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HIGHER-ORDER APPROXIMATION
OF IV ESTIMATORS WITH INVALID

INSTRUMENTS

BYUNGHOON KANG

Lancaster University

This paper analyzes the higher-order approximation of instrumental variable (IV)
estimators in a linear homoskedastic IV regression model when a large set of
instruments with potential invalidity is present. We establish theoretical results
on the higher-order mean-squared error (MSE) approximation of the two-stage
least-squares (2SLS), the limited information maximum likelihood (LIML), the
Fuller (FULL), the bias-adjusted 2SLS, and jackknife version of the LIML and
FULL estimators by allowing for local violations of the instrument exogeneity
conditions. Based on the approximation to the higher-order MSE, we consider the
instrument selection criteria that can be used to choose among the set of available
instruments. We demonstrate the asymptotic optimality of the instrument selection
procedure proposed by Donald and Newey (2001, Econometrica 69, 1161–1191) in
the presence of locally (faster than N−1/2) invalid instruments in the sense that the
dominant term in the MSE with the chosen instrument is asymptotically equivalent
to the infeasible optimum. Furthermore, we propose instrument selection procedures
to choose instruments among the sets of conservative (known) valid instruments and
potentially locally (N−1/2) invalid instruments based on the higher-order MSE of the
IV estimators by considering the bias-variance trade-off.

1. INTRODUCTION

Instrumental variable (IV) estimators are widely used in modern economics, and
some empirical applications involve a large set of potential instruments and debates
about the validity of the instruments which we refer to as an exogeneity condition,
i.e., the instruments are uncorrelated with the error term in the structural equation.
Although researchers have routinely used the Sargan–Hansen J-test, the validity
of instruments is generally uncertain; instruments may have direct effects on the
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outcome variables, and model misspecification can make instruments invalid.1

Furthermore, when there are many potential instruments, the finite-sample per-
formance of the IV estimator can be sensitive to the choice of instruments. To
capture finite-sample properties of an IV estimator, higher-order approximation
and instrument selection criteria have been found useful in the literature (e.g.,
Donald and Newey, 2001; Hahn, Hausman, and Kuersteiner, 2004; Kuersteiner
and Okui, 2010), assuming that the instruments are valid.

This paper develops Nagar (1959)-type higher-order mean-squared error (MSE)
approximations of the k-class estimators (including the two-stage least-squares
[2SLS] estimator, the limited information maximum likelihood [LIML] estimator,
the Fuller [FULL] estimator, and the bias-adjusted version of the 2SLS [B2SLS]
estimator) in a linear homoskedastic IV model with many instruments while allow-
ing for locally invalid instruments. Higher-order MSE approximations of general
k-class estimators under local violations of instrument exogeneity include higher-
order biases from many/invalid instruments as well as higher-order variances, and
such a result is not available in the literature. MSE approximation depends not only
on the number of instruments, but also on the degree of instrument invalidity and
the relative strengths of the valid and invalid instruments. For the 2SLS estimator,
this paper also generalizes the first-order asymptotic results in Hahn and Hausman
(2005), as well as the higher-order expansions in Rothenberg (1984), with invalid
instruments (see Remarks 3.3 and 3.4).

Although the theoretical results in this paper are based on homoskedasticity
assumption and the rate conditions K/N → 0, we also provide higher-order
MSE results for the estimators that are robust to heteroskedasticity and many
instruments, such as the jackknife IV estimator (JIVE) and jackknife versions
of the LIML and FULL (HLIM/HFUL) estimators considered in Hausman et al.
(2012).2 The higher-order results of the jackknife versions of the k-class estimators
are new with or without invalid instruments, and they complement the results in the
literature, such as Chao et al. (2012) and Hausman et al. (2012) (see Remarks 3.7
and 3.8).

The higher-order approximations in this paper hinge on N−γ (γ ≥ 1/2)

local-to-zero specification that allows for locally invalid instruments, and the
local-misspecification approach has recently attracted considerable new attention
(e.g., Conley, Hansen, and Rossi, 2012; Andrews, Gentzkow, and Shapiro, 2017;
Armstrong and Kolesár, 2021; Bonhomme and Weidner, 2022).3 This device

1For questionable IVs with potential invalidity in various empirical applications, see Section 2.1 of Guggenberger
(2012), Kraay (2012), and the references therein. See also Kolesár et al. (2015) for an interesting empirical application
with invalid instruments, even when the instruments are assigned randomly.
2When the number of instruments increases at the same rate as the sample size, i.e., K/N → α,0 < α < 1 (Bekker,
1994), the LIML, FULL, and B2SLS estimators are inconsistent with heteroskedasticity (Bekker and van der Ploeg,
2005; Hausman et al., 2012).
3Several important papers deal with estimation and inference issues involving local violations of the exogeneity
conditions (e.g., Newey, 1985; Hahn and Hausman, 2005; Berkowitz, Caner, and Fang, 2008, 2012; Otsu, 2011;
Guggenberger, 2012; Guggenberger and Kumar, 2012; Kraay, 2012; Caner, 2014, among many others).
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allows for the development of useful approximation theory for IV estimators with
invalid instruments by focusing on a common structural parameter of interest,
and this approach requires a nontrivial extension of Donald and Newey (2001;
hereafter DN) because the dominating higher-order terms depend not only on
the order of the invalid instruments (γ ), but also on the rate of the number of
instruments (K) as well as the estimators considered.

We show that the robustness of the higher-order MSE approximations (and
instrument selection criteria) in DN under the presence of locally invalid instru-
ments with γ > 1

2 as the dominating terms that depend on K are the same as those
of DN. We establish the asymptotic optimality of the instrument selection criteria
in DN even with the presence of a small degree of invalid instruments (γ > 1

2 ) in the
sense that the dominant term in the MSE with the chosen K̂ achieves the infeasible
optimum asymptotically (e.g., Li, 1987; see equation (5.5) for a formal definition).
While the selection criteria for other k-class estimators are asymptotically optimal
for all γ > 1

2 , in contrast, the criterion for the 2SLS estimator is optimal if γ > 1−α

with K = Nα,α < 1
2 , i.e., when the degree of invalidity is sufficiently small (γ is

sufficiently large).
We also consider invalidity-robust (IR) instrument selection criteria based on

a higher-order approximation with γ = 1
2 ; these criteria include higher-order

bias/variance terms due to invalid instruments. In the presence of N−1/2 locally
invalid instruments, instrument selection criteria without additional terms in the
MSE may lead to a misleading balance between bias and efficiency; the inclusion
of invalid instruments that are strong first-stage predictors can reduce the MSE,
although this may slightly increase the bias. Since the MSE in this case contains
terms that cannot be estimated in the absence of valid instruments, the proposed
criteria require a known set of valid instruments. Such criteria can be useful
when researchers have a “conservative” set of valid instruments and explore
all other candidate instruments that are potentially invalid considering the bias–
variance trade-off induced by including them.4 We show that the IR criterion is an
asymptotically unbiased estimator of the dominant terms in the higher-order MSE
approximation (Proposition 5.2).

In this paper, we also investigate the finite-sample properties of IV estimators
(with or without instrument selection) under potentially invalid instruments with
various Monte Carlo experiments. Our main findings are in line with those in
the literature (Hahn et al., 2004; Guggenberger, 2008; Hausman et al., 2012),
who recommend utilizing estimators with finite-sample moments instead of “no-
moment” estimators. The interdecile range and root MSE of the LIML/HLIM
and JIVE estimators are considerably larger than those of the FULL/HFUL and

4Some recent papers in the generalized method of moments (GMM) setup also assume that there is a subset of
moment conditions that are known to be valid. When the correctly specified moment conditions identify a parameter
of interest, Liao (2013) and Cheng and Liao (2015) consider consistent moment selection methods based on shrinkage
estimation. In DiTraglia (2016), valid moment conditions are used to provide an asymptotically unbiased estimator
of the first-order asymptotic MSE, which is similar to our paper.
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(overidentified) 2SLS estimators with many instruments regardless of instrument
invalidity γ , especially in the weakly identified cases.5

Although it is highlighted in the literature that the Fuller and HFUL estimators
perform well under many weak instrument setups, our simulation evidence further
suggests that these estimators combined with instrument selection procedures can
perform well even when the instruments are potentially invalid. We find that the
FULL/HFUL estimators combined with the DN criterion can lead to a reduction in
the MSE compared with that obtained by the estimators when using all instrument
sets or only valid instruments even when instruments are slightly invalid and the
correct specification case. This is expected from the theory in Proposition 5.1,
which shows that the DN criteria are asymptotically optimal when we suspect a
small degree of invalid instruments (γ > 1

2 ). The FULL/HFUL estimators based
on IR criteria have similar or slightly larger MSEs than those of the DN criterion
across different values of γ . 2SLS also performs well, and the median bias of 2SLS
can be lower than those of the other estimators with invalid instruments because
the misspecification bias and the many-instrument bias can have opposite signs so
that they offset each other, as expected from the theory (Remark 3.4).

It may be true that the MSE approximations derived in this paper may not
provide good practical guidance for “no-moment” estimators, especially in the
weak instrument scenarios (Hahn et al., 2004). Although this paper makes no
theoretical contribution with regard to the “no-moments problem,” in some simula-
tion evidence, we find that instrument selection and model averaging can mitigate
the moment problem for “no-moment” estimators, such as LIML, in terms of a
significant reduction in the trimmed MSE and median absolute deviation (MAD).

The literature on higher-order approximations of k-class estimators with valid
instruments has a long history, such as Nagar (1959), Anderson and Sawa (1973),
Morimune (1983), and Rothenberg (1984). Phillips (1980) provides the exact dis-
tribution theory for the IV estimators in the general simultaneous equations models
and a higher-order expansion of that distribution using the Laplace approximation,
which can be considerably more accurate than the Edgeworth expansions. The
exact distribution theory remains valid even when no moments are finite and also
provides more information on the distribution of IVs than the MSEs (see Phillips,
1983, for an excellent review of the exact small sample theory of the IV estimators).
Newey and Smith (2004) derive the higher-order asymptotic properties of the
GMM and the generalized empirical likelihood (EL) estimators under correct
specifications. Schennach (2007) proposes an exponentially tilted EL estimator
that is robust under globally misspecified models while achieving the same higher-
order properties of the EL estimator under correct specifications.

5It is well known that the LIML estimator has no finite moments (Mariano and Sawa, 1972) and that the 2SLS
estimator has moments up to the degree of overidentification (Kinal, 1980; Phillips, 1980). The Fuller (1977)
modifications of the LIML and HFUL estimators have finite-sample moments (Hausman et al., 2012). For models
with general moment conditions, see also Hausman et al. (2011), who provide some modifications for the continuous
updating estimator (CUE) to solve the moment problems associated with the CUE.
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Based on higher-order approximations, there are many papers that study the
instrument (moment) and/or weight selections in the IV and GMM setups (e.g.,
DN; Donald, Imbens, and Newey, 2009; Canay, 2010; Kuersteiner and Okui,
2010; Okui, 2011; Carrasco, 2012; Kuersteiner, 2012; Lee and Zhou, 2015,
among others). Many papers have also developed moment selection procedures
to select valid moments from the sets of valid and invalid moment conditions (e.g.,
Andrews, 1999; Andrews and Lu, 2001; Hall and Peixe, 2003; Hong, Preston, and
Shum, 2003; Liao, 2013). DiTraglia (2016) develops a moment selection criterion
based on the first-order asymptotic MSE with possible locally invalid moment
conditions in GMM setups.

Several important papers have investigated the asymptotic properties of IV and
GMM estimators in misspecified moment condition models, such as Maasoumi
and Phillips (1982) and Hall and Inoue (2003). Kitamura, Otsu, and Evdokimov
(2013) propose an estimator that achieves optimal robust minimax properties under
local model perturbations. For locally misspecified moment condition models,
Andrews et al. (2017) propose a measure of the sensitivity of parameter estimates
for minimum distance estimators, and Armstrong and Kolesár (2021) develop a
method for constructing valid confidence intervals that are robust to misspeci-
fication. Andrews (2019) characterizes the estimands of the linear GMM under
global misspecification. In an IV model with heterogeneous treatment effects, the
moment condition is misspecified, and a 2SLS estimand can be characterized as a
weighted average of the local average treatment effects (LATEs) (see Imbens and
Angrist, 1994). Under treatment effect heterogeneity, Kolesár (2013) shows that
LIML estimands may be outside of the convex hulls of the individual treatment
effects and Evdokimov and Kolesár (2019) describe the estimands of the 2SLS and
JIVE estimators with many instruments/covariates and provide valid asymptotic
variance formulas.

