
Sharp bounds on the height of K-semistable
Fano varieties I, the toric case

Rolf Andreasson and Robert J. Berman

Compositio Math. 160 (2024), 2366–2406.

doi:10.1112/S0010437X2400736X

https://doi.org/10.1112/S0010437X2400736X Published online by Cambridge University Press

https://orcid.org/0009-0007-5035-9088
https://orcid.org/0000-0002-1336-1943
https://doi.org/10.1112/S0010437X2400736X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1112/S0010437X2400736X&domain=pdf
https://doi.org/10.1112/S0010437X2400736X


Compositio Math. 160 (2024) 2366–2406
doi:10.1112/S0010437X2400736X

Sharp bounds on the height of K-semistable
Fano varieties I, the toric case

Rolf Andreasson and Robert J. Berman

Abstract

Inspired by K. Fujita’s algebro-geometric result that complex projective space has maxi-
mal degree among all K-semistable complex Fano varieties, we conjecture that the height
of a K-semistable metrized arithmetic Fano variety X of relative dimension n is maxi-
mal when X is the projective space over the integers, endowed with the Fubini–Study
metric. Our main result establishes the conjecture for the canonical integral model of
a toric Fano variety when n ≤ 6 (the extension to higher dimensions is conditioned on
a conjectural ‘gap hypothesis’ for the degree). Translated into toric Kähler geometry,
this result yields a sharp lower bound on a toric invariant introduced by Donaldson,
defined as the minimum of the toric Mabuchi functional. Furthermore, we reformulate
our conjecture as an optimal lower bound on Odaka’s modular height. In any dimension
n it is shown how to control the height of the canonical toric model X , with respect
to the Kähler–Einstein metric, by the degree of X . In a sequel to this paper our height
conjecture is established for any projective diagonal Fano hypersurface, by exploiting a
more general logarithmic setup.

1. Introduction

1.1 The height of K-semistable Fano varieties
Let (X ,L) be a projective flat scheme X over Z of relative dimension n, endowed with a relatively
ample line bundle L. The complexification of (X ,L) will be denoted by (X,L). In other words, X
is the complex projective variety consisting of the complex points of X and L is the corresponding
ample line bundle over X.

A central role in arithmetic and Diophantine geometry is played by the height of (X ,L),
which is defined with respect to a continuous metric ‖ · ‖ on L. This is an arithmetic analog of
the algebro-geometric degree of (X,L), i.e. of the top intersection number Ln on X. The height
of (X ,L, ‖ · ‖) – also known as the Faltings height – is defined as the (n+ 1)-fold arithmetic
intersection number of the metrized line bundle (L, ‖ · ‖) on X , introduced by Gillet and Soulé in
the context of Arakelov geometry [Fal91, BGS94] (see § 1.1). We recall that in Arakelov geometry
the metric ‖ · ‖ on L plays the role of a ‘compactification’ of X . Accordingly, a metrized line
bundle (L, ‖ · ‖) is usually denoted by L. The definition of height naturally extends to any Q-line
bundle L, using homogeneity.
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Sharp bounds on the height of K-semistable toric Fano varieties I

In contrast to the algebro-geometric degree of L, the height of L can rarely be computed
explicitly and all one can hope for, in general, is explicit bounds on the height. When L is the
relative canonical line bundle, which we shall denote by KX and n = 1, such conjectural upper
bounds are motivated by the Bogolomov–Miyaoka–Yau inequality on X and imply, in particular,
the effective Mordell conjecture, concerning explicit upper bounds on the number of rational
points on XQ, and the abc conjecture [Par88, Voj88, Sou94]. Here we shall be concerned with
the opposite situation where X is an arithmetic Fano variety, in the sense that the relative anti-
canonical line bundle is defined as a relative ample Q-line bundle that we denote by −KX , using
additive notation for tensor products (see § 2.2.1). In particular, X is a complex Fano variety ,
a variety whose canonical line bundle −KX defines an ample Q-line bundle. We will also, for
simplicity, assume that X is normal. As shown in [BB17] in the toric case and then in [Fuj18] in
general, for any complex Fano variety X,

(−KX)n ≤ (−KPn
C
)n (1.1)

under the assumption that X is K-semistable. Moreover, equality holds if and only if X = PnC
[Liu18]. In contrast, when X is not K-semistable the degree (−KX)n can be arbitrarily large
in any given dimension n, for singular X (see [Deb03, Ex 4.2] for simple two-dimensional toric
examples). The notion of K-stability first arose in the context of the Yau–Tian–Donaldson con-
jecture for Fano manifolds, saying that a Fano manifold admits a Kähler–Einstein metric if and
only if it is K-polystable [Tia97, Don02]. The conjecture was settled in [CDS15] and very recently
also established for singular Fano varieties [Li22, LXZ22]. From a purely algebro-geometric per-
spective K-stability can be viewed as a limiting form of Chow and Hilbert–Mumford stability
[RT07], which enables a good theory of moduli spaces (see the survey [Xu21]).

Is there an arithmetic analog of inequality (1.1)? More precisely, it seems natural to ask
if, under appropriate assumptions, the height (−KX )n+1 is bounded from above by the height
(−KPn

Z
)n+1 of the relative anti-canonical line bundle on the projective space PnZ over the integers,

endowed with its standard Kähler–Einstein metric (the Fubini–Study metric). This would yield
an explicit bound on the height (−KX )n+1, since the height of Fubini–Study metric on projective
space was explicitly calculated in [GS90, § 5.4], giving, after volume normalization,

(−KPn
Z

)n+1 =
1
2
(n+ 1)n+1

(
(n+ 1)

n∑
k=1

k−1 − n+ log
(
πn

n!

))
. (1.2)

However, if such a universal bound is to hold, one needs to impose a normalization condition on
the metric on −KX . Indeed, Ln+1 is additively equivariant with respect to scalings of the metric.
Accordingly, the metric ‖ · ‖ on −KX will henceforth be assumed to be volume-normalized in
the sense that the corresponding volume form on X has total unit volume. As it turns out,
the supremum of the height −KX

n+1 over all volume-normalized metrics on −KX with positive
curvature current is finite if and only if X is K-semistable (Theorem 2.5). It thus seems natural
to make the following conjecture.

Conjecture 1.1. Let X be an arithmetic Fano variety of relative dimension n over Z. If the
complexification X of X is K-semistable, then the following height inequality holds for any
volume-normalized continuous metric on −KX with positive curvature current:(−KX

)n+1 ≤ (−KPn
Z

)n+1
,
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where −KPn
C

is endowed with the volume-normalized Fubini–Study metric. Moreover, if X is
normal, equality holds if and only if X = PnZ and the metric is Kähler–Einstein, i.e. coincides
with the Fubini–Study metric, modulo the action of an automorphism.

More generally, when Z is replaced by the ring of integers of a number field F, i.e. a fi-
nite field extension F of Q, the height (−KX )n+1 should be divided by the degree [F : Q]. But,
for simplicity, we will focus on the case when F = Q (see § 6.2 for a generalization of the pre-
vious conjecture). The converse ‘only if’ statement to the previous conjecture does hold (as
a consequence of Theorem 2.5). Moreover, the conjecture is compatible with taking products
(Proposition 2.10). The inequality in the previous conjecture is equivalent to the following in-
equality for any continuous metric on −KX with positive curvature current, as follows from a
simple scaling argument: (−KX

)n+1

(n+ 1)
+

(−KX)n

2
logμ(X) ≤ cn, (1.3)

where μ(X) denotes the volume of X with respect to the measure μ on X corresponding to
the metric ‖ · ‖ on −KX and cn denotes the constant in the right-hand side of formula (1.2).
Some intriguing relations between the conjectural bound (1.3) and the Manin–Peyre conjecture,
concerning the density of rational points on Fano varieties, are discussed in [Ber23].

Our main result concerns the case when X is toric and X is its canonical toric integral model
(see [Mai00, § 2] and [BPS14, Def 3.5.6]).

Theorem 1.2. Let X be an n-dimensional K-semistable toric Fano variety and denote by X
its canonical model over Z. Then the previous conjecture holds under any one of the following
conditions:

• n ≤ 6 and X is Q-factorial (equivalently, X is non-singular or has abelian quotient
singularities);

• X is not Gorenstein or has some abelian quotient singularity.

Note that when n = 2 any toric variety is, in fact, Q-factorial. More generally, we will show
that the curvature assumption may be dispensed with if the height (−KX )n+1 is replaced by
the χ-arithmetic volume v̂olχ(−KX ) of −KX (whose definition is recalled in § 2.2.2). We expect
that the maximum of v̂olχ(−KX ) over all integral models (X ,−KX ) of a given toric Fano variety
(X,−KX) is attained at the canonical integral model X featuring in the previous theorem. This
expectation is inspired by a conjecture of Odaka discussed in § 1.4 below.

The key ingredient in the proof of Theorem 1.2 is the following bound estimating the
arithmetic volume v̂olχ(−KX ) of any volume-normalized metric on −KX in terms of the
algebro-geometric volume vol(X) (Proposition 3.7):

v̂olχ
(−KX

) ≤ −1
2
vol(X) log

(
vol(X)
(2π2)n

)
vol(X) := (−KX)n/n!. (1.4)

Since vol(X) is maximal for X = Pn the right-hand side above is bounded by a constant Cn
only depending on the dimension n. Under the ‘gap hypothesis’ that Pn−1 × P1 has the second
largest volume among all n-dimensional K-semistable X, we show that the bound (1.4) implies
Conjecture 1.1 for the canonical integral model X of a toric Fano variety X. The proof of
Theorem 1.2 is concluded by verifying the gap hypothesis under the conditions in Theorem 1.2.
But we do expect that the gap hypothesis above holds for any toric Fano variety (see § 3.2.1).

In a sequel [AB23] to the present paper Conjecture 1.1 is established for any diagonal Fano
hypersurface X in Pn+1

Z (i.e. X is the subscheme cut out by a homogeneous polynomial of the
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form a0x
d
0 + · · · + an+1x

d
n+1 for any given integers ai, with no common divisors, and d ≤ n+ 1).

Although X is not toric the proof, somewhat surprisingly, is reduced to a simple toric logarithmic
case.

1.2 The height of toric Kähler–Einstein metrics
In the toric case, X is K-semistable if and only if it is K-polystable and thus admits a toric
Kähler–Einstein metric [WZ04, BB13], i.e. a toric continuous metric on −KX whose curvature
form defines a Kähler metric with constant positive Ricci curvature on the regular locus of X.
Moreover, in general, any volume-normalized Kähler–Einstein metric maximizes (−KX )n+1. This
means that the inequality in the previous theorem is equivalent to the corresponding inequal-
ity for the volume-normalized toric Kähler–Einstein metric on −KX . The special role of the
Kähler–Einstein condition in arithmetic (Arakelov) geometry – as an analog of minimality of X
over SpecZ – was emphasized in the early days of Arakelov geometry by Manin [Man85]. It is,
however, rare that the Kähler–Einstein metric and the corresponding height, can be explicitly
computed. In fact, in the Fano case this seems to only have been achieved when X is homo-
geneous [Mai95, CM00, KK02, Tam99a, Tam99b, Tam00]. The following result, complementing
the general upper bound (1.4), yields a rather precise control on its height (−KX )n+1 in the toric
case.

Theorem 1.3. Let X be an n-dimensional toric Fano variety and denote by X its canonical
model over Z. Then the height (−KX )n+1 of any volume-normalized Kähler–Einstein metric
satisfies

(n+ 1)!
2

vol(X) log
(
n!mnπ

n

vol(X)

)
≤ (−KX

)n+1 ≤ (n+ 1)!
2

vol(X) log
(

(2π)nπn

vol(X)

)
,

where mn denotes the largest lower bound on the Mahler volume of a convex body. In particular,
(−KX )n+1 > 0.

We also provide an infinite family of toric varietiesX for which the height of the corresponding
Kähler–Einstein can be explicitly computed as a function f(v) of vol(X) of the same form as in
the previous theorem: f(v) = v log(av−1) for some constant a. The constant mn in the previous
theorem is the largest constant satisfying

mn ≤ vol(P )vol(P ∗),

where P ∗ denotes the polar dual of any given convex body P containing the origin in its inte-
rior (the role of P in the present setting is played by the moment polytope of X). According
to Mahler’s conjecture, the constant mn is equal to (n+ 1)n+1/(n!)2 (which is realized for a
simplex P ). The case n = 2 was settled in [Mah39], but for our purposes the following general
bound from [Kup08] will be enough:

mn ≥
(
π

2e

)n−1

(n+ 1)n+1/(n!)2,

which implies the strict positivity of (−KX )n+1. Combining the previous theorem with the upper
bound (1.1) thus yields the following universal bounds.

Corollary 1.4. Let X be an n-dimensional toric Fano variety and denote by X its canonical
model over Z. Then the height (−KX )n+1 of any volume-normalized Kähler–Einstein metric

2369

https://doi.org/10.1112/S0010437X2400736X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400736X


R. Andreasson and R. J. Berman

satisfies the following universal bounds:

0 <
(−KX

)n+1 ≤ n(n+ 1)n+1

2
log
(

2π2n!
n+ 1

)
.

Incidentally, the upper bound above is related to a question posed in [NT96], asking whether
(−KX )n+1 is bounded from above by a universal constant Cn, under the assumption that X be
non-singular and −KX be relatively ample. This is a stronger condition than having positive
curvature, as we assume. We also allow singularities, but our results concern only the toric case.
Under the conditions in Theorem 1.2 our upper bound may be improved to the sharp bound
(−KPn

Z
)n+1 (given by formula (1.2)). As for the lower bound, it is sharp in any dimension n.

Indeed, there are n-dimensional K-semistable (Q-factorial) Fano varieties X such that vol(X)
and thus (by Theorem 1.3) (−KX )n+1 is arbitrarily close to 0; see Example 3.1.

1.3 Donaldson’s toric invariant
Let (X,L) now be a polarized complex projective manifold. A prominent role in Kähler geom-
etry is played by Mabuchi’s K-energy functional M [Mab86], defined on the space H(X,L) of
all smooth metrics ‖ · ‖ on L with positive curvature. Its critical points are the metrics whose
curvature form ω defines a Kähler metric on X with constant scalar curvature. The precise
definition of M is recalled in § 4.1. Since the definition of M only involves its differential, the
functional M is only defined up to addition by a real constant. However, when (X,L) is toric,
Donaldson [Don02] exploited the toric structure to define the Mabuchi functional M as a
canonical functional on toric metrics:

ML :=
∫
∂P
u dσ − a

∫
P
u dx−

∫
P

log det(∇2u) dx, a :=
∫
∂P

dσ

/∫
P
dx, (1.5)

where P is the moment polytope in Rn corresponding to the polarized toric manifold (X,L),
whose boundary ∂P comes with a measure dσ induced by Lebesgue measure dx on Rn and
the lattice Zn in Rn and u is the smooth bounded convex function on P corresponding to a
toric metric on L under Legendre transformation (see § 3.1.2). In particular, in the last section
of [Don02] Donaldson introduced an invariant of a polarized toric manifold (X,L), defined as
the infimum of the toric Mabuchi functional ML defined by formula (1.5). Here we show that
Theorem 1.2 implies that when X is a Fano variety and L = −KX, a slight perturbation of
Donaldson’s invariant is minimal when X is complex projective space, under the conditions on
X appearing in Theorem 1.2.

