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Abstract

In this paper, we show that the diffraction of the primes is absolutely continuous, showing no bright spots
(Bragg peaks). We introduce the notion of counting diffraction, extending the classical notion of (density)
diffraction to sets of density zero. We develop the counting diffraction theory and give many examples of
sets of zero density of all possible spectral types.
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1. Introduction

In 2018, much interest was given to a group of papers [26—28] that studied the prime
numbers through diffraction experiments. They discovered that the primes in certain
large intervals possess a pattern of Bragg-like peaks that is evocative of the diffraction
pattern one sees in quasicrystals, aperiodic solids with diffraction that is crystal-like.
The main conjecture of these papers was that this discovered pattern showed deep
structural results about the prime numbers and that these approximate diffraction
pictures suggest that the whole set of primes have a pure point diffraction spectrum.
In this paper, we establish in Theorem 5.13 that the diffraction measure of the prime
numbers is the Lebesgue measure; therefore, absolutely continuous. This means that
any perceived Bragg-like peak structure observed in a physical diffraction experiment
of a finite portion of the primes is an artifact of the experiment’s finiteness and
disappears when taking the limit. As always, the effectiveness of an approximation
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comes down to what form of convergence is being used and how fast that convergence
happens. We argue here that the correct setting is the convergence of measures in
the vague topology, which is the foundation of mathematical diffraction theory that
was developed with its feet firmly planted in physics [4, 8, 10, 13]. It is of note
that the diffractions of the finite approximations converge extremely slowly for many
highly ordered structures, and are nearly impossible to pick up convincingly in a
physical experiment, notably the circular symmetry of the pinwheel tiling diffraction
(see for example [12, Section 4]). As we discuss in Remark 5.8, this also seems to
be the case for the diffraction of the primes, which explains why the simulations in
[26-28] do not show the real picture for the infinite set of primes.

The diffraction of the mathematical idealization of quasicrystals and other nice
structures has been studied so far by using the structure’s uniform, positive density
[4, 13]. However, the prime numbers have zero density in the positive real line so a new
approach is needed. Here, we define the counting diffraction, which is studied through
its counting version of the autocorrelation (or two-point correlation) measure. The
great advantage to this is that the counting and usual diffraction measures correspond
on positive density sets, Theorem 3.10, while on sets of zero density, the former mea-
sure gives a sensible extension of the Patterson formula to an infinite set, Theorem 3.12.

Given a finite set F C R, its diffraction is given by the Patterson formula:

2

Z €27r1x~y .

xeF

Ip(y) = card(F)

A simple computation shows that Iy is the Fourier transform of the finite measure

1 ~ 1
= ———0p*0p = ——— Ox—y-
IF card(F) FHOF card(F) x; ¥

The measure vy, is called the autocorrelation, or 2-point correlation, measure of the
finite sample F.

Next, consider an infinite uniformly discrete set A € R? and some nice averaging
sequence (A,), in R, such as A, = [-n, n]%. The diffraction of A is defined as the limit
in a suitable topology of the diffraction measures I, of the finite sets F,, := AN A,.
For uniformly discrete sets A of positive density, it is more advantageous to define
the autocorrelation and diffraction of A by dividing by the volume, vol(A,), of the
averaging sequence instead of the cardinality, card(F,). As introduced by Hof [13]
in RY, the sequence

1

— 6p *6f
vol(A,) *Fn * OF

n

Yn =

of autocorrelation measures of the finite samples F, has a subsequence converging
to some positive definite measure y. The measure 7y is Fourier transformable, and, by
[18, Lemma 4.11.10] or [7, Theorem 4.5], its Fourier transform 7y is a positive measure
called the (density) diffraction of A.
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The choice of averaging by vol(4,) has the great advantage that one can often
use spectral theory of dynamical systems via the so-called Dworkin argument (see
[4, 10, 117, just to name a few). The relationship

_ card(F,)
= Sol@A,) T

shows that this change from . to y, simply multiplies the diffraction measure by the
positive density '

. card(Fy)
d = lim ——
1m0 VOl(Ay)

of the point set. In particular, for sets of positive density, the two approaches should
be equivalent, and they are indeed equivalent (see Theorem 3.10). However, the same
relation shows that, for sets of density zero, defining the autocorrelation as the limit of
v, 18 wrong, as this would always give a zero diffraction measure.

Over the last few years, there has been growing interest in the field of aperiodic
order toward the study of point sets that are not relatively dense, such as for example
maximal density weak model sets (see [3, 14, 15]). So far, they have been studied
using certain averaging sequences with respect to which they have positive density.
It is worth emphasizing that a point set A is not relatively dense if and only if there
exists a van Hove sequence with respect to which the set has a density of zero. In fact,
this is equivalent to the seemingly stronger statement that for each van Hove sequence
(A,)., there exists a sequence (f,), in G such that A has zero density with respect to
the van Hove sequence (¢, + A,),. These examples, as well as the diffraction of primes
we mention above, suggest that it would be good to properly define diffraction for sets
of density zero, which we do in this paper.

The paper is organized as follows. In Section 2, we collect some basic definitions
and properties needed in the paper, and define the density and counting autocorre-
lations and diffractions. We study the existence and basic properties of the autocor-
relation/diffraction measures, as well as their relationship in Section 3. In particular,
we show that for uniformly discrete point sets, both the density and counting auto-
correlations exist along subsequences of a given van Hove sequence (Proposition 3.5).
Furthermore, for sets of positive density, the counting and density diffraction measures
are proportional (Theorem 3.10), while for sets of density zero, the density diffraction
is always null while the counting diffraction is nonzero for nontrivial point sets. In
Section 4, we show that for sets that are very sparse, such as the Fibonacci numbers
or any fast-growing sequence, the diffraction is the Lebesgue measure. In Section 5,
we prove in Theorem 5.13 that the diffraction of the primes is the Lebesgue measure.
This is one of the main results of the paper and shows that the primes have absolutely
continuous diffraction spectrum. We show that this holds when the averaging sequence
is any reasonable van Hove sequence of intervals. We also study the diffraction of some
related sets, such as the diffraction of prime powers and the diffraction of twin primes.
We complete the paper by showing in Section 6 that there exist sets of density zero with
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diffraction of any spectral type and show in Section 7 that the counting diffraction is
preserved when a point set is embedded into higher-dimensional space.

2. Preliminaries

We begin by recalling a number of definitions. It should be noted that everything
before the definition of counting autocorrelation and counting diffraction for infinite
sets is standard.

Throughout this paper, G is a second countable locally compact abelian group
(LCAG), and any such group is metrizable. While in most examples, G is simply R,
we want to set up the theory of counting diffraction in general settings.

DEFINITION 2.1. A set A C G is called uniformly discrete if for any choice of metric
d that generates the topology on G, there exists a constant r > O such that for all
x,y€ A, if x #y, then d(x,y) > r.

The set A C G is called locally finite if, for all compact sets K C G, the set A N K
is finite.

It is easy to see that A € G is uniformly discrete if and only if there exists some
nonempty open set U such that any translate ¢ + U of U meets A in at most one point.
However, A is locally finite exactly when A is closed and discrete in G.

Finally, a set A is locally finite exactly when the Dirac comb

o= ) 6
xXEA
is a locally finite measure on G.
Next, let us recall the definition of FLC.

DEFINITION 2.2. A point set A has finite local complexity (FLC) if A — A is locally
finite.
For a finite measure y on G, define the autocorrelation measure of y as
1 - .
——uxp ifu#0,
Yu =1 l(G)
0 ifu=0,

where * denotes convolution of finite measures and u is the reflected conjugate
measure

W) := u(p) forall ¢ € C5(G).

In particular, if F € G is a finite set, its autocorrelation is simply the autocorrelation
Y of 6F:

Spxop ifF#0,

Vg i= 4 card(F)
0 if F=0.
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Note that when F # 0,

1
Yp = Oxy-
card(F) x;;

Recall that the Fourier transform of a finite Radon measure p on an LCAG G is
the extended complex function 1z on the dual group G defined by

B0 = fG X duty)

forall y € G.

DEFINITION 2.3. The counting diffraction of a finite measure y is the Fourier
transform

| — 1 .
——px i(y) = ——— I ifu#0,

Yulx) = { lul(G) lul(G)
0 if u=0.
Similarly, the counting diffraction of a finite set ' C G is the Fourier transform
1 = 1 2
———0Fp %0 = — if FF# 0,
5/;(/\() = { card(F) F*0r () card(F) ' XEZFX(X) e
0 it F=0.

If A is not finite, defining the autocorggljltion v, and therefore the diffraction of A,
is more difficult as the convolution 6, * J, is ill-defined. If A is locally finite, then we
can avoid this issue by restricting to a sequence (F},), of finite sets F,, = A, N A, where
A = (A,), 1s an appropriate averaging sequence of compact sets in G. As was noted by
Schlottmann [24], when dealing with point sets and measures, one has to work with
so-called van Hove sequences. Let us recall here the definition.

DEFINITION 2.4. A van Hove sequence A = (4,), in a second countable LCAG G
is a sequence of compact sets of positive measure such that for every compact subset
KCG,

vol(%(A,))
im ————— =0,
n—oo  VOl(A,)
where ‘vol’ denotes Haar measure and
KA =(A+K)\AHU(G\A-K)NA)
is the K-boundary of a set A.

