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Abstract
This study examined how linguistic complexity features contribute to second language
(L2) processing effort by analyzing the Dutch English-L2 learners’ eye movements from
GECO and MECO, two eye-tracking corpora. Processing effort was operationalized as
reading rate, mean fixation duration, regression rate, skipping rate, and mean saccade
amplitude. In Study 1, the lexical, syntactic, and discoursal indices in 272 snippets of a novel
in GECO were regressed against these eye-movement measures. The results showed that
the one-component partial least square regression (PLS-R) models could explain 11%–37%
of the variance in these eye-movement measures and outperformed eight readability
formulas (six traditional and two recent cognitively inspired formulas based on the readers’
perception on text difficulty) in predicting L2 processing effort. In Study 2, the eye-tracking
data fromMECO were used to evaluate whether the findings from Study 1 could be applied
more broadly. The results revealed that although the predictability of these PLS-R com-
ponents decreased, they still performed better than the readability formulas. These findings
suggest that the linguistic indices identified can be used to predict L2 text processing effort
and provide useful implications for developing systems to assess text difficulty for L2
learners.

Introduction
Text processing effort, a crucial dimension of text difficulty or readability (Dale &
Chall, 1949), refers to the ease with which readers process a text. When it comes to
learning a second language (L2), the level of difficulty of texts being studied is crucial
because effective learning heavily relies on L2 input that is appropriately challenging
(Krashen, 1987). Over the last decades, a large number of English readability
formulas, say Flesch Reading Ease andNewDale–Chall formula, have been developed
(Crossley et al., 2019; see also Benjamin, 2012, for a review), seeking to help educators,
reading researchers, and language teaching material compilers assess texts that are
“not too easy, not too difficult, but just right” for the prospective readers (McNamara
et al., 2014, p. 9).
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Despite the potential benefits of using readability formulas to evaluate text difficulty
for L2 learners, there are also problems associated with this approach. For instance, the
majority of English readability formulas are created based on the perception of text
comprehensibility by L1 users. Text difficulty, a multifaceted construct, involves the
ease with which a text is comprehended and processed (Richards & Schmitt, 2010). As a
result, these formulas are generally not as effective in measuring the processing effort
required for text reading, especially for L2 learners due to substantial differences in the
learning experience of L1 and L2 (Crossley et al., 2008; Nahatame, 2021). Indeed, lexical
sophistication, morphological regularity, and syntactic patterns have been found to
differentially affect the processing of L1 and L2 texts (Goldschneider & DeKeyser,
2001). This study is motivated by the fact that there are currently limited studies
examining the extent to which linguistic complexity features can contribute to L2
processing effort. It is important to address this issue, as accurately evaluating the
difficulty level of L2 texts is not possible without taking into account the performance of
L2 learners in processing the text. In this study, we follow the broad definition of
linguistic complexity (Housen & Simoens, 2016) and subsequently operationalize it at
the lexical, syntactic, and discoursal levels (Kim, Crossley, & Kyle, 2018; Kim, Crossley,
& Skalicky, 2018; Lu, 2011, 2012). Hopefully, our observations can contribute to a better
understanding of text difficulty in general, and to the development of more effective
readability formulas for L2 learners in particular.

Background literature
Text difficulty and readability formulas

Text difficulty refers to the extent to which a group of readers understands a given piece
of printed material, reads it at an optimal speed, and finds it interesting (Dale & Chall,
1949). Viewed in this way, text difficulty is directly bound up with modes of texts,
language comprehension and processing, readers’ characteristics, and interactions
among these factors (DuBay, 2004). To capture these features, some classic readability
formulas such as Flesch Reading Ease (Flesch, 1948), New Dale-Chall formula (Dale &
Chall, 1948), Automated Readability Index (Senter & Smith, 1967), SMOG formula
(McLaughlin, 1969), and Flesch–Kincaid Grade (Kincaid et al., 1975) have been
developed based either on L1 users’ scores of reading tests or on their perception of
text comprehensibility. However, these formulas only incorporate surface-level lin-
guistic features including word length (i.e., the number of syllables per word) or word
familiarity and sentence length (i.e., the number of words per sentence) as predictor
variables for text difficulty, without considering other crucial linguistic features such as
distance between two related linguistic items in sentences or cohesive linkages that bear
upon text processing and comprehension, thus lacking construct validity (Crossley
et al., 2008; Crossley et al., 2019). Variables and data source involved in these classic
formulas can be found in Appendix 1 in the supplementary material online.

To remedy this issue, Crossley et al. (2008) incorporated lexical (word frequency),
syntactic (sentence similarity captured by lexical coreferentiality), and cohesive (over-
lap of content words between adjacent sentences) features into their Coh-Metrix L2
Reading Index (CML2RI), finding that CML2RI outperformed classic formulas
(i.e., Flesch Reading formulas and new Dale–Chall formula) in predicting Japanese
students’ scores of English cloze tests. Likewise, by using cognitively inspired linguistic
(lexical, syntactic, discoursal, and sentimental) indices to predict English users’ com-
parative judgment on text comprehensibility and reading speed, Crossley et al. (2019)
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developed the Crowdsourced Algorithm of Reading Comprehension (CAREC), and
the Crowdsourced Algorithm of Reading Speed (CARES), finding that both CAREC
and CARES outperformed classic formulas in predicting Egnlsih-L1 text difficulty. The
variables and data source involved in these three formulas can be found in Appendix 1
in the supplementary material online.

Despite significant advances in assessing text complexity, current English readability
formulas may still have limitations in their validity, possibly because these formulas
prioritize reflecting accuracy in text comprehension over ease of processing. Text
difficulty is not a unitary construct, as it involves both text comprehension and
processing. Efforts of text processing have seldom been explored in these formulas,
except that CARES was designed based on the English users’ judgment on reading
speed. However, such judgment is less capable of tapping into the processing effort
involved in reading, as text processing is a dynamic process in which meaning decod-
ing, syntactic parsing, and meaning construction are executed (Carroll, 2008; Crossley
et al., 2008; Just & Carpenter, 1987). The evaluation of text difficulty should therefore
take this dynamic process into account.

Importantly, these formulas have been found to be less effective in evaluating the
effort required for processing L2 texts. For instance, Nahatame (2021) examined how
text difficulty, as assessed by these formulas, affected the processing effort of Japanese–
English and Dutch–English L2 learners. The resulting readability scores were used to
predict eye movements during text reading. The results showed that, although newer
formulas (i.e., CML2RI, CARES, and CAREC), in some cases, outperformed classic
ones (i.e., Flesch–Kincaid Grade, Flesch Reading Ease, New Dale–Chall) in predicting
L2 fixation duration, regression, skipping, and saccade length, scores of these formulas
could explain less than 7% of the variance in these measures. This made Nahatame
conclude that it is impractical to use a single formula to predict text processing effort
and it is more advisable to examine which linguistic complexity features, instead of
holistic readability scores, could predict L2 processing effort in reading. Therefore, it is
crucial to move beyond readability formulas that are solely based on reading compre-
hension and perception and instead delve into L2 learners’ real-time processing data to
investigate text processing efforts.

With these inadequacies inmind, we attempted to examine English text difficulty by
analyzing linguistic features that could reflect processing effort involved in L2 text
reading. In what follows, we briefly review recent findings of processing effort in
reading.

Text processing effort in reading: Eye-tracking evidence

Eye-tracking has been widely used in both L1 and L2 reading research because it
resembles natural reading and can provide valuable information of cognitive pro-
cesses involved in text processing (Godfroid, 2019). Specifically, it helps distinguish
both thewhen (temporal) andwhere (spatial) aspects in real-time reading. The former
is related to how long readers fixate on a word and at what time they initiate a saccade
in the uptake of linguistic information, whereas the latter is associated with which
word as a target for fixation and skipping, and what saccade amplitude used to attain
this target (Rayner, 1998; Siegelman et al., 2022). Therefore, eyemovements, have two
prominent features: fixation and saccade. That is, in the reading process readers make
rapid eye movements from one place to another (called saccades, typically about two
degrees of visual angle) separated by clear pauses (called fixations, usually approx-
imately 200–250ms for skilled readers when reading English sentences; Castelhano &
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Rayner, 2008). The readers’ backward saccades of eyes in reading are called regres-
sions (Rayner, 1998).