Asymptotic optimality results (Proposition 5.1) require prior knowledge regard-
ing the order of the instrument strengths, similar to DN; however, many recent
papers, such as Belloni et al. (2012), Cheng and Liao (2015), and Caner, Han,
and Lee (2018), have developed estimation and moment selection techniques (e.g.,
Lasso) in high-dimensional setups without requiring an order of the instruments.
Kang et al. (2016) propose Lasso-type methods to identify and select valid
instruments, and these approaches do not require set of instruments that are known
to be valid. Windmeijer et al. (2018) determine that Lasso procedures may not
consistently select the invalid instruments if they are relatively strong, and the
authors propose a median-type estimator that is consistent when more than 50%
of the instruments are valid.

The outline of this paper is as follows. Section 2 introduces the basic model setup
and assumptions. Section 3 provides the theoretical results on the higher-order
MSE approximations of IV estimators with γ = 1

2 . Section 4 establishes the MSE
approximations under different local sequences of invalid instruments (γ > 1

2 ).
Section 5 provides the asymptotic optimality of instrument selection according to
the DN criteria and proposes IR instrument selection criteria. Section 6 includes
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the simulation results obtained under various Monte Carlo settings, and Section 7
concludes the paper. All proofs, additional simulations, and auxiliary results are
provided in the Supplementary Material.

2. THE MODEL AND ESTIMATORS

We consider a linear IV model allowing for potentially invalid instruments:

yi = W ′
iδ0 + εi = Y ′

iθ0 + x′
1iβ0 + εi, (2.1)

Wi = f (xi)+ui =
(

E[Yi|xi]
x1i

)
+

(
ξi

0

)
, (2.2)

εi = g(xi)

Nγ
+ vi, E[vi|xi] = 0, for i = 1, . . . ,N, (2.3)

where yi is a scalar outcome variable and Wi is a p×1 vector that includes endoge-
nous variables Yi and d×1 vector of exogenous variables x1i. δ0 = (θ ′

0,β
′
0)

′ ∈R
p is a

parameter of interest, and x1i is a subset of the exogenous variables xi. The number
of regressors (p) and the number of exogenous regressors (d) are assumed to be
fixed, and they do not depend on the sample size N. Note that all statements and
conditions involving conditional expectations (conditional on X = [x1, . . . ,xN]′)
hold with probability approaching one (w.p.a.1.). We suppress the subscript N
hereafter and omit the “w.p.a.1.” to simplify the notation. Although our results
are based on the homoskedastic assumption of error terms (vi,ξ

′
i ), the presence of

invalid instruments leads to heteroskedastic errors in the estimation equation, i.e.,
E[ε2

i |xi] depends on xi for any finite N.
Let ψK

i ≡ ψK(xi) = (ψ1K(xi), . . . ,ψKK(xi))
′ be a K × 1(K ≥ p) vector of IVs

(or basis functions), and we assume that ψK
i contains the included exogenous

variables x1i. Here, K indicates both the number of instruments and the index of
the instrument sets. Different groups of instruments are allowed for different K,
and the potential candidate instrument set does not necessarily have to be a nested
set. That is, we allow different approximating functions in the series (sieves) terms
or qualitatively different instruments to be used for different Ks. We further note
that the growth rate of K is restricted (K/N → 0) in this paper.

Although the theoretical results regarding the asymptotic MSE below do not
need such modifications, we restrict the rate of the total number of candidate sets
for the asymptotic optimality of the instrument selection criteria, similar to DN.
In particular, we do not allow for the consideration of all possible combinations of
instrument sets. Having prior knowledge of the order of instruments may reduce
the number of candidate sets and greatly reduce the computational cost in practice.
In general, researchers may not have prior beliefs about which instrument groups
have large impacts on the reduced-form equation. However, in certain setups, it
may be natural to have this ordering, e.g., including lower orders first for a power
series approximation or including main instruments first among vectors of main
instruments and various interaction terms.
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We allow for possibly invalid instruments in (2.3) and consider a local-to-zero
specification by defining

E[εi|xi] = gN(xi) = g(xi)

Nγ
, for γ ≥ 1/2. (2.4)

Under this setup, any potential instruments ψ(xi) are asymptotically valid as
N → ∞, but E[ψ(xi)εi] = 0 does not necessarily hold in finite samples. Note that
the direct effects of the instruments g(xi) can be large numbers for any finite N,
and we do not restrict the functional form of g(xi).

Although our framework deals with mixed drifting sequences, it is important
to deal with the cases where γ = 1

2 and γ > 1
2 separately in a Nagar (1959)-

type approximation to distinguish Op(1), the leading higher-order terms, and
the remaining terms that are of smaller orders. With the knife-edge rate γ = 1

2
(Section 3), the stochastic order of the biases of the IV estimators from an invalid
instrument is equal to the standard deviation. This rate provides the right balance
for a useful theory to understand the finite-sample behaviors of IV estimators
with possibly invalid instruments. When γ > 1

2 (Section 4), a different analysis
is required because the dominating term in the higher-order MSE approximation
changes.

Remark 2.1. We may consider γ = 0 (global misspecification or globally
invalid instruments) or 0 < γ < 1

2 , where the bias from invalid instruments
dominates. We can still provide MSE approximations centered with a pseudo-
true value which is the probability limit of an IV estimator (or a sequence of
pseudo-true values depending on N), e.g., instrument-specific LATE parameters
for 2SLS in the presence of a heterogeneous treatment effect. However, different
choices of instruments and estimators can lead to different pseudo-true values
regardless of misspecification; even under a correct specification (without invalid
instruments), IV estimators can have different probability limits in the presence
of many instruments. Under (global or local) misspecification, the problem can
be more severe, and pseudo-true values are generally difficult to characterize in
misspecified models, which makes MSE comparisons difficult across different
estimators. Here, we focus on the common parameter of interest δ0 and compare
the MSEs among different instruments K as well as different IV estimators with
γ ≥ 1

2 . With globally invalid instruments, Nevo and Rosen (2012), Kolesár et al.
(2015), and Kang et al. (2016) provide (set or point) identification results with
respect to δ0 in an IV framework.

Now, we consider several k-class estimators that are widely used in linear IV
models. We first consider the 2SLS estimator:

δ̂2SLS(K) = (W ′PKW)−1(W ′PKy), (2.5)

where y = (y1, . . . ,yN)′,W = [Y,X1],Y = [Y1, . . . ,YN]′,X1 = [x11, . . . ,x1N]′, and
PK = 
K(
K′


K)−
K′
is the projection matrix for the instrument vector


K = [ψK
1 , . . . ,ψK

N ]′.
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Next, we consider the LIML estimator:

δ̂LIML(K) = (W ′PKW − �̂(K)W ′W)−1(W ′PKy− �̂(K)W ′y), (2.6)

where

�̂(K) = min
δ

(y−Wδ)′PK(y−Wδ)

(y−Wδ)′(y−Wδ)
.

LIML is known to be median unbiased to the second-order and is also known
not to have finite-sample moments. We next consider the Fuller (1977) estimator
(FULL), which solves the nonexistence of moments in LIML:

δ̂FULL(K) = (W ′PKW − �̌(K)W ′W)−1(W ′PKy− �̌(K)W ′y), (2.7)

where

�̌(K) = �̂(K)− C
N−K (1− �̂(K))

1− C
N−K (1− �̂(K))

,

for some constant C. Popular choices are C = 1 or C = 4 due to their higher-order
unbiasedness or the minimum MSE property. Next, we consider the bias-adjusted
2SLS estimator (B2SLS) from DN as a modification of the Nagar (1959) estimator
with �̄(K) = (K −d −2)/N:

δ̂B2SLS(K) = (W ′PKW − �̄(K)W ′W)−1(W ′PKy− �̄(K)W ′y). (2.8)

Finally, we consider the following jackknife-version k-class estimators of the form:

δ̂(K) = (
W ′PKW −

n∑
i=1

PK
ii WiW

′
i − λ̄(K)W ′W

)−1(
W ′PKy−

n∑
i=1

PK
ii Wiyi − λ̄(K)W ′y

)
,

(2.9)

where PK
ii denotes the diagonal elements of PK . λ̄(K) = 0 corresponds to the JIVE2

estimator with δ̂JIVE2(K) considered in Angrist, Imbens, and Krueger (1999),
Newey and Windmeijer (2009), and Chao et al. (2012), among others. When
λ̄(K) = λ̂(K),

λ̂(K) = min
δ

(y−Wδ)′(PK −DK)(y−Wδ)

(y−Wδ)′(y−Wδ)
,

where DK = diag(PK
ii ) is a diagonal matrix, δ̂(K) = δ̂HLIM(K) is a jackknife version

of the LIML estimator that is robust to heteroskedasticity (HLIM; considered in

Hausman et al., 2012).6 When λ̄(K) = λ̂(K)−C/N(1−λ̂(K))

1−C/N(1−λ̂(K))
, δ̂(K) = δ̂HFUL(K) is a

heteroskedasticity robust version of the Fuller (1977) (HFUL) estimator, which
is also considered in Hausman et al. (2012). Hausman et al. (2012) recommend
C = 1 for the HFUL estimator.

6HLIM can be equivalently defined with λ̂(K) as the smallest eigenvalue of
(
W

′
W

)−1(
W

′
PW −∑n

i=1 PK
ii WiW

′
i

)
with

W = [y,W].
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2.1. Assumptions and Higher-Order MSEs

We derive the Nagar (1959)-type higher-order asymptotic MSEs for the IV
estimators with locally invalid instrument setups. As in Nagar (1959) and
Rothenberg (1984), a higher-order MSE can be calculated from the first few
terms of the stochastic expansion of an estimator. Even when some IV estimators
do not possess finite moments, the moments of an approximating distribution can
be defined, and the calculated moments can be interpreted as “pseudomoments”
(see Pfanzagl and Wefelmeyer, 1978; Sargan, 1982; Phillips, 2003, for detailed
discussions).

We consider conditional (with respect to the exogenous variables X =
[x1, . . . ,xN]′) MSEs for the IV estimators δ̂(K) and find a decomposition with
the following form:

N (̂δ(K)− δ0)(̂δ(K)− δ0)
′ = Q̂(K)+ r̂(K),

E[Q̂(K)|X] = +G+L(K)+T(K),

[ r̂(K)+T(K)]/tr(G+L(K)) = op(1), K → ∞,N → ∞, (2.10)

where the main terms ,G, and L(K) in (2.10) will be defined later in Sections 3
and 4 as they have different forms for each IV estimator and γ .

The dominant term in (2.10) is , which is Op(1), and it does not depend on
K in our large-K approximation. Furthermore, note that different γ values lead
to changes in the order of the stochastic terms, and thus this requires a separate
analysis. For example, when γ = 1

2 ,  includes the first-order asymptotic variance
and the square of the asymptotic bias from the locally invalid instrument. However,
when γ > 1

2 , the bias from invalid instruments becomes the higher-order term, so 

only includes the first-order variance term. It is important to note that  is omitted
in the approximate MSE criteria (Section 5) to be used for selecting K, as it is the
same for all estimators and does not depend on K.

G and L(K) are the next leading terms, which include the higher-order bias and
variance due to the presence of many invalid instruments. G includes terms that
do not depend on K, and the instrument selection criteria are based only on L(K),
which is the leading higher-order term that depends on K in the conditional MSE
approximation (2.10). L(K) contain the important higher-order terms for all the
subsequent analyses in the following sections. r̂(K) and T(K) are the remainder
terms that converge to 0 faster than G+L(K).

We impose the following assumptions, similar to DN. Let fi = f (xi) and
gi = g(xi).

Assumption 2.1. (a) Let {(vi,Yi,xi) : i = 1, . . . ,N;N ≥ 1} be i.i.d. random
vectors satisfying the models (2.1)–(2.3). (b) E[v2

i |xi] =σ 2
v > 0, and E[‖ξi‖4|xi],

E[|vi|4|xi] are finite.

Assumption 2.2. (a) H̄ = E[ fi f ′
i ] exists and is nonsingular, and H̄g = E[ figi]

exists. (b) There exist πK,π
g
K such that E[‖ f (x)−πKψK(x)‖2] → 0 and E[|g(x)−

π
g
KψK(x)|2] → 0 as K → ∞.
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Assumption 2.3. (a) E[(vi,ξ
′
i )

′(vi,ξ
′
i )|xi] is constant. (b) 
K ′


K is nonsingular

w.p.a.1. (c) maxi≤NPK
ii

p→ 0. (d) fi and gi are bounded.

Assumption 2.1(b) imposes homoskedasticity and boundedness of the fourth
conditional moments of the error terms. Assumption 2.2(a) is imposed for a
usual identification assumption and the existence of first-order bias from invalid
instruments. Assumption 2.2(b) requires the mean-squared approximation error
of the unknown f (x) and g(x) by the linear combination of instruments ψK(x)
to go to 0 as the number of instruments increases. Assumption 2.3 imposes
homoskedasticity and restricts the growth rate of K. For example, K = O(N),
as in Bekker (1994), is not allowed under Assumption 2.3(c) (see van Hasselt,
2010; Anatolyev and Yaskov, 2017, and the references therein). For the data-
generating process (DGP), we consider in the Monte Carlo simulation (Section 6,
equation (6.11)), we can easily verify Assumptions 2.2 and 2.3. For example,
Assumption 2.2(b) is automatically satisfied with linear specifications of f (·)
and g(·), and Assumption 2.3(b) is satisfied using the standard arguments in the
nonparametric series regression literature (e.g., Newey, 1997).