The K boundary d%(A) is the set of points that are K-translates of points in A that
land outside A°, or that are points in A that are translated outside of A° by a point in K.
If K = {g} is a singleton, the symmetric difference (g + A) A A satisfies

(g+A) A ACI®A).
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Therefore, if A, is a van Hove sequence and g is in G, then

lim vol((g + A,) AA,)
s vol(A,) B

That is, every van Hove sequence is a Fglner sequence.

REMARK 2.5.

(a) Every second countable LCAG admits van Hove sequences [24].

(b) Some authors define van Hove sequences to be precompact. While this seems
to allow more general averaging sequences, it typically makes no difference to
calculations. Indeed, it is easy to see that a sequence (A,), of precompact sets is
a van Hove sequence if and only if (A_,,),, is a van Hove sequence. Moreover, [24,
Lemma 1.1] implies that for a translation bounded measure u (as defined below),

1 1 T
lim (An) = ——=u(Ay)| = 0.
n—0co VOl(An)M VOl(An)'u

Because of this, restricting to compact van Hove sequences is not a restriction.
(c) All the examples below are point sets A € R. For those examples, we always

use van Hove sequences ([a,, b,]), of intervals. It is easy to see that a sequence

([ay, b)), of intervals is a van Hove sequence if and only if lim,_,., b, — @, = oco.

We sometimes prefer to work with van Hove sequences that are nested in the sense
that A, C A, for every n. We also say that (4,), is exhausting if | J, A, = G. The
most typical exhausting van Hove sequences on R are the cubes ([-n, n]%), or balls
(x €RY | |Ixll < nd)y.

When proving the existence of the autocorrelation, we need the following
measure-theoretic background.

By the Riesz representation theorem [9, 22], a Radon measure (or simply
measure) on G can be seen as a linear functional u on the space C;(G) of compactly
supported continuous functions on G, which is continuous with respect to the so-called
‘inductive’ topology on C¢(G), obtained by writing

c@= ] cG:K.
KCG
K compact

where
C(G:K):={f € Cs(G) : supp(f) C K}.

The vague topology for measures is defined as the weak-* topology on the space
M(G) of measures on G viewed as the dual space of C.(G). More precisely, a net y,
of measures converges vaguely to a measure u precisely when

u(f) = limu,(f)  forall f € Co(G).
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Given a Radon measure ¢ on G and a precompact Borel set B, we can define

llullg := sup |ul(z + B),
teG

where |u| denotes the total variation measure of u. The definition and properties of the
total variation measure can be found in [19, Section 6.5.5].
The set of translation bounded measures is defined as

MZ(G) = {u e M(G) : ||ullg < oo for all compact K C G}.

In fact, if U and V are any precompact sets with nonempty interiors, then || - || and || -
|ly define norms (not just seminorms) on M>(G), and these norms are equivalent [5].
Let us note here that for any uniformly discrete point set A, we have
o4 € M*(G) [4], which we use below.
For any constant C > 0 and open precompact set U C G, write

Mcy(G) = {u e MZ(G) : |lullv < C}.

Since the vague topology is a weak-+* topology, the Banach—Alaoglu theorem implies
compactness of Mc¢ y(G).

LEMMA 2.6 [4, Theorem 2]. Let G be an LCAG. Then, the set Mc y(G) is vaguely
compact. If G is second countable, then the vague topology is metrizable on Mc y(G).

Let us now introduce the following two definitions and discuss their relevance. Note
again that the infinite versions of the counting autocorrelation and diffraction are novel
definitions, and these have not appeared elsewhere to the best of our knowledge.

DEFINITION 2.7. Let u € M®(G) be a translation bounded measure and let A = (A,),
be a van Hove sequence. Define 1, := ul4, for each n and set

1

T M ® A;l if n # 07
Vi = L@ T H R
0 if w, =0,
and
1 —
= T M * U,
Vn vol(An)” M

where vol denotes Haar measure.
We say that the density autocorrelation y,.,s of u exists with respect to A if the
limit
Ydens = ,}I_EEO Yn

exists in the vague topology. In the same way, we say that the counting autocorrela-
tion y.ouy Of u exists with respect to (A if the limit

Yeount = lim Yu
n—o0 n

exists in the vague topology.
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As limits of positive definite measures, Ycount> Ydens are positive definite measures
[18, Lemma 4.11.10] and hence Fourier transformable. We refer to the positive
measures Yaens and Yeoun: as the density diffraction and the counting diffraction of A
with respect to A.

REMARK 2.8. If A C G is a (weakly) uniformly discrete point set and A = (4,), is a
van Hove sequence, then

Ydens = lim Yns
n—oo
Yeount = lim YF >
n—oo ' f'n
where F,, := ANA, and

1

card(F,)
0 if F, =0,

6, % 6p  ifF, #0,

YE, *

'Yn = 6F/1'

—2
vol(A,)
Let us note here the following simple relation that we often use:

_ |ul(Ay)
Tn Vol(A,,)y” "

2-D

In particular, for (weakly) uniformly discrete point sets A C G,

_card(ANA,)
T T oA, R

Using a standard argument, we explain below in Proposition 3.5 that if A is a
uniformly discrete point set in G, and A = (A,), is any van Hove sequence, then there
is a subsequence of A with respect to which the counting and density autocorrelations
of A both exist.

REMARK 2.9. Let A C G be a uniformly discrete point set. Since the supports of each
measure satisfy supp(y,), supp(y, ) € A — A,

SUPP(Ydens)s SUPP(Yeoun) S A — A.

The same conclusion holds more generally for all weighted combs supported inside A.

In the next section, we show that the density and counting diffractions are related
via a relation of the type

Ydens = dens(A)Yeount-

In particular, in Theorems 3.10 and 3.12, we show the following results.
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e For point sets of positive density, the counting and density diffraction coincide
up to multiplication by nonzero constants. In this case, the two approaches to the
diffraction spectrum are equivalent, and either one can be used.

e For point sets of zero density, the density diffraction is zero and the counting
diffraction is nonzero. In this case, the counting diffraction must be used.

3. Density and autocorrelation

In this section, we study the basic properties of the density and counting autocorre-
lations.

3.1. Density and counting autocorrelations.

DEFINITION 3.1. Let A C G be uniformly discrete and A = (A,), a van Hove
sequence. We define the lower and upper densities of A with respect to ‘A by

d(ANA,
dens 5 (A) := lim inf % e

—_— d(ANA,
dens#(A) := liirlso:lp %,

respectively. We say that A has positive density with respect to A if
dens 4(A) > 0.

We say that the density of A exists with respect to A if the limit

d(ANA,) .
By definition, the density of A exists with respect to A if and only if dens ,(A) =
dens#(A), and if this is the case, then
dens ,(A) = densz(A) = densz(A).
Let us next recall the Besicovitch seminorm for measures.

DEFINITION 3.2. For a measure ¢ on G and a van Hove sequence A = (A,,),,, we define
the Besicovitch seminorm ||u||, # via

. 1
llllp. := lim sup lul(An).

n—sco VOI(A,)

We say that the mean of y exists with respect to A if the following limit exists:

a4
Ma(w = lim S50

It is immediate that for a point set A € G and a van Hove sequence A,

densa(A) = [l0allp.a-
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Furthermore, the density of A exists if and only if the mean of §, exists, and they are
equal in this case.
Finally, whenever the mean of u exists with respect to A,

IMa(l < llullp.a-
The following result is a trivial consequence of [24, Lemma 1.1(2)].

LEMMA 3.3. If u is translation bounded, then the sequence (|u|(A,)/vol(A,)), is
bounded. Furthermore,

llllp,a < 0.
In particular, for an uniformly discrete set A C G,
dens z(A) < co.
The following is an immediate consequence.

COROLLARY 3.4. Let A be a van Hove sequence.

(@) If u € M*(G), then the means of u and |u| exist along a subsequence B of A.
(b) If A C G is uniformly discrete, then the density of A exists along a subsequence
B of A.

As promised in Section 2, we can now prove that the counting and density
diffractions exist for a translation bounded measure and any van Hove sequence,
perhaps upon passing to a subsequence. In particular, they exist for uniformly discrete
point sets.

The following lemma is standard, but we include the proof for completeness.

PROPOSITION 3.5. Let u € M*(G) and let A = (A,),, be a van Hove sequence. Then,
for each open precompact set U, there exists some C > 0 such that

Vs Y, € Mcu(G)  forall n.

In particular, there exists a subsequence B of A such that Vaens, Ycount, Ma(), Mg(|ul)
exist and

Ydens = MB(I/«‘I)'Ycount-
Furthermore, the conclusion holds whenever A is uniformly discrete.

PROOF. Pick any open precompact set V such that U C V. Since v, := 1/ |ul(Ay) s a
finite measure such that |v,|(G) = 1, by [25, Lemma 6.1],

Ve llo < lpallvlval(G) < llully =: Ci,

where C; < oo since u € M*(G).
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Next, since |¢|(A,)/vol(A,) is bounded above by some constant D, from Lemma 3.3,
by (2_ l)s

u(A,)
Vol(A,) T

< DC;.
U

yallv =

The claim follows by picking C = max{C;, DC,}.