Fixation duration and reading rate are associated with the when of reading, and
skipping rate and saccade amplitude are linked to the where of reading. Regression rate
can also be linked to where, as it may indicate a need for reanalysis. Based on the
assumption that “fixation duration in one condition” and “saccades between fixations”
can reflect the level of processing effort involved (Liversedge et al., 1998, pp. 58–60), and
can also offer insights into a reader’s grammatical sensitivity, parsing preferences, and
processing difficulty (Godfroid, 2019), researchers have investigated how text difficulty
could affect the eye movements of readers (e.g., Cop et al., 2015; Rayner et al., 2006).
Processing effort has often been captured usingmean fixation duration, regression rate,
skipping rate, and mean saccade amplitude, and the following patterns have been
observed.

First, L1 readers’ fixation duration, fixation counts, and regression rate are signif-
icantly related to their ratings on text difficulty (Rayner et al., 2006), and L2 learners’
reading times (i.e., fewer look-backs inCop et al., 2015; Nahatame, 2020; Sui et al., 2022)
vary as a function of text difficulty. Second, cohesive devices such as connectives could
minimize L1 readers’ fixation duration and regression rate (Zufferey et al., 2015), and
causal relatedness between sentences could decrease their first-pass reading times
(Torres et al., 2021). Third, when processing longer or low-frequency words in text,
both L1 (Cop et al., 2015; Inhoff & Rayner, 1986; Reichle et al., 1998) and L2 readers’
(i.e., Cop et al., 2015; Nahatame, 2020; Sui et al., 2022) fixation duration and regression
rate increase and their skipping rate decreases. Fourth, when processing complex
syntactic structures such as antecedent-anaphor inconsistencies (Rayner et al., 2006)
and ambiguous sentences (i.e., Frazier & Rayner, 1982; Holmes & O’Regan, 1981), L1
readers’ fixation duration and regressions tend to increase.

These studies show that readers tend to spend more time (i.e., longer fixation
duration, more regressions and low skipping rate) recognizing difficult linguistic
patterns including sophisticated words, complex structures, and texts with fewer
connectives and less semantic overlap across sentences in text reading (e.g., Cop
et al., 2015; Holmes & O’Regan, 1981; Zufferey et al., 2015). We therefore anticipate
that as linguistic complexity of reading materials increases, L2 reading rate, skipping
rate, and mean saccade amplitude will decrease, whereas mean fixation duration and
regression rate will increase. As there have been no comprehensive investigations
conducted to assess how linguistic complexity affects text processing, the precise
ramifications of linguistic complexity on L2 processing effort remain uncertain. In
the next section, we briefly review recent advances in linguistic complexity research,
which may help select legitimate linguistic features as predictor variables.

Research into linguistic complexity

Linguistic complexity exists in various language systems and has been often measured
at the levels of lexical sophistication, syntactic complexity, and discoursal cohesion for
written language (Bulté & Housen, 2012; Kyle, 2016; Lu, 2012; Read, 2000).

Lexical sophistication refers to the use of advanced or difficult words in a text (Laufer
& Nation, 1995). The following measures are often used to capture this notion: range,
frequency, psycholinguistic norms, and n-gram properties because of their importance
in L2 learning and processing (Bulté & Housen, 2012; Lu, 2012; Kim & Crossley, 2018;
Kim et al., 2018). In a reference corpus, word range estimates how widely words are

144 Xiaopeng Zhang and Nan Gong

https://doi.org/10.1017/S0272263123000438 Published online by Cambridge University Press

https://doi.org/10.1017/S0272263123000438


used in different texts (Kyle et al., 2018), and frequency measures how often words are
used. Normally, low-frequency words and words used in restricted contexts are
sophisticated (Ellis, 2002). Psycholinguistic norms include word meaningfulness,
concreteness, imageability, familiarity, and age of acquisition/exposure (McNamara
et al., 2014).Meaningfulness refers to how easy a word can evoke semantic associations.
It is difficult for L2 users to generate associations when processing words with low
meaningfulness scores. Concreteness estimates how likely the referent of a word is
perceptible (Kaushanskaya & Rechtzigel, 2012). It is harder to perceive the referents of
abstract words than those of concrete ones. Familiarity reflects how commonly learners
encounter a word. Age of acquisition/exposure refers to the age at which a word is
learned (Kuperman et al., 2012). Less familiar words and later acquired words are
generally considered sophisticated. N-gram properties have also been found to affect L2
processing (Ellis et al., 2008). N-gram frequency measures how frequently an n-gram is
used, whereas association estimates the degree to which words in an n-gram attract one
another. L2 learners have been found to process high-frequency or strongly
associated n-grams more quickly than low-frequency or weakly associated ones
(Öksüz et al., 2021).

Syntactic complexity refers to the elaboration and variation of syntactic structures
(Kyle &Crossley, 2018). Traditionally, it has beenmeasured at the clause or T-unit level
for the length of production unit, overall sentence complexity, coordination, subordi-
nation, and so on (Lu 2011). Considering that these measures cannot capture the
emergence of specific linguistic structures as L2 proficiency develops, usage-based
approaches recommend to use fine-grained indices at the phrasal, clausal, and verb-
argument levels to measure different types of phrases (e.g., adjectival modifiers per
nominal; Biber et al., 2016; Kyle & Crossley, 2018), clauses (e.g., passive auxiliary verbs
per clause), and the distance between syntactic components (e.g., dependents and
governor; Liu et al., 2017). It has been found that sentence processing is significantly
influenced by syntactic complexity because syntactically complex structures require
more cognitive resources in reading (Gibson, 1998; O’Grady, 2011).

Discoursal complexity has to do with cohesion, which is often realized by using
cohesive devices. Such devices can help L2 readers disentangle information both within
and across sentences, therefore playing important roles in determining text difficulty
(Crossley et al., 2019; Halliday & Matthiessen, 1976). For instance, the overlap of
content words between paragraphs can assist readers in establishing connections
among information (Crossley & McNamara, 2011), and the overlap of content words
between sentences can helpmeaning construction and therefore enhance reading speed
(Rashotte & Torgesen, 1985). Cohesion exists at the local, global, and overall text levels
(Crossley et al., 2016). Local cohesion is linkages between structures within a paragraph
(i.e., word overlap across adjacent sentences), global cohesion is linkages between
paragraphs (i.e., word overlap in adjacent paragraphs), and overall text cohesion is
the use of cohesive linkages across the text (i.e., word repetition in the text).

Research questions
In view of the gap identified above in text processing research, as well as the advantage
of eye tracking that can reflect authentic reading process, we intended to use reading
rate (words per minute), mean fixation duration, regression rate, skipping rate, and
mean saccade amplitude (number of letters) as proxies for processing effort, as they
have been found to be closely related to overall text difficulty (Cop et al., 2015;
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Liversedge et al., 1998; Nahatame, 2021; Rayner, 1998). The following research ques-
tions were addressed.

RQ1. To what degree can lexical, syntactic, and discoursal complexity features
explain processing effort captured by L2 learners’ reading rate, mean fixation duration,
regression rate, skipping rate, and mean saccade amplitude?

RQ2. Can lexical, syntactic, and discoursal complexity features identified for RQ1
outperform readability formulas (Flesch Reading formulas, Automated Readability
Index, SimpleMeasure of Gobbledygook Formula, NewDale–Chall Formula, CML2RI,
CAREC, and CARES) in predicting processing effort captured by L2 learners’ reading
rate, mean fixation duration, regression rate, skipping rate, and mean saccade ampli-
tude?