Theorem 1.5. Let X be a K-semistable toric Fano variety of dimension n, satisfying the
conditions in Theorem 1.2. Then the invariant

X �→ inf
H(X,−KX)

M−KX − (−KX)n

n!
log
(

(−KX)n

n!

)
is minimal for X = Pn (and only then), where the infimum is attained at the metric on −KPn

induced by the Fubini–Study metric.

In the previous theorem the Fano variety X is allowed to be singular. The Mabuchi functional
for singular general Fano varieties was introduced in [DT92, BBEGZ19], and Donaldson’s for-
mula (1.5) was extended to singular toric Fano varieties in [BB13]. In general, for Fano varieties
the Mabuchi functional M is bounded from below if and only if X is K-semistable [Li17] (see
the discussion following Theorem 2.5).
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1.4 The arithmetic Mabuchi functional and Odaka’s modular height
For a general polarized manifold (X,L) the infimum of the Mabuchi functional M is not canon-
ically defined (since M is only defined up to addition by a constant). But to any given integral
model (X ,L) of a polarized complex variety (X,L) one may, as shown by Odaka [Oda18], attach
a particular Mabuchi functional M(X ,L) which (up to a multiplicative normalization) is given as
the following sum of arithmetic intersection numbers:

M(X ,L)(L) :=
a

(n+ 1)!
Ln+1 − 1

n!
(−KX ) · Ln, a = −n(KX · Ln−1)/Ln, (1.6)

where, as in the previous section, L denotes the metrized line bundle (L, ‖ · ‖). In the definition
of the second arithmetic intersection number above one also needs to endow −KX with a metric
and one is confronted with two different natural choices: either the metric induced by the volume
form ωn/n! of the Kähler metric ω defined by the curvature form of (L, ‖ · ‖) or the normalized
volume form ωn/Ln (which has unit total volume). The first choice is the one adopted in [Oda18],
and we show that when X is a toric Fano variety and (X ,L) is the canonical integral model of
(X,L) this choice coincides with Donaldson’s one (formula (1.5)). However, for our purposes the
second volume-normalized choice turns out to be the appropriate one. It yields, in particular,
the shift by the logarithm of (−KX)n appearing in Theorem 1.5:

2M(X ,−KX) = M−KX − (−KX)n

n!
log
(

(−KX)n

n!

)
(Proposition 5.2). The point is that with this choice the following formula holds in the arithmetic
setting:

sup

(−KX
)n+1

(n+ 1)!
= − inf

H(X,−KX)
M(X ,−KX ), (1.7)

where the supremum ranges over all volume-normalized metrics in H(X,−KX) (see
Proposition 5.3). As a consequence, Conjecture 1.1 is equivalent to the inequality

inf
H(X,−KX)

M(X ,−KX ) ≥ inf
H(Pn,−KPn )

M(Pn
Z
,...). (1.8)

Theorem 1.5 thus follows from Theorem 1.2.

1.4.1 Odaka’s modular height. Let (XF , LF ) be an n-dimensional polarized variety defined
over a number field F . In [Oda18] Odaka introduced the following invariant of (XF , LF ), dubbed
the intrinsic K-modular height of (XF , LF ):

h(XF , LF ) = inf
(X ,L)

inf
H(X,L)

M(X ,L), (1.9)

where (X ,L) is a model of (XF , LF ) over the rings of integers OF ′ of a finite field extension
F ′ of F and M(X ,L) now denotes the arithmetic K-energy (1.6), divided by the degree [F ′ : Q].
In contrast to [Oda18], we will employ the volume-normalized metric on −KX in the definition
of M(X ,L), discussed in the previous section. As shown in (1.6), for a polarized abelian variety
(XF , LF ), Odaka’s modular height h(XF , LF ) essentially coincides with Faltings’s stable modular
height of (XK , LK) [Fal83a] (see § 6.4). Furthermore, as explained in [Oda18], h(XF , LF ) can be
viewed as a ‘large rank limit’ of Bost and Zhang’s intrinsic heights appearing in [Bos94, Bos96,
Zha96], where the role of K-semistability is played by Chow semistability (see formula (6.8)).
We propose the following conjecture.
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Conjecture 1.6. Let XQ be a Fano variety defined over Q. Then Odaka’s modular invariant
h(XQ,−KXQ

), normalized as above, is minimal when XQ = PnQ.

According to a conjecture of Odaka [Oda20], any globally K-semistable integral model
(X ,−KX ) of (X,−KX) minimizes M(X ,L) over all models (X ,L) (the function field analog
of this minimization property is established in [BX19]; see also [Xu21, Remark 7.9]). Global
K-semistability means that all the fibers of X → SpecOF are K-semistable. In other words, in
addition to the K-semistability of the generic fiber XF , this means that the variety XFp over the
finite field Fp, corresponding to the integral model X , is K-semistable for any prime ideal p. For
example, as pointed out to us by Odaka, the canonical model X of a K-semistable toric Fano
variety XQ appearing in Theorem 1.2 is globally K-semistable. Thus if Odaka’s minimization
conjecture holds, then Theorem 1.2 implies Conjecture 1.6 for any toric Fano variety XQ satisfy-
ing the conditions in Theorem 1.2.1 In any case, the positivity statement in Theorem 1.3 implies
that the modular invariant h(XQ,−KXQ

) is negative for any K-semistable toric Fano variety XQ.

1.5 Organization
In § 2 we start by recalling the complex geometric and arithmetic setup before proving
Theorem 2.5, relating upper bounds on the height of Fano varieties to K-semistability. The proof
leverages an arithmetic analog of the Ding functional. In § 3 we specialize to the toric situation
and prove the sharp height inequality in Theorem 1.2 and the height bounds for Kähler–Einstein
metrics in Theorem 1.3. We also show that Conjecture 1.1 is compatible with taking products.
We then go on, in § 4, to deduce Theorem 1.5 concerning the sharp lower bound on Donaldson’s
toric Mabuchi functional. In § 5 Donaldson’s functional is related to Odaka’s arithmetic Mabuchi
functional, which in turn is related to the arithmetic Ding functional. In the last section we make
a comparison with the function field case, formulate a generalized version of Conjecture 1.1 and
compare with previous work of Bost and Zhang, Odaka and Faltings.

We have made an effort to make the paper readable for the reader with a background in
arithmetic geometry, as well as for complex geometers, by including most of the background
material needed for the proofs of the main results.

2. Heights, arithmetic volumes and K-stability of Fano varieties

In this section we show, in particular, that the height of a polarized integral model (X ,L) of a
Fano manifold (X,−KX) is bounded from above – as the metric on L ranges over all volume-
normalized metrics with positive curvature current – if and only if (X,−KX) is K-semistable
(Theorem 2.5). See also [Oda18] for further connections between K-stability of polarized varieties
(X,L) and arithmetic geometry. The main new feature here, compared to [Oda18], is that we
leverage an arithmetic version of the Ding functional in Kähler geometry, while [Oda18] considers
an arithmetic version of the Mabuchi functional (the two functionals are compared in § 5).

2.1 Complex geometric setup
Throughout the paper X will denote a compact connected complex normal variety, assumed
to be Q-Gorenstein. This means that the canonical divisor KX on X is defined as a Q-line
bundle: there exist some positive integer m and a line bundle on X whose restriction to the
regular locus Xreg of X coincides with the mth tensor power of KXreg , i.e. the top exterior

1 During the revision of the first preprint version of the present paper, Odaka’s minimization conjecture was settled
in [HO22] under slightly stronger assumptions than global K-semistability.
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power of the cotangent bundle of Xreg. We will use additive notation for tensor powers of line
bundles.

2.1.1 Metrics on line bundles. Let (X,L) be a polarized complex projective variety, i.e. a
complex normal variety X endowed with an ample line bundle L. We will use additive notation
for metrics on L. This means that we identify a continuous Hermitian metric ‖ · ‖ on L with a
collection of continuous local functions φU associated to a given covering of X by open subsets
U and trivializing holomorphic sections eU of L→ U :

φU := − log(‖eU‖2), (2.1)

which defines a function on U . Of course, the functions φU on U do not glue to define a global
function on X, but the current

ddcφU :=
i

2π
∂∂̄φU

is globally well defined and coincides with the normalized curvature current of ‖ · ‖ (the normal-
ization ensures that the corresponding cohomology class represents the first Chern class c1(L) of
L in the integral lattice of H2(X,R)). Accordingly, as is customary, we will symbolically denote
by φ a given continuous Hermitian metric on L and by ddcφ its curvature current. The space of
all continuous metrics φ on L will be denoted by C0(L). We will denote by C0(L) ∩ PSH(L) the
space of all continuous metrics on L whose curvature current is positive, ddcφ ≥ 0 (which means
that φU is plurisubharmonic (psh)). Then the exterior powers of ddcφ are defined using the local
pluripotential theory of Bedford and Taylor [BB10]. The volume of an ample line bundle L may
be defined by

vol(L) := lim
k→∞

k−n dimH0(X,L⊗k) =
1
n!
Ln =

1
n!

∫
X

(ddcφ)n (2.2)

using in the second equality the Hilbert–Samuel theorem and where φ denotes any element in
C0(L) ∩ PSH(L).

More generally, metrics φ are defined for a Q-line bundle L: if mL is a bona fide line bundle,
for m ∈ Z+, then mφ is a bona fide metric on mL.

Remark 2.1. The normalization of φU used here coincides with the one in [Ber16, BB13], but it
is twice the one employed in [BB10].

2.1.2 Metrics on −KX versus volume forms on X. First consider the case when X is smooth.
Then any smooth metric ‖ · ‖ on −KX corresponds to a volume form on X, defined as follows.
Given local holomorphic coordinates z on U ⊂ X, denote by eU the corresponding trivialization
of −KX , i.e. eU = ∂/∂z1 ∧ · · · ∧ ∂/∂zn. The metric on −KX induces, as in § 2.1.1, a function φU
on U , and the volume form in question is locally defined by

e−φU
(
i

2

)n2

dz ∧ dz̄, dz := dz1 ∧ · · · ∧ dzn (2.3)

on U, which glues to define a global volume form on X. In other words, e−φU is the density of
the volume form with respect to the local Euclidean volume form. Accordingly, we will simply
denote the volume form in question by e−φ, abusing notation slightly. When X is singular any
continuous metric φ on −KX induces a measure on X, symbolically denoted by e−φ, defined as
before on the regular locus Xreg of X and then extended by zero to all of X. We will say that a
measure dV on X is a continuous volume form if it corresponds to a continuous metric on −KX .
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A Fano variety has log terminal singularities if and only if it admits a continuous volume form
dV with finite total volume [BBEGZ19, § 3.1].

2.1.3 K-semistability. We briefly recall the notion of K-semistability (see [Don02, RT07,
Wan12, Oda13a] for more background). A polarized complex projective variety (X,L) is said to
be K-semistable if the Donaldson–Futaki invariant DF(X ,L ) of any test configuration (X ,L )
for (X,L) is non-negative. A test configuration (X ,L ) is defined as a C∗-equivariant normal
model for (X,L) over the complex affine line C. More precisely, X is a normal complex variety
endowed with a C∗-action ρ, a C∗-equivariant holomorphic projection π to C and a relatively
ample C∗-equivariant Q-line bundle L (endowed with a lift of ρ):

π : X → C, L → X , ρ : X × C∗ → X (2.4)

such that the fiber of X over 1 ∈ C is equal to (X,L). Its Donaldson–Futaki invariant
DF(X ,L ) ∈ R may be defined as a normalized limit, as k → ∞, of Chow weights of a sequence
of one-parameter subgroups of GL(H0(X, kL)) induced by (X ,L ) (in the sense of geometric
invariant theory). As a consequence, (X,L) is K-semistable if, for example, (X, kL) is Chow
semistable, for k sufficiently large [RT07]. However, for the purpose of the present paper it will
be more convenient to employ the intersection-theoretic formula for DF(X ,L ) established in
[Wan12, Oda13a]:

DF(X ,L ) =
a

(n+ 1)!
L

n+1
+

1
n!

KX /P1 · L n
, a = −n(KX · Ln−1)/Ln,

where L denotes the C∗-equivariant extension of L to the C∗-equivariant compactification X
of X over P1 and KX /P1 denotes the relative canonical divisor.

Remark 2.2. Usually the definition of DF(X ,L ) involves a factor of 1/Ln, but the present
definition will be more convenient here (since the factor Ln is positive it does not alter the
definition of K-stability). It is made so that −(n+ 1)!DF(X ,L ) = L

n+1
when L = −KX /P1 .

2.2 Arithmetic setup
Let X be a projective flat scheme X → SpecZ of relative dimension n, with the property that
X is reduced and satisfies Serre’s conditions S2 (this is, for example, the case if X is normal).
Denote by X the complex points of X and assume that X is a normal projective variety over C.
Such a scheme X will be called an arithmetic variety. A polarized arithmetic variety (X ,L) is
an arithmetic variety endowed with a relatively ample Q-line bundle L. We will denote by L the
ample line bundle over X induced by L; the polarized arithmetic variety (X ,L) will be called
a model for (X,L) over Z (or an integral model for (X,L)). We will use the following simple
lemma.

Lemma 2.3. Under the assumptions above on X the canonical embedding of Z in H0(X ,OX )
is an isomorphism. In other words, 1 generates the Z-module H0(X ,OX ).

Proof. We have injections Z ↪→ H0(X ,OX ) ↪→ H0(XQ,OXQ
)  Q (using flatness in the sec-

ond injection and, in the isomorphism, that XQ is geometrically connected and geometrically
reduced). But, since H0(X ,OX ) is a finitely generated Z-module and Z is an integrally closed
domain this implies that Z ↪→ H0(X ,OX ) is an isomorphism. �

For any positive integer k we may identify the free Z-module H0(X , kL) with a lattice in
H0(X, kL):

H0(X , kL) ⊗ C = H0(X, kL).
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By definition a metrized line bundle L is a line bundle L → X such that the corresponding line
bundle L→ X is endowed with a metric ‖ · ‖. We will use the additive notation φ for metrics
‖ · ‖ on L discussed in the previous section:

L :=
(L, φ).