The existence of the limit along subsequences follows now from Lemma 2.6 and
the boundedness of card(F,)/vol(A,).

Finally, by definition, A is uniformly discrete if and only if there exists a precompact
open set W such that

ll6allw < 1.
The claim follows immediately. ]

REMARK 3.6. Let y € M*(G) and let A = (A,), be a van Hove sequence. Then,
any counting autocorrelation y.oune along subsequences of (A is positive definite and
translation bounded. Therefore, by [18, Theorems 4.10.10 and 4.10.12], there exist
positive definite measures (Ycount)s and (Veount)o such that the following Eberlein
decomposition holds:

Yeount = (Yeount)s + (¥count)os
(Ycount)s = (mt)ppa

(')/count Jo = (mt)c .

Here, (Ycount)pp and (Ycount)e denote the pure point and continuous components of the
counting diffraction.

Furthermore, if supp(u) is a subset of a Meyer set, the refined Eberlein decomposi-
tion of Y oune €Xists by [25].

Let us now look at an example that shows why translation boundedness is an
important assumption, even for sets of density zero. We construct a (nonuniformly
discrete) set A C R with zero density such that 6, ¢ M*(R) and Yr, has no vaguely
convergent subsequence.

EXAMPLE 3.7. Define

Am;={4m—ﬁzlgjsz’"}, A= An

m=1

Let us note here in passing that we start at 4” — 1/2"*! and not 4™ to avoid having
integers in A,,, as, in that case, the F,, we introduce below would have an extra point
whenever n = 4™. This extra point would not change any conclusion, but would make
the proof slightly more technical.
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By construction, we have card(A,,) = 2" and A, C [4™ — % 4™). This immediately
implies that

F,=AN[-nn] = UA~,
=1

where m = |log, n] is the last positive integer satisfying 4” < n. Note here we are using
(Ap)n = ([-n,n]), as our usual averaging sequence. In particular,

card(F,) = 2 +---+2" =21 2 = p(olleasn) _ 1),

This implies that

d(F, 2(2Uosnl _ 2logsn _ 1 -1
dens(A) = lim S _ i 2 ) < lim Cim Y21
n—oo vOl(A,) n—o0 2n n—o0 n n—co n
as claimed.
Now, fix some nonnegative function f € C.(R) so that f(x) > 1 for all x € [—%, %].

Let n € N be arbitrary and set
m = |log, n].
Then,
1 1
vr,(f) = mx; fx—y) = W”ZE:{ fx=y).

Recall that A,, C [4™ — % 4™), Therefore, for all x,y € A,,, we have x — y € [—%, %] and
hence f(x —y) > 1. It follows that

1 1
— 1 = ——(card(A,,))?
2+n x;{ 2+n

1 22m — 1 4Llog4nJ > 1 4log4 n—1 — %\/ﬁ

T ovn 2V 2vn

yFn(f) 2

Therefore,
ve (f) 2 %\/ﬁ for all n,
which implies that y,, has no vaguely convergent subsequence.

Let us next prove the following result. Item (a) below was implicitly proven in [3,
Proposition 5].

LEMMA 3.8. Let A C G be uniformly discrete.

(@)  If Ygens exists with respect to A = (A,),, then densz(A) exists and

Vdens({0}) = densz(A).
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(b)  If Yeount exists with respect to A, then the following are equivalent:

(1) YCount({O}) =1

(i) ifF, = ANA,, then (Fy,), contains a subsequence of nonempty sets;
(iii) there exists some N such that for all n > N, we have F,, # 0;

(IV) 7COUI][ ¢ 0'

PROOF. First, let us note that since A is uniformly discrete, O is an isolated point of
A — A. Therefore, there exists some open set U C G containing 0 such that

(A-A)NnU={0}

For the entire proof, we fix some f € Cc(G) such that f(0)=1,0< f <1, and
supp(f) € U.

(a) Then, Remark 2.9 implies that
() = f(0)y({0}) = y({O}),

d(F,
7%ﬂ=ﬂ®nwm=%%%%

Therefore,
y{0h) = y(f) = ,}H?o Yu(F)s

and so item (a) follows.
(b) Using Remark 2.9 again,
(=ypaon=1 "HF0
Yr,U)=7F, o ifF, =0,

7c0unt(f) = ycount({o})‘

Since converges vaguely to Veount,
F
n

Yeount({0}) = Yeount(f) = r}l_)r{.lo VF, (f) = lim

n—oo

1 ifF, #0,

0 ifF,=0.
Now, the implications (iii) & (ii) & (i) = (iv) are immediate. We complete
the proof by showing that (iv) = (iii). If we assume for contradiction that

condition (iii) fails, then we can find a subsequence (Fy,), such that Fj, = 0.
However, then

Ycount = lim YE = lim YE, = lim Yo = lim 0 = 0,
n—oo " “n pooo Tk pooo n—o0

which is a contradiction. O
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Lemma 3.8 does not seem to have an equivalent for translation bounded measures.
For weighted Dirac combs u = . u({x})d, with uniformly discrete support, the
proof of Lemma 3.8 can be modified to show that

Yaens(10}) = Ma(lul),

P,
count({0}) =1 >
Yoo (1OD = B )

where

ul? = ) lu(txhPo..

xeG

In particular, if |u| has a positive mean, then

. Ma(ul®)
0}) = lim ———-.
Yeount({0}) 1r1;n MaA(u)
Beyond measures with uniformly discrete support, we cannot say too much. For
example, when y = A is the Lebesgue measure on R, we have for all van Hove
sequences A that

Ydens = Yeount = A,
)/dens({o}) = YCount({O}) =0,
Ma(p) = 1.

We can now prove that for translation bounded measures with positive
absolute-value mean, there is no difference between working with density or counting
autocorrelation. In particular, this holds for sets of positive density. The same is not
true in the case of zero-density sets.

We start by proving the result for translation bounded measures and then look at
uniformly discrete point sets.

THEOREM 3.9. Let u € M*(G) and A = (A,),, be a van Hove sequence. Assume that

Ay
el

imin vold,) > 0.

(@) If Yeount is any cluster point of y,,, then there exists some C € (0, c0) and a cluster
point Ygens of vy such that

Ydens = C7c0unt .

(b)  If Vdens is any cluster point of y,, then there exists some D € (0, o0) and a cluster
point Yeount 0f Yy, such that

Yeount = D¥dens-
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PROOF.

(a) Let A’ be the subsequence of A along which y.ouy is the limit. By Lemma 3.5,
there exists a subsequence B of A’ along which the density autocorrelation of u
and the mean Mg(|u|) exist and

Ydens = C¥count

for C = Mg(|u]) > 0.
(b) The proof of item (b) is a symmetrical argument, in which D = 1/Mg(|u|). O

In particular, for point sets, we obtain the following theorem.

THEOREM 3.10. Let A € G be uniformly discrete and A = (A,), be a van Hove
sequence. Suppose A has a positive density with respect to A.

(@) If Yeount is any cluster point of y,. , then there exists some C € (0, o) and a cluster
point Ygens of vy such that ’

Ydens = C7c0unt .

(b)  If Vaens is any cluster point of y,, then there exists some D € (0, o0) and a cluster
pOil’ll Ycount Of')/F such that

Ycount = D'ydens'

REMARK 3.11. The relationship between the cluster point(s) ygens and the cluster
point(s) Yeount is €xplained by (2-1):

_ card(Fy,)
= Sola,) Th

This relationship implies that, as long as card(F,)/vol(A,) is bounded away from 0, if
two of y,, card(F,)/vol(A,), Y. exist along A, then so does the third. Furthermore, by
Lemma 3.8, if y,, is convergent, then so is card(F,)/vol(A,).

This means that for point sets of positive density, we have the following implica-
tions.

(a) If ygens exists along A, then dens#(A) and youne €Xist along A.
(b) Assume that ycoun exists along A. Then, ygens exists along A if and only if
dens#(A) exists along A.

In contrast, for point sets of zero density, the following result shows that yge,s and
Yeount are Not proportional.

THEOREM 3.12. Let A C G be uniformly discrete and A = (A,), be a van Hove
sequence for which F,, = A N A, are not eventually all empty. Suppose dens #(A) = 0.
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(@) The autocorrelation ygens of A exists with respect to ‘A and
Ydens = 0.
() If Yeount is any cluster point of y. , then

YCount ¢ O
PROOF.

() ByLemma 3.5,
¥n € Mcu(G)

for some C > 0 and precompact open U. Since M¢ y(G) is vaguely compact and
metrizable, showing that v, — 0 is equivalent to showing that if 7 is a cluster
point of y,, then n = 0.

Let 17 be a cluster point of y, calculated along some subsequence A’ of A. By
Lemma 3.5, there exists some subsequence 8 of ‘A’ such that

n= densB(A)ycount-

The zero-density property gives densg(A) = 0 and hence n = 0. This proves
item (a).
(b) By Lemma 3.8 and item (a),

Yeount({0}) = 1 # 0 = Ygens({0}). O

If p is a translation bounded measure such that M #(|u|) = 0, then the same proof as
Theorem 3.12 shows that ygens = 0.