In Study 1, we first analyzed the Dutch–English L2 learners’ eye-movement patterns
from Ghent Eye-tracking Corpus (GECO; Cop et al., 2015) and then calculated the
variances in the eye-movementmeasures explained by the linguistic complexity indices
(RQ1). Second, we compared the variances in the eye-movement measures explained
by the linguistic indices identified for RQ1 and those explained by the readability
formulas (RQ2).

As our approach to exploring RQ1 was data driven and bottom up, it may be
sensitive to the sample used, so we sought to evaluate whether the findings from Study
1 could be applied more broadly. Study 2 sought to test this issue by using L2 eye
movements in the Multilingual Eye-Movements Corpus (MECO; Siegelman et al.,
2022).

RQ3. Can the pattern observed for RQs 1 and 2 be observed when applied to new
data sets?

Study 1: Modeling L2 processing effort
Eye-tracking corpus

The L2-section of GECO (GECO-L2) was selected. GECO-L2 contained eye-
movement data of 19 Dutch–English L2 undergraduates in Ghent University. The
participants were asked to read the novel TheMysterious Affair at Styles (56,000 words)
in four sessions of an hour and a half. All participants took language proficiency tests
(a spelling test, the LexTALE, and a lexical decision task). Based on the LexTALE norms
(Lemhöfer & Broersma, 2012), two participants were lower intermediate L2 learners,
10 participants were upper intermediate learners, and seven participants were advanced
learners. During the experiment, they read the novel silently while the eye tracker
recorded their eye movements. Eighteen participants read Chapters 1 to 4 in Session
1, Chapters 5 to 7 in Session 2, Chapters 8 to 10 in Session 3, and Chapter 11 to 13 in
Session 4. They read half of the novel in Dutch and the other half in English in a
counterbalanced order. One participant read only the first half of the novel in English in
Session 1 to 2. The 10 L2 readers read 2,754 Dutch sentences and 2,449 English
sentences for the first part of the novel in total, whereas the nine L2 readers read
2,852 English sentences and 2,436Dutch sentences for the first part of the novel in total.
Eye movements for 54,364 English words (5,012 types) were finally collected.

To analyze L2 readers’ eye-movement patterns of each text unit in the first half of the
novel, we initially generated text snippets (see Figure 1) based on how they were
presented during the experiment. Each trial consisted of one text snippet, and all the
measurements were combined for each trial. The data of L2 readers were aggregated
into 272 text snippets (M = 90.66 words, SD = 18.29) per participant, with 2,720
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observations in total. Second, considering that the participants were Dutch–English L2
undergraduates who were at the same English proficiency level and that Nahatame
(2021) found the significant effect of L2 proficiency (i.e., L2 proficiency and text
readability scores as predictor variables) on their eye-movement measures (fixation
duration, saccade amplitude, skipping rates, regression rates as outcome variables)
when reading these snippets, we averaged the values of each eye-movement measures
across all L2 readers for each text snippet, respectively. It should be emphasized that the
five eye-movement measures selected were normalized indices (as ratios or means),
which were less likely to be affected by text length, and this was confirmed by the results
of correlation analyses of the eye-movement indices with number of words in each
snippet (rs < .056, p > .09). Third, we calculated lexical, syntactic, and discoursal
complexity indices for each snippet. Descriptive statistics of text snippets and eye-
movement measures are presented in Table 1.

Computing linguistic complexity measures

Lexical sophistication indices
The Tool for Automatic Analysis of Lexical Sophistication (TAALES, Kyle et al., 2018)
was used to compute lexical sophistication indices. First, word range and frequency
based on the fiction section of the Corpus of Contemporary American English (COCA;
Davies, 2010) were calculated given that our snippets were from a novel. Specifically,
the mean frequency scores and mean range scores for all words (AWs), content words
(CWs), and functional words (FWs) of each snippet were used. Second, scores of word
meaningfulness, familiarity, imageability, and concreteness based on the MRC Psy-
cholinguistic Database (Coltheart, 1981) were retrieved. Third, age-of-acquisition
(AoA) scores for words based on Kuperman et al. (2012) were calculated. A text with
high scores of these indices reflects that this text contains more familiar, imaginable,

Figure 1. A sample text snippet.

Table 1. Descriptive statistics of text snippets and eye-movement measures in GECO-L2

Text snippets and eye-movement indices Mean SD Min. Max. 95% CI

Words in 272 snippets 90.66 18.29 45 192 [88.48, 92.85]
Reading rate 341.95 164.81 30.81 931.81 [323.14, 361.72]
Mean fixation duration 222.34 4.97 206.97 238.34 [221.76, 222.93]
Regression rate 0.44 0.050 0.27 0.58 [0.43, 0.45]
Skipping rate 0.18 0.04 0.08 0.26 [0.17, 0.18]
Mean saccade amplitude 8.20 1.55 3.98 17.50 [8.15, 8.27]

Note. SD = standard deviation; CI = confidential interval.
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concrete, meaningful words, and words acquired at a later age. Fourth, the frequency
and association strength of bi- and trigrams were computed.

Global syntactic complexity indices
We employed the Tool for Automatic Analysis of Syntactic Sophistication and Com-
plexity (TAASSC; Kyle, 2016) to calculate syntactic indices of phrasal complexity
(complex nominals per clause), and length of linguistic units (mean length of sen-
tence/clause; see Lu, 2011, for details). Then, we used the Stanford Dependency Parser
(Chen&Manning, 2014) to compute the dependency distance of each sentence in every
snippet. Dependency distance has been assumed to be a reliable index for measuring
cognitive resources used in sentence processing (see Liu et al., 2017, for specific
examples). The mean dependency distance (MDD) of sentences can be obtained via
the following equation:

MDD=
1

n�1

Xn

i= 1

DDi,

where n is the number of words in the sentence and DDi is the dependency distance of
the i-th syntactic link of the sentence (Liu, 2007). In principle, the largerMDD in a text,
the more processing effort L2 readers should put in reading this text.

Fine-grained syntactic complexity indices
We used TAASSC to calculate nominal and clausal indices. For nominal phrases,
TAASSC computed the average number of dependents per each phrase type (e.g.,
nominal subjects, nominal complement, direct object, indirect object, and preposi-
tional object) and the number of specific dependents (e.g., adjective modifiers, verbal
modifiers, nouns as modifiers, relative clause modifiers, determiners, adverbial mod-
ifiers, conjunction “and,” and conjunction “or”) and in the noun phrases, and the
average number of specific dependent types in specific types of noun phrases (e.g.,
verbal modifiers per passive nominal subject). For clausal indices, TAASSC distin-
guished specific indices regarding the average number of structures per clause and
general indices regrading clausal complexity. To determine the specific indices,
TAASSC used the number of direct dependents per clause as a measure of clause
length. This was done to prevent structures consisting of multiple words (such as
phrases) from being given more importance than those containing only one word.
TAASSC then counted each type of specific structure (e.g., dependent clauses or
complex nominals) separately. To calculate the general indices, TAASSC tallied the
total number of dependents per clause by calculating both the average number of
dependents per clause and the standard deviation of the number of dependents per
clause.

Discoursal complexity indices
We used the Tool for the Automatic Analysis of Cohesion (TAACO, Crossley et al.,
2016) to compute indices of cohesion for each text. To be specific, semantic overlap
across adjacent sentences and across adjacent paragraphs, lexical overlap across adja-
cent sentences and across paragraphs, and various types of connectives were taken into
consideration. In addition to these local, global, and overall text cohesive indices,
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TAACO also computed the givenness of information via reporting pronoun density
(i.e., number of pronouns divided by the number of words in a text), and repeated
content lemmas (i.e., number of repeated content lemmas divided by the number of
words in a text).

Computing readability scores

We employed the Automatic Readability Tool for English (Choi & Crossley, 2020) to
calculate readability scores (Flesch Reading formulas, Automated Readability Index,
New Dale–Chall, SMOG, CML2RI, CAREC, CARES) for each snippet as baselines for
model comparison.