3. HIGHER-ORDER MSE RESULTS WITH γ = 1
2

This section provides higher-order MSE approximations of the k-class estimators,
including 2SLS, LIML, FULL, and B2SLS, by allowing locally invalid instru-
ments when γ = 1

2 . Some of the results below extend the results presented in
DN, and the results on the higher-order MSEs of the jackknife versions of k-class
estimators (JIVE2, HLIM, and HFUL) in the homoskedastic linear IV setup are
new to the literature with (or without) locally invalid instruments.

Our first result gives the MSE approximation for the 2SLS estimator.
Proposition 3.1 is a generalization of the result in DN that allows possibly (locally)
invalid instruments. Let H = f ′f /N,Hg = f ′g/N, f = [ f1, . . . ,fN]′,g = [g1, . . . ,gN]′,
σuv = E[uivi|xi], and σ 2

v = E[v2
i |xi].

Proposition 3.1. If Assumptions 2.1–2.3 are satisfied with γ = 1
2 , σuv 
= 0,

Hg 
= 0, and K2/N → 0, then the approximate MSE for the 2SLS estimator
satisfies the decomposition (2.10) with  = σ 2

v H−1 + H−1HgH′
gH−1,G = 0, and

the following terms:

L(K) = H−1[ K

N1/2
(Hgσ

′
uv +σuvH′

g)+σuvσ
′
uv

K2

N
+σ 2

v

f ′(I −PK)f

N
+Lg(K)

]
H−1,

(3.1)

where

Lg(K) = HgH′
gH−1 f ′(I −PK)f

N
+ f ′(I −PK)f

N
H−1HgH′

g

− f ′(I −PK)g

N
H′

g −Hg
g′(I −PK)f

N
.

https://doi.org/10.1017/S0266466622000597 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000597


762 BYUNGHOON KANG

Moreover, ignoring the terms of order Op(K2/N) = op(K/
√

N), we have

L(K) = H−1
[ K

N1/2
(Hgσ

′
uv +σuvH′

g)+σ 2
v

f ′(I −PK)f

N
+Lg(K)

]
H−1. (3.2)

With invalid instruments (Hg 
= 0), it is important to point out that the
dominating term of L(K) in Proposition 3.1 is proportional to K/

√
N, and it comes

from the cross-product of the bias from many instruments and invalid instruments.
Differently from DN, this higher-order bias term dominates the squared bias from
many instruments, which is proportional to K2/N since K2/N = o(K/

√
N) as

K → ∞.

Remark 3.1. The MSE approximation results in Proposition 3.1 include higher-
order terms from many instruments as well as additional terms due to invalid
instruments. When Hg = 0 w.p.a.1., it can be shown that Proposition 3.1 reduces
to Proposition 1 in DN:

L(K) = H−1[σuvσ
′
uv

K2

N
+σ 2

v

f ′(I −PK)f

N
]H−1.

Note that the condition Hg
p→ 0 is closely related to the identification assumption

in Kolesár et al. (2015, Assumps. 4 and 5) for the consistency of k-class estimators

under many (global) invalid instrument setups. Interestingly, Hg
p→ 0 not only

holds when g(x) = 0 (i.e., exclusion restriction holds), but also holds when the
direct effects of the instruments on the outcome variable are orthogonal to their
effects on the endogenous variable with a random effect structure, as in Kolesár
et al. (2015). Consider a linear model f = 
π,g = 
τ , and suppose that we treat
the coefficients π,τ as random vectors (conditional on xi). As in Kolesár et al.
(2015), if we orthogonalize the coefficient (τ̃,π̃) = (α
 ′
)1/2(τ,π),α = K/N and
assume that the pairs (τ̃k,π̃k) for k = 1, . . . ,K are i.i.d. random vectors with mean

(μτ,μπ) and variance–covariance �, then Hg = π ′
 ′
τ/N = ∑K
k=1 π̃kτ̃k/K

p→
μτμπ + �12, and the identification condition Hg

p→ 0 holds when μτ = 0 and
�12 = 0 (covariance of π̃k and τ̃k). Kolesár et al. (2015) discuss an empirical

example such as that in Chetty et al. (2011), where Hg
p→ 0 may be a reasonable

assumption.
The leading higher-order terms L(K) can be reduced to those of DN by allowing

g(x) 
= 0, and this observation suggests that the instrument selection criteria
in DN can be shown to be asymptotically optimal even with possibly invalid
instruments when γ = 1

2 , i.e., the dominant terms in the MSE with the selected K̂
are asymptotically equivalent to the infeasible optimum in the presence of locally

invalid instruments when Hg
p→ 0. See Proposition 5.1 for formal asymptotic

optimality results and similar implications when γ > 1
2 without imposing Hg

p→ 0.

Remark 3.2. The first three terms of L(K) in (3.1) and H−1HgH′
gH−1 in 

correspond to the square and cross-product of the two bias sources that we
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consider: the bias from many instruments and that from invalid instruments. The
remaining terms in L(K) represent higher-order variance terms, and the term
f ′(I − PK)f /N decreases as K increases. Note that locally invalid instrument
specifications change not only the order of the biases from many instruments, but

also the weights of the higher-order variances f ′(I−PK)f /N. If PKg/N
p→ 0 (which

holds when the chosen instruments K are independent of the invalid instruments
that have direct effects), then the last two terms in Lg(K) reduce to −2HgH′

g.
Therefore, the exclusion of invalid instruments can help to reduce the MSE.
However, including (locally) invalid instruments that are strong predictors of the
first-stage can also lower the MSE. Proposition 3.1 provides a bias and variance
trade-off in the presence of invalid instruments.

Remark 3.3. In Section S2.1 of the Supplementary Material, we provide an
MSE approximation of 2SLS under K = O(

√
N), which generalizes the first-order

asymptotic MSE results of Hahn and Hausman (2005).7 For a linear specification
of f = 
π,g = 
τ with a scalar endogenous variable Yi and no included
exogenous variables, the dominating bias term in the MSE approximation becomes

H−1HgH′
gH−1 +H−1

[
K√
N

(Hgσ
′
uv +σuvH′

g)+σuvσ
′
uv

K2

N

]
H−1 =

(
Hg +ασuv

H

)2

,

where Hg = π ′
 ′
τ/N,α = K/
√

N, and this corresponds to Theorem 3 of Hahn
and Hausman (2005). Our results imply that the normal distribution of the error
terms and linearity assumption regarding f and g are not essential for the results in
Hahn and Hausman (2005).

Remark 3.4. In Section S2.2 of the Supplementary Material, we also provide
bias and variance approximations for 2SLS with invalid instruments by using
a similar method to the approaches in Rothenberg (1984). Consider a model
y = Wδ0 +
τ/μ+ v,W = 
π + u, where μ2 = π ′
 ′
π/σ 2

u is a concentration
parameter and δ0 is a scalar. Under conventional asymptotics (μ is large and K is
small), the bias of the 2SLS estimator can be approximated by

E[̂δ2SLS(K)− δ0] ≈ σuv

σ 2
u

(
K −2

μ2
)+ σv

σu

μ̃

μ3
,

where μ̃ = π ′
 ′
τ/(σuσv). The 2SLS bias depends on the strength (μ2) and the
number of instruments (K), as well as the invalidity of the instruments (μ̃). When
K/μ2  μ̃/μ3, the first term dominates, and vice versa. Although our theory does
not rely on weak instrument asymptotics, the above approximation can be useful
for understanding the relative magnitude of bias due to many instruments and
invalid instruments. For 2SLS, the misspecification bias and the many-instrument

7A version of a similar result can also be found in Lee and Okui (2012), where the authors derive the first-order
asymptotic bias and variance of 2SLS under K = O(N) with locally invalid IVs in the proof of Theorem 4.
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bias can have opposite signs and cancel out each other so that 2SLS can have a
smaller finite-sample bias than those of other IV estimators.8

Next, we give the MSE approximations for the LIML and FULL estimators.
Unlike that of 2SLS, the order of the dominating terms that depend on K for the
LIML and FULL estimators remain the same (Op(K/N)), as in DN. Note that
the LIML and FULL estimators have the same approximate MSEs for the order
we consider here.

Let ηi = ui − viσuv/σ
2
v , �u = E[uiu′

i] and �η = E[ηiη
′
i] = �u −σuvσ

′
uv/σ

2
v .

Proposition 3.2. If Assumptions 2.1–2.3 are satisfied with γ = 1
2 ,

E[v2
i ηi|xi] = 0, �η 
= 0,Hg 
= 0, K/N → 0, and E[‖ξi‖5|xi],E[|vi|5|xi] are finite,

then the approximate MSEs for the LIML and FULL estimators satisfy the
decomposition (2.10) with  = σ 2

v H−1 + H−1HgH′
gH−1, G = GLIML defined in

the Supplementary Material, and the following terms:

L(K) = H−1[σ 2
v �η

K

N
+σ 2

v

f ′(I −PK)f

N
+Lg(K)

]
H−1, (3.3)

where Lg(K) is as defined in Proposition 3.1.

Remark 3.5. It is important to note that G = GLIML = Op(1/
√

N) does not
depend on K. Although G can be estimated with sample analogs, it is not used
for the instrument selection criterion. With possibly invalid instruments, the
dominating term in the MSE approximation (which depends on K) is proportional
to K/N, which is the same as that in DN. For LIML or FULL, L(K) does not
include a higher-order bias from the presence of many instruments, and the terms
in L(K) show higher-order variance trade-offs with many invalid instruments. The
third-moment condition E[v2

i ηi|xi] = 0 holds when (vi,η
′
i)

′ is normally distributed,
and this is imposed for a simplification similar to DN. Without this condition, L(K)

have additional terms that can be estimated, and they are provided in the proof of
Proposition 3.2.

Next, we provide a result for the B2SLS estimator.

Proposition 3.3. If Assumptions 2.1–2.3 are satisfied with γ = 1
2 , σuv 
= 0,

Hg 
= 0,E[v2
i ui|xi] = 0, and K/N → 0, then the approximate MSE for the B2SLS

estimator satisfies the decomposition (2.10) with  = σ 2
v H−1 + H−1HgH′

gH−1,
G = GB2SLS defined in the Supplementary Material, and the following terms:

L(K) = H−1[(σ 2
v �η +2σuvσ

′
uv)

K

N
+σ 2

v

f ′(I −PK)f

N
+Lg(K)

]
H−1, (3.4)

where Lg(K) is as defined in Proposition 3.1.

8We thank the referee for pointing this out.
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Remark 3.6. B2SLS is shown to be less efficient than LIML in the absence
of invalid instruments (Hg = 0). Although L(K) in the MSE approximation for
B2SLS is larger than those of LIML/FULL, it seems difficult to show the higher-
order efficiency of the LIML and FULL estimators with locally invalid instruments
because of the different terms, i.e., GLIML in Proposition 3.2 and GB2SLS in
Proposition 3.3.

We next consider the JIVE2, HLIM, and HFUL estimators. Under the rate
condition in this paper (K/N → 0), all estimators considered are consistent. How-
ever, JIVE2, HLIM, and HFUL are consistent under many-instruments sequences
(K/N → α > 0) and heteroskedasticity, whereas 2SLS, LIML, and B2SLS are
not consistent. Although our results are based on homoskedastic error terms,
the higher-order theory of the jackknife versions of the k-class estimators com-
plements the literature, and some of the theoretical results are consistent with the
(first-order) asymptotic results in Chao et al. (2012) and Hausman et al. (2012).

Furthermore, the higher-order MSEs of the JIVE2 and HLIM/HFUL estimators
do not contain the terms derived from the third moments, unlike those of B2SLS
and LIML/FULL. For example, Chao et al. (2012) and Hausman et al. (2012,
p. 223) also show that the first-order asymptotic variance of JIVE2/HLIM does
not depend on the third and fourth moment terms of the error disturbances under
homoskedasticity.

We next provide a result for JIVE2 estimator. Let DK = diag(PK
ii ) be a diagonal

matrix.