The equivalent statement for Theorem 3.12(b) does not hold for arbitrary measures.
In fact, it does not hold even for positive weighted Dirac combs with uniformly discrete
support.

Below we give an example of an infinite positive measure u with lattice support for
which ycount = 0.

EXAMPLE 3.13. Let (a,), € €>\{', such as for example, a,, = 1/n. Set
ui= Z anoy.
neN
Let (An), = ([-n,n]),. Then,

n
al(A) = > o] = o0,

k=1
as (a,), ¢ ¢'. In particular, |u|(R) = co.
Now, a simple computation shows that
_ ZZ:] |ak|2

= - 0.
ZZ:I |cu|

Yu, (10D
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Since 7y, is positive definite and supported inside Z,

Vi, (AEDI < 7, (1OD).

This immediately implies that y,,, converges vaguely to 0. Thus,

Ycount = 0.

For the rest of the paper, we restrict to the case of point sets.

3.2. Point sets with finite local complexity. If A has FLC, then the following
lemma shows how to write the autocorrelation as a Dirac comb. For weighted Dirac
combs supported inside Meyer sets, the result below was proven in [5].

LEMMA 3.14. Let A C G have FLC and let A = (A,), be a van Hove sequence. Then,
YVdens €xists if and only if for all t € A — A, the limit

Ndens(?) := =~ ( )card(F N(F, —1) =densg(AN(A-1))
—><>o vO n
exists. Moreover, in this case,
Ydens = Z ndens(t)ér‘
teA-A

PROOF. Let f € C.(G) and then for any finite n, rearranging the sum shows that

alf) = Z fr-

1
VOl(An)

1
vol(A,) Z Z F

teA-A xeF,
x+teF,

gy,
(Bt ),

where this sum contains at most finitely many nonzero terms, since f has compact
support and A — A is locally finite.
If each limit
card(F,, N (F, — 1))
vol(A,)

ndens(t) = r}l_)lg
exists, then this shows that y, vaguely converges to

Ydens = Z Ndens (1)0;.

teA-A
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Conversely, suppose the density diffraction ygeps = lim,—o v, exists. Let 1 € A — A.
Since A — A is locally finite, we can find a function f € C¢(G) for which f(¢) = 1 and
f(s) = 0 for all other s € A — A. In this case,

card(F, N (F, — 1)
vol(A,)

which converges to ygens(f), showing that the limit 74.ns(f) exists.
Finally, it remains to show that 74.ns(f) = densz(A N (A — 1)), that is,

. card(F, N (F, —1) . cardAN(A-1HNA,)
lim = lim )
n—oco vol(A,) n—oo vol(A,)

when either limit exists. Here,

F,N(F,—) CAN(A—-1)NA,,

) Yu(f)s

with set difference
ANA-DNAD\NF,NF, —0D)) SAN A\ (A, - D).

Therefore, we can bound
cardlAN(A-1HNA,) card(F,N(F,—-1)

vol(4,) vol(A,)
L cardAn @, \ (A4, — 1))
- vol(A,)
Sa(An \ (A, — 1) _ 6(0"(A,)
= < -0
vol(A,,) vol(A,,)
by [24, Lemma 1.1]. The claim follows. |

The next result is proven in exactly the same way and so we skip the proof.

LEMMA 3.15. Let A C G have FLC and let A = (A,), be a van Hove sequence such
that F,, = A, N A is eventually always nonempty. Then, ycoun exists if and only if for
allt € A — A, the limit

© = lim card(F, N (-t + F,))
Tcount B Pt ca.rd(F,,)
exists. Moreover, in this case,
Ycount = Z ncount(t)ét‘
teA-A
Comparing with Lemma 3.14, we may not be able to say that the limit 7¢oun(¢) is
the same as the limit
. cardAN(—t+A)NA,)
lim
n—oo card(F},)
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for general A and A. However, for van Hove sequences of intervals in R and nontrivial
uniformly discrete sets A C R, we can do so. The result below can be seen as a similar
statement to [24, Lemma 1.2], but in the setting of counting autocorrelation instead of
diffraction autocorrelation.

LEMMA 3.16. Let A be a uniformly discrete point set in R and let A = (A,), be a van
Hove sequence of intervals for which card(F,) = card(ANA,) = coasn — o.
Then, forall t € A — A,

lim card(A N (-t + A) N A,) — card(F, N (—t + Fp,))

0.
n—eo card(F},)

In particular, if A has FLC, then neount exists if and only if for all t € R, the following
limit exists:

0 = fim S24F 01 1)
Hcount T e Cal'd(Fn)

Moreover, in this case,

Ycount = Z ncount(t)ét‘

1€A—A
PROOF. Let ¢ € R. Then, the sets
—t+(ANA,) and (-t+A)NA,
have symmetric difference contained in
(-t+A,) & A,

Because A, is an interval, this symmetric difference is no larger than two intervals of
width |¢|. Since A is uniformly discrete, there is some minimum distance r > 0 between
points of A, and so —f + (A N A,) and (-t + A) N A, can differ by at most 2|¢|/r points.
Intersecting with F,, = A N A, shows that

F,N(=t+F,) and F,N(=t+A)=AN(=t+A)NA,

differ still by at most 2|¢|/r elements.
By assumption, card(F;,,) — oo and so lim,_,, 2|#|/r/card(F,) = 0, and therefore,

card(F, N (-t + F,)) —card(AN (-t + A)NA,) _

lim 0.
n—oco card(F,)
The remaining claims follow from Lemma 3.15. o

REMARK 3.17. In R, the same proof fails, since the number of points in the set
AN((-t+A,)AA,) can be unbounded as n — co. To draw a similar conclusion for
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uniformly discrete point sets in RY using (A,), = ([-n,n]%),, we would need the
stronger assumption

. card(F,)
fm = =
n—-oo  pid-

Let us now cover a simple consequence of this, which we use later in the paper.

PROPOSITION 3.18. Let A = (A,), be a van Hove sequence consisting of intervals in
R. If A € R is a uniformly discrete point set with counting autocorrelation 6y with
respect to A, and for which lim,_,, card(A N A,)) = oo, then for any nonzero integer k,
the set A U (k + A) has counting autocorrelation and diffraction

Or +0_i
2 b
YVeount = (1 + cos(2mkx))A,

Ycount = 0o +

with respect to A, where A is the Lebesgue measure.

PROOF. Write I' = AU (k + A). By Lemma 3.16, we have that y.ount = 2t Teount(£)01»
where for ¢ € Z,

i card ' N (-t+1)NA,)
ncount(t) - n1_>nolo card(F n An)
Let A, = AN A, and similarly I, = I' N A,, and so forth.
The assumption that A has counting autocorrelation ¢p means that whenever
s € R is nonzero, card(A N (-s+ A)NA,) is o(card(A,)) as n — oco. As in the
proof of Lemma 3.16, because A is uniformly discrete and card(A,) — co, we
have that card((—s + A),) ~ card(—s + A,) as n — oo, and similarly for I". Using
inclusion-exclusion,

card(l,,) = card(A,) + card((k + A),) —card( AN (k+ A)NA,)
~ card(A,) + card(k + A,) —card(A N (k+ A) NA,)
= 2card(A,) —card(A N (k+ A) NA,),

and the last term is o(card(A,)), so card(I,) ~ 2card(A,) as n — oo.
Now, let t € R. The autocorrelation of I" considers the intersection

I'n=t+N=AUANt+A) U ANk-1t+A)
U (k+AD)N(t+A) U ((K+A)Nk—t+A)).
Because k # 0, the autocorrelation of A being ¢y implies that the intersection of any
two or more sets in this union with A, has cardinality that is o(card(A,)) as n — oo.

So, after using the inclusion-exclusion formula and discarding terms that go to zero,
we find that
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card' N (-t +1)NA,) . card(' N (-t+1)NA,)
card(l,) B nl_)rg 2card(A,,)
1 . card((AN (-t + A)),) card((AN(k—t+ A)),)
= — lim ( +
2 n—oo card(A,) card(A,)
N card(((k + A) N (=t + A)),) N card((k+A) N (k—t+ A))n))
card(A,) card(A,)

Neount(?) = r}l_{g

= %(600) + 00(t — k) + ot + k) + d0(1))

O +0_1
2

- (50 ; )(t).

Therefore, Lemma 3.16 implies that ycount = 0o + (0x + 0—¢)/2 for I |

We complete this subsection by showing that the addition of very few points does
not change the counting autocorrelation.

It is well known that if two sets differ by a set of density zero, then the density
autocorrelation of one exists if and only if the density autocorrelation of the other
one exists. Moreover, in this case, the two autocorrelations are equal (see for example
[3, Corollary 6] and its proof). We prove the corresponding result for counting
autocorrelations.