2.2.1 Arithmetic Fano varieties. We will say that the relative canonical line bundle of
an arithmetic variety X is defined as a Q-line bundle, denoted by K, if there exists a pos-
itive integer m such that the mth reflexive power ω[m]

X/SpecZ
of the dualizing sheaf ωX/SpecZ

of X is locally free. Then the line bundle mK over X may be identified with ω
[m]
X/SpecZ

(see
[Kol13, § 1.1] for a more general setup of canonical line bundles attached to schemes over
regular excellent rings). An arithmetic variety X → SpecZ will be called an arithmetic Fano
variety if:

• the canonical line bundle K of X is well defined as a Q-line bundle and its dual −K is relatively
ample;

• the complexification X of X is normal and thus defines a complex Fano variety (i.e. −KX is
ample)

Example 2.4. If X is locally a complete intersection, then K is defined as a line bundle (i.e.
m = 1) [Kol13, § 1.1]. In particular, if X is the subscheme of Pn+1

Z cut out by an irreducible
homogeneous polynomial of degree d with integer coefficients, then K is well defined as a line
bundle and X is an arithmetic Fano variety if and only if d ≤ n+ 1.

2.2.2 The χ-arithmetic volume, heights and arithmetic intersection numbers. In the arith-
metic setup there are different analogs of the volume vol(L) of an ample line bundle L. Here
we shall focus on the one defined by the following asymptotic arithmetic Euler characteristic
originating in [Fal84] (called the χ-arithmetic volume in [BPS14, BMPS16] and the sectional
capacity in [RLV00]):

v̂olχ
(L) := lim

k→∞
k−(n+1) log Vol

{
sk ∈ H0(X , kL) ⊗ R : sup

X
‖sk‖φ ≤ 1

}
, (2.5)

where the volume is computed with respect to the Lebesgue measure, normalized such that
a fundamental domain of the lattice H0(X , kL) has unit volume. Here H0(X , kL) ⊗ R may
be identified with the subspace of real sections in H0(X, kL). If the metric on L has positive
curvature current, then, by the arithmetic Hilbert–Samuel theorem [GS92, Zha95],

v̂olχ
(L) =

Ln+1

(n+ 1)!
, (2.6)

where Ln+1 denotes the top arithmetic intersection number in the sense of Gillet and Soulé
[GS90], which, defines the height of X with respect to L [Fal91, BGS94]. For the purpose of the
present paper, formula (2.5) may be taken as the definition of Ln+1 (arithmetic intersections
between n+ 1 metrized line bundles could then be defined by polarization). More generally,
v̂olχ(L) is naturally defined for Q-line bundles, since it is homogeneous with respect to tensor
products of L:

v̂olχ
(
mL) = mn+1v̂olχ

(L), if m ∈ Z+. (2.7)

2375

https://doi.org/10.1112/S0010437X2400736X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X2400736X


R. Andreasson and R. J. Berman

Moreover, v̂olχ(L) is additively equivariant with respect to scalings of the metric:

v̂olχ(L, φ+ λ) = v̂olχ
(L)+

λ

2
vol(L), if λ ∈ R, (2.8)

as follows directly from the definition.

2.3 Upper bounds on the χ-arithmetic volume versus K-semistability of Fano
varieties
We are now ready to prove the following theorem, relating upper bounds on the χ-arithmetic
volume of a metrized integral model of (X,−KX) to K-semistability.

Theorem 2.5. Let (X ,L) be a polarized arithmetic variety such that X is a Fano variety and
L = −KX . Then the following statements are equivalent.

(1) (X,−KX) is K-semistable.

(2) The supremum of v̂olχ(L, φ) over all continuous volume-normalized metrics φ on −KX is
finite.

(3) The supremum of v̂olχ(L, φ) over all continuous volume-normalized metrics φ on −KX ,
which are invariant under complex conjugation, is finite.

Moreover, (X,−KX) is K-polystable if and only if the supremum in item (2) above is attained
at some locally bounded metric ψ in PSH(−KX). In general, a locally bounded metric ψ in
PSH(−KX) attains the supremum in item (2) above if and only if it is a Kähler–Einstein metric.

Recall that on any complex projective variety X which is defined over R there is a globally
defined complex conjugation map (whose orbits on X correspond to the maximal ideals of the
scheme XR) and in Arakelov geometry it is often assumed that the metrics are invariant under
complex conjugation [SABK92].

Before embarking on the proof we recall the definition of the (normalized) Ding functional
on C0(−KX) � PSH(−KX), introduced in [Din88], which depends on the choice of a reference
metric ψ0 in C0(−KX) � PSH(−KX):

D̂ψ0(ψ) := − 1
vol(−KX)

Eψ0(ψ) − log
∫
X
e−ψ, (2.9)

where the functional Eψ0 is a primitive of (ddcψ)n/n! (see formula (2.12)). More generally, as
shown in [BBEGZ19] using the monotonicity of Eψ0 , D̂ψ0(ψ) can be extended to the space
E1(−KX) of all metrics in PSH(−KX) with finite energy and a finite energy metric ψ minimizes
D̂ψ0(ψ) if and only if ψ is a Kähler–Einstein metric, i.e. ddcψ defines a Kähler metric on the
regular locus of X with constant positive Ricci curvature. When ψ is volume-normalized this
equivalently means that

(ddcψ)n

vol(−KX)n!
= e−ψ

on the regular locus of X. Identity (2.6) was extended to finite energy metrics in [BF14]. But
for our purposes it will be enough to work with continuous metrics.

Remark 2.6. In general, any Kähler–Einstein metric ψ in E1(−KX) is locally bounded
[BBEGZ19]. In the toric case this implies that ψ is, in fact, continuous [CGS19, Proposition 4.1].

By introducing an arithmetic version of the Ding functional we show that item (2) in the
previous theorem is equivalent to the normalized Ding functional D̂ψ0 being bounded from below
on C0(−KX) � PSH(−KX) (which is equivalent to lower boundedness of the Mabuchi functional;
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see (4.7)). By [Li17] this is equivalent to K-semistability when X is non-singular. In the proof of
Theorem 2.5 we explain how to extend this result to general Fano varieties, leveraging the very
recent solution of the Yau–Tian–Donaldson conjecture for singular Fano varieties [Li22, LXZ22].
The equivalence with item (3) leverages the recent result [Zhu21].

2.3.1 Proof of Theorem 2.5. We start with two lemmas. First, to a given continuous metric
φ on L we associate, following [BB10], a continuous psh metric ψ on L defined as the following
pointwise envelope:

Pφ := sup {ψ : ψ psh, ψ ≤ φ}. (2.10)

Remark 2.7. More generally, when L is big the envelope above has to be replaced by its upper
semicontinuous regularization in order to obtain a psh metric. However, when L is an ample line
bundle over a normal variety X, as we assume here, the envelope Pφ is already continuous (see
[BE21, Lemma 7.9]).

Lemma 2.8. Assume that L is relatively ample and let φ be a continuous metric on L. Then
the arithmetic χ-volume may be expressed as the following top arithmetic intersection number:

v̂olχ(L, φ) =
(L, Pφ)n+1

(n+ 1)!
.

Proof. When φ is psh the lemma follows directly from [Zha95, Theorem 1.4] (the latter proof
reduces to the original arithmetic Hilbert–Samuel theorem in [GS92], where X is assumed non-
singular, using a perturbation argument on a resolution of X). In fact, the result [Zha95,
Theorem 1.4] applies more generally when L is merely assumed to be relatively nef over the
closed points of SpecZ. Next, the general case follows from the case when φ is psh (applied to
Pφ) by the following simple observation:

sup
X

‖s‖φ = sup
X

‖s‖Pφ, if s ∈ H0(X, kL),

as follows directly from the definition (2.10) of Pφ (see [BB10, Proposition 1.8]). �
In order to state the next lemma consider the following functional on C0(L) ∩ PSH(L), defined

with respect to a given reference ψ0 ∈ C0(L) ∩ PSH(L):

Eψ0(ψ) :=
1

(n+ 1)!

∫
X

(ψ − ψ0)
n∑
j=0

(ddcψ)j ∧ (ddcψ0)n−j . (2.11)

Alternatively, the functional Eψ0 may be characterized as the primitive of the 1-form on C0(L) ∩
PSH(L) defined by the measure (ddcψ)n/n!:

dEψ0(ψ) =
1
n!

(ddcψ)n, Eψ0(ψ0) = 0. (2.12)

It follows directly from the definition of Eψ0(ψ) and the classical Hilbert–Samuel formula (2.2)
that

Eψ0(ψ + c) = Eψ0(ψ) + cvol(L), ∀c ∈ R. (2.13)

The following lemma is an arithmetic refinement of the previous formula.

Lemma 2.9 (Change of metrics formula). For any two continuous metrics on L, which are
invariant under complex conjugation,

v̂olχ(L, φ1) − v̂olχ(L, φ2) = 1
2(Eψ0(Pφ1) − Eψ0(Pφ2)). (2.14)
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Proof. When φi are psh this is well known and follows from basic properties of arithmetic
intersection numbers; see formula (5.2) or [Oda18, Proposition 2.2]). Alternatively, the result
follows from the previous lemma combined with [BB10, Theorem A]. In order to check that the
multiplicative normalizations adopted here are compatible, note that the scaling relations (2.8)
and (2.13) are indeed compatible. �

2.3.2 Conclusion of the proof of Theorem 2.5. Consider the following functional on the space
C0(−KX) of continuous metrics on −KX:

D̂Z(φ) := −2
v̂olχ(L, φ)
vol(−KX)

− log
∫
X
e−φ. (2.15)

Since this functional is invariant under scalings of the metric, φ �→ φ+ c, the finiteness statement
in the second point of the theorem amounts to showing that the infimum of D̂Z(φ) over C0(−KX)
is finite. Now fix a continuous psh metric ψ0 on −KX and consider the following extension of the
normalized Ding functional (2.9) to all of C0(−KX):

D̂ψ0(φ) := − 1
vol(−KX)

Eψ0(Pφ) − log
∫
X
e−φ. (2.16)

Combining the previous two lemmas reveals that

D̂Z(φ) = D̂ψ0(φ) + C0, C0 := − 2
(L, ψ0

)n+1

vol(−KX)(n+ 1)!
. (2.17)

Next, observe that

inf
C0(−KX)

D̂ψ0 = inf
C0(−KX)�PSH(−KX)

D̂ψ0 . (2.18)

Indeed, this follows directly from the fact that the operator φ �→ Pφ from C0(L) to C0(L) �
PSH(L) is increasing and satisfies P 2 = P .

(3) =⇒ (1). Let us first recall how item (2) implies item (1). Item (2) implies, thanks to
the identities (2.17) and (2.18), that the infimum of D̂ψ0 over C0(−KX) � PSH(−KX) is finite.
Thus it follows from results in [Ber16] that (X,−KX) is K-semistable. Let us next show how to
refine the proof in [Ber16] to show the stronger statement (3) =⇒ (1). More generally, we will
show that when X is defined over the real field R, X is K-semistable if the infimum of D̂ψ0 over
the space C0(−KX) � PSH(−KX) is finite, where C0(L) denotes the subspace of C0(L) consisting
of metrics which are invariant under complex conjugation. To this end, let us first summarize
the main steps in the proof in [Ber16]. A test configuration (X ,L ) for (X,−KX) and a given
metric φ for −KX in C0(−KX) � PSH(−KX) determine a ray φt in PSH(−KX) emanating from
φ parametrized by t ∈ [0,∞[ (i.e. φ0 = φ). Using the notation in formula (2.4), the ray φt is
defined by

φ− log|τ | = ρ(τ)∗(Φ|Xτ
), τ ∈ C∗,

where Φ is the S1-invariant metric on the restriction of L to the inverse image π−1(D) in X of
the unit disc D ⊂ C defined by

Φ := sup
{
Ψ : Ψ|π−1(∂D) = φ, Ψ ∈ C0(L) � PSH(L|π−1(D))

}
, (2.19)
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where we have used the C∗-action ρ to identify X with Xτ for any τ in the unit circle ∂D.
By [Ber16, Theorem 1.3],

vol(−KX)−1DF(X ,L ) ≥ lim
t→∞

(
t−1D̂φ0(φt)

)
.

When D̂φ0(φt) is bounded from below this means that DF(X ,L ) ≥ 0, showing that X is
K-semistable. Now assume that X is defined over the real field R. Then it follows from [Zhu21,
Theorem 1.1] that in order to check K-semistability of (X,−KX) it is enough to consider test
configurations (X ,L ) defined over R. Thus, we just have to verify that for such test configura-
tions, if the given metric φ is taken to be in C0(−KX) � PSH(−KX), then the ray φt remains in
C0(−KX) � PSH(−KX), for all t > 0. Since (X ,L ) is defined over R there is a complex conjuga-
tion map F from X to X (which lifts to L ) and thus it is enough to show that F ∗φ = φ implies
that F ∗Φ = Φ. But this follows from the definition (2.19) of Φ only using that F ∗ preserves the
psh property of a metric (as follows from a direct local calculation that reduces to the fact that
the Laplacian i∂z∂z̄ in C is invariant under z �→ z̄).

