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Two problems on random analytic
functions in Fock spaces
Xiang Fang and Pham Trong Tien
Abstract. Let f (z) = ∑∞n=0 an zn be an entire function on the complex plane, and let R f (z) =
∑∞n=0 an Xn zn be its randomization induced by a standard sequence (Xn)n of independent
Bernoulli, Steinhaus, or Gaussian random variables. In this paper, we characterize those functions
f (z) such that R f (z) is almost surely in the Fock space F

p
α for any p, α ∈ (0,∞). Then such a

characterization, together with embedding theorems which are of independent interests, is used
to obtain a Littlewood-type theorem, also known as regularity improvement under randomization
within the scale of Fock spaces. Other results obtained in this paper include: (a) a characterization of
random analytic functions in the mixed-norm spaceF(∞, q, α), an endpoint version of Fock spaces,
via entropy integrals; (b) a complete description of random lacunary elements in Fock spaces; and
(c) a complete description of random multipliers between different Fock spaces.

1 Introduction

The study of random analytic functions in Hardy spaces, induced by a sequence of
Bernoulli or Steinhaus random variables, was initiated by Littlewood [19, 20] and
Paley and Zygmund [25] in 1930s. After that, the topic was extended to a standard
Gaussian sequence [15] and many other situations. Of particular interest to us is
a Banach space viewpoint, especially the study of random analytic functions in
functions spaces on the unit disk, such as H∞ [5, 15, 22, 23, 25, 27], the Bloch
spaces [3, 10], BMOA spaces [28, 29, 37], Dirichlet spaces [7], and, recently, Bergman
spaces [6].

It appears that, so far, activities along this line of research center around the unit
disk only, and entire functions over the complex plane are largely untapped. The Fock
spaces are paradigms of Banach spaces of entire functions [38], and in this paper, we
initiate a study of random analytic functions in these spaces; in particular, we seek
to answer the following two basic questions concerning them, as well as to consider
several ramifications among which an endpoint Fock space F(∞, q, α) is particularly
interesting.

Question A To characterize entire functions f (z) = ∑∞n=0 anzn such that the ran-
domization R f (z) = ∑∞n=0 ±anzn is almost surely in the Fock space F

p
α for p, α ∈

(0,∞).
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Question B To characterize indices p, q, α, β ∈ (0,∞) such that

R ∶ Fp
α ↪ F

q
β ,

where R ∶ E ↪ F denotes that R f ∈ F almost surely for any f ∈ E.

Motivations for these two questions will be given shortly. Here, we point out that,
in contrast to the above Banach space viewpoint, the study of individual Gaussian
analytic functions (GAF) on the complex plane has attracted a lot of attention in recent
years [12, 24, 26, 30–33]. Hence, from the Banach space viewpoint, this work extends
known results from the unit disk to the complex plane; from the GAF viewpoint, this
work provides a new framework to study Gaussian entire functions.

Definition 1.1 A random variable X is called Bernoulli if P(X = 1) = P(X = −1) = 1
2 ,

Steinhaus if it is uniformly distributed on the unit circle, and by N(0, 1), we mean
the law of a Gaussian variable with zero mean and unit variance. Moreover, let X be
either Bernoulli, Steinhaus, or N(0, 1). Then a standard X sequence is a sequence of
independent, identically distributed X variables, denoted by (εn)n≥0, (e2πiαn)n≥0, and
(ξn)n≥0, respectively. A standard random sequence (Xn)n≥0 refers to either a standard
Bernoulli, Steinhaus, or Gaussian N(0, 1) sequence.

To motivate the first question, we let H(C) denote the space of all entire functions.
We extend the definition of R f to a standard random sequence (Xn)n≥0:

R f (z) ∶=
∞
∑
n=0

an Xnzn for f (z) =
∞
∑
n=0

anzn ∈ H(C).

LetX ⊂ H(C) be a p-Banach space of entire functions containing all polynomials such
that the point evaluation functional δz is continuous on X for z ∈ C. The Hewitt–
Savage zero–one law [9, Theorem 2.5.4, p. 82] implies that

P(R f ∈ X) ∈ {0, 1} for any f ∈ H(C).