Proposition 3.4. If Assumptions 2.1–2.3 are satisfied with γ = 1
2 , σuv 
= 0,

Hg 
= 0, and K/N → 0, then the approximate MSE for the JIVE2 estimator satisfies
the decomposition (2.10) with  = σ 2

v H−1 +H−1HgH′
gH−1, G = GJIVE2 defined in

the Supplementary Material, and the following terms:

L(K) = H−1
[
(σ 2

v �η +2σuvσ
′
uv)

K

N
+σ 2

v

f ′(I −PK)f

N
+Lg,D(K)

]
H−1, (3.5)

where

Lg,D(K) = HgH′
gH−1 f ′(I − (PK −DK))f

N
+ f ′(I − (PK −DK))f

N
H−1HgH′

g

− f ′(I − (PK −DK))g

N
H′

g −Hg
g′(I − (PK −DK))f

N
.

Remark 3.7. When Hg = 0 w.p.a.1., L(K) in Proposition 3.4 reduces to that
of B2SLS in Proposition 3.3 without assuming zero third-moment conditions.
Without invalid instruments, Hahn et al. (2004) provide the same higher-order
MSE results for the jackknife 2SLS estimator with a scalar endogenous variable, no
included exogenous variables, jointly normal residuals (vi,u′

i)
′, and an additional

assumption maxi PK
ii = Op(N−1), which is slightly stronger than that which we

impose here (Assumption 2.3(c)). Donald and Newey (1999) derive similar results
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for the JIVE1 estimator considered in Phillips and Hale (1977) and Angrist et al.
(1999). Higher-order MSE derivations for the JIVE2 estimator have not been
available in the literature, and we also contribute to the literature by extending the
existing results to a setup with locally invalid instruments. However, the presence
of invalid instruments complicates higher-order MSE comparisons among B2SLS,
JIVE2, and LIML.

Finally, we give results for the HLIM and HFUL estimators.

Proposition 3.5. If Assumptions 2.1–2.3 are satisfied with γ = 1
2 , �η 
= 0,

Hg 
= 0, and K/N → 0, then the approximate MSEs for the HLIM and HFUL
estimators satisfy the decomposition (2.10) with  = σ 2

v H−1 + H−1HgH′
gH−1,

G = GHLIM defined in the Supplementary Material, and the following terms:

L(K) = H−1

[
σ 2

v �η

K

N
+σ 2

v

f ′(I −PK)f

N
+Lg,D(K)

]
H−1, (3.6)

where Lg,D(K) is as defined in Proposition 3.4.

Remark 3.8. When Hg = 0, dominant terms of the MSE in Proposition 3.5
(without imposing symmetry-type conditions on the error terms) are identical
to those of LIML/FULL in Proposition 3.2. Hausman et al. (2012, p. 224)
show that the (first-order) asymptotic variances of HLIM and LIML are the
same in the presence of many weak instruments, K/N → 0, maxi PK

ii = op(1),
and homoskedasticity. Although GLIML = GHLIM (see equation (S1.1) in the
Supplementary Material), however, L(K) is different in the presence of invalid
instruments, and neither of the estimators dominates each other in terms of their
higher-order MSEs.

Proposition 3.5 also provides the higher-order efficiency of HLIM/HFUL rela-
tive to that of JIVE2 in the absence of invalid instruments, as the dominating terms
L(K) in the higher-order MSE are smaller than those for JIVE2 in Proposition 3.4.
This complements the results in Chao et al. (2012) and Hausman et al. (2012),
where the authors show that HLIM is asymptotically more efficient than JIVE2
under many-weak instruments and homoskedasticity.

4. HIGHER-ORDER MSE RESULTS WITH γ > 1
2

In this section, we consider faster rates of local-to-zero specification (i.e., a
smaller degree of invalidity) than the N−1/2 rates considered in Section 3. All
estimators are consistent, and there are no first-order asymptotic biases due to
invalid instruments under the conditions imposed here, but higher-order theory
is still useful for capturing changes in the orders of the bias and variance that the
first-order asymptotic theory does not capture.

Although we expect the stochastic orders of the higher-order bias and variance
from invalid instruments to become smaller than the terms due to the many
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instruments, the results generally depend not only on the drifting sequences, but
also on the specific rate of K. The key insight from the main results in this section
(Propositions 4.1–4.5) is that the changes in the degree of invalid instruments (γ )
affect the finite-sample behaviors of IV estimators differently.

The following proposition provides a higher-order MSE approximation result
for the 2SLS estimator with γ > 1

2 .

Proposition 4.1. Suppose that Assumptions 2.1–2.3 are satisfied with γ > 1
2 . If

σuv 
= 0, Hg 
= 0, and K2/N → 0, then the approximate MSE for the 2SLS estimator
satisfies the decomposition (2.10) with  = σ 2

v H−1,G = 1
N2γ−1 H−1HgH′

gH−1, and

L(K) = H−1
[ K

Nγ
(Hgσ

′
uv +σuvH′

g)+σuvσ
′
uv

K2

N
+σ 2

v

f ′(I −PK)f

N

]
H−1. (4.1)

If we further assume that K
N1−γ → ∞, then (2.10) holds with  = σ 2

v H−1,G = 0,
and

L(K) = H−1[σuvσ
′
uv

K2

N
+σ 2

v

f ′(I −PK)f

N

]
H−1. (4.2)

Remark 4.1. In (4.1), G and L(K) contain higher-order bias terms due to the
presence of many invalid instruments, as well as higher-order variance terms
because of the many instruments. L(K) includes the (squared) bias from many
instruments (proportional to K2/N) and the interactions from many invalid instru-
ments (proportional to K/Nγ ). Note that the order of the interaction biases
increases with K and decreases with γ and cannot be ignored in general. When
γ = 1

2 , this interaction bias dominates the bias from many instruments, as in
Proposition 3.1. However, if we restrict the rate of K, the second result of
Proposition 4.1 shows that the higher-order bias from many instruments dominates
the bias terms due to the invalid instruments, and L(K) in (4.2) has the same form
in DN. The assumption of the second result holds when γ > 1−α (K = O(Nα)),
and this always holds for γ ≥ 1.

In (4.2), the dominant terms L(K) remain the same as those in DN, which shows
that the MSE approximation in DN for the 2SLS estimator is robust to a small
degree of invalid instruments. Nevertheless of these intuitive results, we quantify
the robustness of the MSE approximation of the 2SLS estimator in DN, and this is
nontrivial as the dominating terms in L(K) depend not only on the order of invalid
instruments γ , but also on the rate of K. Moreover, we establish the asymptotic
optimality of the instrument selection criterion for 2SLS, which does not require
the estimation of Hg and g(·) (see Proposition 5.1).

The next two results are for the LIML/FULL and B2SLS estimators.

Proposition 4.2. Suppose that Assumptions 2.1–2.3 are satisfied with γ > 1
2 .

Assume that �η 
= 0,Hg 
= 0,E[v2
i ηi|xi] = 0, K/N → 0, and E[‖ξi‖5|xi],E[|vi|5|xi]

are finite. Then, the approximate MSEs for the LIML and FULL estimators satisfy
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the decomposition (2.10) with  = σ 2
v H−1,G = 1

N2γ−1 H−1HgH′
gH−1, and the

following terms:

L(K) = H−1[σ 2
v �η

K

N
+σ 2

v

f ′(I −PK)f

N

]
H−1. (4.3)

Proposition 4.3. Suppose that Assumptions 2.1–2.3 are satisfied with γ > 1
2 .

Assume that σuv 
= 0,Hg 
= 0, E[v2
i ui|xi] = 0, and K/N → 0. Then, the approx-

imate MSE for the B2SLS estimator satisfies the decomposition (2.10) with
 = σ 2

v H−1,G = 1
N2γ−1 H−1HgH′

gH−1, and

L(K) = H−1
[
(σ 2

v �η +2σuvσ
′
uv)

K

N
+σ 2

v

f ′(I −PK)f

N

]
H−1. (4.4)

Remark 4.2. Propositions 4.2 and 4.3 show that the leading term L(K) in the
MSE approximations for the LIML, FULL, and B2SLS estimators is the same as
the leading term in DN for all γ > 1

2 under the same rate conditions K/N → 0.
Note that the MSE approximations can still capture the higher-order biases from
locally invalid instruments G, which do not depend on K. The above results show
the robustness of the MSE approximations (and instrument selection criteria) of the
LIML, FULL, and B2SLS estimators in DN under the presence of locally invalid
instruments in the sense that the dominant terms (that depend on K) in the higher-
order MSEs remain the same with possibly invalid instruments (γ > 1

2 ). With a
smaller higher-order bias from many instruments, the dominating terms in the MSE
approximation coincide with those of DN for LIML/FULL and B2SLS only if
γ > 1

2 ; in contrast, 2SLS requires a more stringent condition.

The next two results are valid for the JIVE2 and HLIM/HFUL estimators. Their
implications remain the same as in Remark 4.2.

Proposition 4.4. Suppose that Assumptions 2.1–2.3 are satisfied with γ > 1
2 .

Assume that σuv 
= 0,Hg 
= 0, and K/N → 0. Then, the approximate MSE
for the JIVE2 estimator satisfies the decomposition (2.10) with  = σ 2

v H−1,

G = 1
N2γ−1 H−1HgH′

gH−1, and L(K) defined the same as in Proposition 4.3.

Proposition 4.5. Suppose that Assumptions 2.1–2.3 are satisfied with γ > 1
2 .

Assume �η 
= 0,Hg 
= 0, and K/N → 0. Then, the approximate MSEs for the
HLIM and HFUL estimators satisfy the decomposition (2.10) with  = σ 2

v H−1,

G = 1
N2γ−1 H−1HgH′

gH−1, and L(K) defined the same as in Proposition 4.2.

5. INSTRUMENT SELECTION CRITERIA

In this section, we consider instrument selection criteria based on the higher-order
MSE approximations provided in Sections 3 and 4.

We first establish the asymptotic optimality property of DN’s criteria
under a specification with N−γ (γ > 1

2 ) locally invalid instrument based on
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Propositions 4.1–4.5. To simplify the results, we consider a case with a scalar
endogenous regressor (i.e., Yi is scalar) where the covariates have already been
partialled out.9 For the details of the case with general vector endogenous variables
Yi, see Section S3 of the Supplementary Material.

5.1. Optimality of DN’s Criteria under γ > 1
2

We choose K to minimize an estimate of the dominant term L(K) based on the
higher-order MSE approximation:

K̂ = argmin
K∈K

L̂(K), (5.1)

where K = KN = {Km : 1 ≤ m ≤ MN} is a set of instruments, and the total number
of instrument sets MN depends on the sample size.

We require preliminary estimates of the model and the goodness of fit criterion
for the first-stage reduced-form equation. Let δ̃ be some preliminary estimator,
e.g., an IV estimator where the instruments K̃ are chosen to minimize the cross
validation (CV) or Mallows (1973) criteria for the reduced-form equation. Let
ε̃ = y − W δ̃ be residuals, and let Ĥ = W ′PK̃W/N − σ̂ 2

u K̃/N be a preliminary
estimator of H = f ′f /N. Additionally, let ũ = (I −PK̃)W be a residual vector of the
first-stage reduced-form regression; it is important that all preliminary estimates
remain fixed and do not depend on K, while the criterion is calculated for different
instrument sets.

The criteria based on Propositions 4.1–4.5 are defined below and are equivalent
to those of DN:

2SLS :̂LDN(K) = σ̂ 2
uv

K2

N
+ σ̂ 2

v

(
R̂(K)− σ̂ 2

u

K

N

)
, (5.2)

LIML,FULL,HLIM,HFUL :̂LDN(K) = σ̂ 2
v

(
R̂(K)− σ̂ 2

uv

σ̂ 2
v

K

N

)
, (5.3)

B2SLS,JIVE2 :̂LDN(K) = σ̂ 2
v

(
R̂(K)+ σ̂ 2

uv

σ̂ 2
v

K

N

)
, (5.4)

where σ̂uv = ũ′̃ε/N,σ̂ 2
v = ε̃ ′̃ε/N,σ̂ 2

u = ũ′̃u/N, and the Mallows or CV criterion

R̂(K) = ûK′
ûK

N
+2σ̂ 2

u

K

N
, R̂(K) = 1

N

N∑
i=1

(ûK
i )2

(1−PK
ii )

2

with residual vectors ûK = (I −PK)W.

9Specifically, from the original data (̃y,Ỹ,X̃), let y = MX1 ỹ,Y = MX1 Ỹ,X = MX1 X̃, where MX1 = I − X1(X′
1X1)

−X′
1

is the orthogonal projection matrix of the exogenous covariates x1i.
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We show that the instrument selection criteria in DN are asymptotically optimal
in the sense of Li (1987) under locally invalid instruments, i.e., K̂ in (5.1) with
L̂DN(K) satisfies equation (5.5).

Assumption 5.1. Wi is a scalar, σ̂ 2
v −σ 2

v = op(1),σ̂ 2
u −σ 2

u = op(1),σ̂uv −σuv =
op(1), Ĥ − H̄ = op(1), H̄−1σuv 
= 0, and var(H̄−1ηi) > 0.