(1) =⇒ (2). Recall that any K-semistable normal Fano variety (i.e. such that (X,−KX)
is K-semistable) has log terminal singularities [Oda13b, Theorem 1.3]. In the case when X is
non-singular it was shown in [Li17] that if X is K-semistable, then the infimum of the Ding
functional D̂ψ0 over C0(−KX) � PSH(−KX) is finite. Thus, by formula (2.18), so is the infi-
mum of D̂ψ0 over C0(−KX). The proof in [Li17] relied, in particular, on the resolution of the
Yau–Tian–Donaldson conjecture in [CDS15] for Fano manifolds. But thanks to the recent res-
olution of the Yau–Tian–Donaldson conjecture for singular Fano varieties the proof in [Li17]
can be extended to singular Fano varieties, mutatis mutandis. We briefly summarize the argu-
ment, using Deligne pairings as in [Ber16] (rather than the Bott–Chern classes used in [Li17]).
The starting point is the result [LWX21, Theorem 1.3], saying that if X is K-semistable then
there exists a test configuration (X ,L ) for (X,−KX) whose central fiber X0 is given by a
K-polystable Fano variety. More precisely, the test configuration is special in the sense that L
is the relative anti-canonical line bundle. Since the central fiber X0 of X is K-polystable it
admits, by the solution of the Yau–Tian–Donaldson conjecture for singular Fano varieties
[LXZ22] (building on [Li22]), a Kähler–Einstein metric φKE. It thus follows from [BBEGZ19,
Theorem 4.8] that the Ding functional is bounded from below on C0(−KX0) � PSH(−KX0). More
precisely, its infimum is attained at the Kähler–Einstein metric φKE:

inf
C0(−KX0

)�PSH(−KX0
)
D̂ = D̂(φKE) > −∞. (2.20)

Now, given a metric φ in C0(−KX) � PSH(−KX), let Φ be the corresponding metric on
L → π−1(D) defined by formula (2.19). It induces a metric on the (n+ 1)-fold Deligne pair-
ing 〈L ,L , . . . ,L 〉 → D that we denote by 〈Φ〉 (see [Ber16, § 2.3]). Consider the corresponding
twisted metric on −〈L ,L , . . . ,L 〉 → D defined by

−〈Φ〉 − log
∫
Xτ

e−Φ|Xτ ,

dubbed the Ding metric in [Ber16]. Fixing a trivialization S(τ) of 〈L ,L , . . . ,L 〉 → D, we may
identify this metric with a function ψ(τ) on D:

ψ(τ) := log(‖S(τ)‖2
〈Φ〉) − log

∫
Xτ

e−Φ|Xτ .
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For a fixed τ this metric coincides with the normalized Ding functional D̂(φτ ) up to an additive
constant depending on τ (by the ‘change of metrics formula’ for Deligne pairing; see [Ber16,
§ 2.3]). In particular, there exists a ∈ R such that

ψ(1) := D̂ψ0(φ) + a, ψ(0) ≥ b := log(‖S(0)‖2
〈φKE〉) − log

∫
X0

e−φKE , (2.21)

using (2.20) in the inequality. As shown in [Ber16, Proposition 3.5], ψ(τ) is subharmonic on D

and the first term 〈Φ〉 is continuous on D (as follows from [Mor99, Theorem A]; see the proof of
[Ber16, Proposition 3.6]). Moreover, the second term is also continuous on D, as shown when X
is non-singular in [Li17, Lemma 1.9] and in general in [LWX18, Lemma 7.1]. As a consequence,

ψ(0) ≤
∫
∂D

ψ dθ = ψ(1),

using that ψ(τ) is S1-invariant in the last equality. Finally, invoking formula (2.21) shows that
D̂ψ0(φ) is uniformly bounded from below, as desired.

2.4 Compatibility of Conjecture 1.1 with taking products
The previous theorem shows, in particular, that the K-semistability assumption in Conjecture 1.1
is necessary. We next show that the conjecture is compatible with taking products.

Proposition 2.10. Let m ≥ 2 and X1, . . . ,Xm be arithmetic Fano varieties which are
K-semistable over C. Assume that the inequality in Conjecture 1.1 holds for all Xi (for any
volume-normalized metrics on −KXi with positive curvature current). Then the inequality holds
for X1 × · · · × Xm with strict inequality (for any volume-normalized metric on −KX1×···×Xm with
positive curvature current). More precisely,

v̂olχ
(−KX1×···×Xm

)
< v̂olχ(−KPn

Z
).

Proof. By a simple induction argument it is enough to consider the case when m = 2. Note that,
in general, given two polarized metrized arithmetic varieties (Xi,Li) of relative dimension ni

v̂olχ
(
ρ∗1L1 ⊗ ρ∗2L2

)
vol
(
ρ∗1L1 ⊗ ρ∗2L2

) =
v̂olχ(L1)
vol
(L1

) +
v̂olχ

(L2

)
vol
(L2

) , (2.22)

where ρ1 and ρ2 denote the natural morphisms from X1 ×X2 to X1 and X2, respectively (as
follows readily from formula (2.5)).

Assume now that the inequality in Conjecture 1.1 holds for −KX1 and −KX2 . Endow
−KX1×X2 with the induced product metric (which is volume-normalized, since the metrics on
−KXi are assumed to be volume-normalized). Identity (2.22) yields

v̂olχ
(−KX1×X2

)
= v̂olχ

(−KX1

)
vol(−KX2) + v̂olχ

(−KX1

)
vol(−KX1).

Accordingly, by assumption,

v̂olχ
(−KX1×X2

) ≤ v̂olχ
(−KP

n1
Z

)
vol(−KX2) + v̂olχ

(−KP
n2
Z

)
vol(−KX1),

where the projective spaces have been induced by the volume-normalized Fubini–Study metric
and we have used that v̂olχ(−KPn

Z
) is positive for any n (as shown in Lemma 3.6). Hence, applying

Fujita’s inequality (1.1) yields

v̂olχ
(−KX1×X2

) ≤ v̂olχ
(−KP

n1
Z

)
vol(−KP

n1
C

) + v̂olχ
(−KP

n2
Z

)
vol(−KP

n2
C

).
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But, the right-hand side above equals v̂olχ(−KP
n1
Z

×P
n2
Z

) (by identity (2.22)), which is strictly

smaller than v̂olχ(−K
P
n1+n2
Z

), by the toric case, considered in § 3.2.2.

All that remains is thus to show that the supremum of v̂olχ(−KX1×X2) over all continuous
volume-normalized metrics coincides with the supremum restricted to those which have posi-
tive curvature current and are product metrics. First, as shown in the proof of Theorem 2.5 we
may restrict to those with positive curvature current. To prove that we may restrict to prod-
uct metrics first consider the case when (Xi,−KXi) are both K-polystable. They thus admit
Kähler–Einstein metrics and the corresponding product metric is Kähler–Einstein on X1 ×X2

and, as a consequence, realizes the supremum of (−KX1×X2)
n+1, by Theorem 2.5 (strictly speak-

ing, in the singular case the Kähler–Einstein metric is merely known to be locally bounded,
but it can, in a standard way, be approximated by continuous ones). Finally, in the case when
(Xi,−KXi) are merely K-semistable we will use the following general observation. If X1 and X2

are K-semistable Fano varieties over C, then the infimum of the Ding functional (formula (2.9))
corresponding to X1 ×X2 coincides with the infimum over product metrics. To prove this, first
recall the definition of the twisted Ding normalized functional D̂ψ0,γ corresponding to a given
locally bounded psh metric ψ0 and γ ∈ ]0, 1]:

D̂ψ0,γ(ψ) = − 1
vol(−KX)

Eψ0(ψ) − log
∫
X
e−(γψ+(1−γ)ψ0).

By Hölder’s inequality D̂ψ0,γ(ψ) is decreasing in γ. Since, as shown in the proof of Theorem 2.5,
D̂ψ0,1 is bounded from below when X is K-semistable, so is D̂ψ0,γ(ψ) for any γ ∈]0, 1[. More
precisely, D̂ψ0,γ(ψ) is coercive for any given γ ∈ ]0, 1[ (see the proof of [Ber13, Corollary 3.6]) and
thus D̂ψ0,γ admits a minimizer ψγ and the minimizers are precisely the solutions to the twisted
Kähler–Einstein equation

(ddcψ)n/n!
vol(−KX)

=
e−(γψ+(1−γ)ψ0)∫
X e

−(γψ+(1−γ)ψ0)

(see [BBEGZ19]). Thus, given two K-semistable Fano varieties X1 and X2 and γ ∈]0, 1[, we may
take two twisted Kähler–Einstein metrics ψ(1)

γ and ψ
(2)
γ on −KX1 and −KX2 , respectively. The

corresponding product metric ψγ on −KX1×X2 is a twisted Kähler–Einstein metric and thus
minimizes the twisted normalized Ding functional D̂ψ0,γ on X1 ×X2. Moreover, as γ → 1,

D̂ψ0(ψγ) → inf D̂ψ0 . (2.23)

Indeed, γ → D̂ψ0,γ(ψ) is continuous and concave on ]0, 1] for a fixed continuous metric ψ, by
Hölder’s inequality. The convergence (2.23) thus follows from Lemma 2.11 below. Finally, since
in our setup ψγ is a product metric it follows that the infimum of D̂ψ0 coincides with the infimum
restricted to product metrics, as desired. �

In the proof we used the following elementary result about convex functions (applied to −f).

Lemma 2.11. Let f(t) be a function [0, 1] → ]−∞,∞] of the form

f(t) = sup
p∈P

(fp(t)),

where fp(t) is a family of continuous convex functions on [0, 1], parametrized by a set P. Then
f(t) is continuous on [0, 1].

Proof. This is standard, but for completeness we provide a proof. Recall that the supremum
of a family of continuous functions is lower semicontinuous. Hence, it will be enough to show
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that f(t) is upper semicontinuous. To this end, observe that since t �→ fp(t) is convex it follows
that f(t) is also convex. But any convex function on [0, 1] is upper semicontinuous. Indeed, f is
(Lipschitz) continuous on ]0, 1[ , since it is convex there. By symmetry, it is thus enough to prove
upper continuity at t = 1. Now, since f(t) is convex we have, given t ∈]0, 1[, that

f(1) ≥ f(t) + (1 − t)∂f(t)

for any subgradient ∂f(t) at t, i.e. any one-sided derivative at t. But since f(t) is convex,
∂f(t) ≥ ∂f(t0) for any fixed t0 such that t0 ≤ t. Hence, f(1) ≥ f(t) + (1 − t)∂f(t0) and letting
t→ 1 thus shows that f(1) is greater than or equal to the limit supremum of f(t) as t→ 1, as
desired. �

3. Sharp height inequalities in the toric case

We now specialize to the case when X is a toric Fano variety.

3.1 The toric setup
We start by recalling the notation for toric metrics employed in [BB13] and the relation to the
canonical toric integral model.

3.1.1 The moment polytope P (L). Let X be an n-dimensional complex projective toric
variety, i.e. a complex projective variety endowed with an action of the n-dimensional com-
plex torus C∗n with an open dense orbit. We shall denote by Tc the complex torus and by T the
real maximal compact subtorus of Tc, i.e. T = (S1)n. Let L be a toric ample line bundle, i.e. an
ample line bundle over X endowed with a Tc-action covering the action of Tc on X. It induces a
bounded convex polytope P (L) in Rd with non-empty interior, defined as follows. Consider the
induced action of the group Tc on the space H0(X, kL) of global holomorphic sections of kL→ X
(for k a given positive integer). Decomposing the action of Tc according to the corresponding
one-dimensional representations em, labeled by m ∈ Zn,

H0(X, kL) =
⊕
m∈Bk

Cem, (3.1)

the lattice polytope P(X,L) may be defined as the convex hull of k−1Bk in Rn, for k sufficiently
large. More generally, by homogeneity, P(X,L) is defined for any ample Q-line bundle.

In particular, if X is Fano, then the polytope P (−KX) has vertices in Qn and may be
represented as follows:

P (−KX) = {p ∈ Rn : 〈lF , p〉 ≥ −1, ∀F}, (3.2)

where F ranges over all facets of P (−KX) and lF denotes the unique primitive element in Zn

which is an interior normal to the facet F (i.e. P (−KX) is the dual of the polytope with primitive
vertices lF ). Conversely, any such polytope corresponds to a Fano variety X [CLS11, BB13].

Example 3.1. When X = Pn the polytope P (−KX) is (n+ 1)(Σn − (1, . . . , 1)) where Σn

denotes the n-dimensional unit simplex. An infinite family of two-dimensional toric Fano
varieties Xp,q, parametrized by two prime numbers p and q, is obtained by letting P (−KXp,q)
be the polytope which is dual to the polytope with the four primitive vertices (±p,±q).
In particular, vol(−KXp,q) = 2/(pq) tends to zero when pq tends to infinity.

Remark 3.2. From an invariant point of view, the real vector space Rn above arises as M ⊗Z R,
where M is the lattice Hom(Tc,C∗) of characters of the group Tc (cf. [CLS11]).
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3.1.2 Logarithmic coordinates and the Legendre transform φ∗ of a metric φ on L. Since X is
toric we can identify Tc with its open orbit in X. Let Log be the map from Tc to Rn defined by

Log : Tc → Rn, Log(z) := x := (log(|z1|2), . . . , log(|zn|2).
The real compact torus T acts transitively on its fibers. We will refer to x as the (real) logarithmic
coordinates on Tc. Let L be a toric ample line bundle over X and assume that P contains
the origin, 0 ∈ P, and denote by e0 the corresponding T -invariant element in H0(X, kL). Any
continuous T -invariant metric ‖ · ‖ on L induces a continuous function on Rn which we shall
denote by φ(x), defined as

φ(x) := − log
(‖e0‖2(z)

)
, z ∈ Tc � X, x := Log z.

Thus, in the present additive notation φ for metrics we have φ(x) = φU (z), when U = Tc, abusing
notation slightly. The Legendre transform of φ(x), which defines a lower-semicontinuous convex
function on Rn (taking values in ]−∞,∞]) will be denoted by φ∗:

φ∗(p) := sup
x∈Rn

〈p, x〉 − φ(x).

A T -invariant continuous metric ψ on L is psh if and only if the corresponding function ψ(x)
on Rn is convex (if and only if ψ(x) = ψ∗∗(x)). We will denote by ψP (L) the unique continuous
convex function on Rn whose Legendre transform is equal to 0 on P (L) and equal to ∞ on the
complement of P (L):

ψP (L)(x) := sup
p∈P (L)

〈p, x〉 (ψ∗
P (L) = 0 on P, ψ∗

P (L) = ∞ on P (L)c). (3.3)

It corresponds to a continuous psh metric on L (see the proof of [BB13, Proposition 3.3]) and
it will be used as a canonical reference metric in the present toric setup. It follows that for any
other continuous metric φ on L,

φ− ψP (L) ∈ L∞(Rn), P (L) = {φ∗ <∞}. (3.4)

Remark 3.3. From an invariant point of view the logarithm coordinates take values in N ⊗ R,
where N is the lattice Hom(C∗, Tc) of one-parameter subgroups of Tc, i.e. the dual of the lattice
Hom(Tc,C∗) of characters of Tc.

3.1.3 Pushing forward measures from X to Rn. For any T -invariant continuous psh metric
ψ on L the push-forward of the measure (ddcψ)n/n! on L under the map Log is given by

Log
(

(ddcψ)n

n!