This prompts us to introduce a notion called the symbol space X∗ by

X∗ ∶= { f ∈ H(C) ∶ P(R f ∈ X) = 1}.

In order to answer Question A, or, more generally, to characterize the symbol space
(Fp

α)∗ for a standard random sequence, we introduce a class of mixed-norm spaces
F(p, q, α) with three parameters p, q, α ∈ (0,∞) for entire functions in Section 2.1.
This class, although not showing up in literature previously, is a natural generalization
of its unit disk analog, which has a long history already (see [14] for more details).
Then, motivated by the Bergman result in [6], it is natural to conjecture (and prove)
the following:

Theorem 1.1 Let p, α ∈ (0,∞) and (Xn)n≥0 be a standard random sequence. Then
(Fp

α)∗ = F(2, p, α).

In fact, we can do more by solving this problem for mixed-norm spaces F(p, q, α);
see Theorem 2.6 for a characterization of (F(p, q, α))∗ for all p, q, α ∈ (0,∞), which
reduces to Theorem 1.1 by choosing p = q. Compared with the proof in [6], the main
challenge for Theorem 1.1, besides obviously different function-theoretic issues, is
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to circumvent the difficulty caused by coefficient multipliers which work effectively
on the unit disk but not on the complex plane. Another novelty for Fock spaces in
this paper is perhaps that, with the help of entropy-type integrals, we are able to
characterize the space (F(∞, q, α))∗ (Theorem 2.9), which does not admit a Bergman
counterpart.

The second question in this paper, i.e., to characterize R ∶ Fp
α ↪ F

q
β , is motivated

by the regularity improvement of series summation under randomization. It is well
known that

1 ± 1
2p ± 1

3p ± ⋅ ⋅ ⋅ ± 1
np ± ⋅ ⋅ ⋅

is convergent almost surely if and only if p > 1
2 . For similar phenomena in analytic

functions, the classical theorem of Littlewood [19, 20] states that, for any function
f (z) in the Hardy space H2(D), the randomization R f (z) belongs to Hq(D) almost
surely for all q > 0, so a regularity improvement. More precisely, for p, q ∈ (0,∞),

R ∶ H p(D) ↪ Hq(D)(1.1)

if and only if p ≥ 2 and q > 0. Then the Bergman case is solved in [6], and the Dirichlet
case follows trivially from Bergman, due to the commutativity:

(R f )′ = R( f ′).

Now, it is natural to consider this phenomenon for entire functions and we offer the
following:
Theorem 1.2 Let p, q, α, β ∈ (0,∞) and (Xn)n≥0 be a standard random sequence.
Then R ∶ Fp

α ↪ F
q
β if and only if one of the following holds:

(i) α < β; or
(ii) α = β and q ≥ max{2, p}.

This implies that, in particular, there is no Littlewood-type improvement for any
F

p
α ; on the other hand, when p < 2, the loss is not as drastic as in the Littlewood

theorem. With Theorem 1.1 in hand, the proof of Theorem 1.2 is quickly reduced to
an embedding problem between Fock spaces and mixed-norm spaces. This problem,
of independent interests, is solved in Section 3 (Theorems 3.3 and 3.4).

Section 4 studies random Hadamard lacunary series in Fock spaces induced by a
more general sequence of random variables (Theorem 4.1).

Section 5 contains a complete description of random multipliers between Fock
spaces (Theorem 5.1). To achieve this, we use Theorem 1.1 and characterize
the space of multipliers between Fock spaces, which is of independent interests
(Theorem 5.2).