LEMMA 3.19. Let A € I" C G be uniformly discrete point sets and A = (A,), be a van
Hove sequence with the following properties:

(a) ANA, are eventually nonempty;
(b) the autocorrelation ycounta €xists with respect to A;

()

card(ANA,)
im ——— =
n—oo card(" N A,)

Then, the autocorrelation yeounr exists with respect to A and

Ycount,” = Ycount,A-

PROOF. LetF,, :=ANA,and E, :=I'NA,. We show that

1 — —
——— 0, *0p, — ———0F %0 0
card(E,) En * OF, card(Fy) Fa % OF, =2
vaguely, from which the result follows.
First, let us note that
1 — 1 — card(F,) — card(E),) 1 —

——— 6, *0p, — ————0F, *O0p, = ( ) OF * 0
card(E,) Fa % OF, card(F,) Fa % OF, card(E,) card(F,,)( Fa * OF,)
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converges t0 0 - Yeounta = 0. Therefore, we need to show that

m@n *5; - W(E,)‘SF” *5; - 0.
Let f € Co(G) be arbitrary. Then,
% 55 = g0+
< m&a * O, (f) — mdﬂ * ('sg'n(f)‘
M P R T e o LRI f)’
< o 08, =000 G2+ sl 6 0 )
=Cma&)11ff@+w¢&@m65—@xw
+ Card( = f f 3+ 3) 65, ) 4G,

I/\

card(E ) f f |£(x + )| Ao, (x) d(B,\r,) ()

" card(En) fGLIf(x + )| dor, (x) d(Og,\r, ) ()

f f If (x + )| d67(x) d(S,0\r,)(¥)
G JG

IN

card(E,)

" card(E,) LL Lf G + y)I A6 (x) d(OE,\F,)(D)-

Now, since f € C¢(G) and I" is uniformly discrete, all measures involved are translation
bounded and so there exists a constant C such that for all y € G,

f |f(x+y)|dés(x) < C and
G

f lf(x + )| dér(x) < C.
G

It follows that

1 — —
O * 0 — ———6f %0
card(E,) £, * 05, () card(E,) Fu % OF, (f)‘
< C d@© C dgnr,
card(E,,)L (0g\F,)) + card(E,,)]; (OE\F,)Y)
C
= 2card(E,\F, 0,
card(E,) card(E\F) =
which completes the proof. |
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3.3. Diffraction of subsets of integers. As mentioned before, many examples we
consider below are subsets A of the integers, considered as point sets in G = R.
The averaging van Hove sequences (A,), are of the form A, = [a,,b,], where
lim,,_,00 (b, — a,) = 0.

Let us now fix A €Z and a van Hove sequence (A,), in R. For each n, let
Ju>&n : Z — C be defined as

1

fu(d) = vol(A,,)Card(A Nd+A)NAY),
) = cardAN(d+A)NA,)  fuld)

Bl = T (AN Ay [0

We then have the following proposition (compare [2, Section 10.3.2] or [1, Theorem 1]).

PROPOSITION 3.20. Let A CZ and let (A,), be a van Hove sequence in R. Then,
YVdens €Xists with respect to (Ay), if and only if f, converges pointwise to a function
f:Z—-C.

Moreover, in this case, Ydens = Ymez f(M)0y and f is positive definite. Finally, if o
is the positive measure on R/Z corresponding to f via Bochner’s theorem, then o and
the I-periodic measure ygens are related via the so-called Weil formula:

f J ()Y dens(x) = Wfx+2Z)dox) forall f e Ce(G),
R

R/Z

where

Wfix+2Z) := Zf(x+y) forall x e R.

YEZ

PROOF. The first part follows trivially from Proposition 3.14. The last part follows
from [21]. O

Let us note here in passing that intuitively, the Weil formula says that Ygens is the
1-periodic measure obtained by ‘periodizing’ o. More precisely, o is the measure
obtained by restricting Ygens to [0, 1) and identifying this interval with R/Z.

Now, exactly the same result holds for the counting autocorrelation. Since the proof
is similar, we skip it.

PROPOSITION 3.21. Let A € Z and let (A,), be a van Hove sequence in R. Then,
Yeount €XISts with respect to (A,), if and only if g, converges pointwise to a function
g:7Z—-C

Moreover, in this case, Yeount = Ymez 8(M)0y, and g is positive definite. Finally, if o
is the positive measure on R/Z corresponding to g via Bochner’s theorem, then o and
the 1-periodic measure Veouy are related via the Weil formula.
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4. Diffraction of sets with no infinite translated subsets

As we saw in the last section, the autocorrelation encodes how often an element
t € G appears as the difference of two points of A. The easiest examples to study, then,
are those sets with periodic subsets or those where A and ¢ + A have little agreement.
In this section, we look at the former situation.

LEMMA 4.1. Let A € G be a set of FLC and let A = (A,), be a van Hove sequence.
Assume that for F,, = A N Ay:

(a) lim,_ card(F,) = oo,
(b) forall0#teA- A

card(A N (=t + A)) < 0.
Then, the counting autocorrelation is y.ount = 0 and it exists with respect to A.

PROOF. For any nonzero O # ¢t € A — A, we can bound

card(F,, N (=t + F,)) < card(A N (=t + A))
card(F,) - card(F,) ’

where assumptions (a) and (b) imply that the right-hand side tends to zero. So, for
nonzero t, in the notation of Lemma 3.15,

(0 = tim SN 4 F)
Hcount T iS00 card(Fn) -
For t = 0, Neount(0) = 1, because F, is eventually nonempty. So, each limit 7count(?)

exists, and so by Lemma 3.15, the autocorrelation ycoune €xists with respect to A
and it is

0.

Ycount = Z ncount(t)(st = 0p. o
teA-A
REMARK 4.2.

(a) LetA € Gbelocally finite and let K € G be compact. A short computation shows
that

e, = S0l(K) = lyp, = S0l({0}) + Iy I(K\{O})

1
=y, (0D — 1] + m; Seey(K\{O})

x6p ({0) — 1| +

card(F,, N (-t + F,))

te(F,—F,)NK
10

card(F,,)éF" card(F,)

1 1
< |———— Ox—y({OD| + ——= card(A N (=t + A)).
card(F),) x;ﬂ card(F,) el AZA:)OK
10
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Now, if A has FLC, then the set (A — A) N K is finite. Therefore, if the assump-
tions in Lemma 4.1 hold, then we get the stronger conclusion that

[vr, = S0l(K) = 0

for all compact sets K.
(b) The conclusion of Lemma 4.1 does not hold for sets without FLC. For example,

A= U{m- L""J}

has density zero, meets any of its translates in at most one point, but one can
show that

Yeount = Al[-1,1]-
As an immediate consequence of Lemma 4.1, we obtain the following lemma.
LEMMA 4.3. Let A = {a, : n € N} C R for any sequence (a,), satisfying
nlig (Gnt1 — ap) = 0
Then, A has FLC, and for any van Hove sequence (A,), such that lim,_,.(A, N A) = oo,
Yeount = 00, YVoount = A (4-1)
In particular, (4-1) holds for all van Hove sequences that are nested and exhausting.
PROOF. First, note that for each R > 0, there exists some N such that, for all n > N,
ANla, - R, a, + R] = {a,}.

It follows immediatelly that A has FLC.
Note that the given condition implies that for all # # 0, the set

AN+ A)

is finite. Therefore, for any van Hove sequence for which lim,,_,, card(F,) = oo, we get
Yeount = 0¢ by Lemma 4.1.

Finally, if (A,), is exhausting, | J, A, = Rand so |, F,, = A. If (4,), is nested, so is
the sequence (F},),, and so since A is infinite, we must have lim,,_,, card(F,) = co. O

The following two-sided version is proven in exactly the same way and we skip the
details.

LEMMA 4.4. Let A = {a, : n € Z} C R so that
lim a,41 — a, = 00 and
n—oo

lim a,_; —a, = —oo.

n——oo
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Then, A has FLC and for any van Hove sequence (A,,), such that lim,_,.(A, N A) = oo,

Yeount = 605 YVeount = A (4-2)
In particular, (4-2) holds for all van Hove sequences that are nested and exhausting.
The next three examples follow immediately from these results.

EXAMPLE 4.5. Choose any a > 1, let

A=1{d":neN}
and let (A,), = ([-n, n]),. Then, Ycount = 6o and Veount = A.
EXAMPLE 4.6. Let

A={n!':neN}
and let (A,), = ([-n, n]),. Then, Ycount = 6o and Veount = A.
EXAMPLE 4.7. Let

A={fy:neN},

where (f;,), is the Fibonacci sequence fy = 0, f; = 1, and f,+1 = f, + fu-1. Let (A,), =
([-n, n]),. Then, Yeount = 9o and Yeount = 4.

More generally, the same behavior is exhibited by many point sets arising from
linear recurrence relations, in particular when the largest root in modulus of the
characteristic polynomial is strictly greater than 1. The point being that all of these
have approximately exponential growth.

It should be noted that these examples can be put into Proposition 3.18 to get a point
set with diffraction and autocorrelation
Or +0_i

2

Yeount = 00 + and  VYeount = (1 + cos(2mkx))A.

5. Diffraction of the primes

In this section, we discuss the diffraction of primes P C Z (including negative
primes) for van Hove sequences of intervals. We see that the density autocorrelation is
always 0, while the counting autocorrelation is, under weak conditions, dy.

Throughout this entire section, for d € N, let us recall the notation

mg(x) =card{p e PN[0,x] : p+d eP}.

