unresolved term, 〈ũ′′

i v
′′〉0, is closed with an eddy viscosity approximation (with
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wall-normal scaling) superimposed with effects by the wake

− 〈̃
u′′

i v
′′〉

0 ≈
∫ 1

0
νT,y

∂Ui

∂y
dy + CT (CΠ − 1)

[
Πei,Π −Πre f ei,∗

]
, (B29)

where νT,y is an effective (dimensionless) wall-normal turbulent eddy viscosity, which is
taken to be νT,y ≈ CT κy. Here, CT is a value that is soon to be defined and CΠ is the
tuning coefficient that controls the value of the resolved Reynolds shear stress. Using the
skewed Coles profile, (B29) becomes the following:

− 2
〈̃
u′′

i v
′′〉

0 ≈ CT
[
1 + (1 − CΠ)Πre f

]
ei,∗ + CT [CΠΠ ] ei,Π . (B30)

At equilibrium (Π =Πre f and ei,∗ = ei,Π )

− 2
〈
˜u′′

i v
′′〉

0 = Cuvδi1 = CT (1 +Πre f )δi1, (B31)

where Cuv is a set parameter to control the amount of unresolved skin friction by turbulent
enhancement. As a result, CT = Cuv/(1 +Πre f ). Therefore, the modelled unresolved
Reynolds shear stress is defined as

− 2
〈̃
u′′

i v
′′〉

0 ≈ Cuv

[
1 + (1 − CΠ)Πre f

]
ei,∗ + CΠΠei,Π

1 +Πre f
. (B32)
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