)
= det(∇2φ) dx

(since the integral along the Tn-fibers equals (2π)n). The measure on the right-hand side is de-
fined in the weak sense of Alexandrov. Since the closure of the image of Rn under the subgradient
map of φ equals P it follows that

vol(L) =
∫
P
dy := Vol(P ),

where dy is Lebesgue measure. Next consider the case when L = −KX . Then

e0 := z1
∂

∂z1
∧ · · · ∧ zn ∂

∂zn
(3.5)

defines a Tc-invariant global holomorphic section of −KX , trivializing −KX over U := C∗n. We
can thus identify a continuous metric φ on −KX with the corresponding function φU on C∗n
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(formula (2.1)) and volume form on X (formula (2.3)) expressed as follows on C∗n, with respect
to the local holomorphic coordinate log z:

e−φU
(
i

2

)n
d(log z1) ∧ d(log z1) ∧ · · · ∧ d(log zn) ∧ d(log zn),

symbolically denoted by e−φ. Using again that the integral along the Tn-fibers equals (2π)n

yields ∫
X
e−φ = πn

∫
Rn
e−φ(x) dx. (3.6)

3.1.4 K-semistability and toric Kähler–Einstein metrics. We recall the following result,
which is a combination of [BB13, Theorem 1.2] and [Ber16, Corollary 1.2] (which are formulated
in terms of Tc-equivariant K-polystability and K-polystability, respectively).

Proposition 3.4. Let X be a toric Fano variety. The following statements are equivalent.

• X is K-semistable.
• X is K-polystable.
• X admits a T -invariant Kähler–Einstein metric.
• The barycenter of P (−KX) coincides with the origin 0.

3.1.5 The arithmetic χ-volume of a toric metric. Any toric ample line bundle L→ X admits
a canonical integral model L → X over Z with X normal (see [Mai00, § 2] and [BPS14, Def 3.5.6]).

The following result is a special case of the main result of [BPS14, Theorem 3] (combined
with Lemma 2.8):

Proposition 3.5. Let L→ X be an ample toric line bundle and denote by (X ,L) its canonical
toric model over Z. Assume that φ is a continuous T -invariant metric on L. Then

2v̂olχ(L, φ) = −
∫
P (L)

φ∗ dy.

An alternative analytic proof of this formula can also be given, using that the integral lattice
H0(X , kL) in H0(X, kL) is generated by the Tc-equivariant bases em appearing in the decompo-
sition (3.1) [Mai00]. Since this basis is orthonormal with respect to the L2-norm on H0(X, kL)
induced by the metric ψP (L) on L, defined by formula (3.3) and the Haar measure on the unit
torus T � X, applying [BB10, Theorem A] yields

2̂vol(L, φ) = EψP (L)
(φ). (3.7)

When φ is toric the right-hand side above coincides, by [BB13, Proposition 2.9], with the right-
hand side of the formula in the previous proposition.

3.1.6 Arithmetic toric Fano varieties. Now assume that X is a toric Fano variety, so that
−KX defines an ample Q-line bundle. Then the canonical integral model X of X over Z is a
normal arithmetic Fano variety, i.e. the relative anti-canonical divisor −K on X defines a rela-
tively ample Q-line bundle on X . Indeed, −K coincides with the canonical integral model L of
−KX . This follows (just as in the function field case considered in [Ber16, Lemma 2.2]) from the
fact that the fibers of the structure morphism X → SpecZ are reduced and irreducible.

3.2 Proof of Theorem 1.2
Given a Fano variety X, let φ be a continuous metric on −KX which is volume-normalized. We
will prove the following more general formulation of the inequality in Theorem 1.2 (where the
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psh assumption on φ has been dispensed with):

v̂olχ(−K, φ) ≤ v̂olχ
(−KPn

Z

)
,

where the metric on −KPn is the one induced by the volume-normalized Fubini–Study metric.
A T -invariant continuous metric φ will, as above, be identified with a function φ(x) on Rn.

Moreover, if φ is volume-normalized then Proposition 3.5 gives

2v̂olχ(−K, φ)/vol(−KX) = −D̂Z(φ) = −D̂ψP (φ)

= −
∫
P
φ∗ dy/vol(−KX) + log

∫
Rn
e−φ(x) dx+ n log π, (3.8)

where D̂Z(φ) and D̂ψP (φ) are the Ding type functionals defined by formula (2.15) and
formula (2.16), respectively, and we have used formula (3.6).

We start by recording the following explicit formula for the arithmetic volume of projective
space Pn, endowed with a volume-normalized Kähler–Einstein metric (which may be assumed
to be the metric induced by the Fubini–Study metric).

Lemma 3.6. The following formulas hold for the metrics φKE on the anti-canonical line bundles
of PnC induced by a volume-normalized toric Kähler–Einstein metric:

X = PnC =⇒ 2v̂olχ(−K, φKE) =
(n+ 1)n

n!

(
(n+ 1)

n∑
k=1

k−1 − n+ log
(
πn

n!

))
> 0.

Proof. Consider the case when X = PnC, whose canonical integral model is given by X = PnZ. The
canonical model of the anti-canonical line bundle of PnC is given by O(1)⊗n+1 → PnZ. As shown
in [GS90, § 5.4] (using the induction formula for the height; see also [Sou21, Proposition 3.10])
the height hFS of O(1) → PnZ endowed with the Fubini–Study metric φFS is given by

hFS =
1
2

n∑
k=1

k∑
m=1

m−1.

Since (n+ 1)φFS defines a Kähler–Einstein metric on −KPn and π−n
∫

Pn
e−(n+1)φFS = 1/n! this

gives

2v̂olχ(−K, φKE) − n log π = (n+ 1)n+1 hFS

(n+ 1)!
+

(n+ 1)n

n!
log
(

1
n!

)
=

(n+ 1)n

n!

(
hFS + log

(
1
n!

))
,

using formula (2.6) in the first term, combined with the homogeneity property (2.7) and, in the
second term, the scaling property (2.8). Rewriting the formula for hFS above as a triangle sum
and changing the order of summation then concludes the proof of the formula of the lemma. The
last positivity statement will be shown in the course of the proof of Lemma 3.8. �

The key ingredient in the proof of Theorem 1.2 is the following universal bound on the
arithmetic volume, in terms of the ordinary volume.

Proposition 3.7. For any n-dimensional toric Fano variety X which is K-semistable, the
following bound holds for any volume-normalized continuous metric φ on −KX:

2v̂olχ(−K, φ) ≤ −vol(X) log
(

vol(X)
(2π2)n

)
, vol(X) := vol(−KX).
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Proof. Recall that, as shown at the beginning of the proof of Theorem 2.5, it is equivalent to
establish the upper bound for −D̂ψP (φ) when φ is a continuous psh metric on L. Since
X is assumed K-semistable, it follows from Proposition 3.4 that X admits a T -invariant
Kähler–Einstein metric. In general, a Kähler–Einstein metric φ on −KX minimizes the nor-
malized Ding functional D̂ψ0 [BBEGZ19]. Thus in the toric case the infimum of D̂ψ0 coincides
with the infimum over all continuous T -invariant psh metrics. As explained in § 3.1.2, such
a metric may be identified with a convex function φ(x) on Rn satisfying φ− ψP ∈ L∞(Rn).
By formula (3.8) it will be enough to show that for such convex functions

−
∫
P
φ∗ dy/V + log

∫
Rn
e−φ(x) dx ≤ − log V + n log(2π), V := vol(−KX). (3.9)

Since 0 is contained in the interior of P the measure e−φdx on Rn has finite moments. Recall
that by Proposition 3.4 the barycenter of P coincides with 0 ∈ Rn and, as a consequence, the
left-hand side in inequality (3.9) is invariant under translations of φ, φ(x) �→ φ(x+ a) for any
given a ∈ Rn [BB13, Lemma 2.14]. As a consequence, in order to prove inequality (3.9) we may
as well assume that ∫

Rn
xe−φ dx = 0.

By the functional form of Santaló’s inequality [AKM04, Lemma 2.14] this implies that∫
Rn
e−φ

∗(y) dy ·
∫

Rn
e−φ(x) dx ≤ (2π)n

(where equality holds if φ = φ∗, i.e. if φ(x) = |x|2/2). Moreover, by Jensen’s inequality,

−
∫
P
φ∗ dλ/V ≤ log

(∫
P
e−φ

∗(y) dy/V

)
= log

(∫
Rn
e−φ

∗(y) dy/V

)
,

using in the last equality that φ∗ = ∞ on the complement of P (see formula (3.4)). Combining
the latter two inequalities yields the desired inequality (3.9). �

Recall that Pn has maximal volume among all K-semistable n-dimensional Fano varieties (as
shown in [BB17] in the toric case and in [Fuj18] in general). We next show that it will be enough
to prove that, in the toric case, the next to largest volume is attained by Pn−1 × P1.

Lemma 3.8. For any n-dimensional toric Fano variety X which is K-semistable,

vol(X) ≤ vol(Pn−1 × P1) =⇒ v̂olχ(−K, φ) < v̂olχ
(−KPn

Z

)
,

where −KPn is endowed with the volume-normalized Fubini–Study metric.

Proof. Observe that the function of vol(X) appearing on the right-hand side of the inequality in
the previous proposition is increasing when vol(X) ≤ (2π2)n/e. This bound is, in fact, satisfied
for any K-semistable X. Indeed, by [BB17],

vol(X) ≤ vol(Pn) =
(n+ 1)n

n!
< (2π2)n/e (3.10)

(using a simple induction argument in the last inequality). Thus, by the previous proposition, it
will be enough to show that

− vol(Pn−1 × P1) log(vol(Pn−1 × P1)/(2π2)n) < 2v̂olχ
(−KPn

Z

)
. (3.11)
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for any n ≥ 2. To this end, note that

−vol(Pn−1 × P1) log(vol(Pn−1 × P1)/(2π2)n) = − 2nn−1

(n− 1)!

(
log
(

2nn−1

(n− 1)!

)
− n log(2π2)

)
.

We check that the inequality holds for n = 2, and with induction in mind we simplify the right-
hand side of (3.11) by n+ 1 for n and get

2v̂olχ
(−K

P
n+1
Z

)
= −(n+ 2)n+1

(n+ 1)!

(
n+ 1 − (n+ 2)

n+1∑
k=1

1
k

+ log((n+ 1)!) − (n+ 1) log(π)
)

= −
(
n+ 2
n+ 1

)n+1 (n+ 1)n

n!

((
n− (n+ 1)

n∑
k=1

1
k

+ log(n!) − n log(π)
)

+
(

1 − (n+ 2)
n+1∑
k=1

1
k

+ (n+ 1)
n∑
k=1

1
k

+ log(n+ 1) − log(π)
))

=
(
n+ 2
n+ 1

)n+1

2v̂olχ
(−KPn

Z

)− (n+ 2
n+ 1

)n+1(
1 − log(π) + log(n+ 1)

− n+ 2
n+ 1

−
n∑
k=1

1
k

)
.

Here we observe for later use that v̂olχ(−KPn
Z
) > 0 for all n ≥ 1 by evaluating it at n = 1 and

then using the above to perform induction and noting that

−
(

1 − log(π) + log(n+ 1) − n+ 2
n+ 1

−
n∑
k=1

1
k

)
> −(− log(π) + log(2)) = log

(
π

2

)
> 0

for n ≥ 1. We have used that − log(n+ 1) +
∑n

k=1(1/k) is increasing and can thus be estimated
from below by putting n = 1. We also simplify the left-hand side of (3.11),

− vol(Pn × P1) log(vol(Pn × P1)/(2π2)n+1)

= −2(n+ 1)n

n!

(
log
(

2(n+ 1)n

n!

)
− (n+ 1) log(2π2)

)
= −

(
n+ 1
n

)n 2nn

n!

(
log
(

2nn

n!

)
− n log(2π2)

)
+
(

log
((

n+ 1
n

)n)
− log(2π2)

)
= −

(
n+ 1
n

)n
vol(Pn−1 × P1) log(vol(Pn−1 × P1)/(2π2)n)

− 2
(n+ 1)n

n!

(
− log

((
n+ 1
n

)n)
− log(2π2)

)
.
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Fix n ≥ 2 and assume −vol(Pn−1 × P1) log(vol(Pn−1 × P1)/(2π2)n) ≤ 2v̂olχ(−KPn
Z
). Define for

brevity en = (1 + 1/n)n and estimate

2v̂olχ
(−K

P
n+1
Z

)− (−vol(Pn × P1) log(vol(Pn × P1)/(2π2)n+1))

= en+1v̂olχ
(−KPn

Z

)− (−envol(Pn × P1) log(vol(Pn × P1)/(2π2)n))

+ 2
(n+ 1)n

n!

(
log
(

(n+ 1)n

n

)
− log(2π2)

)
− (n+ 2)n+1

(n+ 1)!

(
1 − log(π) + log(n+ 1) − n+ 2

n+ 1
−

n∑
k=1

1
k

)

> 2
(n+ 1)n

n!

(
log
(

(n+ 1)n

n

)
− log(2π2)

)
− (n+ 2)n+1

(n+ 1)!

(
1 − log(π) + log(n+ 1) − n+ 2

n+ 1
−

n∑
k=1

1
k

)

=
(n+ 2)n+1

(n+ 1)!

(
(n+ 1)n

n!

/
(n+ 2)n+1

(n+ 1)!
2
(

log
((

n+ 1
n

)n)
− log(2π2)

)
− 1 + log(π) − log(n+ 1) +

n+ 2
n+ 1

+
n∑
k=1

1
k

)

=
(n+ 2)n+1

(n+ 1)!

[
2
en

(
log(en) − log(2π2)

)
+ log(π) +

n+1∑
k=1

1
k
− log(n+ 1)

]
.

In the inequality above we have used v̂olχ(−KPn
Z
) > 0 for all n ≥ 1 and en < en+1 and the

induction hypothesis. Next check numerically that this last expression is positive for n = 2, 3.
For n ≥ 4 we have

2
en

(
log(en) − log(2π2)

)
+ log(π) +

n+1∑
k=1

1
k
− log(n+ 1)

>
2
e4

(log(e4) − log(2π2)) + log(π) + γ > 0.

We used again that en < en+1 and the fact that
∑n+1

k=1(1/k) − log(n+ 1) > γ [TT71], where γ is
the Euler–Mascheroni constant. The last inequality is checked numerically. �

We expect that any K-semistable toric Fano variety X, not equal to Pn, satisfies the volume
bound in the previous lemma (see § 3.2.1). Here we will show that this is the case under the
conditions of Theorem 1.2. First, the singular cases are handled using the following bound.

Lemma 3.9. Let X be a singular K-semistable toric Fano variety. Then

vol(−KX) ≤ 1
2(n+ 1)n/n!

if any one of the following conditions holds.

• X is Q-factorial (or equivalently, X has abelian quotient singularities).
• X is not Gorenstein.
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In particular, by the first point, when n = 2 this inequality holds for any singular K-semistable
toric Fano variety X.