Of course, mp(x) is just the prime counting function 7(x). Since there is only one even
prime, for odd d,

ma(x) <1

for any x.
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5.1. Density autocorrelation with respect to van Hove sequences of intervals.
Consider a van Hove sequence (A,), = ([a,, b,]), of intervals. By eventually replacing
ay, b, by nearby integers, we can assume without loss of generality that a,, b, € Z.

A simple consequence of the Brun—Titchmarsh theorem is that the density of the
primes with respect to (A,), is zero. Indeed, let us recall the following version of this
theorem.

THEOREM 5.1 [17, Corollary 2]. Let m,n be positive integers. Then,
a(m + n) — n(m) < 2n(n).
As an immediate consequence, we obtain the following theorem.

THEOREM 5.2. Let (A), = ([an, by])n be any van Hove sequence of intervals. Then,
2n(b, — ay)

n — Qn

card(PNA,) <

In particular, with respect to (A,),, we have dens(P) = 0 and so the density diffrac-
tion is
Ydens = 0.

PrROOF. Let r, = b, —a,. Then, since (A,), is a van Hove sequence, we have
lim,, 00 7y, = 0.

Let F,, :==PNA,.

We split the problem into the following three cases.

Case 1: Suppose 0 < a,,. Then, by Theorem 5.1,
Card(Fn) — ﬂ(bn) - ﬂ(an) < zn(rn).

I'n I'n I'n

Case 2: Suppose b, < 0. Then, by Theorem 5.1,

card(F,)  n(la,|) — 7(|bnl) < 27T("n)
rno u ~ T

Case 3: Suppose a, < 0 < b,. Then, |a,| < r, and b, < r,,, and hence,
card(F,) _ 7(by) + m(lan)) < zﬂ(rn).

I'n I'n I'n

Therefore, for all n,

card(F},) < Zﬂ(rn)'
I'n I'n

Since r, — oo, the last claim follows from the prime number theorem. O

REMARK 5.3. Let X(P) be the dynamical system generated by P under the translation
action of R; see [4] for details. Then, since the primes have arbitrarily large gaps, we
have @ € X(P).
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Now, for each ¢y, ..., ¢, € C:(R), define F,

.....

Let

on +Clx(p) :0<n,¢1,...,0, € Cc(R),c € R}

.....

Then, A € C(X(P)) is a subalgebra separating the points and hence dense in C(X(P))
by Stone—Weierstrass.
Now, it follows immediately from Theorem 5.2 that

) 1 t+k
lim = f Fy.p(s+P)ds=0= f F,..0,(I) dSo(I)
—® t— X(P)

uniformly in 7. Also, we trivially have

1 t+k
lim — f clx(]p)(s + P) ds=c= f Clx(]p)(r) d&@(r).
koo 2k Ji g X(P)

The density of A in C(X(P)) immediately implies that (X(P),R) is uniquely ergodic,
with unique ergodic measure m = §y. Therefore, by [4], the primes must have
density and density autocorrelation zero with respect to any van Hove sequence (not
necessarily of intervals).

The same conclusion holds if we replace the translation action of R by the
translation action of Z.

5.2. Counting diffraction with respect to van Hove sequences of intervals.
Numerical estimates have reported that the diffraction of primes is pure point, meaning
that the primes are a model for quasicrystals [27] (compare [26, 28]). This would mean
that the (counting) diffraction would have the form

Feoumt = ), 10)9.
yeB

This seems too nice to be true. Indeed, for a set A C Z, the much weaker statement that
Yeount # A 18 equivalent to the fact that there exists some d € Z\{0} such that
card(A N (d + A) N [-n,n])

li > 0.
MSUP — ard(A N = n])

When A = P, this would imply that there exists a positive integer d > 0 such that the
set {p € P: p + d € P} would have positive density among the primes.

As mentioned above, such a result is too nice to be true. It would give some
results that are very much stronger than the latest developments in number theory
[16, 20, 29]. In fact, it turns out that this would contradict the generalization of the
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Brun-Titchmarsh theorem, Proposition 5.4, and hence cannot be true. This means that
the counting diffraction of the primes must be the Lebesgue measure

_———

Ycount = A

We now prove that this is indeed the case. We show that the counting autocorrelation
Yeount €Xists along many van Hove sequences of intervals and it is Ycoune = d9. This
implies that the diffraction is the Lebesgue measure and hence absolutely continuous.

First, the aforementioned generalization of the Brun—Titchmarsh theorem is itself a
generalization of Brun’s theorem.

PROPOSITION 5.4. Foralld > 1,

ma(x) _
x=00 770(X)

PROOF. For even d, it is well known using sieve methods in number theory that there
exists a constant C > 0 such that

X
og’ x

ma(x) < C1 for all x > 1.

Since we are not experts, we do not know precisely who came up with this argument,
but it can be found from Bateman and Stemmler [6, Lemma 3]. Therefore, by the prime
number theorem,

Ta) _ Cx/log® x _

0<li
=P T T e x/logx

S0 lim,_, 0o g(x)/mo(x) = 0. O
Now, note that if F' C R is any finite set,
Y-r=7p
Since —P = P, for any set A,
-(PNA)=Pn(-A). (5-1)

Therefore, we immediately obtain the following lemma.

LEMMA 5.5. Let A= (A,), be any van Hove sequence and with €, € {+1}, let
B = (Bp)n = (€,An)n- Then, the counting autocorrelation Ycoutn of P exists with
respect to A if and only if the counting autocorrelation yeoun.s of P exists with respect
to B. Moreover, in this case, Yeount, A = Ycount. 8-

Whenever we are given a van Hove sequence (A,), = ([a,,b,]), of intervals,
Lemma 5.5 allows us to flip some of those intervals so that |b,| > |a,|. Since, after
the flip, we also have a, < b,, we get that b, > 0 and must have

lim b, = oo,

n—oo
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because the width of the intervals goes to infinity. We often make this extra
assumption.
Next, let us cover the following two results.

LEMMA 5.6. Let (Ay), = ([an, by])n be a van Hove sequence of intervals such that for
all n, we have 0 € A,. Then, with respect to (A,),, we have Ycount = 0.

PROOF. By (5-1) and Lemma 5.5, we can assume without loss of generality that
|yl = |ay|. This implies that b, > 0 and lim, ., b, = c0. As usual, let F,, =P N A,,.
For each t # 0,
card(F, N (¢ + P)) < 2my(by),
card(F,) > n(b,).

The claim now follows from Proposition 5.4 and Lemma 3.16. ]
As a consequence, we obtain the following theorem.

THEOREM 5.7. The primes P have counting autocorrelation and diffraction with
respect to the van Hove sequence (A,), = ([-n,n]),,

Yeount = 00,
Yeount = A
REMARK 5.8. Combining the proofs of Lemma 5.6, Proposition 5.4, Lemma 3.16,

and the prime number theorem, it follows that, for each van Hove sequence (A,,), of
intervals such that O € A,,, there exists a constant C; > 0 such that for all m € Z,

27y () + |m - ( 1 N |m| log(n))
mo(n) =1 log(n) n '
This seems to suggest that y,. converges very slowly t0 ¥count, meaning that numerical

estimates are useless when st’ﬁdying the diffraction of primes.
Note also here that for the density autocorrelation calculated with respect to

Ay = ([-n, 1]y,

[yr, = Sol(m) <

[y, = Ol(m) < %’”mﬂ ~ Sol(m) + ’%%(m)

C, 1 |m|log(n) C,
= Tog() Cl(log(n) L )+ Tog(n)
L k. G
B C(]ogz(n) " n )+ log(n)

for some constants C and C,. This explains the slow rate of convergence of the density
autocorrelation to 0.

A similar estimate can be obtained with respect to any van Hove sequence (A4,),
with0 € A, foralln > 1.
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LEMMA 5.9. Let (A,), = ([an, b)), be a van Hove sequence of intervals such that for
all n, we have 0 < a,, < b,,. Assume that there exists some ¢ > 1 and N such that for all
n > N, we have b,, > ca,,.
Then, with respect to A, the primes have counting autocorrelation yeount = ¢.
PROOF. For each t # 0,
card(F, N (¢t + P)) < my(bp),
card(F,) = n(b,) — n(an) = n(by) — w(by/c).

Now, by Proposition 5.4 and the prime number theorem,

by,
m ”lt\lg ) =0 and
n—oo ln(l;n)
b,) — n(b, 1
n—oo n C
In(b,,)

It follows that for all ¢ # O,
card(F, N (t +P)) _ 714(by)
= lim

im = _— =
=00 card(F,) n—o 71(b,) — m(by,/c)
The claim follows from Lemma 3.16. O

REMARK 5.10. The condition that b, > ca, is important and cannot be dropped. For
instance, (A,), = ([n!,n!+n]), is a van Hove sequence that has empty intersection
with P, because n! +k is always divisible by k. With respect to this van Hove sequence,

Ycount = 0.
Let us now state a few immediate consequences of the previous result.
COROLLARY 5.11. Let ay, b, be any sequences of integers such that b, > a, > 0 and

lim,_,c b, = 0. If

by,
Iim —=L>1,

n—oo d,

then (A,), = ([an, b,)), is a van Hove sequence and with respect to this van Hove
sequence,

—
Yeount = 00, Yeount = A.