Assumption 5.2. Assume that E[u8
i |xi] < ∞ and

∑
K∈KN

(NR(K))−1 → 0,

where R(K) = σ 2
u (K/N) + H̄−1[f ′(I − PK)f /N]H̄−1. Furthermore, assume that

supK supi P
K
ii

p→ 0 when R̂(K) is the CV criterion.

Assumption 5.1 imposes consistency of the preliminary estimators.
Assumption 5.2 is a standard assumption in the literature (e.g., Li, 1987) regarding
the asymptotic optimality of the model selection criteria. As

∑
K∈KN

(NR(K))−1 ≤
MN(infK∈KN NR(K))−1, Assumption 5.2 can be replaced by infK∈KN NR(K) → ∞
with restrictions on the set of possible instrument sets MN , and this excludes the
case where f has a finite-order representation with a number of instruments and
rules out KN including all possible combinations of instruments.

Proposition 5.1. Suppose that Assumptions 5.1 and 5.2 hold. Under the
same assumptions as in Proposition 4.1, the following holds for 2SLS with
K̂ = argminK∈K L̂DN(K) if K

N1−γ → ∞:

L(K̂)

infK L(K)

p−→ 1, (5.5)

where L(K) is as defined in (4.2).
For the LIML (FULL),B2SLS, JIVE2,and HLIM (HFUL) criteria, equation (5.5)

holds for all γ > 1
2 under the same assumptions as in Propositions 4.2–4.5,

respectively.

Remark 5.1. Proposition 5.1 provides the asymptotic optimality of the instru-
ment selection criteria in Donald and Newey, 2001 and shows that their criteria
for choosing K are robust to locally invalid instruments (γ > 1

2 ). The optimality
result, equation (5.5), implies that L(K̂) with K̂ obtained by the selection procedure
is asymptotically equivalent to minimizing the unknown L(K) directly in the
presence of locally invalid instruments. Asymptotic optimality results for the
JIVE2, HLIM, and HFUL estimators are new with or without invalid instruments.

While the selection criteria for LIML/FULL, B2SLS, JIVE2, and HLIM/HFUL
are asymptotically optimal for all γ > 1

2 , the optimality of the 2SLS criterion
requires γ > 1−α, where K = O(Nα),0 < α < 1

2 . The criterion for 2SLS is optimal
when the degree of invalidity is sufficiently small (γ is sufficiently large).

5.2. Invalidity-Robust Instrument Selection Criteria

We next consider instrument selection criteria based on Propositions 3.1–3.5.
Although Proposition 5.1 shows that the instrument selection criteria in DN are
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robust to a very small degree of invalid instruments (γ > 1
2 ), the higher-order

bias/variance terms due to invalid instruments may not be negligible when the
degree of invalidity increases (i.e., γ = 1

2 ), as shown in Section 3.
We propose IR instrument selection criteria that are robust to a larger degree of

invalid instruments (γ = 1
2 ) based on Propositions 3.1–3.5. Because the estimation

of the MSE requires some preliminary estimates of g(x), we require a known
set of valid instruments zi: E[ziεi] = 0,zi ∈ R

q(q ≥ p). We consider the case
in which researchers have a “conservative” set of valid instruments and explore
all other candidate instruments that are potentially invalid considering the bias–
variance trade-off. Although this is a critical assumption, our derivations of the
MSE approximations in earlier sections do not require known valid instruments.
Recent papers that have addressed similar questions regarding the general GMM
setup (such as Liao, 2013; Cheng and Liao, 2015; DiTraglia, 2016; Cheng, Liao,
and Shi, 2019) also assume that there is a subset of moments that is known to be
valid for identification and estimation.

The proposed instrument selection criteria L̂IR(K) are as follows:

2SLS : L̂IR(K) = L̂DN(K)+2Ĥgσ̂uv
K√
N

+ L̂g(K), (5.6)

LIML/FULL/B2SLS : L̂IR(K) = L̂DN(K)+ L̂g(K), (5.7)

JIVE2/HLIM/HFUL : L̂IR(K) = L̂DN(K)+ L̂g,D(K), (5.8)

where L̂DN(K) is defined as in (5.2)–(5.4),

L̂g(K) = 2Ĥ2
g

Ĥ
(R̂(K)− σ̂ 2

u

K

N
)−2ĤgĜ(K)+ R̂g(K),

L̂g,D(K) = 2Ĥ2
g

Ĥ
R̂D(K)−2ĤgĜD(K)+ R̂g,D(K),

Ĥg = W ′PK̃ ε̂/
√

N − K̃/
√

Nσ̂uv, Ĝ(K) = W ′(I − PK )̂ε/
√

N + K/
√

Nσ̂uv, R̂g(K) =
2K/NĤĤ−1

z σ̂ 2
v,zσ̂

2
u (I − ĤĤ−1

z ) − 2ĤĤ−1
z σ̂ 2

v R̂z(K) + 2Ĥz,DĤ−1
z σ̂ 2

v R̂(K),Ĥz =
W ′PzW/N,R̂z(K) = W ′Pz(I − PK)W/N + 2σ̂ 2

u K/N,Ĥz,D = W ′DzW/N, where
Pz is the projection matrix using valid instrument z = [z1, . . . ,zN]′, and

Dz = diag(Pii,z) is a diagonal matrix. Let also R̂D(K) = W ′(I−(PK−DK ))W
N ,R̂g,D(K) =

W ′DKW/N(σ̂ 2
v I − ĤĤ−1

z σ̂ 2
v,z) − 2ĤĤ−1

z σ̂ 2
v R̂z(K) + 2Ĥz,DĤ−1

z σ̂ 2
v R̂D(K), ĜD(K) =

W ′(I − (PK − DK))̂ε/
√

N, σ̂ 2
v,z = ε̂′Pẑε/N, ε̂ = y − W δ̂, and δ̂ is a preliminary

estimator obtained using valid instruments z = [z1, . . . ,zN]′ with the projection
matrix Pz.10

10Note that we considered a simplified version of the criteria L̂IR(K) without R̂g(K),R̂g,D(K) for the simulation. If
we use estimates Ĥz = Ĥ = Ĥz,D,σ̂ 2

v,z = σ̂ 2
v ,R̂z(K) = R̂(K) = R̂D(K), then R̂g(K) = R̂g,D(K) = 0, and there are no

notable differences in the simulation evidence with or without these additional terms. For the simplified version,
L̂IR(K) in (5.6)–(5.8) reduces to L̂DN (K) in (5.2)–(5.4) when Ĥg = 0.
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We show below that L̂IR(K) is an asymptotically unbiased estimator of the
leading terms in higher-order MSE approximation that depend on K defined in
Sections 3 and 4. Details on the proof and sufficient conditions for the higher-
order decomposition are provided in Section S1.3 of the Supplementary Material.
Let ρ̄K,N = tr(L(K)) and σ 2

v,z = E[v′
zvz/N|X], vz = Pzv.11

We impose the following assumption on the consistency of the preliminary
estimators. Assumption 5.3 also imposes high-level assumption for a preliminary
estimator with the instruments K̃. For example, the higher-order decomposition
Ĥg − (Hg + �g) = Tg + op(ρ̄K,N),Ĥ − H = TH + op(ρ̄K,N) holds when ρ̄K̃,N =
o(ρ̄K,N) as K̃,K → ∞.

Assumption 5.3. Wi is a scalar, σ̂ 2
v −σ 2

v = op(1),σ̂ 2
u −σ 2

u = op(1),σ̂uv −σuv =
op(1),σ̂ 2

v,z − σ 2
v,z = op(1), Ĥg − (Hg + �g) = Tg + op(ρ̄K,N), and Ĥ − H = TH +

op(ρ̄K,N), Ĝ(K) = TG + op(ρ̄K,N) for K ∈ KN , where �g = Op(1),TH = op(1),

Tg = op(1),TG = op(1),ρ̄K,N = op(1),||Tg||||TG|| = op(ρ̄K,N).

Proposition 5.2. Suppose that we have a vector of valid instruments
zi ∈ R

q(q ≥ p) such that E[ziεi] = 0 for finite q. In addition, suppose that
Assumption 5.3 holds and E[v2

i ui|xi] = 0. Under the same assumptions in
Propositions 3.1–3.5 with γ = 1

2 , L̂IR(K) given in (5.6)–(5.8) for the 2SLS,
LIML (FULL), B2SLS, JIVE2, and HLIM (HFUL) estimators satisfy the following
decomposition:

L̂IR(K) = Q̂L(K)+ r̂L(K),

E[Q̂L(K)|X] = L(K)+ r̄L(K),

[ r̂L(K)+ r̄L(K)]/tr(L(K)) = op(1), K → ∞, N → ∞, (5.9)

with L(K) defined in Propositions 3.1–3.5, respectively.
Alternatively, under the same assumptions in Propositions 4.1–4.5 with γ > 1

2 ,
the decomposition (5.9) holds with L(K) defined in (4.2)–(4.4) for the 2SLS, LIML
(FULL), B2SLS, JIVE2, and HLIM (HFUL) estimators, respectively.

Assuming that we have a known set of valid instruments, Proposition 5.2
implies that L̂IR(K) is an asymptotically unbiased estimator of the leading terms
(that depend on K) L(K) in the higher-order MSE approximation provided in
Propositions 3.1–3.5 and the remainder terms (r̄L(K),̂rL(K)) go to zero faster than
the L(K). This result also holds with γ > 1

2 and the L(K) defined in Section 4.12

11Because the choice of K is unaffected by subtracting constants from L̂IR(K), we can assume without loss of
generality that L̂IR(K) can be constructed using R̃(K) = R̂(K) − u′u/N,G̃(K) = Ĝ(K) − Ḡ where Ḡ = Op(1) that
do not depend on K.
12The third moment assumption E[v2

i ui|xi] = 0 is imposed for the simplification of the criteria similar to Propositions
3.2 and 3.3. Without this condition, L̂IR(K) have additional terms that can be estimated. We have not included these
terms in the instrument selection criteria for simplicity, and they provide similar results in our simulations.
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It is important to note that while L̂IR(K) satisfies (5.9) for a nonrandom sequence
of K → ∞, this does not necessarily imply that L̂IR(K̂) with K̂ selected by the
IR criterion approximates the infeasible infK L(K) well in practice. It would be
desirable to justify L̂IR(K) in terms of optimality as in Proposition 5.1, but this is
a difficult problem, as it requires dealing with the estimation of g(·), which is not√

N-estimable. Although (5.9) shows that L̂IR(K) is an unbiased estimate of L(K),
the sampling variability of L̂IR(K) can be large which makes uniform consistency
fail to hold, but we do not investigate this direction in the paper. We further note
that the preliminary estimator δ̂ may affect the finite-sample behavior of the IR
criterion; however, simulation evidence suggests that an IR instrument selection
criterion combined with an IV estimator that has a small bias property under many
instruments without moment problems, such as the Fuller/HFUL estimators, works
well.

6. MONTE CARLO SIMULATION

We investigate the finite-sample performance of the IV estimators based on the
instrument selection criteria considered in this paper. We use the same simulation
design of DN and Kuersteiner and Okui (2010), allowing for potentially invalid
instruments (with an intercept in the model). The model to be estimated is

yi = β0 + xiβ1 + εi,

E(ziεi) = 0, (6.10)

where xi and β0,β1 are scalars, and zi is a (K + 1)× 1 vector of IVs. We assume
that zi always contains a constant and K denotes the number of excluded exogenous
variables.

We estimate β0,β1 by various IV estimators with K̂ chosen via instrument
selection criteria. Our DGP is

yi = β0 + xiβ1 + τ ′Zi

Nγ
+ vi, (6.11)

xi = π ′Zi +ui,

Zi ∼ N
(
0,IK̄

)
,(

vi

ui

)
∼ N

((
0
0

)
,

[
1 σuv −π ′τ/Nγ

σuv −π ′τ/Nγ 1

])
.

We set β0 = 1,β1 = 0.1 and vary (N,K̄,R2,π,τ ) in the simulation experiments. We
set the maximum number of instruments K̄ = 20 when the number of observations
N = 100 and K̄ = 30 for N = 1,000. We set the first-stage R2 as {0.1,0.01}. We also
set the endogeneity of xi as Cov(xi,εi) = σuv = 0.5 and perform 10,000 simulation
replications.

As in DN, we set the first-stage coefficient π = (π1, . . . ,πK̄)′ as

πk = c(K̄)(1− k/(K̄ +1))4,
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where c(K̄) is chosen to make R2 either 0.1 or 0.01. We consider the case in which
there is some prior information about which instruments are strong.

When we fix τ 
= 0, the key parameter is γ (“degree of invalidity”), and we
vary γ = ∞,1, 1

2 , and 1
3 . When γ = ∞, any instruments zi from the full set of

instruments Zi are valid. For 0 < γ < ∞, we find that E(ziεi) = τ/Nγ 
= 0, so the
moment condition (6.10) fails to hold in any finite sample. The DGP can also
be written as a globally misspecified model such that γ = 0 and τ is not too
large, but we use the locally misspecified setup to be consistent with the results in
Sections 3 and 4.