Data analysis

Partial least square regression (PLS-R)modeling was used to fit the eye-movement data
because our sample size of text snippets was relatively small (n= 272) and the number of
x-variables (linguistic indices) was large (up to 70), and most importantly some of the
x-variables were multicollinear (r >.80). PLS-Rmodeling can effectively solve the issues
that stepwise linear regressions cannot handle (Abdi, 2010) by clustering various
predictor variables (x-variables) into latent components. Then, the latent components
of x-variables are used to predict the outcome variable so as tomaximize the covariance
between them.

The PLS-R modeling was carried out via the mdatools package (Kucheryavskiy,
2020) in R (R Core Team, 2021). First, in order to “turn the bounded eye-tracking
measure into an unbounded, continuous variable” (Godfroid, 2019, p. 275), both
skipping rate and regression rate were transformed into empirical logits. Second, PLS
components of the original linguistic indices were used to explain a significant
amount of variation in both the linguistic indices as x-variables and the eye-
movement indices as y-variables. Third, a linear regression model was set up with
the PLS components as predictors to fit the eye-movement measures. To build a
model that contained an ideal number of components that could validly fit the data,
we removed unimportant and noisy linguistic indices (Mehmood et al., 2012). The
determination of PLS components was based on variable importance in projection
(VIP), which is an estimation of the contribution of each x-variable to the model
(Wold et al., 1993). VIP scores > 1 are considered important (Eriksson et al., 2013).
Fourth, a tenfold cross validation was employed to identify the optimal number of
PLS components. Criteria including regression coefficients and VIP scores are
commonly used to select predictors (Mehmood et al., 2012). The R codes and data
are available at https://osf.io/t78yc/.

Results

Modeling reading rate
The correlation analyses yielded 46 linguistic indices that were significantly correlated
with reading rate (see Appendix 2 in the supplementary material online). These indices
were treated as x-variables incorporated in the PSL-R model. The top two lexical,
syntactic, and discoursal indices correlated with reading rate are presented in Table 2.
Our findings indicated that the Dutch–English L2 learners had a high reading rate (M =
341.95 words per minute) than did the English L1 readers for fiction (262 words per
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minute, as reported by Brysbaert, 2019). This suggested that the book used in our study
contained a significant amount of redundant information, such as repeated names and
phrases. A similar high reading ratewas also reported for theChinese version ofGECO in
a study by Sui et al. (2022).

The results of the tenfold cross validation indicate that the PLS-R model that
contained only one component of 10 linguistic indices was parsimonious. The linguistic
indices retained were able to account for 33.6% of the variance in the x-data matrix and
37.1% of the variance in the y-vector (see Appendix 2 in the supplementary material
online). We examined regression coefficients, VIP scores, t-values and the related 95%
CI (see Table 3 and Figure 2), finding that the meaningfulness of functional words had
the highest positive coefficient, whereas mean length of sentence and complex nominal
per T-unit had the highest negative coefficients. The effects of the other seven indices
associated with clause length, complex nominals, and lexical overlap between sentences
on reading rate were also significant.

Table 2. Top two lexical, syntactic, and discoursal indices correlated with reading rate

Indices M SD
Correlations
with RRate 95% CI

Lexical sophistication
MRC Concreteness_FW 280.452 22.288 .444** [.341, .538]
MRC Meaningfulness_FW 330.610 24.058 .429** [.326, .530]
Global syntactic complexity
Mean length of sentence 12.911 6.194 �.592** [�.653, �.524]
Complex nominal per T-unit 1.123 0.783 �.536** [�.601, �.472]
Fine-grained syntactic complexity
Determiners per nominal 0.225 0.105 �.314** [�.418, �.196]
Dependents per nominal 0.724 0.257 �.402** [�.494, �.298]
Discoursal complexity
All lemmas overlap between adjacent

sentences
1.636 1.388 �.500** [�.571, -.424]

Function lemmas overlap between
adjacent sentence

1.214 1.057 �.499** [�.575, -.422]

Note. RRate=reading rate. 95% CI of correlations were based on 1,000 bootstrap samples.

Table 3. Linguistic features retained in the PLS-R model for reading rate

Linguistic indices Coeffs SE t p 95% CI

MRC Meaningfulness_FW 0.067 0.008 7.920 <.001 [0.048, 0.086]
Mean length of sentence �0.089 0.008 �11.850 <.001 [-0.106, -0.072]
Mean length of clause �0.079 0.006 �12.940 <.001 [-0.092, -0.065]
Complex nominals per T-unit �0.079 0.007 �11.740 <.001 [-0.094, -0.064]
Complex nominals per clause �0.076 0.005 �16.680 <.001 [-0.086, -0.066]
All lemmas overlap between adjacent

sentences
�0.077 0.008 �9.730 <.001 [-0.094, -0.059]

All lemmas overlap between binary
adjacent sentence

�0.075 0.009 �8.050 <.001 [-0.096, -0.054]

Function lemmas overlap between
adjacent sentences

�0.076 0.007 �10.710 <.001 [-0.092 -0.060]

Function lemmas overlap between binary
adjacent sentences

�0.075 0.007 �10.470 <.001 [-0.092, -0.059]

Noun and pronoun lemmas overlap
between adjacent sentences

�0.068 0.004 �15.950 <.001 [-0.077, -0.058]

Note. Coeffs = coefficients.
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Modeling mean fixation duration
The results of the correlation analyses showed that 61 linguistic indices were signifi-
cantly correlated with theDutch–English L2 readers’mean fixation duration (MFD; see
Appendix 3 in the supplementary material online). The top two lexical, syntactic, and
discoursal indices that were significantly correlated withMFD are presented in Table 4.

The results of tenfold cross validation indicated that the inclusion of other compo-
nents made the model overfit the data, so we treat the model that contained only one
component of 12 linguistic indices as being parsimonious (see Table 5). The model
could collectively account for 27.9% of the variance in the x-data matrix and 20.8% of
the variance in the y-vector (see Appendix 3 in the supplementarymaterial online). The
VIP scores and regression coefficients are graphically presented in Figure 3. To further
explore the contribution of these 12 linguistic indices to the prediction of MFD, we
examined regression coefficients together with t values and the related 95% CIs. The
results indicated that although each of the analyzed indices had a relatively minor effect
on MFD, Kuperman’s Age of Acquisition for content words and the Age of English
index with a threshold above 40 had the most significant positive coefficients. On the
other hand, COCA fiction range for content words, COCA fiction log-frequency of

Figure 2. Variable importance in projection (VIP) scores and regression coefficient of linguistic complexity
indices: Reading rate. A = MRCMeaningfulness_FW; B =mean length of sentence; C =mean length of clause;
D = complex nominals per T-unit; E = complex nominals per clause; F = all lemmas overlap between
adjacent sentences; G = all lemmas overlap between binary adjacent sentence; H = function lemmas
overlap between adjacent sentences; I = function lemmas overlap between binary adjacent sentences; J =
noun and pronoun lemmas overlap between adjacent sentences.
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content words, and repeated content lemmas had the most negative coefficients. The
contribution of other linguistic indices, such as mean length of sentence, complex
nominals per clause, and mean length of clause, to MFD fell somewhere in between.

Modeling regression rate
The correlation analyses yielded 45 indices significantly correlated with regression rate
(RR) (see Appendix 4 in the supplementarymaterial online). These indices were treated
as x-variables included in the PSL-R model for RR. The top two lexical, syntactic, and
discoursal indices that were significantly correlated with RR are presented in Table 6.