REMARK 5.12. In [26-28], the authors are considering intervals of the form
(M,,M, + L,], where M,, — oo and the ratio L,/M, converges to some S > 0. The
setting falls within the assumptions from Corollary 5.11 and

L=1+p8>1.

Therefore, with respect to such van Hove sequences of intervals, the diffraction is
actually the Lebesgue measure A and hence absolutely continuous.

We can now prove our most general version of these results.

https://doi.org/10.1017/51446788725000096 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788725000096

[32] Diffraction of the primes and other sets of zero density 233
THEOREM 5.13. Let (A,), = ([an, b)), be any van Hove sequence of intervals. Assume
that there exists some constant d > 0 such that

|an| < d(bn - an)-
Then, with respect to (A,),, we have Yeount = 60 and Yeoum = A.

PROOF. Asusual, letr, =b, —a, .
First, let us note that

bnl < lan| + by — anl < (d + Dry.
In particular, for all n,
max{|a,|, |bnl} < (d + Dr,.
Define
_ {[an,bn] if laa| < IBal,
U \b—anliflan] 2 b,

Then, by Lemma 5.5, it suffices to prove that our conclusion holds with respect to
(Bn)n- Note that if (B,), = ([a,,, b, Dn,

by | < (d + 1)(b), — a).

Therefore, without loss of generality, we can assume that |b,| > |a,| for all n.
As before, this implies that b, > 0 and b, — co.
Define
A:={n:a, <0},
B:={n:a, >0}

We split the proof into three cases.

Case 1: A is finite. Then, by possibly erasing the first few terms of A,,, we can assume
that a,, > 0 for all n.

Next,
b b, —
2 2T s a1 1
a, a,

The conclusion follows from Lemma 5.9.

Case 2: B is finite. Then, by possibly erasing the first few terms of A,,, we can assume
that a,, < 0 for all n. The conclusion then follows from Lemma 5.6.

Case 3: A, B are infinite. Then, write A as the sequence ki, ks, ...,k,... and B as the
sequence my, My, ..., My . ...
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By Lemma 5.6, as in Case 2,

lim YE, = 00.
n—oo n
Also, exactly as in Case 1,
b
—>d+1>1
amn

Therefore, by Lemma 5.9,

lim y. = do.

n—oo

Since A U B = N, we conclude that

tim 7, = 0.
as claimed. |
COROLLARY 5.14. Let (A,), be a van Hove sequence of intervals that have a common

point c. Then, with respect to (A,),, we have Veoun = 6o and Yeount = A.
In particular, the conclusion holds for any nested van Hove sequence of intervals.

PROOF. Foreachn > 1, let A, = [a,, b,] and let r,, = b, — a,,. Then,
a, ¢

b
rn rn
which is bounded from above since lim,,_,, ¢/r, = 0. Moreover,
—ap bn

c
=1-2<1- 2,
T'n I'n T'n

which again is bounded from above.
Therefore, we are in the situation of Theorem 5.13. O

REMARK 5.15. If we do not work with van Hove sequences of intervals, there are
many other auto-correlations that are possible. Indeed, let O C P be any finite set.

Then, (A,), = ([n!,n!+n] U Q), is a van Hove sequence and F, = A, NP = Q.
Comparing to Remark 5.10, it follows that

1 _— 1 2mi(q-p)x|2
Yeount = ——7 A% Z 6p—q’ Yeount(X) = Z Gt il o
card(Q) bt card(Q) =

By combining Proposition 3.18 and Theorem 5.7, we also get the following example.

EXAMPLE 5.16. Let k be a nonzero integer and consider the set
PUk+P)={p,p+k : peP}.

Then, with respect to the van Hove sequence ([—n,7]),, Ycount = 00 + %(5,( +6_¢)
and so

Yeount = (1 + cos(2mkx))A.
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5.3. Diffraction of prime powers. Consider now the set

Ppow 1= {xp" : p € P,n € N}
of positive and negative prime powers. The point sets P C P,ow CR and (4,), =
([-n, n]), satisfy the conditions of Lemma 3.19.

Indeed, a standard computation (see for example [23]) shows that for all n,

Card(Ppow N [_n, n]) = ZCard(Ppow N [(), n])
= 2(mp(n) + mo( \/E) + 7'[0(\3/%) + -+ rp( %))’

where m = [log,(n)] + 1 since n < 2m*1 This implies that

< card(Ppow N [—n, n]) 1< mo(\n) + ﬂo({/ﬁ) + -+ mo(Rfn)

card(P N [-n, n]) - mo(n)
< Vn+ n+---+ Kn < (Llogy(m)] + 1) - vn
- 7o(n) - mo() ‘

Therefore, by the prime number theorem,

card(Ppow N [-1,n]) B
i " card(® N [=mnl)

Lemma 3.19 and Theorem 5.13 then give the following proposition.

PROPOSITION 5.17. Let (A,), = ([an, by])n be any van Hove sequence of intervals.
Assume that there exists some constant d > 0 such that

|an| < d(bn - an)-

Then, with respect to (Ap),, the set Ppow of powers of primes has counting autocorre-
lation Yeount = 0o and diffraction Yeoun = A.

5.4. Primes with fixed distance. We complete the section on primes by discussing
the diffraction of twin primes and other similar sets. While we cannot explicitly
calculate the diffraction of the twin primes, as the answer would need us first to
settle the twin prime conjecture, we can show that the diffraction of the twin primes is
different from the diffraction of the primes.

Fix a positive integer d > 1. Define

P,:={p,p+d:p,p+decP}

When d = 2, the set P, is exactly the set of twin primes.
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PROPOSITION 5.18. Let d > 1 be any positive integer. Then, we have the following.

(a) If Py is nonempty and finite, then the autocorrelation ycouns €xists with respect to
Ay = ([-n,n)), and

Ycount = card(IPd) Z 6p q * 60a
qEPﬂ

1 2ri(p-q)x
£ 1.
YC()Unt ard(Pd) Z
qEFﬂ

Moreover,

< ’)/count({d})

with equality if and only if p, p + d, p + 2d cannot be prime at the same time.
(b) Assume that P, is infinite and d is not divisible by 3. Let ycount be the counting
autocorrelation of P; with respect to a subsequence of ([—n, n)),. Then,

Yeounr({d) = 3,
Veount # A.
PROOF. Let us define
A:={peP;:p+dePy
and note that
P;=AUd+A). (5-2)
(a) Since Py is finite,
F,=P;N[-n,n] =Py

for n large enough. The two formulas are then immediate.
Next, (5-2) implies that

card(P,) < 2card(A)
with equality if and only if A N (d + A) = 0. Now,
counl d 6 d
Yeound{d}) = Card(P 5 2 0@

P-q€Pq
3 1 3 card(A)

~ card(P,) iedep, B card(Pd)

with equality if and only if A N (p + A) = 0. This is in turn equivalent to saying
that p, p + d, p + 2d are never primes at the same time.
(b) Next, let us note that if

peAn(d+A),
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then p,p +d, p +2d € P. Since 3 t d, one of p, p +d, p + 2d must be divisible
by 3. This shows that

AN@d+A)C{-3-2d,-3-d,-3,3,3-d,3 - 2d}

and hence, A N (d + A) is finite.
A short computation similar to the proof of Proposition 3.18 shows that

Yeount({d}) = % .

The claim follows. ]
Since 3, 5,7 € P, we obtain the following corollary.

COROLLARY 5.19. Let ycount be any counting autocorrelation of the twin primes P,
with respect to a subsequence of ([—n,n)),. Then, Yeount({2}) = % if and only if there
are infinitely many twin primes.

REMARK 5.20.

(a) The diffraction of the set P, of twin primes is not A.

(b) When Py is finite, then the diffraction is absolutely continuous. It is unclear
to us what happens when P, is infinite, for example, for the values of d from
[16, 20, 29].

The above result shows that, as long as d is not a multiple of 3, if P, is infinite,

then P; and P have different diffractions. It is reasonable to expect that for infinite
P,, the sets P; and P have different diffractions even when 3|d, but the above
proof does not work anymore. To make the proof work, one would need to show
that the set of primes p for which both p +d and p + 2d are also prime has
asymptotic density zero inside P;, which looks reasonable but is extremely hard
to show.

6. Subsets of zero density with nontrivial Bragg spectrum

All the examples we have seen so far have continuous counting diffraction spectra.
We show below that this is not always the case. The following result allows us to
construct sets of density zero whose counting diffraction spectrum can be the density
diffraction of any relatively dense set that we want.

THEOREM 6.1. Let A C Z be relatively dense and assume that the density autocorre-
lation ygens = v of A exists with respect to A = (A,), = ([—n, n]),.
For each n > 3, set

I, =n!+(AN[-n,nl)
and define

r::Urn,

n>3
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which is a disjoint union. Then, with respect to A:
(@) dens(I") =0, and
(®)  Yeount = Cy, where
1 1
= = # 0.
y({0})  dens(A)

PROOF. Let us note first that for n > 3,

C

nl+n<m+D!-(n+1),

showing that I is indeed a disjoint union.