Proof. The result concerning the first point is the toric case of [Liu18, Theorem 3] concerning
quotient singularities, but in the toric case it also follows from the proof of [BB17, Theorem 1.2].
For future reference we recall the argument in [BB17]. Let P be a given polytope with rational
vertices and represent P as the intersection of hyperplanes {p ∈ Rn : 〈lF , p〉 ≥ −aF }, where the
index F ranges over the facets of P, lF is a primitive vector in Zn and aF is a positive number. In
the present Fano case aF = 1. Moreover, since X is assumed to be Q-factorial for any vertex p0 of
P there are precisely n facets F1, . . . , Fn of P intersecting p0, numbered so that the corresponding
normals define a positively oriented basis in Rn [CLS11]. Fixing a vertex p0 of P , we denote by
P ′ the image of P under the map

p �→
(〈lF1 , p〉 + aF1

aF1

, . . . ,
〈lFn , p〉 + aFn

aFn

)
, (3.12)

which is a polytope in [0,∞[n. Moreover, assuming that 0 is the barycenter of P , the barycenter
of P ′ is (1, . . . , 1). By [BB17, Theorem 1.5] the volume Vol(P ′) of any such polytope is maximal
when P ′ is (n+ 1) times the unit simplex in [0,∞[n with vertex at (0, . . . , 0). Hence,

Vol(P ′) ≤ (n+ 1)n/n!, Vol(P ′) =
δ

aF1 · · · aFn
Vol(P ), (3.13)

where δ is the determinant of the map p �→ (〈lF1 , p〉, . . . , 〈lFn , p〉). Thus δ is a positive integer
and δ = 1 if and only if the map is invertible, i.e. if and only if lF1 , . . . , lFn generate Zn, which
is equivalent to the Tc-invariant neighborhood U0 corresponding to the vertex p0 being biholo-
morphic to Cn [CLS11]. Hence, if X is singular (i.e. X is not non-singular), then there must be
some vertex p0 with δ ≥ 2. Since aFi = 1, this concludes the proof.

To prove the second point we employ a similar argument. This time, for X possibly not
Q-factorial, there might be more than n facets intersecting a vertex p0. Still, there are at least
n facets intersecting at p0, and we can construct the map (3.12) by choosing any n of them.
Next note that if δ = 1, the map and its inverse have integer coefficients (since aFi = 1 when
X is Fano) and since p0 is mapped to 0, p0 ∈ Zn. Since p0 was arbitrary, it follows that P is a
lattice polytope and hence X is Gorenstein. Thus δ ≥ 2 and we are done. �

The volume bound in the previous lemma implies the volume bound in Lemma 3.8 is satisfied:

(n+ 1)n

2n!
≤ 2nn−1

(n− 1)!
⇐⇒ (1 + 1/n)n ≤ 4. (3.14)

The left-hand side in the latter inequality increases to e, which is, indeed, smaller than 4. This
proves Theorem 1.2 in the singular cases. Finally, in the case that X is non-singular there are, for
any given dimension n, only a finite number of cases to check in order to verify the volume bound
in Lemma 3.8. When n ≤ 6 we may apply the database [Øbr07] of all non-singular Fano varieties
of dimension n. The condition that the barycenter of P vanishes corresponds in the database
to the condition ‘zero dual barycenter’. Adding the condition (−KX)n ≥ n!vol(Pn−1 × P1), the
database only furnishes Pn and Pn−1 × P1, as desired.

3.2.1 Remarks on the ‘gap hypothesis’. In order to extend the proof of Theorem 1.2 to any
dimension n one would need to establish the following conjecture (established above under the
conditions in Theorem 1.2).
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Conjecture 3.10 (The ‘gap hypothesis’). For any n-dimensional toric K-semistable Fano
manifold X different from Pn, vol(X) ≤ vol(Pn−1 × P1).

This conjecture might even hold without the toric assumptions in any dimension (as pointed
out to us by Ziquan Zhuang, this appears to be a folklore conjecture). For example, when n = 3
and X is non-singular it follows from the well-known classification of three-dimensional Fano
manifolds (see the ‘big table’ in [Ara+, § 6]) that the only Fano manifolds X, different from P3,
which do not satisfy the inequality in question are P3 blown up at one point and P(O ⊕O(2)). But
both of these are K-unstable, i.e. they are not K-semistable. Indeed, these two Fano manifolds
are toric and if they were K-semistable they would satisfy the gap hypothesis, by the toric case
(n ≤ 6) applied to n = 3. Let us also point out that in the toric case it is only Pn−1 × P1 that
saturates the inequality in the ‘gap hypothesis’ when n ≤ 6 and it thus seems natural to ask if
this is also the case when n > 6. However, in the general non-toric case the inequality is also
saturated by the non-singular quadratic hypersurface X2 in Pn+1, i.e. the base of the ordinary
double point (ODP). Moreover, as pointed out to us by Yuji Odaka, in the general case our ‘gap
hypothesis’ is reminiscent of the ODP conjecture in [SS17], very recently settled in the toric case
[MS24]. More precisely, in our setup, the ODP conjecture implies that

vol(X) ≤ vol(Pn−1 × P1)(n/I(X)), (3.15)

where I(X) denotes the Fano index of X (i.e. the largest positive integer such that KX/I(X)
is a line bundle). However, I(X) ≤ n when X �= Pn (with equality if and only if X = X2) and
hence inequality (3.15) is weaker than our ‘gap hypothesis’.

3.2.2 The case of products in any dimension.

Lemma 3.11. The ‘gap hypothesis’ holds when X is the product of K-semistable Fano varieties
X1, . . . ., XM (not necessarily assumed toric), for M ≥ 2.

Proof. By a simple induction argument we may as well assume that M = 2. Without loss
of generality, let n := dim(X1) ≥ dim(X2) =: m > 1. Note that if m = 1 we are done, since
then vol(X) = vol(X1)vol(X2) ≤ vol(PN−1)vol(P1) = vol(PN−1 × P1) using that, by Fujita’s
inequality (1.1), the complex projective space maximizes the volume among K-semistable Fano
varieties in each dimension. Using again that the complex projective space maximizes the volume
in each given dimension and defining for brevity ek := (1 + 1/k)k, we get

vol(X) = vol(X1)vol(X2) ≤ vol(Pn)vol(Pm)

=
(n+ 1)n

n!
(m+ 1)m

m!
=

(n+ 2)n+1

(n+ 1)!
mm−1

(m− 1)!

(
n+ 1
n+ 2

)n+1(m+ 1
m

)m
=

(n+ 2)n+1

(n+ 1)!
mm−1

(m− 1)!
em
en+1

<
(n+ 2)n+1

(n+ 1)!
mm−1

(m− 1)!
= vol(Pn+1)vol(Pm−1),

where in the last inequality we have used that ek is increasing in k. We may continue in similar
manner until we have vol(PN−1 × P1) in the right-hand side and we are done. �

As explained in the previous section, it follows from the previous lemma that Conjecture 1.1
holds when X is a product of toric arithmetic Fano varieties, i.e. X = X1 × · · · × XM , where Xi
is endowed with its canonical integral structure.
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3.3 The height of toric Kähler–Einstein metrics; proof of Theorem 1.3
By Proposition 3.7 it only remains to prove the lower bound. Using the notation in the proof of
Proposition 3.7 we have that, for any continuous convex function ψ on Rn such that ψ − ψP is
bounded,

2
(−KX

)n+1
/vol(−KX) ≥ −

∫
P
ψ∗ dy/Vol(P ) + log

∫
Rn
e−ψ dx+ n log π.

In particular, taking ψ = ψP , the first term on the right-hand side vanishes. Moreover,

I :=
∫

Rn
e−ψP dx = n!Vol(P ∗),

where P ∗ denotes the polar dual of P , i.e. P ∗ consists of all x ∈ Rn such that x · p ≤ 1 for all
p ∈ P . Indeed,

I =
∫

[0,∞[
e−t(ψP )∗ dx =

∫
e−t

dV (t)
dt

dt =
∫
e−tV (t) dt =

∫ ∞

0
e−ttn dtVol(P ∗),

where V (t) is the Lebesgue volume of {ψP < t}, i.e. of tP ∗. Hence,

2
(−KX

)n+1 ≥ Vol(P )
(
log(n!Vol(P ∗)) + n log π

)
.

Since, by definition, Vol(P ∗)Vol(P ) ≥ mn this concludes the proof of the lower bound in the
theorem. Next, by [Kup08, Corollary 1.8] (see also [Ber21]),

mn ≥
(
π

2e

)n−1

(n+ 1)n+1/(n!)2 =
(
π

2e

)n−1 (n+ 1)
n!

σn,

where σn = vol(Pn). Since Vol(P ) ≤ σn (by (3.10)) this means that

n!πnmnVol(P )−1 ≥ n!πnmnσ
−1
n = π

(
π2

2e

)n−1

(n+ 1) > 1,

proving the positivity in the theorem.

3.4 Examples
We next provide examples of families of toric varietiesX for which the height of the corresponding
Kähler–Einstein can be explicitly computed as a function of vol(X) of the same form as in
Theorem 1.3. The examples are based on the following proposition.

Proposition 3.12. Let X1 and X2 be two K-semistable toric Fano varieties of dimension n
with moment polytopes P1 and P2 such that P2 = AP1 for an invertible linear transformation
A (the polytopes are linearly equivalent). Denote the canonical integral models of X1 and X2

by X1 and X2, respectively. Then, with heights taken with respect to the volume-normalized
Kähler–Einstein metrics,(−KX2

)n+1
/(n+ 1)!

(−KX2)n/n!
=

(−KX1

)n+1
/(n+ 1)!

(−KX1)n/n!
− 1

2
log detA.

As a consequence, for X a K-semistable toric Fano variety of dimension n,(−KX
)n+1 =

(n+ 1)!
2

vol(X) log
(

a

vol(X)

)
, (3.16)
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where a is a constant independent of the choice of Xwithin a class of toric varieties with linearly
equivalent moment polytopes. More precisely,

a = vol(X) exp
(

2
(−KX

)n+1
/(n+ 1)!

vol(X)

)
(3.17)

and Proposition 3.12 ensures the claimed independence.

Proof of Proposition 3.12. Recall that, with heights taken with respect to Kähler–Einstein
metrics, (−KX2

)n+1
/(n+ 1)!

(−KX2)n/n!
= −1

2
sup
φ

− 1
vol(P2)

∫
P2

φ∗(p) dp+ log
∫

Rn
exp(−φ(x)) dx.

Changing variables in the integrals, p �→ Atp′ and x �→ Ax′, we get

(−KX2)
n+1/(n+ 1)!

(−KX2)n/n!

= −1
2

(
sup
φ(A·)

− 1
vol(P1)

∫
P1

φ∗(Atp′) dp′ + log
∫

Rn
exp(−φ(Ax′)) dx′ + log detA

)
.

Now we rename φ′ = φ(A·) and use that then φ′∗ = φ∗(At·) to get the result. �

Example 3.13. Recall the K-semistable toric Fano varieties Xq,p parametrized with two prime
numbers from Example 3.1. The corresponding polytope P (−KXp,q) is the image of the polytope
P (−KP1×P1) = conv{(1, 1), (1,−1), (−1, 1), (−1,−1)} under the linear map A given in matrix

form by
[

1/2p 1/2p
−1/2q 1/2q

]
. Thus the family F = {P1 × P1, Xp,q : p, q prime} comprises an example of

a family of K-semistable toric Fano varieties with linearly equivalent moment polytopes. Thus
by (3.16), for X ∈ F , (−KX

)n+1 =
(n+ 1)!

2
vol(X) log

(
a

vol(X)

)
with, by (3.17), Lemma 3.6 and a simple computation,

a = vol(P1 × P1) exp
(

2
(−KP1×P1

)n+1
/(n+ 1)!

vol(P1 × P1)

)
= 4 exp(2 − log π2).

Recall also that vol(−KXp,q) = 2/(pq), so that in this family the heights with respect to the
Kähler–Einstein metrics are explicitly computed by the previous formula.

4. Sharp bounds on Donaldson’s toric Mabuchi functional

Let (X,L) be a polarized complex manifold and denote by H(X,L) the space of all smooth
metrics ψ on L whose curvature form ddcψ is positive, ddcψ > 0.

4.1 The Mabuchi functional (recap)
The Mabuchi functional M on H(X,L) is defined, up to addition by a constant, by declaring
that its differential on H(X,L) at a given point ψ is represented by the following measure on X:

dM|ψ := (−S(ψ) + a)
(ddcψ)n

n!
, a := n(−KX) · Ln−1/Ln, (4.1)
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where S(ψ) denotes the scalar curvature of the Kähler form (ddcψ), i.e. the trace of the Ricci
curvature,

S(ψ)
(ddcψ)n

n!
:= Ric(ddcψ) ∧ (ddcψ)n−1

(n− 1)!
.

Recall that the Ricci curvature Ric(ddcψ) of the Kähler form ddcψ is the (1, 1)-form defined as
the curvature of the metric on −KX induced by the volume form of ddcψ. We have followed
Donaldson’s multiplicative normalizations in [Don02, formula (3.2.1)], which differ from the
original definition in [Mab86], where the measure (ddcψ)n/n! on X is volume-normalized. At any
rate, formula (4.1) only determines the Mabuchi functional M up to an additive constant.

4.1.1 The case when X is a Fano manifold and L = −KX. We now specialize to the case when
L = −KX and note that a choice of reference metric ψ0 in C0(L) ∩ PSH(L) induces a particular
choice of Mabuchi functional, i.e. a functional whose differential satisfies formula (4.1), which
we shall denote by Mψ0 . This is a consequence of the thermodynamical formalism introduced in
[Ber13], which expresses

Mψ0(ψ) := vol(−KX)Fψ0(MA(ψ)), (4.2)

where MA(ψ) is the probability measure on X defined by the normalized volume form of the
Kähler metric ddcψ,

MA(ψ) :=
1
n!

(ddcψ)n/vol(L), (4.3)

and Fψ0

(
μ
)

denotes the free energy functional on the space P(X) of all probability measures on
X, defined as

Fψ0(μ) := −Eψ0(μ) + EntdV0(μ) ∈ ]−∞,∞]. (4.4)

Here EntdV0(μ) denotes the entropy of μ relative to the volume form dV0 on X induced by ψ0

(i.e. dV0 = e−ψ0 in the notation of § 2.1.2) defined by

EntdV0(μ) :=
∫

log
μ

dV0
μ

when μ ∈ L1(X, dV0) and otherwise EntdV0(μ) := ∞. Furthermore, Eψ0(μ) is the pluricomplex
energy of μ, relative to ψ0, introduced in [BBGZ13], which may be defined as a Legendre–Fenchel
transform of the functional Eψ0/vol(L) (defined by formula (2.11)). For our purposes it will be
enough to define Eψ0(μ) when μ is of the form μ = MA(ψ) for ψ in C0(L) ∩ PSH(L):

Eψ0(MA(ψ)) =
Eψ0(ψ)
vol(L)

−
∫
X

(ψ − ψ0)MA(ψ). (4.5)

We recall that formula (4.2) follows readily from the fact that on the subspace of all volume
forms μ in P(X) the differential of Eψ0 at μ ∈ P(X) is represented by the function ψ0 − ψμ:

dEψ0|μ = −(ψμ − ψ0)

(this formula is dual to formula (2.12) in the sense of Legendre transforms; see [Ber13]).