The results of the tenfold cross validation showed that the PLS-R model incorpo-
rating only one component was the best fit. The VIP cores and regression coefficients
are graphically presented in Figure 4. The eight linguistic indices retained in the model
(see Table 7) were able to account for 29.2% of the variance in the x-data matrix and
15% of the variance in the y-vector (see Appendix 4 in the supplementary material
online). COCA fiction range of all words and COCA fiction log-frequency of all words

Table 4. Top two correlated lexical, syntactic, and discoursal indices with MFD

Linguistic indices Mean SD
Correlations
with MFD 95% CI

Lexical sophistication
COCA fiction Range_CW 0.426 0.072 �.316** [-.367, -.118]
COCA fiction Frequency_Log_CW 2.217 0.235 �.305** [-.418, -.192]
Fine-grained syntactic complexity
Dependents per nominal 0.724 0.257 .251** [.132, .360]
Nominal subjects per clause 0.755 0.135 �.223** [-.356, -.083]
Global syntactic complexity
Complex nominals per clause 0.723 0.416 .346** [.243, .444]
Mean length of clause 7.762 2.381 .339** [.245, .430]
Discoursal complexity
Repeated content lemmas 0.115 0.057 �.242** [-.354, -.115]
Overlap of functional words in adjacent binary

sentences
0.570 0.280 .222** [.112, .325]

Note.MFD =mean fixation duration; CW = content words; COCA = Corpus of Contemporary American English. The values for
95% CI of correlations were based on 1,000 bootstrap samples. **p < .01.

Table 5. Linguistic features retained the PLS-R model for mean fixation duration

Linguistic Indices Coeffs SE t p 95% CI

MRC Concreteness_CW .047 .016 2.93 .017 [.011, .084]
Kuperman AoA for all words .054 .016 3.44 .007 [.018, .089]
Kuperman AoA for CW .059 .013 4.47 .002 [.029, .088]
COCA fiction Range for CW �.062 .021 �2.98 .015 [�.108, �.015]
COCA fiction log-frequency of CW �.060 .019 �3.12 .012 [�.104, �.017]
AoE index above threshold 40 .067 .015 4.36 .002 [.032, .101]
Nominal subjects per clause �.052 .017 �3.11 .013 [�.089, �.014]
Mean length of sentence .053 .018 2.94 .017 [.012, .093]
Mean length of clause .057 .010 5.81 <.001 [.035,.079]
Complex nominals per clause .053 .006 8.51 <.001 [.039, .067]
Lemma overlap between adjacent sentences .047 .009 5.18 .001 [.026, .067]
Repeated content lemmas �.058 .015 �3.78 .004 [�.093, -.023]

Note. Coeffs= coefficients; CW= content words.
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had the highest positive effects, whereas word length and Kuperman AoA scores of
function words had the highest negative effects. The effects of nouns as a nominal
dependent per nominal, COCA fiction range of content words, COCA fiction log-
frequency of content words, and COCA fiction bigram log-frequency were lying in
between.

Modeling skipping rate
Eighteen indices were significantly correlated with the Dutch–English L2 learners’
skipping rate (SR; see Appendix 5 in the supplementary material online) and were
incorporated into the PSL-R model. The top two lexical, syntactic, and discoursal
indices correlated with SR are presented in Table 8.

The results of the tenfold cross validation suggested that the PLS-R model contain-
ing only one component was the best fit. The VIP cores and regression coefficients are
graphically presented in Figure 5. The linguistic indices retained in the model (see
Table 9) collectively explained 17%of the variance in the x-datamatrix and 14.1% of the

Figure 3. Variable importance in projection (VIP) scores and regression coefficient of linguistic complexity
indices: Mean fixation duration. A = MRC_Concreteness_CW; B = Kuperman AoA for all words; C = Kuperman
AoA for content words; D = COCA fiction Range for content words; E = COCA fiction log frequency of content
words; F = AoE index above threshold 40; G = mean length of sentence; H = mean length of clause; I =
Complex nominals per clause; J = Lemma overlap between adjacent sentences; K = repeated content
lemmas; L= nominal subjects per clause.
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Table 6. Top two lexical, syntactic, and discoursal indices correlated with RR

Linguistic Indices Mean SD
Correlation
with RR 95% CI

Lexical sophistication
Word length 5.530 0.310 �.445** [�.534, -.349]
COCA fiction range of all words 0.633 0.044 .332** [.205, .449]
Fine-grained syntactic complexity
Nouns as a nominal dependent per nominal 0.059 0.059 �.235** [�.280, �.037]
Nouns as a nominal subject dependent per

nominal subject
0.057 0.091 �.205** [�.311, �.092]

Global syntactic complexity
Mean length of clause 7.762 2.381 �.179** [�.283, �.077]
Complex nominals per clause 0.723 0.416 �.176** [�.287, �.066]
Discoursal complexity1

Argument overlap between adjacent
sentences

0.140 0.085 .132* [.020, .243]

Note. COCA= Corpus of Contemporary American English; RR= regression rate. The values for 95% CI of correlations were
based on 1,000 bootstrap samples. *p < .05, **p < .01.

Figure 4. Variable importance in projection (VIP) scores and regression coefficient of linguistic complexity
indices: Regression rate. A = word length; B = Kuperman AoA_FW; C = COCA fiction range_AW; D = COCA
fiction Frequency_Log_AW; E = COCA fiction frequency_log_CW; F = COCA fiction range_CW; G = COCA
fiction bigram frequency_log; H = nouns as a nominal dependent per nominal.

1Of all discoursal indices, only argument overlap between adjacent sentences was significantly correlated
with regression rate in GECO.
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variance in the y-vector (see Appendix 5 in the supplementary material online). The
relative contribution of these indices showed that existential “there” per clause, adjec-
tival modifiers per nominal, and adjectival modifiers per nominal (no pronouns),
among the five linguistic indices, were the most important variables that could predict
the Dutch–English L2 learner’ skipping rate.

Modeling mean saccade amplitude
The correlation analysis yielded 33 linguistic indices that were significantly correlated
with the participants’ mean saccade amplitude (MSA; see Appendix 6 in the supple-
mentary material online). They were included into the PSL-R model for MSA. The top
two lexical, syntactic, and discoursal indices correlated with MSA are presented in
Table 10.

The results of the tenfold cross validation indicated that the PLS-Rmodel containing
only one component was parsimonious. The VIP scores and regression coefficients are
graphically presented in Figure 6. The seven linguistic indices of the first component
(see Table 11) could explain 33% of the variance in the x-data matrix and 11% of the
variance in the y-vector (see Appendix 6 in the supplementary material online). These
findings demonstrated that the predictability of linguistic indices in the current study

Table 7. Linguistic features retained in the PLS-R model for regression rates

Linguistic Indices Coeffs SE t p 95% CI

Word length �.099 .014 �7.14 <.001 [�.131, �.068]
Kuperman AoA_FW �.079 .025 �3.22 .010 [�.135, �.023]
COCA fiction Range_AW .078 .017 4.71 .001 [.041, .116]
COCA fiction Frequency_Log_AW .079 .020 3.95 .003 [.034, .124]
COCA fiction Range_CW .066 .014 4.85 .001 [.035, .098]
COCA fiction Frequency_Log_CW .068 .015 4.51 .001 [.034, .102]
COCA fiction bigram Frequency_Log .061 .010 6.04 <.001 [.038, .084]
Nouns as a nominal dependent per nominal �.064 .021 �3.05 .014 [�.112, �.016]

Note. Coeffs = coefficients; AW = all words; FW = functional words; CW = content words; COCA = Corpus of Contemporary
American English.

Table 8. Top two correlated lexical, syntactic, and discoursal indices with SR

Linguistic indices Mean SD
Correlation
with SR 95% CI

Lexical sophistication
Character bigram frequency of content
words

3,558.401 295.055 �.143* [�.255, �.039]

Character bigram frequency of all words 3,690.731 306.446 �.125* [.243, .004]
Fine-grained syntactic complexity
Prepositions per nominal subject (no
pronouns)

0.110 0.199 �.172** [�.274, �.072]

Existential “there” per clause 0.025 0.044 �.170** [�.276, �.046]
Discoursal complexity
Overlap of adjective lemmas across
adjacent sentences (sentence normed)

0.012 0.047 .134* [�.007, .247]

Overlap of adjective lemmas across
adjacent sentences

0.017 0.069 .122* [0, .232]

Note. SR = skipping rates. The values for 95% CI of correlations were based on 1,000 bootstrap samples. *p < .05, **p < .01.
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over the mean saccade amplitude was weak. A further scrutiny of the coefficients, t
values, and 95% CI revealed that COCA fiction bigram frequency and overlap of
content lemmas between adjacent sentences had the highest positive coefficient. Four
indices regarding the overlap of content lemmas and the overlap of noun and pronoun
lemmas contributed the PLS-R model for MSA. However, the effect of dependents per
object of the preposition (no pronouns, standard deviation) was not significant.