1.1 Notations

The abbreviation “a.s.” stands for “almost surely.” We assume that all random variables
are defined on a probability space (Ω,F,P) with expectation denoted by E(⋅).
Moreover, A ≲ B (or, A ≳ B) means that there exists a positive constant C dependent
only on the indexes p, q, α, β, . . . such that A ≤ CB (or, respectively, A ≥ B

C ), and A ≃ B
means that both A ≲ B and A ≳ B hold.
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2 The mixed-norm space F(p, q, α) and its symbol space

In this section, we introduce a class of mixed-norm spaces F(p, q, α) of entire
functions for p, q ∈ (0,∞] and α ∈ (0,∞) and characterize the symbol space
(F(p, q, α))∗, first for p ∈ (0,∞) and then for p = ∞, and q, α ∈ (0,∞). This includes,
in particular, a complete description of the symbol space (Fp

α)∗ for any p, α ∈ (0,∞)
as special cases since Fp

α = F(p, p, α), hence answering Question A. This part follows
the framework of [6], and hence certain details are skipped and we focus on where
the proofs differ; the main challenge, as we mentioned before, is to circumvent the
difficulty caused by coefficient multipliers. Then, with the help of entropy integrals,
we characterize (F(∞, q, α))∗, which does not admit a Bergman counterpart.

For the reader’s convenience, we recall the definition of Fock spaces. For p > 0 and
α > 0, the Fock space Fp

α consists of entire functions f on C such that

∥ f ∥p,α ∶= ( pα
2π ∫

C

∣ f (z)∣p e−
pα∣z∣2

2 dA(z))
1
p

< ∞,

where dA is the Lebesgue measure on C. For p = ∞ and α > 0, the Fock space F∞α is
defined as

F∞α ∶= { f ∈ H(C) ∶ ∥ f ∥∞,α ∶= sup
z∈C

∣ f (z)∣e−
α∣z∣2

2 < ∞} .

2.1 The mixed-norm space F(p, q, α)

For p ∈ (0,∞] and q, α ∈ (0,∞), we introduce the following mixed-norm space:

F(p, q, α) ∶= { f ∈ H(C) ∶ ∥ f ∥p,q ,α ∶= (∫
∞

0
Mq

p( f , r)dλqα(r))
1
q

< ∞} ,

where dλqα(r) ∶= qαre−
qαr2

2 dr and, as usual,

Mp( f , r) ∶= ( 1
2π ∫

2π

0
∣ f (re iθ)∣pdθ)

1
p

for p < ∞

and

M∞( f , r) ∶= sup
θ∈[0,2π]

∣ f (re iθ)∣.

Moreover, for q = ∞, the space F(p,∞, α) consists of entire functions f such that

∥ f ∥p,∞,α ∶= sup
r>0

Mp( f , r)e−
αr2

2 < ∞.

Note that Fp
α = F(p, p, α) for p ∈ (0,∞] and α ∈ (0,∞).

The corresponding space H(p, q, α) on the unit disk has been intensively studied
for a long time [14, Chapters 7 and 8]. Here, we establish a few properties of F(p, q, α)
in order to answer Question A.

The proof of the following lemma is standard, and details are skipped.
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Lemma 2.1 Let p, q ∈ (0,∞] and α ∈ (0,∞). If p ≥ 1 and q ≥ 1, then F(p, q, α) is a
Banach space, else F(p, q, α) is an s-Banach space with s = min{p, q}.

The next lemma is an extension of [38, Proposition 2.9].

Lemma 2.2 Let p, q ∈ (0,∞], α ∈ (0,∞), and f ∈ F(p, q, α), fr(z) ∶= f (rz), r ∈
(0, 1).
(a) One has ∥ fr∥p,q ,α → ∥ f ∥p,q ,α as r → 1−. Moreover, if q < ∞, then fr → f in

F(p, q, α) as r → 1−.
(b) For r ∈ (0, 1), the Taylor polynomials of fr converge to fr in F(p, q, α).

Proof (a) Using ∥ fr∥p,q ,α ≤ ∥ f ∥p,q ,α for r < 1, if q < ∞, then by the dominated
convergence theorem,

∥ fr∥p,q ,α = (∫
∞

0
Mq

p( fr , t)dλqα(t))
1
q

→ (∫
∞

0
Mq

p( f , t)dλqα(t))
1
q

= ∥ f ∥p,q ,α ,

as r → 1−. From this and [11, Lemma 3.17], it follows that ∥ fr − f ∥p,q ,α → 0, i.e., fr → f
in F(p, q, α) as r → 1−. For q = ∞, we find a sequence (tn)n so that

lim
n→∞

Mp( f , tn)e−
αt2

n
2 = sup

t>0
Mp( f , t)e−

αt2
2 = ∥ f ∥p,∞,α .