We consider the following specification for τ = (τ1, . . . ,τK̄)′:

τk = 0, for k = 1, τk = 0.5, for k = 2, . . . ,K̄/2, and τk = 0, for k > K̄/2.

We assume that only the first instrument is known to be valid. Valid instruments
are included in all candidate instruments and used for preliminary estimates in
the IR instrument selection criteria. We consider that the next “strong” IVs are
potentially invalid. This is empirically relevant, as IVs that are strongly correlated
with the endogenous regressor are more likely to be correlated with the dependent
variable, and there exists a bias–variance trade-off when using invalid but relevant
instruments. Moreover, the last half of the “weak” IVs are valid, so there also exists
a trade-off when using valid but weak instruments.13

We focus on β1, and Tables 1–4 report the median bias (Bias), MAD, interdecile
range (IDR), root mean squared error (MSE), and root trimmed mean-squared
error (TMSE) of 2SLS, LIML, FULL (with C = 1), JIVE2, HLIM, and HFUL
(with C = 1). We use these robust measures of central tendency and dispersion due
to concerns on the existence of moments for some estimators.14 For comparison
purposes, we include the OLS and GMM averaging estimator (GMM-AVE)
by Cheng et al. (2019), which combines a conservative GMM estimator with
valid moment conditions and a GMM estimator based on all (possibly invalid)
instruments, where the weights are given in Cheng et al. (2019, eqn. (4.7)).15 For
all IV estimators, we consider four different cases: using all available instruments
(all), using the valid instrument only (val), utilizing the instruments chosen by
DN’s criterion (DN), and the instruments selected by the IR criterion in this

13In the additional simulation results reported in the Supplementary Material, we also investigate the same simulation
design of DN without an intercept in the model. For example, we consider different specifications such as σuv =
0.2,0.8, different π and τ , and a heteroskedastic setup. In particular, we consider (1) πk =

√
R2/K̄(1−R2), the

case where the instruments have equal strengths as in DN (Model 2), (2) πk = c(K̄)(1 − (K̄ + 1 − k)/(K̄ + 1))4,
the case where the order of the IV strengths is wrong, (3) τ ∝ (0,1,1,1,0, . . . ,0), (4) τ ∝ (0,1,0, . . . ,0), and (5)
τ ∝ (0,0,0,0,1, . . . ,1). Furthermore, we also explore the simulation design in Hausman et al. (2012) with an intercept,
and we note that theoretical results of HLIM/HFUL in Hausman et al. (2012, Assump. 1) include an intercept in the
model. See the Supplementary Material for further discussion. In an earlier version of the paper, we provide the results
assuming the first two instruments are known to be valid.

14To be specific, we compute a root trimmed mean square,
√
E[min{(β̂1 −β1)2,100}] similar to Okui (2011), but

with a larger trimming parameter.
15We do not report the results for the Fuller/HFUL estimator with a constant C = 4, as they are mostly similar to
those in the C = 1 case. We also omit the results for B2SLS, as it is dominated by the other estimators in most cases.
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Table 1. Monte Carlo results: R2 = 0.1,N = 100

γ = ∞ γ = 1 γ = 1
2 γ = 1

3

N = 100 Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE

OLS 0.45 0.45 0.22 0.46 0.46 0.45 0.45 0.22 0.46 0.46 0.45 0.45 0.22 0.46 0.46 0.45 0.45 0.23 0.46 0.46

2SLS-all 0.32 0.32 0.42 0.36 0.36 0.33 0.33 0.42 0.37 0.37 0.41 0.41 0.43 0.44 0.44 0.51 0.51 0.47 0.54 0.54

2SLS-val 0.02 0.35 1.66 12.63 1.56 0.04 0.34 1.64 18.12 1.64 0.02 0.35 1.70 14.74 1.65 0.02 0.36 1.74 31.06 1.63

2SLS-DN 0.19 0.25 0.73 1.95 0.56 0.20 0.26 0.72 8.50 0.53 0.34 0.36 0.71 6.63 0.67 0.50 0.51 0.74 28.96 0.76

2SLS-IR 0.08 0.25 0.98 4.85 0.71 0.11 0.26 0.98 2.92 0.72 0.17 0.31 1.06 1.84 0.68 0.24 0.40 1.23 3.75 0.80

GMM-AVE 0.17 0.25 0.79 0.37 0.37 0.19 0.26 0.79 0.37 0.37 0.21 0.28 0.85 0.40 0.40 0.23 0.31 0.94 0.44 0.44

LIML-all 0.04 0.33 1.61 7.67 1.69 0.07 0.34 1.66 17.63 1.73 0.30 0.47 1.92 22.51 1.94 0.73 0.96 3.76 363.52 2.82

LIML-val 0.02 0.35 1.66 12.63 1.56 0.04 0.34 1.64 18.12 1.64 0.02 0.35 1.70 14.74 1.65 0.02 0.36 1.74 31.06 1.63

LIML-DN 0.10 0.24 0.88 2.42 0.78 0.13 0.25 0.90 8.35 0.82 0.26 0.33 0.96 14.61 0.97 0.46 0.51 1.23 33.07 1.15

LIML-IR 0.02 0.26 1.15 3.40 0.96 0.05 0.26 1.14 9.12 1.05 0.12 0.31 1.23 15.85 1.01 0.21 0.42 1.55 39.42 1.32

FULL-all 0.08 0.29 1.21 0.53 0.53 0.10 0.30 1.22 0.54 0.54 0.31 0.42 1.40 0.66 0.66 0.69 0.78 2.10 1.04 1.04

FULL-val 0.15 0.26 0.88 0.39 0.39 0.16 0.26 0.88 0.39 0.39 0.15 0.26 0.90 0.39 0.39 0.15 0.27 0.95 0.40 0.40

FULL-DN 0.14 0.22 0.73 0.34 0.34 0.16 0.23 0.73 0.34 0.34 0.29 0.32 0.78 0.43 0.43 0.45 0.47 0.99 0.61 0.61

FULL-IR 0.11 0.23 0.84 0.37 0.37 0.13 0.23 0.84 0.38 0.38 0.20 0.28 0.93 0.43 0.43 0.27 0.36 1.19 0.60 0.60

JIVE-all 0.10 0.46 2.74 28.11 2.35 0.12 0.45 2.66 65.70 2.32 0.33 0.53 2.29 47.49 2.11 0.60 0.73 2.49 94.61 2.25

JIVE-val 0.17 0.60 3.46 410.25 2.63 0.16 0.59 3.34 76.33 2.62 0.16 0.61 3.55 119.05 2.68 0.15 0.62 3.55 136.79 2.69

(Continues)
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Table 1. Continued

γ = ∞ γ = 1 γ = 1
2 γ = 1

3

N = 100 Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE

JIVE-DN 0.07 0.30 1.34 407.81 1.48 0.10 0.30 1.33 13.20 1.46 0.26 0.38 1.28 51.21 1.43 0.47 0.54 1.38 135.54 1.49

JIVE-IR 0.03 0.42 2.05 45.67 1.92 0.04 0.41 2.01 71.11 1.93 0.16 0.42 1.76 120.89 1.67 0.32 0.50 1.70 10.57 1.56

HLIM-all 0.04 0.33 1.64 30.80 1.71 0.07 0.34 1.65 24.55 1.74 0.30 0.47 1.96 68.76 1.97 0.74 0.96 3.77 678.44 2.83

HLIM-val 0.02 0.35 1.67 60.36 1.56 0.04 0.34 1.64 11.57 1.67 0.02 0.35 1.71 54.62 1.63 0.02 0.36 1.75 36.67 1.66

HLIM-DN 0.10 0.24 0.89 3.53 0.79 0.13 0.25 0.90 4.92 0.83 0.27 0.33 0.96 4.47 0.98 0.45 0.50 1.22 3.65 1.16

HLIM-IR 0.02 0.26 1.13 6.80 0.49 0.04 0.26 1.14 5.29 0.49 0.16 0.32 1.16 14.49 0.52 0.32 0.46 1.47 5.18 0.68

HFUL-all 0.09 0.28 1.15 0.50 0.50 0.11 0.29 1.18 0.51 0.51 0.32 0.41 1.33 0.63 0.63 0.69 0.75 1.94 0.99 0.99

HFUL-val 0.15 0.26 0.88 0.38 0.38 0.16 0.26 0.88 0.38 0.38 0.15 0.26 0.90 0.39 0.39 0.15 0.27 0.94 0.40 0.40

HFUL-DN 0.14 0.22 0.73 0.33 0.33 0.16 0.23 0.73 0.34 0.34 0.29 0.32 0.78 0.42 0.42 0.45 0.46 0.98 0.60 0.60

HFUL-IR 0.10 0.22 0.83 0.36 0.36 0.13 0.23 0.84 0.36 0.36 0.20 0.28 0.90 0.42 0.42 0.32 0.38 1.11 0.56 0.56

Notes: (i) all—IV estimators using all instruments; (ii) val—using known valid instruments; (iii) DN—using instruments based on DN’s criterion L̂DN(K); (iv) IR—
based on the IR criterion L̂IR(K); and (v) GMM-AVE—averaging GMM estimator in Cheng et al. (2019), which combines a GMM with valid instruments and a GMM
using all instruments.
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Table 2. Monte Carlo results: R2 = 0.01,N = 100

γ = ∞ γ = 1 γ = 1
2 γ = 1

3

N = 100 Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE

OLS 0.50 0.50 0.22 0.50 0.50 0.50 0.50 0.22 0.50 0.50 0.49 0.49 0.23 0.50 0.50 0.49 0.49 0.24 0.50 0.50

2SLS-all 0.48 0.48 0.50 0.52 0.52 0.48 0.48 0.51 0.52 0.52 0.51 0.51 0.54 0.55 0.55 0.56 0.56 0.63 0.61 0.61

2SLS-val 0.37 0.83 4.78 795.38 3.06 0.37 0.86 4.67 93.12 3.06 0.36 0.85 4.80 65.09 3.09 0.35 0.88 4.87 46.08 3.13

2SLS-DN 0.44 0.52 1.51 15.88 1.86 0.44 0.52 1.54 87.60 1.85 0.51 0.59 1.57 46.74 1.83 0.60 0.69 1.91 15.17 2.05

2SLS-IR 0.43 0.50 1.38 795.09 1.41 0.44 0.51 1.42 11.99 1.44 0.50 0.58 1.53 18.14 1.49 0.58 0.67 1.77 14.70 1.59

GMM-AVE 0.44 0.46 0.92 0.58 0.58 0.45 0.46 0.92 0.58 0.58 0.47 0.48 0.97 0.60 0.60 0.49 0.51 1.05 0.64 0.64

LIML-all 0.37 0.88 4.90 43.92 3.07 0.40 0.87 4.80 57.82 3.11 0.61 1.15 5.97 389.16 3.40 1.28 2.36 12.47 135.58 4.78

LIML-val 0.37 0.83 4.78 795.38 3.06 0.37 0.86 4.67 93.12 3.06 0.36 0.85 4.80 65.09 3.09 0.35 0.88 4.87 46.08 3.13

LIML-DN 0.40 0.62 2.80 18.58 2.40 0.39 0.64 2.88 88.53 2.42 0.50 0.71 2.88 51.43 2.43 0.63 0.90 3.39 34.76 2.65

LIML-IR 0.38 0.65 3.08 1437.86 2.50 0.39 0.67 3.19 95.35 2.62 0.50 0.76 3.50 59.06 2.68 0.68 1.04 5.38 55.58 3.41

FULL-all 0.39 0.59 2.08 0.89 0.89 0.42 0.60 2.03 0.89 0.89 0.58 0.75 2.31 1.03 1.03 1.01 1.23 3.27 1.46 1.46

FULL-val 0.46 0.47 0.92 0.58 0.58 0.46 0.46 0.92 0.58 0.58 0.45 0.46 0.95 0.58 0.58 0.45 0.47 0.98 0.59 0.59

FULL-DN 0.45 0.46 0.93 0.58 0.58 0.45 0.46 0.93 0.58 0.58 0.49 0.50 0.98 0.63 0.63 0.54 0.56 1.25 0.76 0.76

FULL-IR 0.45 0.47 1.01 0.61 0.61 0.44 0.47 1.01 0.62 0.62 0.50 0.51 1.09 0.68 0.68 0.55 0.59 1.49 0.87 0.87

JIVE-all 0.48 0.77 3.66 48.10 2.66 0.49 0.78 3.63 280.29 2.66 0.48 0.82 3.90 1159.16 2.84 0.51 0.91 4.75 104.24 3.08