Figure 5. Variable importance in projection (VIP) scores and regression coefficient of linguistic complexity
indices: skipping rates. A = word length; B = AOE inverse linear regression slope; C = adjectival modifiers per
nominal; D = determiners per nominal (no pronouns); E = adjectival modifiers per nominal (no pronouns);
F = existential “there” per clause.

Table 9. Linguistic features retained in the PLS-R model for skipping rates

Linguistic indices Coeffs SE t p 95% CI

Word length �.094 .031 �3.040 .014 [�.165, �.023]
AOE inverse linear regression slope 0.86 .046 1.880 .093 [�.018, .190]
Adjectival modifiers per nominal �.106 .043 �2.460 .036 [�.205, �.008]
Determiners per nominal (no pronouns) �.087 .027 �3.300 .009 [�.148, �.027]
Adjectival modifiers per nominal (no

pronouns)
�.110 .045 �2.430 .038 [�.213, �.007]

Existential “there” per clause �.097 .035 �2.770 .022 [�.177, �.017]

Note. Coeffs = coefficients.
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Table 10. Top two lexical, syntactic, and discoursal indices correlated with MSA

Linguistic indices Mean SD
Correlation
with MSA 95% CI

Lexical sophistication
COCA Fiction bigram Frequency 209.14 84.28 .245** [.138, .352]
COCA fiction bigram T-score 51.90 14.99 .211** [.103, .314]
Global syntactic complexity
Mean length of sentence 12.91 6.19 .156* [.058, .250]
Mean length of clause 7.76 2.38 .142* [.048, .232]
Fine-grained syntactic complexity
Dependents per object of the preposition (no
pronouns, standard deviation)

0.76 0.27 .189** [.076, .296]

Determiners per object of the preposition 0.35 0.19 .183** [.082, .290]
Discoursal complexity
Binary adjacent sentence overlap content lemmas 0.23 0.23 .194** [.095, .287]
Adjacent sentence overlap content lemmas
(sentence normed)

0.32 0.39 .185** [.089, .275]

Notes: MSA = mean saccade amplitude. The values for 95% CI of correlations were based on 1,000 bootstrap samples.
*p < .05, **p < .01.

Figure 6. Variable importance in projection (VIP) scores and regression coefficient of linguistic complexity
indices: Mean saccade amplitude. A = COCA fiction bigram frequency; B = dependents per object of the
preposition (no pronouns, standard deviation); C = adjacent sentence overlap all lemmas; D = sentence
overlap content lemmas; E = adjacent sentence overlap content lemmas (sentence normed); F = binary
adjacent sentence overlap content lemmas; G = adjacent sentence overlap noun and pronoun lemmas
(sentence normed).
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Comparing PLS-R models with readability formulas

We compared the predictive ability of the PLS-R models for GECO eye-movement
measures and eight readability formulas (Flesch Reading Ease, Flesch–Kincaid Grade,
Automated Readability Index, new Dale–Chall, SMOG, CAREC, CARES, and
CML2RI). The results indicated that our PLS-R models could respectively explain
37, 22, 15, 14, and 11% of the variance in reading rate, mean fixation duration,
regression rate, skipping rate, and mean saccade amplitude. However, the variance in
these eye-movement measures explained by the readability formulas was even lower.
Only 20%–33% of the variance in reading rate was explained by Flesch Reading Ease,
Flesch–Kincaid Grade, Automated Readability Index, and SMOG (see Table 12). These
results support our argument that it is advantageous to use multiple linguistic com-
plexity features rather than relying on overall readability scores to predict L2 processing
effort as reflected in eye-movement patterns during reading.

Study 2: Testing PLS-R models with new eye-movement data
Eye-tracking corpus

We examined whether the PLS-Rmodels’ superiority over the readability formulas was
also evident in a new data set consisting of the eye-movement patterns from MECO
(Siegelman et al., 2022). To ensure that the Dutch–English L2 readers were comparable
to those in the GECO data set in terms of their English proficiency and learning
experience, we selected 47 students fromGhentUniversity whowere tested on the same

Table 11. Linguistic features retained in the PLS-R model for mean saccade amplitude

Linguistic Indices Coeffs SE t p 95% CI

COCA Fiction bigram frequency .076 0.029 2.610 .028 [.009, .142]
Dependents per object of the preposition (no

pronouns, standard deviation)
.056 0.028 2.010 .075 [�.008, .120]

Adjacent sentence overlap all lemmas .061 0.019 3.300 .009 [.019, .104]
Adjacent sentence overlap content lemmas .066 0.014 4.860 .001 [.035, .096]
Adjacent sentence overlap content lemmas

(sentence normed)
.058 0.013 4.360 .002 [.027, .088]

Binary adjacent sentence overlap content
lemmas

.064 0.016 4.120 .003 [.029, .100]

Adjacent sentence overlap noun and pronoun
lemmas (sentence normed)

.056 0.019 2.990 .015 [.014, .099]

Note. SD = standard deviation; Coeffs = coefficients.

Table 12. Variance in GECO eye-movement measures explained by PLS-R models versus readability
formulas

PLS-R FRE FKG ARI SMOG NDC CAREC CARES CML2RI

RRate .37 .20 .31 .33 .23 .10 .02 .02 .07
MFD .21 .08 .10 .10 .09 .05 .00 .04 .10
MSA .15 .00 .00 .00 .00 .00 .01 .00 .00
RR .14 .08 .05 .07 .06 .10 .02 .02 .08
SR .11 .01 .00 .00 .00 .00 .00 .00 .01

Note. FRE = Flesch Reading Ease; FKG = Flesch–Kincaid Grade; ARI = Automated Readability Index; SMOG = Simple Measure
of Gobbledygook Formula; NDC = New Dale–Chall Formula; CML2RI = Coh-Metrix L2 Reading Index; CAREC = Crowdsourced
Algorithm of Reading. Speed; RRate = reading rate; MFD = mean fixation duration; MSA = mean saccade amplitude; RR =
regression rate; SR= skipping rate.
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eye-tracking equipment. The MECO readers were asked to read 12 Wikipedia-type
English paragraphs of historical figures, events, and social or natural phenomena (M =
137.75 words, SD = 25.34). For each participant, we aggregated the original eye-
movement data of each paragraph. The descriptive statistics of the eye-movement
measures are presented in Table 13.

Data analysis

First, the linguistic variables in the PLS-R models used in Study 1 and text readability
scores of the 12 texts in MECO were computed (see Appendix 8 in the supplementary
material online for the descriptive statistics). Second, these linguistic variables in the
PLS-Rmodels used in Study 1were respectively regressed against the 47Dutch–English
L2 readers’ reading rate, mean fixation duration, mean saccade amplitude, regression
rate, and skipping rate in MECO. Third, the values for variance in the eye-movement
measures explained by the readability formulas were calculated by squaring the Pearson
correlation between the eye-movement measures and readability scores. The R code
and data are available at https://osf.io/t78yc/.