Then, for n ∈ N,

lim
r→1−

∥ fr∥p,∞,α ≥ lim
r→1−

Mp( fr , tn)e−
αt2

n
2 = Mp( f , tn)e−

αt2
n

2 → ∥ f ∥p,∞,α ,

as n →∞.
(b) We claim that Mp( f , t) ≤ ∥ f ∥p,q ,α e αt2

2 ; hence, Mp( fr , t) ≤ ∥ f ∥p,q ,α e αr2 t2
2 for

t > 0. This implies fr ∈ F(p,∞, r2α). Fix a number β ∈ (r2α, α). By Theorem 3.3, we
have

F(p,∞, r2α) ⊂ F2
β ⊂ F(p, q, α).

Thus, fr belongs to the Hilbert Fock space F2
β , which implies that the Taylor polyno-

mials (pn)n of fr converge to fr in F2
β , and, hence, also in F(p, q, α). It remains to

prove the claim, which is trivial when q = ∞. If q < ∞, then, for t ≥ 1, we have

∥ f ∥q
p,q ,α ≥ ∫

∞

t
Mq

p( f , x)dλqα(x) ≥ Mq
p( f , t)∫

∞

t
dλqα(x) = Mq

p( f , t)e−
qαt2

2 . ∎

2.2 The symbol space (F(p, q, α))∗

As the first step to characterize the symbol space (F(p, q, α))∗, we extend
[6, Theorem 8] from the unit disk to the complex plane.

Proposition 2.3 Let p, q ∈ (0,∞], α ∈ (0,∞), and (Xn)n≥0 be a standard random
sequence. Let f (z) = ∑∞n=0 anzn ∈ H(C). Then the following statements are equivalent:

(i) R f ∈ F(p, q, α) a.s.;
(ii) E(∥R f ∥s

p,q ,α) < ∞ for some s > 0; and
(iii) E(∥R f ∥s

p,q ,α) < ∞ for any s > 0.
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Moreover, the quantities (E(∥R f ∥s
p,q ,α))

1
s are equivalent for all s > 0 with some con-

stant depending only on s.

To prove Proposition 2.3, we need the following two auxiliary lemmas. The
first lemma is the Khintchine–Kahane inequality for p-Banach spaces (see [6,
Lemma 11]).

Lemma 2.4 Let (en)n≥0 be a sequence of elements in a p-Banach space X, and let
(Xn)n≥0 be a standard random sequence. Let S ∶= ∑∞n=0 Xn en be an a.s. convergent series
in X. Then S ∈ Lq(Ω,X) for all q ∈ (0,∞), and moreover,

∥S∥Lq1 (Ω,X) ≃ ∥S∥Lq2 (Ω,X)

for any q1 , q2 ∈ (0,∞), where ∥S∥q
Lq(Ω,X) = E(∥S∥q

X
).

We also use this lemma several times withX = C in this section. The second lemma
is the extension of [6, Lemma 10] from the spaces H(p, q, α) on the unit disk to the
spaces F(p, q, α) on the complex plane.

Lemma 2.5 Let p, q ∈ (0,∞], α ∈ (0,∞), and (Xn)n≥0 be a sequence of independent
and symmetric random variables. If f (z) = ∑∞n=0 an Xnzn belongs to F(p, q, α) a.s.,
then the Taylor series Sn(z) = ∑n

k=0 ak Xk zk converges a.s. to f (z) in F(p, q, α) with
q < ∞, whereas it is a.s. bounded in F(p,∞, α).

Proof We follow the strategy in [6, Lemma 10]. The proof outlined below is based on
Lemma 2.2 and the Marcinkiewicz–Zygmund–Kahane (MZK) theorem for s-Banach
spaces. When q < ∞, we fix an increasing sequence of positive number rm → 1− as
m →∞. Then, for m ≥ 1, frm(z) ∶= ∑∞n=0 rn

m an Xnzn a.s. in F(p, q, α). Moreover, by
Lemma 2.2, frm → f a.s. in F(p, q, α) as m →∞. From this and the MZK theorem [6,
p. 11], we arrive at the assertion.