JIVE-val 0.51 0.60 2.22 313.13 2.17 0.50 0.59 2.27 26.86 2.19 0.50 0.60 2.40 22.85 2.25 0.50 0.61 2.51 62.93 2.28

(Continues)
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Table 2. Continued

γ = ∞ γ = 1 γ = 1
2 γ = 1

3

N = 100 Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE

JIVE-DN 0.48 0.59 2.16 312.95 2.09 0.48 0.58 2.09 15.17 2.07 0.51 0.61 2.19 22.89 2.14 0.55 0.67 2.51 63.06 2.26

JIVE-IR 0.49 0.58 1.93 357.42 1.95 0.49 0.57 1.89 18.40 1.95 0.51 0.58 2.00 16.12 2.02 0.53 0.61 2.24 100.66 2.14

HLIM-all 0.38 0.88 4.93 170.64 3.07 0.39 0.87 4.84 70.73 3.09 0.61 1.13 5.98 351.77 3.41 1.27 2.34 12.18 310.14 4.76

HLIM-val 0.36 0.84 4.70 105.46 3.05 0.36 0.86 4.56 104.97 3.03 0.36 0.86 4.78 34.48 3.09 0.36 0.88 4.82 370.69 3.14

HLIM-DN 0.39 0.62 2.75 103.63 2.40 0.39 0.64 2.87 102.95 2.39 0.49 0.71 2.86 18.37 2.44 0.64 0.90 3.38 65.92 2.64

HLIM-IR 0.39 0.62 2.63 34.06 0.85 0.40 0.63 2.66 64.96 0.86 0.50 0.72 2.80 43.60 0.91 0.66 1.00 4.02 299.53 1.04

HFUL-all 0.41 0.56 1.90 0.84 0.84 0.42 0.56 1.87 0.83 0.83 0.57 0.70 2.09 0.97 0.97 0.96 1.12 2.96 1.34 1.34

HFUL-val 0.46 0.46 0.91 0.57 0.57 0.45 0.46 0.91 0.57 0.57 0.45 0.46 0.94 0.58 0.58 0.45 0.46 0.97 0.59 0.59

HFUL-DN 0.45 0.46 0.92 0.57 0.57 0.44 0.46 0.92 0.57 0.57 0.49 0.49 0.96 0.62 0.62 0.54 0.55 1.20 0.73 0.73

HFUL-IR 0.45 0.46 0.93 0.58 0.58 0.45 0.46 0.93 0.58 0.58 0.48 0.49 0.97 0.62 0.62 0.52 0.54 1.23 0.73 0.73

Notes: (i) all—IV estimators using all instruments; (ii) val—using known valid instruments; (iii) DN—using instruments based on DN’s criterion L̂DN(K); (iv) IR—
based on the IR criterion L̂IR(K); and (v) GMM-AVE—averaging GMM estimator in Cheng et al. (2019), which combines a GMM with valid instruments and a GMM
using all instruments.
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Table 3. Monte Carlo results: R2 = 0.1,N = 1,000

γ = ∞ γ = 1 γ = 1
2 γ = 1

3

N = 1,000 Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE

OLS 0.45 0.45 0.07 0.45 0.45 0.45 0.45 0.07 0.45 0.45 0.45 0.45 0.07 0.45 0.45 0.45 0.45 0.07 0.45 0.45

2SLS-all 0.10 0.11 0.20 0.13 0.13 0.11 0.11 0.20 0.13 0.13 0.20 0.20 0.20 0.22 0.22 0.41 0.41 0.21 0.42 0.42

2SLS-val −0.00 0.13 0.50 0.21 0.21 −0.00 0.13 0.49 0.21 0.21 −0.00 0.13 0.51 0.21 0.21 −0.00 0.13 0.50 0.21 0.21

2SLS-DN 0.04 0.07 0.24 0.10 0.10 0.05 0.07 0.24 0.10 0.10 0.15 0.15 0.24 0.17 0.17 0.40 0.40 0.24 0.41 0.41

2SLS-IR −0.01 0.08 0.32 0.14 0.14 −0.00 0.08 0.32 0.13 0.13 0.05 0.10 0.35 0.15 0.15 0.13 0.15 0.39 0.20 0.20

GMM-AVE 0.05 0.10 0.37 0.16 0.16 0.05 0.10 0.36 0.16 0.16 0.07 0.13 0.42 0.18 0.18 0.06 0.13 0.49 0.20 0.20

LIML-all 0.00 0.07 0.27 0.11 0.11 0.00 0.07 0.27 0.11 0.11 0.12 0.13 0.27 0.16 0.16 0.39 0.39 0.34 0.90 0.43

LIML-val −0.00 0.13 0.50 0.21 0.21 −0.00 0.13 0.49 0.21 0.21 −0.00 0.13 0.51 0.21 0.21 −0.00 0.13 0.50 0.21 0.21

LIML-DN 0.01 0.07 0.25 0.10 0.10 0.02 0.07 0.25 0.10 0.10 0.13 0.13 0.25 0.16 0.16 0.37 0.37 0.29 0.39 0.39

LIML-IR −0.02 0.08 0.31 0.14 0.14 −0.02 0.08 0.31 0.14 0.14 0.04 0.10 0.36 0.15 0.15 0.12 0.15 0.39 0.19 0.19

FULL-all 0.01 0.07 0.27 0.10 0.10 0.01 0.07 0.27 0.11 0.11 0.12 0.13 0.26 0.16 0.16 0.39 0.39 0.34 0.41 0.41

FULL-val 0.02 0.12 0.47 0.19 0.19 0.02 0.12 0.46 0.19 0.19 0.01 0.12 0.47 0.19 0.19 0.01 0.12 0.47 0.19 0.19

FULL-DN 0.02 0.07 0.25 0.10 0.10 0.02 0.07 0.25 0.10 0.10 0.13 0.13 0.24 0.16 0.16 0.37 0.37 0.28 0.39 0.39

FULL-IR −0.01 0.07 0.30 0.13 0.13 −0.01 0.08 0.30 0.13 0.13 0.05 0.10 0.35 0.15 0.15 0.13 0.15 0.37 0.19 0.19

JIVE-all −0.01 0.08 0.29 0.12 0.12 −0.01 0.08 0.29 0.12 0.12 0.12 0.13 0.28 0.16 0.16 0.40 0.40 0.28 0.42 0.42

JIVE-val −0.04 0.14 0.58 0.30 0.30 −0.04 0.14 0.57 0.33 0.30 −0.04 0.14 0.59 0.34 0.32 −0.04 0.14 0.58 0.30 0.29

(Continues)
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Table 3. Continued

γ = ∞ γ = 1 γ = 1
2 γ = 1

3

N = 1,000 Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE

JIVE-DN 0.00 0.07 0.26 0.10 0.10 0.01 0.07 0.26 0.10 0.10 0.12 0.13 0.26 0.15 0.15 0.38 0.38 0.26 0.39 0.39

JIVE-IR −0.07 0.11 0.48 0.29 0.28 −0.06 0.11 0.48 0.32 0.28 −0.04 0.13 0.55 0.28 0.28 0.05 0.15 0.52 0.22 0.22

HLIM-all 0.00 0.07 0.27 0.11 0.11 0.00 0.07 0.27 0.11 0.11 0.12 0.13 0.27 0.16 0.16 0.39 0.39 0.34 0.78 0.43

HLIM-val −0.00 0.13 0.50 0.21 0.21 −0.00 0.13 0.49 0.21 0.21 −0.00 0.13 0.50 0.21 0.21 −0.00 0.13 0.50 0.21 0.21

HLIM-DN 0.01 0.07 0.25 0.10 0.10 0.02 0.07 0.25 0.10 0.10 0.13 0.13 0.25 0.16 0.16 0.37 0.37 0.29 0.39 0.39

HLIM-IR −0.04 0.09 0.40 0.18 0.18 −0.04 0.09 0.40 0.18 0.18 −0.01 0.12 0.46 0.20 0.20 0.08 0.14 0.46 0.20 0.20

HFUL-all 0.01 0.07 0.27 0.10 0.10 0.01 0.07 0.27 0.11 0.11 0.12 0.13 0.26 0.16 0.16 0.39 0.39 0.34 0.41 0.41

HFUL-val 0.02 0.12 0.47 0.19 0.19 0.02 0.12 0.46 0.19 0.19 0.01 0.12 0.47 0.19 0.19 0.01 0.12 0.47 0.19 0.19

HFUL-DN 0.02 0.07 0.25 0.10 0.10 0.02 0.07 0.25 0.10 0.10 0.13 0.13 0.24 0.16 0.16 0.37 0.37 0.28 0.39 0.39

HFUL-IR −0.02 0.09 0.37 0.16 0.16 −0.02 0.09 0.36 0.16 0.16 0.01 0.11 0.43 0.18 0.18 0.08 0.14 0.44 0.19 0.19

Notes: (i) all—IV estimators using all instruments; (ii) val—using known valid instruments; (iii) DN—using instruments based on DN’s criterion L̂DN(K); (iv) IR—
based on the IR criterion L̂IR(K); and (v) GMM-AVE—averaging GMM estimator in Cheng et al. (2019), which combines a GMM with valid instruments and a GMM
using all instruments.
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Table 4. Monte Carlo results: R2 = 0.01,N = 1,000

γ = ∞ γ = 1 γ = 1
2 γ = 1

3

N = 1,000 Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE

OLS 0.49 0.49 0.07 0.50 0.50 0.50 0.50 0.07 0.50 0.50 0.49 0.49 0.07 0.50 0.50 0.49 0.49 0.07 0.50 0.50

2SLS-all 0.37 0.37 0.37 0.40 0.40 0.38 0.38 0.37 0.40 0.40 0.48 0.48 0.36 0.50 0.50 0.70 0.70 0.47 0.73 0.73

2SLS-val 0.05 0.43 2.18 15.12 2.01 0.06 0.43 2.17 70.62 2.03 0.05 0.43 2.18 28.35 2.05 0.07 0.44 2.16 13.06 2.03

2SLS-DN 0.28 0.30 0.65 0.97 0.61 0.28 0.31 0.65 1.01 0.51 0.45 0.46 0.58 2.58 0.63 0.77 0.78 0.71 5.98 1.03

2SLS-IR 0.18 0.24 0.78 1.74 0.64 0.19 0.24 0.78 12.10 0.62 0.29 0.34 0.86 0.78 0.64 0.50 0.60 1.38 1.97 0.90

GMM-AVE 0.25 0.30 0.79 0.40 0.40 0.25 0.30 0.78 0.40 0.40 0.30 0.34 0.85 0.43 0.43 0.35 0.40 1.03 0.53 0.53

LIML-all 0.05 0.38 1.93 13.51 1.90 0.07 0.37 1.92 25.43 1.88 0.43 0.60 2.44 20.09 2.27 2.29 2.62 8.39 169.41 4.61

LIML-val 0.05 0.43 2.18 15.12 2.01 0.06 0.43 2.17 70.62 2.03 0.05 0.43 2.18 28.35 2.05 0.07 0.44 2.16 13.06 2.03

LIML-DN 0.13 0.26 0.98 3.23 1.05 0.14 0.26 0.96 14.49 0.92 0.33 0.40 1.06 4.19 1.08 0.88 0.92 1.78 11.37 1.75

LIML-IR 0.07 0.26 1.15 10.50 1.07 0.08 0.26 1.14 10.55 1.01 0.22 0.32 1.20 9.35 1.12 0.62 0.75 2.49 16.30 2.00

FULL-all 0.08 0.33 1.39 0.60 0.60 0.11 0.33 1.39 0.61 0.61 0.44 0.53 1.64 0.79 0.79 1.91 1.93 3.05 2.09 2.09

FULL-val 0.22 0.30 0.94 0.43 0.43 0.22 0.30 0.93 0.43 0.43 0.22 0.30 0.94 0.43 0.43 0.22 0.31 0.96 0.44 0.44

FULL-DN 0.17 0.24 0.77 0.36 0.36 0.18 0.24 0.76 0.36 0.36 0.35 0.37 0.82 0.48 0.48 0.80 0.80 1.37 0.99 0.99

FULL-IR 0.16 0.24 0.87 0.41 0.41 0.17 0.24 0.88 0.42 0.42 0.28 0.32 0.94 0.51 0.51 0.53 0.60 1.88 1.03 1.03

JIVE-all 0.14 0.51 2.99 40.03 2.48 0.15 0.52 3.05 437.76 2.47 0.46 0.63 2.50 40.66 2.30 1.11 1.32 4.71 465.87 3.22

JIVE-val 0.36 0.68 3.71 195.36 2.75 0.35 0.67 3.64 207.72 2.69 0.35 0.67 3.78 20.79 2.73 0.36 0.67 3.72 43.14 2.74

(Continues)
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Table 4. Continued

γ = ∞ γ = 1 γ = 1
2 γ = 1

3

N = 1,000 Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE Bias MAD IDR MSE TMSE