Results

Compared with the results obtained from the GECO data set, the predictive ability of
our PLS-R variables on the new MECO data set fell sharply. Specifically, they could
account for only 7, 16, 4, 8, and 13% of the variance in reading rate, mean fixation
duration, mean saccade amplitude, regression rate, and skipping rate, respectively
(Table 14). Nevertheless, these models outperformed the eight readability formulas
in predicting L2 processing effort based onMECOdata. Overall, these findings indicate

Table 13. Descriptive data of the Dutch–English L2 learners’ eye movements in MECO

Eye-movement indices Mean SD Min. Max. 95% CI

Reading rate 249.01 81.502 78 539 [240.86, 257.55]
Mean fixation duration 204.895 25.382 142.77 286.06 [202.209, 207.417]
Mean saccade amplitude 10.630 2.774 4.726 17.670 [10.328, 10.898]
Regression rate 0.153 0.057 0.04 0.40 [0.147, 0.159]
Skipping rate 0.449 0.130 0.176 0.959 [0.436, 0.463]

Table 14. Variance in MECO eye-movement measures explained by PLS-R models versus readability
formulas

PLS-R FRE FKG ARI SMOG NDC CAREC CARES CML2RI

RRate .07 .01 .01 .01 .00 .02 .02 .00 .00
MFD .16 .07 .07 .06 .06 .08 .02 .03 .00
MSA .04 .00 .00 .00 .00 .00 .00 .01 .00
RR 0.08 .03 .03 .03 .01 .02 .00 .01 .03
SR .13 .01 .00 .00 .00 .001 .01 .03 .00

Note. FRE = Flesch Reading Ease; FKG = Flesch–Kincaid Grade; ARI = Automated Readability Index; SMOG = Simple Measure
of Gobbledygook Formula; NDC = New Dale–Chall Formula; CML2RI = Coh-Metrix L2 Reading Index; CAREC = Crowdsourced
Algorithm of Reading. Speed; RRate = reading rate; MFD = mean fixation duration; MSA = mean saccade amplitude; RR =
regression rate; SR= skipping rate.
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that the linguistic features identified in this study can be potentially used to predict L2
text processing effort.

Discussion
This study examined the extent to which linguistic complexity features could contribute
to processing effort in L2 reading. The processing effort was captured by L2 reading
rate, mean fixation duration, regression rate, skipping rate, and mean saccade ampli-
tude, which have been found to measure global text difficulty (Castelhano & Rayner,
2008; Cop et al., 2015; Rayner et al., 2006). Results indicated that the one-component
PLS-R models could explain 11%–37% of the variance in GECO eye-movement
measures, and their predictability shrunk in MECO eye-movement measures, with
4%–16% of the variance being explained. Overall, the effects of lexical, syntactic, and
discoursal complexity indices on L2 readers’ eye-movement performance were rela-
tively weak, particularly formean saccade amplitude, even though our linguistic indices
were chosen by considering the recent advances in L2 development, processing, and
discourse comprehension. Nevertheless, the linguistic indices identified in our PLS-R
models significantly outperformed the eight readability formulas in predicting L2
processing effort. In relation to our three RQs, these findings are discussed as follows.

Contribution of linguistic complexity to processing effort

RQ1 investigated the degree to which lexical, syntactic, and discourse complexity
features could forecast processing effort, which was measured based on reading rate,
fixation duration, regression rate, skipping rate, and saccade amplitude. As for reading
rate, we discovered that texts with a higher number of functional words and greater
meaningfulness were read at a quicker pace. However, texts with longer sentences and
clauses, more complex nominals, and more repetition of word forms between consec-
utive sentences were readmore slowly. The reason for this is that words with high levels
of meaningfulness allow readers to generate more semantic connections (Coltheart,
1981; McNamara et al., 2014), which can accelerate the process of constructing
meaning during reading. Conversely, longer sentences and clauses that consist of more
individual elements require greater cognitive resources for processing, as explained by
O’Grady (2011). These observations are in line with existing findings that a text
containing more sophisticated words and complex structures would require readers
to spend more time comprehending textual information (Cop et al., 2015; Nahatame,
2020; Sui et al., 2022; Torres et al., 2021). In contrast to the finding that content word
overlap between sentences can aid reading speed (Rashotte & Torgesen, 1985), our
research revealed that this factor had negative correlations with reading rates in both
GECO andMECO (See Appendix 8 for correlations). One possible explanation for this
result is that the texts we used were excerpts from a detective novel, and academic texts
in which words conveying similar meanings were employed to enhance the coherence
of the intricate plots or expositions. When reading these excerpts, readers may have
needed to focus more on these cohesive devices to grasp the complexity of the plots or
expositions.

As for mean fixation duration, word range, frequency, age of acquisition/exposure,
and word concreteness were significant factors, with absolute coefficients ranging from
.047 to .067. First, fixation duration increased when readers encountered texts contain-
ing more sophisticated words such as those that are acquired or exposed to later in life,

160 Xiaopeng Zhang and Nan Gong

https://doi.org/10.1017/S0272263123000438 Published online by Cambridge University Press

http://doi.org/10.1017/S0272263123000438
https://doi.org/10.1017/S0272263123000438


abstract, of low frequency, and used in more restricted contexts. This agrees with
previous findings that language users tend to spend more time processing or compre-
hending words with such features (e.g., Juhasz & Rayner, 2006; Rayner & Duffy, 1986).
Second, three syntactic indices (sentence/clause length, and complex nominals per
clause) were significant predictors. This indicates that fixation duration tended to
increase with longer sentences and clauses, as well as with the use of complex nominals
in the text. Nahatame (2021) also reported that Flesch–Kincaid Grade scores based on
sentence length andword length could significantly predict the duration of eye fixations
in L2 reading. Complex nominals typically take the form of a noun followed by
modifiers, such as adjectives, adjective clauses, or prepositional phrases, and they
usually appear before the main verb in a sentence (Cooper, 1976; Lu, 2011). When
processed, this left-embeddedness often requires more cognitive effort (Gibson, 1998;
Just & Carpenter, 1999). This may explain why fixation duration tended to increase
when complex nominals were present in a sentence. Third, repeated content lemmas
led to shorter fixation duration. This is because word repetition made it easier for L2
readers to establish semantic connections, leading to gains in reading speed (Douglas,
1981; Rashotte & Torgesen, 1985). However, lemma overlaps between adjacent sen-
tences led to longer fixation duration, possibly because the semantic connections
between these words weremore complex and required more cognitive effort to process,
thus leading to longer fixation duration.

As for regression rate, two lexical indices (word length, Kuperman AoA scores for
functional words) and one syntactic index (nouns as a nominal dependent per nom-
inal) were the most significant variables, indicating that the more sophisticated words
captured by word length and AoA ratings and nouns as modifiers in nominals in the
text, the less likely for L2 readers to look back on the preceding sentences. It is possible
that L2 readers spentmore time processing sophisticated words and complex nominals,
as indicated by longer fixation durations, which in turn reduced the likelihood of them
looking back to reread these words or phrases. We also found that less sophisticated
words, such as high-frequency words or words occurring inmore diverse contexts, were
positively associated with regression rate. One potential explanation for this is that L2
readers spent less time initially reading these high-frequency words but tended to look
back to identify the exact meaning of these words, which are often polysemous
(Crossley et al., 2010).

As for skipping rate, the effect of word length was significant—that is, it was less
likely for readers to skip over words containing more syllables or letters. Likewise, the
more complex the nominal phrases (adjectival modifiers or determiners per nominal),
the less likely for the readers to skip them during reading. Note that the existential
“there” often fills the subject position in a sentence and introduces new information
that has not been mentioned before (Biber et al., 1999). The integration of new
information with old information through this construction often requires more
cognitive resources, which may result in a decrease in skipping rate among L2 readers.