When q = ∞, by Lemma 2.2, ∥ frm∥p,∞,α → ∥ f ∥p,∞,α as m →∞ and, for fixed
m ∈ N, the Taylor polynomials of frm converge to frm in F(p,∞, α). This allows us to
replace the A-convergent version of the MZK theorem with an s-Banach space version
of the A-bounded MZK theorem [17, Theorem II.4] to conclude that the Taylor series
(Sn)n is a.s. bounded in F(p,∞, α). Note that we need the A-bounded MZK theorem
in this case because we do not have frm → f in F(p,∞, α). ∎

Remark 2.1 This result is interesting since there exists a function f (z) = ∑∞n=0 anzn ∈
F

p
α , with p < 1 in [18] and with p = 1 in [21], whose Taylor series Sn(z) = ∑n

k=0 ak zk

does not converge to f ; hence, supn≥0 ∥Sn∥p,α = ∞.

The proof of Proposition 2.3 (iii) �⇒ (ii) �⇒ (i) is trivial, and (ii) �⇒ (iii)
follows from Lemma 2.4. It remains to prove (i) �⇒ (ii). If R f ∈ F(p, q, α) a.s., then
by Lemma 2.5, the Taylor series Sn(z) = ∑n

k=0 ak Xk zk is a.s. bounded in F(p, q, α),
i.e., P(M < ∞) = 1, where M ∶= supn≥0 ∥Sn∥s

p,q ,α and s ∶= min{p, q, 1}. Thus, by [6,
Lemma 9],

E (exp (λ∥R f ∥s
p,q ,α)) ≤ E(exp(λM)) < ∞
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for a small enough constant λ > 0, from which and Jensen’s inequality, (ii) follows.
Moreover, Lemma 2.4 implies that the quantities (E(∥R f ∥s

p,q ,α))
1
s are equivalent for

all s > 0 by a constant depending only on s.

Now, we come to the first of the two symbol space theorems in this section.

Theorem 2.6 Let p, q, α ∈ (0,∞) and (Xn)n≥0 be a standard random sequence. Then
(F(p, q, α))∗ = F(2, q, α).

Remark 2.2 A reader acquainted with [6] should be able to predict the above theo-
rem quickly since it was observed (before Theorem 7) in [6] that the randomization
R(⋅) is an operation of “circular orthogonalization”; namely, it changes the circular
p-norm to an orthogonal 2-norm, and it does nothing to the radial parameters q in
the definition of mixed-norm spaces. This echoes well with the classical Littlewood
theorem (H p)∗ = H2 for all 0 < p < ∞. The root for this phenomenon should, per-
haps, be credited to Khintchine’s inequality.

Proof Let f (z) = ∑∞n=0 anzn ∈ H(C). By Proposition 2.3, R f ∈ F(p, q, α) a.s. if and
only if E(∥R f ∥q

p,q ,α) < ∞. Moreover,

E(∥R f ∥q
p,q ,α) = ∫

Ω
∫
∞

0
( 1

2π ∫
2π

0
∣R f (re iθ)∣pdθ)

q
p

dλqα(r)dP

= ∫
∞

0

⎡⎢⎢⎢⎢⎣
∫

Ω
( 1

2π ∫
2π

0
∣R f (re iθ)∣pdθ)

q
p

dP
⎤⎥⎥⎥⎥⎦

dλqα(r).

Let p ≤ q. Using the Minkowski inequality, we get

∫
Ω
( 1

2π ∫
2π

0
∣R f (re iθ)∣pdθ)

q
p

dP ≤
⎡⎢⎢⎢⎣

1
2π ∫

2π

0
(∫

Ω
∣R f (re iθ)∣qdP)

p
q

dθ
⎤⎥⎥⎥⎦

q
p

.

Moreover, by Lemma 2.4,

(∫
Ω
∣R f (re iθ)∣qdP)

1
q

≃ (∫
Ω
∣R f (re iθ)∣2dP)

1
2
= (

∞
∑
n=0

∣an ∣2r2n)
1
2

.