Remark 4.1. Formula (4.2) defines Mψ0(ψ) on the space C0(L) ∩ PSH(L) as a function taking
values in ]−∞,∞]. More generally, the functional Mψ0(ψ) is well defined as soon as E(MA(ψ)) <
∞ (see [Ber13, BBEGZ19]). For ψ smooth, formula (4.2) is essentially equivalent to a formula
for the Mabuchi functional appearing in [Tia96] and [Che00].
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4.1.2 The case when X is a singular Fano variety. In the case when X is a singular Fano
variety we will denote by H(X,−KX) the space of all continuous metrics ψ on L such that ψ is
smooth on the regular locus Xreg of X and ddcψ > 0 on Xreg.

4.2 Proof of Theorem 1.5
Recall the basic inequality that holds on any Fano variety [BBEGZ19, Lemma 4.4],

Fψ0(MA(ψ)) ≥ D̂ψ0(ψ), (4.6)

as follows from the non-negativity of the relative entropy between two probability measures (or
Jensen’s inequality). In fact, the following identity holds [BBEGZ19, Lemma 4.4]:

inf
C0(L)∩PSH(L)

Fψ0(MA(ψ)) = inf
C0(L)∩PSH(L)

D̂ψ0(ψ) (4.7)

(the two infima above may, equivalently, be restricted to H(X,L); see the regularization result
in [BDL17]).

Combining Theorem 1.2 with inequality (4.6), the proof is concluded by invoking the following
formula relating MψP (where ψP is the canonical toric reference defined by formula (3.3)) to
Donaldson’s toric Mabuchi functional

M−KX (ψ) :=
∫
∂P
ψ∗ dσ − n

∫
P
ψ∗ dx−

∫
P

log det(∇2ψ∗) dx, (4.8)

where ψ∗ denotes the Legendre transform of the T -invariant metric ψ ∈ H(X,−KX) and dσ
is the measure on ∂P, absolutely continuous with respect to the (n− 1)-dimensional Lebesgue
measure dλ∂P , defined by dσ = dλ∂P /‖lF ‖ on a facet F of ∂P, where ‖lF ‖ denotes the Euclidean
norm of a primitive normal vector to F .

Lemma 4.2. Let X be an n-dimensional toric Fano variety. The following identity holds on the
space of all T -invariant metrics in H(X,−KX):

MψP = M−KX − vol(−KX) log vol(−KX).

Proof. This formula is essentially the content of [BB13, Proposition 4.6], but since the normal-
izations are a bit different we recall the proof. Identifying a toric metric ψ with a convex function
on Rn (as in § 3.1.2), formula (4.2), combined with formula (4.5), yields

MψP (ψ) = −EψP (ψ) +
∫

Rn
(ψ − ψP )(ddcψ)n/n! +

∫
Rn

log
(
MA(ψ)
e−ψP dx

)
vol(−KX)MA(ψ)

=
∫
P
ψ∗ dλ+

∫
Rn
ψ(ddcψ)n/n! +

∫
Rn

log det(∇2ψ) det(∇2ψ)

− vol(−KX) log vol(−KX).

By [BB13, Lemma 4.7], making the change of variables y = ∇ψ, the second term above may be
expressed as ∫

Rn
ψ(ddcψ)n/n! =

∫
∂P
ψ∗ dσ − (n+ 1)

∫
u dp, (4.9)

giving

MψP (ψ) =
∫
∂P
ψ∗ dσ − n

∫
P
ψ∗ dλ+

∫
Rn

log det(∇2ψ) det(∇2ψ) − vol(−KX) log vol(−KX).

Again making the change of variables y = ∇ψ in the remaining integral over Rn concludes the
proof, using the standard relation det(∇2ψ)(x) det(∇2ψ∗)(∇ψ(x)) = 1 (which follows from the
fact that the map y �→ ∇ψ∗(y) is the inverse of x �→ ∇ψ(x)). �
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5. Relations to the arithmetic Mabuchi functional

Given an integral model (X ,L) of a polarized variety (X,L), consider the arithmetic Mabuchi
functional M(X ,L) on H(X,L) defined by

M(X ,L)(ψ) :=
a

(n+ 1)!
Ln+1 +

1
n!
KX · Ln, a = −n(KX · Ln−1)/Ln, (5.1)

where L = (L, ψ) and KX is endowed with the metric induced by the measure MA(ψ) on X, i.e.
the normalized volume form of the Kähler form ddcψ. As discussed in § 1.4, this functional coin-
cides, up to additive and multiplicative normalizations, with the arithmetic Mabuchi functional
introduced in [Oda18].

Lemma 5.1. The differential of the functional ψ �→ 2M(X ,L)(L, ψ) on H(X,L) satisfies the
defining formula (4.1) of the Mabuchi functional.

Proof. As pointed out in [Oda18], this formula can be deduced from the formula for the Mabuchi
functional in [Tia96, Che00]. But for completeness and to check the normalizations we provide a
simple direct proof. Recall the following property of arithmetic intersection numbers which holds
if L0 → X is the trivial line bundle (which is a consequence of the restriction formula [BGS94,
Proposition 2.3.1] and Lemma 2.3):

(L0, φ0) · (L1, φ0) · . . . · (Ln, φn) =
1
2

∫
X
φ0dd

cφ1 ∧ · · · ∧ ddcφn, (5.2)

where φ0 is the globally well-defined function on X defined by formula (2.1) when eU is the
standard global trivialization 1 of the trivial line bundle over X, i.e. φ0/2 = − log ‖s‖φ0 , in which
s is a global trivialization of L. In particular, differentiating along a curve t �→ ψt in H(X,L)
and using the symmetry of arithmetic intersection numbers gives

d

dt

(
(L, ψt)n+1

)
= (n+ 1)

(
L0,

dψt
dt

)
· (L, ψt)n =

1
2

∫
X

dψt
dt

(ddcψ)n,

where dψt/dt is a globally well-defined function on X and can thus be identified with a metric on
the trivial line bundle that we denote by L0. Likewise, denoting by ρt a local density for MA(ψt)
with respect to the Euclidean measure defined by local holomorphic coordinates,

d

dt

(
(KX , log ρt)(L, ψt)n

)
= (KX , log ρt)n

(
L, dψt

dt

)
· (L, ψt)n−1 +

((
L0,

d

dt
log ρt

)
· (L, ψt)n

)
,

(5.3)
where we have used Leibniz’s rule. Applying formula (5.2), the second term above may, after
multiplication by 2, be expressed as

=
∫
X

d

dt
log ρt(ddcψt)n = n!vol(L)

∫
X

d

dt
log ρtρt = n!vol(L)

d

dt

∫
X
ρt = 0,

using in the last equality that
∫
X ρt = vol(L) for any t. Likewise, applying formula (5.2) to the

first term in formula (5.3) yields

2
(KX , log ρt

)(L, dψt
dt

)/
n =

∫
X

dψt
dt
ddc(log ρt) ∧ (ddψt)n−1 = −

∫
X

dψt
dt

Ric(ddcψt) ∧ (ddψt)n−1.

This concludes the proof. �
The following proposition relates the arithmetic Mabuchi functional M(X ,−KX ) to

Donaldson’s toric Mabuchi functional M−KX (formula (4.8)).
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Proposition 5.2. Given a toric Fano variety X, denote by X its canonical integral model. Then
the following formula holds for any T -invariant metric in H(X,−KX):

2M(X ,−KX ) = M−KX − vol(−KX) log vol(−KX).

Proof. In this case a = n and we can thus decompose M(X ,L)(ψ) as

1
(n+ 1)!

Ln+1 +
1
n!
(L + KX

) · Ln = − 1
(n+ 1)!

Ln+1 +
1
2

∫
log
(
MA(ψ)
e−ψ

)(
ddcψ

)n
/n!, (5.4)

where, in the last equality, we have exploited that L + KX is trivial so that formula (5.2) applies.
Applying formula (3.7) to the first term on the right-hand side above thus gives

2M(X ,L)(ψ) := −EψP (ψ) +
∫

log
(
MA(ψ)
e−ψ

)
(ddcψ)n/n!

= vol(−KX)
(
− 1
V (X)

EψP (ψ) + 〈ψ − ψP ,MA(ψ)〉 +
∫

log
(
MA(ψ)
e−ψP

)
MA(ψ)

)
.

The right-hand side in the last equation above equals MψP (ψ) (by definition (4.2)). Invoking
Lemma 4.2 thus concludes the proof. �

Next, consider an arithmetic Fano variety X (defined in § 2.2.1). Denote by D̂Z(ψ) the func-
tional defined by formula (2.15), corresponding to the integral model L = −KX . In this arithmetic
setup the following variants of inequality (4.6) and identity (4.7) hold.

Proposition 5.3. When L = −KX the following relations hold:

2M(X ,−KX ) ≥ vol(−KX)D̂Z

and

inf
C0(L)∩PSH(L)

2M(X ,L) = vol(−KX) inf
C0(L)∩PSH(L)

D̂Z.

Proof. First, note that the second term in the decomposition (5.4) of M(X ,−KX )(ψ) is precisely
the entropy of (ddcψ)n/n! relative to e−ψ:

M(X ,−KX )(ψ) = −(L, ψ)n+1

(n+ 1)!
+ Ente−ψ((ddcψ)n/n!).

Since the entropy between two probability measure is non-negative (by Jensen’s inequality) this
proves the inequality in the proposition when the measure e−ψ has unit total volume. The general
case then follows from a simple scaling argument.

Next, to prove the identity in the proposition fix a reference metric ψ0 in H(X,−KX) and
rewrite the previous formula as

M(X ,−KX )(ψ)
vol(−KX)

= −
(

(L, ψ)n+1

(n+ 1)!vol(−KX)
+ 〈ψ − ψ0,MA(ψ)〉

)
+

1
2
Ente−ψ0 (MA(ψ)). (5.5)

Accordingly, expressing (L, ψ)n+1 = (L, ψ0)n+1 + (n+ 1)!Eψ0(ψ)/2, using Lemma 2.9, gives

M(X ,−KX )(ψ)
vol(−KX)

= −1
2
Fψ0(MA(ψ)) − 1

(n+ 1)!
(L, ψ0)n+1,

where Fψ0(μ) is the free energy functional (4.4). The proof is thus concluded by invoking the
identity (4.7) and using Lemma 2.9 again. �
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Remark 5.4. When −KX admits a Kähler–Einstein metric φKE both infima in the previ-
ous proposition are attained at φKE [BBEGZ19]. The identity then follows directly from the
Kähler–Einstein equation, giving MA(φKE) = e−φKE , when φKE is volume-normalized.

In § 6.2 the inequality in the previous proposition will be generalized to any model (X ,L) of
(X,−KX), by introducing an arithmetic Ding functional D(X ,L), coinciding (up to normalization)
with the functional D̂Z under the conditions in the previous proposition.

6. Discussion and outlook

6.1 The function field analog
Recall that, according to the philosophy of Arakelov geometry, the function field analog of a
metrized arithmetic variety X → SpecZ is a flat projective morphism

X → B

from a normal complex projective variety X to a fixed regular complex projective curve B.
In particular, the analog of the setup of arithmetic Fano varieties in Conjecture 1.1 appears
when X is normal, the relative anti-canonical divisor −KX /B defines a relatively ample Q-line
bundle and the generic fiber is K-semistable. The analog of the inequality in Conjecture 1.1 does
hold in this situation, but not the uniqueness statement. More precisely, if (X,−KX) is assumed
K-semistable then it follows from [CP21] (see the beginning of [CP21, § 1.7.1]) that

(−KX /B)n+1 ≤ 0. (6.1)

Equality holds for the trivial fibrations X = X × B for any K-semistable X. In particular,

(−KX /B)n+1 ≤ (−KPn×B/B

)n+1(= 0) (6.2)

which is the function field analog of the inequality in Conjecture 1.1. Note that when B = P1

and the standard C∗-action on P1 lifts to X , inequality (6.1) follows directly from the definition
of K-semistability.

Remark 6.1. The analog of the volume normalization (appearing in Conjecture 1.1) is automat-
ically satisfied in the function field case. Indeed, the second term in the corresponding Ding
functional D(XX /B,−KX /B), discussed in the following section, then vanishes.

In contrast to Conjecture 1.1, projective space thus plays no special role in the function
field case (since equality holds in the inequality (6.2) for any product X = X × B). Conversely,
it should be stressed that the analog of inequality (6.1) fails in the arithmetic situation (by
the strict positivity in Lemma 3.6). Hence, the function field analogy is somewhat deceptive.
Our general motivation for Conjecture 1.1 is rather the analogy with the corresponding result
over C (corresponding to the trivial morphism X → SpecC) and the fact that projective space
maximizes the degree of −KX [Fuj18], among K-semistable X of a given dimension (as well as
a range of other positivity properties of −KX; see, for example, the discussion and references in
the introduction to [LZ18]).