As for saccade amplitude, bigram frequency and the overlap of word lemmas
between adjacent sentences were positive predictors. It has been observed that L2
learner process high-frequency n-gramsmore quickly than low-frequency ones (Öksüz
et al., 2021), largely because the first word of a high-frequency bigram primes the
second word. This processing advantage could induce longer saccades during reading.
The overlap of content words across adjacent sentences, a local cohesive strategy as
discussed above, could help L2 readers connect ideas or infer the semantic relationship
between two sentences (Halliday & Hasan, 1976) and could therefore maximize the
length of saccade in reading.
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Variance in processing effort explained: PLS-R models versus readability formulas

RQ2 is concernedwith the capacity of our PLS-Rmodels and readability formulas in the
prediction of the eye-movement measures. Our findings indicated that the PLS-R
models outperformed the eight readability formulas in predicting L2 processing effort.
The superiority of these PLS-R models may be due to their ability to capture more
nuanced linguistic features and their incorporation of machine learning techniques,
which allowed for more accurate predictions. These observations echo Nahatame’s
(2021) opinion that it is hard to use a single holistic readability score to predict L2
processing effort involved in reading. In principle, text reading is a dynamic process
involving meaning decoding, syntactic parsing, and meaning construction, which are
mainly accomplished at the lexical, syntactic, semantic, and discoursal levels (Just &
Carpenter, 1987). It can be challenging for readers to evaluate these specific processes
through subjective judgment alone. Therefore, when measuring text difficulty, it is
important to consider linguistic indices that reflect processing effort—that is, the
accessibility of text to readers (Fulcher, 1997) or the ease with which texts can be read
and understood (Dale & Chall, 1949; Richards & Schmitt, 2010).

It is important to acknowledge that the explanatory power of the regression models
varied greatly for outcome measure in GECO, from 11% to 37%. Remember that
fixation duration and reading rate are associated with the temporal aspect of reading,
whereas skipping rate, regression rate, and saccade amplitude are linked to the spatial
aspect of reading (Godfroid, 2019). Perhaps, L2 reader’s grammatical sensitivity,
parsing preferences, and processing difficulty may be differentially associated with
the processing load involved in the temporal and spatial aspects during reading (Rayner
et al., 2006). Another potential reason for this variation is that text processing involves
not only linguistic complexity features but also other variables such as the style of the
text, readers’ L2 proficiency, prior knowledge and interest, the content of the reading
material, and interactions among them (DuBay, 2004). These variables play important
roles in the process of text reading.

Generalizability of PLS-R variables

The predictive power of our PLS-R variables decreased when applied to the MECO
data. Possible reasons for the different results in two studies could be attributed to the
influence of different genres of texts and sample size on the analysis. First, the language
used in a novel and an expository text may vary considerably, with different sets of
vocabulary and syntax patterns. In Study 1, the snippets were all taken from a single
novel, which might have limited the range of language use and made the results less
generalizable to other genres. For example, adjectives and nouns used to describe
characters in a novel might be repeated frequently, whereas the language used in
expository texts in Study 2 could be more specialized to academic contexts. This
difference in language use could have weakened the predictive power of the five PLS-
R models, especially those that relied on linguistic indices derived from COCA fiction.
Apart from this, as one of the reviewers pointed out, the PLS-R approach we used was
data driven, whichmeans that the composition of the componentsmay vary in different
corpora. As a result, the ranking of R2 values for the outcome measures differed across
the two corpora (GECO: reading rate > fixation duration > regression rate > skipping
rate > saccade amplitude; MECO: fixation duration > skipping rate > regression rate >
reading rate > saccade amplitude). Second, the small sample size of texts (n = 12) in
Study 2 also limited the predictive power of our PLS-R models. Theoretically, the
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predictability of these models should become more robust when sample size becomes
larger. This is worthy of exploration in future studies.

Shared and unique linguistic features across eye-movement measures

Although the effects of linguistic indices on the Dutch–English L2 learners’ eye
movements were comparatively small, the following patterns are clear (see Figure 7).
First, fixation duration and regression rate could be significantly predicted by AoA
scores, word frequency and range, and word length. Second, fixation duration, regres-
sion rate, and skipping rate could be significantly predicted by word length and
complex nominals. Third, fixation duration, reading rate, and mean saccade amplitude
could be significantly predicted by the overlap of word lemmas. Fourth, fixation
duration and reading rate could be significantly predicted by complex nominals and
MRC word norms. Fifth, repeated content lemmas were uniquely responsible for
explaining fixation duration, and bigram frequency could uniquely predict saccade
amplitude.

Implications for research and practice
This study provided useful insight into future L2 research into effects of linguistic
complexity on text processing. First, even though only a small amount of the processing
effort variance was accounted for by linguistic features, our PLS-R models produced
potentially encouraging findings. Therefore, we suggest that researchers should con-
sider the influence of the linguistic complexity indices identified in this study when
selecting reading materials for moment-to-moment text reading experiments. Second,
we found that the most oft-used text readability formulas were not that reliable to
explain L2 processing efforts during text reading. This points to the possibility that
more attention should be devoted to exploring linguistic complexity and text difficulty
by considering the authentic reading process and linguistic features closely associated
with the cognitive process of reading such as meaning decoding, syntactic parsing, and
meaning construction. To this end, it is recommended that researchers use the
linguistic complexity indices identified in our PLS-R models and the linguistic mea-
sures generated by the latest natural language processing tools to develop text read-
ability formulas that can evaluate the appropriate level of difficulty for L2 learners.

Figure 7. Linguistic complexity and eye-movement behavior in L2 text reading.
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Our findings are also beneficial in some applied aspects. First, L2 instructors and text
book compilers should be aware of linguistic complexity indices including word range
and frequency, word length, complex nominals, sentence length, verb–argument
associations, and overlap or repetition of content words across adjacent sentences as
barometers of overall text difficulty when selecting or adapting candidate texts for the
prospective L2 learners. To achieve this, educators are expected to use less sophisticated
words, avoid complex nominals, and increase the use of similar words in adjacent
sentences so that the target text becomes more accessible to L2 learners. Second,
because the linguistic complexity indices involved in the PLS-R models are mainly
related to lexical sophistication (word length, range, frequency, age of acquisition/
exposure, bigram frequency, and psycholinguistic norms including meaningfulness
and concreteness) and syntactic complexity (sentence/clause length, complex nomi-
nals), we suggest that teachers should focus on teaching sophisticated words, complex
nominals, and other linguistic features during L2 reading instruction. This will help
alleviate processing difficulties and support L2 learners in comprehending and proces-
sing the text more effectively.

Conclusion
We examined the contribution of linguistic complexity to processing efforts involved in
text reading by the Dutch–English L2 learners. The processing effort was operationa-
lized as reading rate, fixation duration, regression rate, skipping rate, and saccade
amplitude, which have also been found tomeasure overall text difficulty. In Study 1, the
PLS-Rmodels yielded that linguistic-complexity features could explain 11%–37%of the
variance in the five eye-movement measures from GECO. Importantly, these models
outperformed eight readability formulas in explaining L2 processing effort. Study
2 found that, although the predictability of the PLS-R components decreased, merely
accounting for 4%–16% of the variance in the eye-movement measures from MECO,
their advantage over the readability formulas still existed. Based on these observations,
we argue that the evaluation of text difficulty should take into consideration L2 learners’
text processing effort in reading together with the recent findings based on L2 learners’
perception on text difficulty (e.g., Crossley et al., 2008; Greenfield, 1999).

However, our study had limitations. First, in our PLS-R modeling the relationship
between linguistic complexity and processing effort was linear. However, this relation-
ship is sometimes mediated by various factors such as L2 proficiency and genre
(i.e., results in Study 2). Second, our data analyses were based only on the Dutch–
English L2 learners’ eyemovements in reading a novel and L2 expository texts from two
corpora, so caution should be exercised in generalizing these findings to other genres of
texts and L2 learners with various L1 backgrounds. Third, we only targeted the role of
linguistic complexity, which explained a small portion of variance in the processing
effort. Online language processing is a very complex process, often influenced by
various factors such as L2 learners’ working memory capacity (Szmalec et al., 2012),
familiarity with the reading materials, etc. Fourth, reading accuracy is an important
factor that may influence text comprehension and processing. We did not incorporate
these because no related data were recorded in GECO. These important issues neces-
sitate more research in this line of inquiry. Despite these imperfections, our study was a
useful attempt to explore whatmakes a text difficult for L2 learners from the perspective
of text processing and what we found is potentially useful to develop reliable models to
assess L2 text difficulty.
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