Consequently,

E(∥R f ∥q
p,q ,α) ≲ ∫

∞

0
(
∞
∑
n=0

∣an ∣2r2n)
q
2

dλqα(r)

= ∫
∞

0
( 1

2π ∫
2π

0
∣ f (re iθ)∣2dθ)

q
2

dλqα(r) = ∥ f ∥q
2,q ,α .

Thus, F(2, q, α) ⊂ (F(p, q, α))∗. On the other hand, by Lemma 2.4,

∫
Ω
( 1

2π ∫
2π

0
∣R f (re iθ)∣pdθ)

q
p

dP ≥ [∫
Ω
( 1

2π ∫
2π

0
∣R f (re iθ)∣pdθ) dP]

q
p

≃
⎡⎢⎢⎢⎣

1
2π ∫

2π

0
(∫

Ω
∣R f (re iθ)∣2dP)

p
2

dθ
⎤⎥⎥⎥⎦

q
p

,
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which is equal to (∑∞n=0 ∣an ∣2r2n)
q
2 . Therefore,

E(∥R f ∥q
p,q ,α) ≳ ∫

∞

0
(
∞
∑
n=0

∣an ∣2r2n)
q
2

dλqα(r) = ∥ f ∥q
2,q ,α .

Thus, (F(p, q, α))∗ ⊂ F(2, q, α). Similar methods apply to the case q < p in order to
prove the inclusion F(2, q, α) ⊂ (F(p, q, α))∗ and the inverse inclusion. Details are
skipped. ∎

It is interesting to observe that one can reformulate the a.s. membership problem
R ∶ F(2, p, α) ↪ F

p
α as the boundedness of a (deterministic) operator.

Corollary 2.7 Let p, α ∈ (0,∞) and (Xn)n≥0 be a standard random sequence. Then
the map R ∶ F(2, p, α) → Ls(Ω,Fp

α) is continuous for s ∈ (0,∞).

Proof By Lemma 2.4, it is sufficient to consider s = p. For f (z) = ∑∞n=0 anzn ∈
F(2, p, α), we get

∥R f ∥Lp(Ω,Fp
α) = (∫

Ω
( pα

2π ∫
C

∣R f (z)∣p e−
pα∣z∣2

2 dA(z)) dP)
1
p

= (∫
Ω
(∫

∞

0
( 1

2π ∫
2π

0
∣R f (re iθ)∣pdθ) dλpα(r)) dP)

1
p

= (∫
∞

0
( 1

2π ∫
2π

0
(∫

Ω
∣R f (re iθ)∣pdP) dθ) dλpα(r))

1
p

≃
⎛
⎝∫

∞

0

⎛
⎝

1
2π ∫

2π

0
(∫

Ω
∣R f (re iθ)∣2dP)

p
2

dθ
⎞
⎠

dλpα(r)
⎞
⎠

1
p

=
⎛
⎜
⎝
∫
∞

0
(
∞
∑
n=0

∣an ∣2r2n)
p
2

dλpα(r)
⎞
⎟
⎠

1
p

= ∥ f ∥2, p,α . ∎

Remark 2.3 From the proof of Theorem 2.6 and Lemma 2.4, we see that, for s > 0,
the quantities E(∥R f ∥s

p,q ,α) < ∞ for R(B) f , R(S) f , and R(G) f are equivalent.

Now, we move on toward the second theorem in this section, which treats the case
p = ∞ and q < ∞. More notations and auxiliary results are needed for this purpose.
Let (an)n be a sequence of complex numbers. For simplicity, we define, if finite, the
following quantities:

ρ(t) ∶= (
∞
∑
n=0

∣an ∣2∣e2πnti − 1∣2)
1
2

and I ∶= ∫
1

0

ρ(t)
t
√

log e/t
dt,
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where ρ(s) ∶= sup{y ∶ m({t ∶ ρ(t) < y}) < s} is the nondecreasing rearrangement of
ρ(t). For an entire function f (z) = ∑∞n=0 anzn , we define

ρr(t) ∶= (
∞
∑
n=0

∣an ∣2r2n ∣e2πnti − 1∣2)
1
2

and I f (r) ∶= ∫
1

0

ρr(t)
t
√

log e/t
dt,

where, as above, ρr is the nondecreasing rearrangement of ρr .
The p = 1 case of the following auxiliary result can be found in [23, Theorem 1.4,

p. 11]. The general case follows from the Fernique theorem ([8, Theorem 2.7, p. 37] or
[16, Corollary 3.2, p. 59]), since X ∶= ∑∞n=0 an e inθ Xn defines a Gaussian vector in H∞
when I < ∞ by the Marcus–Pisier theorem, so the qth-moment of ∥X∥∞ is equivalent
to E(∥X∥∞).