6.2 A generalization of Conjecture 1.1
Consider a Fano variety XF defined over a number field F, i.e. a field extension F of Q of finite
degree [F : Q]. Let (X ,L) be a normal polarized model of (XF ,−KXF) over the ring of integers
OF of F such that KX/SpecOF is defined as a Q-line bundle. We will denote by ψ a collection of
continuous psh ψσ metrics on −KXσ , where σ ranges over all embeddings of the field F into C

and Xσ denotes the corresponding complex projective varieties. To the model (X ,L) we attach
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an arithmetic Ding functional, defined as follows. First consider a model (X ,L) of (XF ,−KXF)
such that L + KX/SpecOF defines a bona fide line bundle. Then

D(X ,L) :=
[F : Q](−KX)n

n!
D̂(X ,L)(ψ),

in which D̂(X ,L)(ψ) is the normalized arithmetic Ding functional defined by

D̂(X ,L)(ψ) := − (L, ψ)n+1

[F : Q](n+ 1)(−KX)n
+

1
[F : Q]

d̂egπ∗(L + KX/SpecOF),

where the second term denotes the arithmetic (Arakelov) degree of the line bundle π∗(L +
KX/SpecOF) → SpecOF , endowed with the L2-metric induced by the metric ψ on L (i.e. on −KX).
More generally, when KX/SpecOF is merely defined as a Q-line bundle we fix a positive integer
r such that r(L + KX/SpecOF) is defined as a line bundle and replace d̂egπ∗(X , (L + KX/SpecOF)
with r−1d̂egπ∗(X , (r(L + KX/SpecOF)), where now π∗(r(L + KX/SpecOF)) is endowed with the
L2/r-metric induced by ψ. Concretely, given a rational global section sr of π∗(r(L + KX/SpecOF)),
one may express

d̂egπ∗(r(L + KX/SpecOF )) = −1
2

∑
σ

log
∫
Xσ

|sr|2/re−ψσ +
∑

p

ordp(sr) log|p|, (6.3)

where |sr|2/re−ψσ denotes corresponding measure onXσ, ordp(s) denotes the order of vanishing of
sr at the closed point p in SpecOF and |p| denotes the norm of the prime ideal in OF defined by p

(i.e. the cardinality of the corresponding residue field OF /p). The functional D̂(X ,L) thus coincides
with the functional D̂Z, defined in formula (2.15), up to an additive constant and a factor of 2.
Note that when F = Q and L = −KX we have 2d̂egπ∗(L + KX/SpecOF) = − log

∫
X e

−φ. Indeed,
in this we can take sr = 1 ∈ H0(X ,OX ), which is globally non-vanishing, by Lemma 2.3.

Remark 6.2. The functional D(X ,L)(ψ) is the arithmetic analog of the degree of the Ding line
bundle of a test configuration (X ,L ) for (X,−KX) introduced in [Ber16]. As shown in [Fuj19],
a Fano variety X is K-semistable if and only if the degree of the Ding line bundle is non-negative
for any test configuration (X ,L ).

Now consider the following invariant of the Fano variety XF :

D(XF ) := inf
(
[F : Q]−1D(X ,L)

)
,

where the infimum runs over all integral models (X ,L) of (X,−KX) and metrics ψ as above. We
propose the following generalization of Conjecture 1.1.

Conjecture 6.3. Let XF be a K-semistable Fano variety defined over a number field F . Then

D(XF) ≥ D(Pn
Z
,−KPn

Z
)(ψFS),

where ψFS denotes the volume-normalized Fubini–Study metric ψFS on −KPn . Equivalently, for
any model (X ,L) and continuous psh metric ψ, normalized so that d̂egπ∗(L + KX/SpecOF) = 0,

1
[F : Q]

(L, ψ)n+1 ≤ (−KPn
Z
, ψFS)n+1.

Moreover, equality holds if and only if (X ,L) is isomorphic to (PnOF ,−KPnOF
+ π∗M) for some

line bundle M → SpecOF and ψ coincides with ψFS, up to the action of an automorphism of Pn.
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Note that, in general, D(X ,L)(ψ) = D(X ,L+π∗M)(ψ) for any line bundle M → SpecOF . We
expect – inspired by Odaka’s conjecture discussed in § 1.4 – that any integral model (X ,L)
which is globally K-semistable realizes the infimum defining the invariant D(XF ).

Next, given a polarized scheme (X ,L) over a number field F, we will, as in the case F = Q,
denote by M(X ,L)(ψ) the arithmetic Mabuchi functional defined by the intersection-theoretic
expression in formula (5.1). In general, the following inequality between the arithmetic Mabuchi
functional and the arithmetic Ding functional holds, showing, in particular, that Conjecture 6.3
implies Conjecture 1.6 concerning Odaka’s modular invariant. The inequality can be viewed as
an arithmetic analogy of the inequality for test configurations in [Ber16, Lemma 3.10].

Proposition 6.4. If (X ,L) is a normal polarized model of (X,−KX) over SpecOF which is
Q-Gorenstein, then

M(X ,L)(ψ) ≥ D(X ,L)(ψ)

with equality if and only if ψ is a Kähler–Einstein metric and L is isomorphic to −KX/SpecOF ⊗
π∗M for some line bundle M over SpecOF .

Proof. To simplify the notation we assume that r = 1 (but the proof in the general case is
essentially the same). It follows directly from the definitions that we need to prove that

1
Ln

(L + K) · Ln − d̂egπ∗(L + KX/SpecOF) ≥ 0 (6.4)

with equality if and only if the conditions in the proposition hold. Observe that the left-hand
side above is invariant when L is replaced by L + π∗M, where M is any line bundle over SpecOF .
Hence, we may as well assume that π∗(L + KX/SpecOF) admits a global regular section s that is
non-vanishing over the generic fiber. Now, by the restriction formula for arithmetic intersection
numbers [BGS94, Proposition 2.3.1],

1
Ln
(L + K) · Ln =

1
2

∫
X(C)

log
(
MA(ψ)
|s|2e−ψ

)
MA(ψ) +

1
Ln

(s = 0) · Ln, (6.5)

where (s = 0) denotes the subscheme of X cut out by s. By Jensen’s inequality,∫
X(C)

log
(
MA(ψ)
|s|2e−ψ

)
MA(ψ) ≥ −1

2

∑
σ

log
∫
Xσ

|s|2e−ψ

= d̂egπ∗(L + KX/SpecOF) −
∑

p

ordp(s) log|p|. (6.6)

Hence, decomposing the subscheme (s = 0) of X as a sum of effective divisors Ep, where Ep is
supported on the fiber Xp of X over p,

1
Ln
(L + K) · Ln ≥ 1

Ln
(s = 0) · Ln −

∑
p

ordp(s) log|p| =
(

1
Ln

Ln|Xp
· Ep −

∑
p

ordp(s)
)

log|p|,

using, again, the restriction formula in the last equality. Since ordp(s) ≥ 0, we can express Ep =
E′

p + ordp(s)Xp for an effective divisor E′
p, giving

1
Ln
(L + K) · Ln ≥

(
1
Ln

Ln|Xp
· E′

p

)
log|p| ≥ 0.

Finally, equality holds in inequality (6.6) if and only if MA(ψ) is proportional to |s|2e−ψ for all
Xσ, i.e. if and only if ψ is Kähler–Einstein. Moreover, since L is relatively ample the right-hand
side in the last inequality above vanishes if and only if E′

p is the zero-divisor for all p, i.e. if and
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only if (s = 0) is a linear combination of fibers Xp and thus L + K is isomorphic to π∗M for some
line bundle M over SpecOF . �

6.3 Comparison with bounds on Bost–Zhang normalized heights
The normalized arithmetic Ding functional D̂(X ,L) is reminiscent of Bost’s normalized height
hnorm, introduced in [Bos96] in the general setup of polarized variety (XF , LF ) defined over a
number field F :

hnorm(L, ψ) :=
(L, ψ)n+1

[F : Q](n+ 1)(LF )n
− 1

[F : Q]N
d̂egπ∗X ,

assuming that the rank N of the vector bundle π∗L → SpecOF is non-zero and π∗(X ,L) is
endowed with the L2-norm induced by the continuous psh metrics ψσ on Lσ and the volume
forms MA(ψσ) on Xσ (defined by formula (4.3)). When LF is very ample it is shown in [Bos96]
that the functional hnorm(L, ·) is bounded from below if and only if the Chow point of (XF , LF )
is semistable with respect to the action of the group GL(N,F ) on the Chow variety (in the sense
of geometric invariant theory). More precisely, it is shown in [Bos96] that the semistability in
question is equivalent to a lower bound on Bost’s intrinsic normalized height of (XF , LF ):

inf hnorm > −∞,

where the infimum runs over all models (X ,L) and metrics ψ as above. In fact, by [Bos96,
Proposition 2.1] and [Zha96, Theorem 4.4] the Chow semistability in question is equivalent to
the following explicit lower bound:

hnorm(L, ψ) ≥ −1
2

N+1∑
n=1

n∑
m=1

1
m

− 1
2

logN (6.7)

(moreover, it is conjectured in [Zha96] that the first term in the right-hand side above may be
replaced by 0).

In this setup the role of the normalization d̂egπ∗(L + KX/SpecOF) = 0 in Conjecture 6.3 is thus
played by the normalization d̂egπ∗L = 0. However, in contrast to Conjecture 6.3, the lower bound
(6.7) on hnorm(L, ψ) corresponds to a lower bound on (L, ψ)n+1 for any normalized metric. Note
also that one virtue of the normalization condition in Conjecture 6.3 is that it is comparatively
explicit, since π∗(L + KX/SpecOF) has rank 1 (so that formula (6.3) applies, showing that it is
enough to assume that the volume forms |sr|2/re−ψσ on Xσ are normalized). Another advantage
of this normalization condition is that it applies to any continuous metric ψ (at the cost of
replacing (L, ψ)n+1 with the χ-arithmetic volume of L, as in Theorem 2.5).

Finally, we recall that when L is replaced by kL for a large positive integer k it follows from
[Oda18, Theorem 3.7] that there exist constants a > 0 and b (depending only on (XF , LF )) such
that

M(X ,L)(ψ)/Ln = hnorm(kL, ψ) − a logNk + b+ o(1), (6.8)

as k → ∞, where Nk denotes the rank of H0(X , kL) which diverges as k → ∞. Unfortunately,
the diverging term a logNk makes it impossible to infer lower bounds on M(X ,L)(ψ) from lower
bounds on hnorm(kL). Since M(X ,L)(ψ) coincides with D(X ,L)(ψ) when L equals −KX/SpecOF
this means that Conjecture 6.3 cannot be deduced from bounds of the form (6.7) by letting k
(and hence N) tend to infinity.
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6.4 Comparison with Odaka’s and Faltings’s modular heights
Finally, let us compare our normalizations of the arithmetic Mabuchi functional with those
of Odaka [Oda20] and Faltings [Fal83a]. First of all, our multiplicative normalization for
the arithmetic Mabuchi functional M(X ,L) (formula (1.6)) is made so that ±M(X ,±KX ) =
(±KX )n+1/(n+ 1). Moreover, as discussed in § 1.4.1, we are employing the metric on −KX

induced by the normalized volume form ωn/Ln of the Kähler form ω defined by a given metric
ψ on L with positive curvature (i.e. ω = ddcψ). Comparing with Odaka’s arithmetic Mabuchi
functional, which we shall denote by M(O)

(X ,L)(ψ), thus yields

1
(n+ 1)!Ln

M(O)
(X ,L) = M(X ,L) +

1
2
Ln

n!
log(Ln/n!). (6.9)

In the case that X is an abelian variety it was shown in [Oda20] that the infimum of Odaka’s
arithmetic Mabuchi functional over all metrics on L with positive curvature coincides with
Faltings’s (modular) height [Fal83a], up to a multiplicative and an additive constant depending
on Ln. Here we note that our normalizations are consistent with those of Faltings.

Proposition 6.5. Let X be a projective and flat scheme over Z and assume that KX is trivial.
For any relatively ample line bundle L over X,

inf
ψ

1
Ln/n!

M(X ,L)(ψ) = − 1
2[F : Q]

log
1
2n

∣∣∣∣∣
∫
X(C)

Ω ∧ Ω̄

∣∣∣∣∣ , (6.10)

where Ω is a generator of H0(X ,KX ) and the infimum ranges over all psh metrics ψ on L and
V := Ln/n!.

Proof. This is essentially equivalent to [Oda20, Theorem 2.11], using relation (6.9). In any case,
in order to verify that all normalizations are consistent we provide a simple direct proof. Assume,
to simplify the notation, that F = Q. Recall that Faltings’s modular height [Fal83a] is defined
as the arithmetic degree of π∗(X ,KX ), with respect to the L2-metric on H0(X,KX) defined by
‖Ω‖2 := (1/2n)| ∫X(C) Ω ∧ Ω̄|. This is precisely the right-hand side in formula (6.10). As for the
left-hand side, it is given by∫
X

log
(

(ddcψ)n/V n!
(in2/2/2n)Ω ∧ Ω̄/‖Ω‖2

)
(ddcψ)n

V n!
=
∫
X

log
(

(ddcψ)n/V n!
(in2/2/2n)Ω ∧ Ω̄/‖Ω‖2

)
(ddcψ)n

V n!
− log ‖Ω‖2

(as follows readily from the definitions, just as in formula (6.5)). Now, by Jensen’s inequality this
expression is minimal precisely when the two probability measures (ddcψ)n/V n! and 2−nin2/2Ω ∧
Ω̄/‖Ω‖2 coincide, which, equivalently, means that ddcψ is a Kähler–Einstein metric. By the
Calabi–Yau theorem such a metric exists for any given ample L, which concludes the proof. �

The previous proposition has the following consequence, when combined with well-known
properties of Faltings’s modular height of abelian varieties (cf. the discussion in relation to
[Oda20, Theorem 2.11] and [Oda20, § 2.3.2]). Consider a polarized abelian variety (XF0 , LF0)
defined over a given number field F0. Then the infimum of vol(L)−1M(X ,L) over all metrics, finite
field extensions F, models over OF and positively curved metrics on L→ XF(C) is attained at
any semistable reduction of the Néron model X of XF, when L is endowed with a Kähler–Einstein
metric. Moreover, in the particular case of elliptic curves it was observed in [Del85, p. 29] that the
minimal value of the aforementioned infimum over all XF is attained at the semistable reduction
of the Néron model X0 of any elliptic curve with vanishing j-invariant (X0 is uniquely determined
for any sufficiently large field extension). Thus the role of X0 among all models of elliptic curves is
somewhat analogous to the role of PnZ in Conjectures 1.1 and 1.6. However, it should be stressed
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that in the setup of Fano varieties the choice of multiplicative normalization is crucial. Indeed,
while PnZ minimizes M(X ,−KX )(ψKE) over the canonical toric integral models of all K-semistable
toric Fano varieties X (assuming that n ≤ 6) it does not minimize vol(−KX)−1M(X ,−KX )(ψKE).
In fact, for all we know it could actually be the case that vol(−KX)−1M(X ,−KX )(ψKE) is maximal
on PnZ. For example, this turns out to be the case in the more general setup of Fano orbifolds (not
assumed toric) when X has relative dimension 1 (a proof will appear in a separate publication).

Acknowledgements

We are grateful to Bo Berndtsson, Dennis Eriksson, Gerard Freixas i Montplet, Benjamin Nill,
Yuji Odaka, Per Salberger, Chenyang Xu and Ziquan Zhuang for illuminating discussions/
comments and, in particular, to Alexander Kasprzyk for updating the database [Øbr07]. We
are also grateful to the refere for very helpful comments.

Conflicts of interest

None.

Financial support

This work was supported by grants from the Knut and Alice Wallenberg Foundation, the Göran
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