(37]

Let A, =ANA,=AN[-n,n], so that I, =n!+A, is such that we have

card(l',,) = card(A,) <2n + 1.Denote F,, = I’ N A,.

(a) Letn e N and let m be the unique natural number for which

m!<n<@m+1)!.
Then, F, C Uf:; Ty, and so

card(F,) 14
—_— Card(rk N [_n9 n])
2n 2n kZ;‘

card(l'y) <

mQ2m + 1) < mQ2m+ 1)
< 4

as m — oo, As n — oo, we also have m — oo and so therefore,

0.

00

d(F,
dens#(I") = lim S w) () =
n— 2n

(b) Let ¢ € Z. For readability, introduce the notation

{, = card(A,,) = card(/,) and
¢, = card(A, N (=1 + A)).

Then, by Lemma 3.14, we know that

fn . n
y({0)) = densa(A) = lim =~ #0 and y({#}) = lim <.
n—oo 2n n—oo 27’[

Our goal is to show that

. card(F, N (-t+ 1))  y({t})
lim = =

- = 1i ,
i card(F) A

and then the result follows from Lemma 3.15. We accomplish this by showing
that card(F,, N (-t + I'))/card(F),) is asymptotically a ratio of the Césaro means

for (c,,) and (£,).
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As in the proof of item (a), let n € N and let m € N be the unique number satisfying
m!<n < (m+1)!. Then,

with these unions disjoint, and so

m+1

i . < card(F,) < Z .
k=3 k=3

Eventually, as k becomes large, k! is large enough that ¢ + I'; intersects /" only in [.
That is, for some constant N depending only on ¢, if kK > N, then

Iin(=t+N)=Iyn(-t+1Ty),

which has cardinality given by card(I', N (=t + I')) = card(A; N (—f + Ag)) = ¢¢. (In
fact, we could take N = |f|, though a smaller number typically works.) Now, assume
that n is large enough that m > N, and estimate

card(F, N (=t + ) > Z card(I; N (=t + I))
k=3

> Z card(Fy N (=t + I))
k=N

where C = 5(\/:—31 ¢k is a constant not depending on n (only on A and ¢). Additionally,

for an upper bound,

3
T
=

card(F,N(—t+ 1)) < card([y N (=t + 1))

k=3
N-1 m+1
=) card(Ty N (~t+ 1)) + Z card(l N (=t + I))
k=3 k=N
N-1 m+1
<) card(Ty) + Z card(Ty N (=t + Iy))
k=3 k=N
N-1 m+1 m+1
= €k+2ck < ch+D,
k=3 k=N k=3
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where D = ZQ’:}' (€x — cx) 1s a constant not depending on n. Combining all of our
bounds so far shows that for large enough 7,

Yz —C _card(F,n(=t+1) _ mlec+D

< < 6-1
AR card(F,) s Uk ©-1)
Now, because A, is relatively dense, there must be a constant R > 0 so that
Rn<¢,<2n+1
for all n. So,
T b Cns1 2m+ 1 2m+ 1
= smop Sym = ommD) —0
k3 fk 2ieale Xy Rk R% -R
as m — 09, SO
Zm+1
lim =1 (6-2)
m—co Zk 3€k
Now, as n — oo, m — oo, (6-2) gives
"o —C "macr—C
Tim —Z" 3 ’1‘ _ fim 20Oy O
m—oo Zm+ m—oo Zk:3 fk m—oo fm
by the Stolz—Césaro theorem. Similarly,
. Zm+1 Cr +D . Zm+1 Cr +D . Cors 1 Cm
lim —n s, = lim —1 = lim = lim —
m—oo Zk:3 [k m—oo 22”:‘*'3 Cr m—eo {11 m—co £,

Now, the squeeze theorem applied to (6-1) yields

_ocad(F, N (=t+ 1) e yU1)
Neount(f) = ,}Lnolo card(F,) - :111520 - h ’y({O})

Lemma 3.15 now shows that ycoune exists for I” with respect to A, and it is equal to
Ycount = 1/7({0})7 O

REMARK 6.2. The conclusion of Theorem 6.1 holds if in the definition of I, the
sequence (n!), is replaced by any increasing sequence (a,), of natural numbers with
the property that

. Qupyl —ay
lim ——— =oo.
n—oo n

The proof in this more general situation is a straightforward modification of the proof
of Theorem 6.1.

By applying this result to various known examples, we get a list of subsets of Z
of density zero covering most spectral types. Note that the primes already provide an
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example of a set of density zero with a purely absolutely continuous spectrum; the only
spectral type currently missing is purely singular continuous. Such an example cannot
be produced by the method of this section, as a relatively dense subset of Z always has
a trivial Bragg peak at the origin.

EXAMPLE 6.3. Let A = Z and let

r U{n!—n,n!—n+ 1,...,n! +n}.

k=3
Then, I" has
Yeount = 6z and
mt = 629
which are the density autocorrelation and diffraction of Z, respectively.

EXAMPLE 6.4. Let A be the positions of as in the Thue-Morse substitution (see
[2, Section 4.6]) and let

I= U n! +(A N [-n, n)).
k=3

Let yrm and wry be the density autocorrelation and diffraction of the +1 weighted
Thue-Morse comb. Then, by [2, Theorem 10.1], w is a Z-periodic purely singular
continuous measure.

Next, by [2, Remark 10.3],

_1 1
Ydens = 70z + 7YT™-

Since the as in the Thue—Morse comb have density % we have y.,;({0}) = % and hence

— 1 1
Yeount = j(sZ + 2YVT™M

_1 1
Ycount = 562 + 5 WTM-

EXAMPLE 6.5. Let A be the positions of as in the binary Rudin—Shapiro substitution
(see [2, Section 4.7]) and let

r= U n! +(A N [=n, n]).
k=3

Then, similar to the Thue—Morse calculations above,

1 1
Yeount = §6Z + 560

1 1
Ycount = 562 + Q/L

where A is the Lebesgue measure on R (see [2, Remark 10.5]).
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Note here that

Yeount({0}) = % + %
as Lemma 3.8(b) implies.

EXAMPLE 6.6. Let A’ be the positions of as in the Thue—Morse substitution and let
A be a generic element for the Bernoulization process on A” with p = % [2, Section
11.2.2]. Then, A € Z almost surely has diffraction

— _ 1 1 1
Ydens = Eéz + Ew + Z/L

where w is the singular continuous measure from Example 6.4 (see [2, Remark 11.3]).
Theorem 6.1 then produces a set I” of density zero with diffraction spectrum containing
all three components.

7. Embedding point sets in higher dimension

Let us now briefly look at a different situation where sets of density zero appear
naturally. Let A € R be a uniformly discrete point set. Then we can identify A with
A x {0} € R*™ Using the standard van Hove sequence (A,), = ([-n, n]*™),,

dens(A) = 0.

This means that the classical definition of (density) diffraction would always give a
diffraction

Ydens = 0.

However, now consider an (idealized) multiple-slit interference experiment. This can
simply be described by punching tiny holes into a wall at locations A C R and doing
a two-dimensional diffraction experiment. The outcome of the experiment is usually
a mixture of lights and shadows on a wall, which are periodic in one direction and
change in the opposite direction.

We see below that the counting autocorrelation precisely describes this phe-
nomenon. Recall first that given two measures y, v on G and H, respectively, there
exists a unique product measure y X v on G X H with the property that

FO08() d X v(x,y) = ( f ) du(x))( f 50 ()
G H
for all f € Co(G), g € Co(H).

GxH

With this notation, trivially
Ox X 8y = O(xy)-

Let us now show how the counting autocorrelation behaves when we increase the
dimension of the underlying space.
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THEOREM 7.1. Let A C G be any point set and assume that the autocorrelation ycount.a
exists with respect to some van Hove sequence (A,),,.

Let H be any second countable LCAG and (B,,),, any van Hove sequence in H, such
that 0 € B, foralln. Let C, = A, X B, C G X H.

Define

I'=Ax{0}CcGxH.

Then, the counting autocorrelation Yeountr of I' C€ G X H exists with respect to (Cp),
and

Yeount, = Ycount,A X 0p.

In particular,
— —
Ycount,' = Ycount,A X 05,
where 05 is a Haar measure on H.

PROOF. Define

F, =AnNnA,,

E,=I'nNC,.
Then, since 0 € B,

E, =F, x{0}
and hence

O, = 0F, X do.

It follows immediately that

1 S T
VT card(E,) T card(Fy) 0 O
1 —
=[——¢ 0 ) X 0p = X 00,
(card(F,,) Fu * OF, | X 00 = YF, X 00
from which the rest of the proof follows. g

EXAMPLE 7.2. Consider Z x {0} € R?. Then, its counting diffraction is
m = (52 X A.

EXAMPLE 7.3. Let A C R be the Silver mean model set (see [2, Example 4.5]) and let
I’ = A x {0} € R, Then, the diffraction of I is

T
Yeount = O X A,

https://doi.org/10.1017/51446788725000096 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788725000096

244

A. Humeniuk, C. Ramsey and N. Strungaru [43]

where

g = Z Akdk

1 1
ke§Z+ﬁZ

is the pure point measure from [2, Theorem 9.3].
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