JIVE-DN 0.13 0.33 1.46 62.06 1.64 0.14 0.34 1.48 204.27 1.65 0.36 0.46 1.38 17.28 1.56 0.81 0.86 1.70 27.22 1.80

JIVE-IR 0.17 0.41 1.66 60.57 1.67 0.17 0.41 1.67 29.13 1.68 0.33 0.44 1.36 13.19 1.40 0.57 0.63 1.63 41.60 1.60

HLIM-all 0.04 0.38 1.94 37.21 1.91 0.07 0.37 1.92 1103.02 1.90 0.43 0.61 2.44 70.81 2.27 2.29 2.62 8.29 103.01 4.61

HLIM-val 0.05 0.43 2.19 21.35 2.00 0.06 0.43 2.16 81.26 2.04 0.05 0.43 2.18 29.00 2.02 0.06 0.44 2.19 25.14 2.03

HLIM-DN 0.13 0.26 0.98 14.72 1.05 0.14 0.26 0.96 77.75 0.94 0.33 0.40 1.06 26.29 1.08 0.88 0.92 1.79 11.23 1.77

HLIM-IR 0.10 0.26 1.12 15.19 0.49 0.11 0.26 1.10 8.05 0.49 0.29 0.36 1.12 7.22 0.57 0.74 0.89 2.74 24.48 0.99

HFUL-all 0.08 0.33 1.38 0.59 0.59 0.11 0.33 1.38 0.60 0.60 0.44 0.53 1.62 0.78 0.78 1.90 1.92 3.00 2.07 2.07

HFUL-val 0.22 0.30 0.94 0.43 0.43 0.22 0.30 0.93 0.43 0.43 0.22 0.30 0.94 0.43 0.43 0.22 0.31 0.96 0.44 0.44

HFUL-DN 0.17 0.24 0.76 0.36 0.36 0.19 0.24 0.75 0.36 0.36 0.35 0.37 0.82 0.48 0.48 0.78 0.79 1.35 0.94 0.94

HFUL-IR 0.17 0.25 0.84 0.39 0.39 0.18 0.25 0.84 0.39 0.39 0.30 0.33 0.87 0.47 0.47 0.53 0.59 1.67 0.93 0.93

Notes: (i) all—IV estimators using all instruments; (ii) val—using known valid instruments; (iii) DN—using instruments based on DN’s criterion L̂DN(K); (iv) IR—
based on the IR criterion L̂IR(K); and (v) GMM-AVE—averaging GMM estimator in Cheng et al. (2019), which combines a GMM with valid instruments and a GMM
using all instruments.
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Table 5. Monte Carlo results: Median of K̂

γ = ∞ γ = 1 γ = 1
2 γ = 1

3

N R2 KMSE DN IR KMSE DN IR KMSE DN IR KMSE DN IR

100 0.1 2SLS 7 4 3 7 4 3 4 5 2 20 5 2

LIML 4 3 3 5 3 3 4 3 2 3 3 2

FULL 3 4 2 4 4 2 1 3 2 1 3 2

JIVE 5 3 2 6 3 2 6 3 2 4 3 2

HLIM 4 3 2 5 3 2 4 3 2 3 3 3

HFUL 3 3 2 4 3 2 1 3 2 1 3 2

100 0.01 2SLS 20 3 3 20 3 3 20 3 3 20 3 3

LIML 2 1 2 4 1 2 3 1 2 1 1 2

FULL 1 1 1 1 1 1 1 1 1 1 1 1

JIVE 1 1 1 1 1 1 1 1 1 1 1 1

HLIM 2 1 2 3 1 2 3 1 2 1 1 2

HFUL 1 1 1 1 1 1 1 1 1 1 1 1

1,000 0.1 2SLS 9 8 7 9 8 7 4 9 5 2 13 3

LIML 12 11 9 12 11 9 4 10 6 2 10 3

FULL 12 11 8 12 11 8 4 10 5 1 10 3

JIVE 11 10 1 10 10 1 5 10 1 2 10 1

HLIM 12 11 1 12 11 1 4 10 1 2 10 1

HFUL 12 11 1 12 11 1 4 10 1 1 10 1

1,000 0.01 2SLS 8 7 5 8 7 5 5 9 4 30 8 3

LIML 6 4 4 8 4 4 5 4 3 1 4 2

FULL 4 4 4 4 4 4 1 4 4 1 4 2

JIVE 8 3 3 9 3 3 7 3 4 3 3 2

HLIM 6 4 5 8 4 5 5 4 5 1 4 3

HFUL 4 4 3 4 4 3 1 3 4 1 4 2

paper (IR). Additionally, Table 5 reports the median value of K̂ and KMSE that
minimizes the trimmed MSE of the estimators.16

6.1. MSE, TMSE, and IDR

In terms of the MSEs, our findings are in line with the literature (Hahn et al.,
2004; Guggenberger, 2008; Hausman et al., 2012), which recommends utilizing
estimators with finite-sample moments over the “no-moment” estimators. The
MSE/TMSEs of LIML/HLIM and JIVE2 are considerably larger than those of

16Note that this is a different measure with K∗ reported in DN (Tables V and VI), which is a median of
argminK∈K L(K).
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FULL/HFUL with many instruments regardless of the instrument invalidity γ ,
especially in the weakly identified cases (Tables 2 and 4). We observe that MSE
can be significantly larger than the trimmed MSE for “no-moment” estimators, but
MSE for the Fuller/HFUL estimator is the same as trimmed MSE in all cases.

It is true that the MSE approximations derived in this paper may perform
poorly for “no-moment” estimators, especially in the weak instrument scenarios
(Hahn et al., 2004). However, we find that the FULL/HFUL estimators combined
with the DN criterion can lead to a reduction in the IDR and MSE/TMSE compared
to those of the estimators using all instrument sets or only valid instruments,
even when the instruments are slightly invalid and the correct specification case
(γ = ∞). This is consistent with our theory that the DN criterion is asymptotically
optimal under “slightly invalid” (γ > 1

2 ) instruments. The FULL/HFUL estimators
based on the IR criterion have similar MSE to those of DN across different γ , and
DN/IR may include a few more invalid but strong instruments for MSE reduc-
tions. We find that selecting estimators based on these criteria can mitigate the
moment problem even for LIML/HLIM/JIVE2, with significant TMSE reductions,
although this is not always the case.

For FULL/HFUL, the MSE/TMSE typically increases when γ or R2 decreases.
The IDR/TMSE of the IV estimators with strong invalid instruments (Table 1 with
R2 = 0.1,γ = 1

3 ) and valid weak instruments (Table 2 with R2 = 0.01,γ = ∞) can
be similar. We also find that the model averaging estimator can help to mitigate the
moment problem by effectively choosing weights between a conservative and an
aggressive GMM estimator, and the MSE of GMM-AVE works quite well across
simulations. Because 2SLS has finite moments for K ≥ 2, the MSE of 2SLS when
using only valid instruments is considerably larger than those of DN/IR as well as
using all instruments.

With larger sample sizes N = 1,000, the MSE/TMSEs (IDR) of LIML/HLIM
based on the DN/IR criteria are very similar to those of FULL/HFUL across γ in
the relatively strongly identified case (Table 3), but not in the weakly identified
case (Table 4).

6.2. Median Bias and Median Absolute Deviation

We first compare the IV estimators using all instruments (K = K̄). We find that the
median bias and MAD are very similar, with the exception that the bias of 2SLS can
be substantially larger than those of the other estimators in the strongly identified
cases when the instruments are valid or slightly invalid. Similar performances
for 2SLS/LIML/FULL under valid instruments can also be found in Hahn et al.
(2004). However, the bias/MAD of 2SLS can be lower than those of the other
estimators, especially when the degree of invalidity is large (γ = 1

3 ) because the
misspecification bias and the many-instrument bias can have opposite signs and
offset each other, as theoretically expected (Remark 3.4). The median bias and
MAD of LIML/HLIM under many instruments can be significantly larger than
those of FULL/HFUL when the instruments are invalid (γ = 1

3 ), especially in the
weakly identified cases (Table 2).
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The DN criterion tends to choose more invalid instruments when the degree
of invalidity increases, which leads to a large estimator bias that increases as
γ decreases, although the bias decreases when the sample size increases to
N = 1,000. In general, we find that an estimator based on IR has a lower median
bias than an estimator with DN, and it has similar or slightly larger MAD than that
obtained using only valid instruments across γ .

In sum, the Fuller and HFUL estimators combined with instrument selection
perform very well, with the lowest IDR and MSE/TMSE. For FULL/HFUL, the
median of the selected K̂ based on DN or IR is close to KMSE in many cases.
Although it is highlighted in the literature that the Fuller or HFUL estimator
performs well under many weak instrument setups, our simulation suggests that
those estimators combined with instrument selection procedures can also perform
well when the instruments are potentially invalid in finite samples.

Remark 6.1. Potentially interesting future research involves the investigation
of diagnostic tools that provide empirical researchers with the ability to evaluate
the degree of invalidity of a set of available instruments. In practice, researchers
can compare estimates with instruments chosen by DN and IR criteria. In our
simulation experiments, we find that the differences in the median biases of the
2SLS estimators and the rejection rates of the Sargan–Hansen J-test based on DN
and IR tend to increase when the degree of invalidity increases.17 However, this
is not a formal way of distinguishing between the cases with γ = 1

2 , γ > 1
2 , and

γ < 1
2 . We leave this topic for future research.

7. CONCLUSIONS

This paper develops higher-order MSE approximations for IV estimators in a linear
homoskedastic IV model with many and possibly invalid instruments. We consider
various k-class estimators, including 2SLS, LIML, FULL, B2SLS, JIVE2, HLIM,
and HFUL. Based on the higher-order MSE approximations, we consider the
instrument selection criteria that can be used to choose among the set of available
instruments. We demonstrate the asymptotic optimality of the instrument selection
criteria in DN under locally (N−γ ,γ > 1

2 ) invalid instrument setups. We also
propose instrument selection criteria that are applicable when researchers have
a “conservative” set of valid instruments by considering additional higher-order
terms due to N−1/2 locally invalid instruments.

There are some limitations in the present work and scope for future extensions.
First, it would be interesting to extend the results for a case involving heteroskedas-
tic error terms. The assumption of conditional homoskedasticity greatly simplifies
calculations and helps to investigate higher-order comparisons between estima-
tors. It would be of interest to analyze locally invalid instrument specifications
combined with the existing work of Donald et al. (2009) in a GMM setup.

17We further note that the conventional overidentification tests may perform poorly when the number of instruments
is large (Lee and Okui, 2012; Chao et al., 2014).
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Second, our higher-order results do not rely on the weak- or many-weak-
instrument asymptotics of Staiger and Stock (1997) and Chao and Swanson (2005),
and the MSE approximations in this paper are not valid under such sequences.
Here, we consider the scenario where the number of instruments is small relative
to the sample size and the instruments are strong, and we believe that this
case is important in many empirical applications (see Hansen, Hausman, and
Newey, 2008, for a survey of applied microeconomic applications). Our simulation
evidence suggests that the proposed instrument selection criteria can be useful
for estimators that perform well under many weak instrument setups, such as
FULL/HFUL.

Finally, our instrument selection criteria can suffer from post-model-selection
problems. Simulation evidence (in Section 6) shows that a selection estimator
can outperform an estimator using only valid instruments for some parts of the
parameter spaces (mostly where γ > 1

2 ); the worst-case MSE of the instrument
selection procedure increases when γ decreases and can be much worse than
that obtained using only valid instruments when the degree of invalidity is large
(small γ ). Although we justify the choice of K̂ by asymptotic optimality or
unbiasedness over large parameter spaces for γ , the randomness in K̂ may not be
fully accounted for in the high-order MSE approximation of δ̂(K̂). The worst-case
(scaled) MSE of the estimator based on the DN procedures can diverge to infinity
as the sample size grows when γ < 1

2 , as the criteria concern only the bias and
variance from many instruments while ignoring the bias from invalid instruments.
The MSE of an estimator based on IR procedures can also increase as γ decreases
because poor estimation of g(·) can worsen performance. Similar undesirable
(related to nonuniformity) properties of the post model selection estimators can
be found in Leeb and Pötscher (2005, 2008). In a related study on the pretesting
issue, Guggenberger and Kumar (2012) investigate the negative impact of an
overidentification pretest on the subsequent inference and show that the asymptotic
size of the second-stage test can be equal to one. A recent paper Cheng et al. (2019)
has shown that the averaging estimator can have uniformly lower asymptotic risk
than an estimator using only the valid moment conditions in the GMM setup.

SUPPLEMENTARY MATERIAL

Kang, B. (2022) Supplement to “Higher-Order Approximation of IV Estimators
with Invalid Instruments,” Econometric Theory Supplementary Material. To view,
please visit: https://doi.org/10.1017/S0266466622000597.
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