Proposition 2.8 Let q ∈ (0,∞) and (Xn)n≥0 be a sequence of independent, symmetric
random variables. Then there is a constant K such that

1
K
(inf

n
E∣Xn ∣)

⎛
⎝

0
112

∞
∑
n=0

∣an ∣2 + I
⎞
⎠
≤ [E( sup

0≤θ<2π
∣
∞
∑
n=0

an e inθ Xn∣ q)]
1/q

≤ K
√

sup
n

E∣Xn ∣2
⎛
⎝

0
112

∞
∑
n=0

∣an ∣2 + I
⎞
⎠

.

Now, we present the second theorem in this section.

Theorem 2.9 Let q, α ∈ (0,∞) and (Xn)n≥0 be a standard random sequence. Then

(F(∞, q, α))∗ = { f ∈ H(C) ∶ I f (r) ∈ Lq(R+ , dλqα)} .

Proof Let f (z) = ∑∞n=0 anzn be an entire function. For r ∈ (0,∞), applying Propo-
sition 2.8 to the sequence (anrn)n≥0 instead of (an)n≥0, we get

(M2( f , r) + I f (r))q ≃ E (Mq
∞(R f , r)) .(2.1)

First, suppose that f ∈ (F(∞, q, α))∗, i.e., R f belongs to F(∞, q, α) a.s. Then, by
Proposition 2.3, E(∥R f ∥q

∞,q ,α) < ∞. Using this and (2.1), we get

∥I f ∥q
Lq(R+ ,d λqα) ≲ ∫

∞

0
E (Mq

∞(R f , r)) dλqα(r)

= E(∫
∞

0
Mq
∞(R f , r)dλqα(r)) = E(∥R f ∥q

∞,q ,α) < ∞,

which implies that I f (r) ∈ Lq(R+ , dλqα).
Conversely, suppose that I f (r) ∈ Lq(R+ , dλqα). We claim that f ∈ F(2, q, α).

Using this and (2.1), we obtain

E (∥R f ∥q
∞,q ,α) = ∫

∞

0
E (Mq

∞(R f , r)) dλqα(r)

≲ ∫
∞

0
(M2( f , r) + I f (r))q dλqα(r)

≲ (∥ f ∥q
2,q ,α + ∥I f ∥q

Lq(R+ ,d λqα)) < ∞.
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From this and Proposition 2.3, it follows that R f belongs to F(∞, q, α) a.s. Now, we
prove the claim. For n ∈ N and r > 0, we get

ρr(t) ≥ 2∣an ∣rn ∣ sin(nπt)∣,

and hence,

ρr(t) ≥ 4
π
∣an ∣rn arcsin t, t ∈ (0, 1).

Thus,

I f (r) ≥ 4
π
∣an ∣rn ∫

1

0

arcsin t
t
√

log e/t
dt ≳ ∣an ∣rn ,(2.2)

for n ∈ N and r > 0. Moreover, using [23, Theorem 1.2, p. 126], we get

I f (r) = ∫
1

0

ρr(t)
t
√

log e/t
dt ≥ ∫

1

1
2

ρr(t)
t
√

log e/t
dt ≥ ρr (

1
2
)∫

1

1
2

dt
t
√

log e/t

≳ ρr (
1
2
) ≳ (∑

k≥2
(a∗k)2)

1
2

= (∑
n≥1

∣an ∣2r2n − sup
n≥1

∣an ∣2r2n)
1
2

,

where (ak)∗ is the nonincreasing rearrangement of the sequence (∣an ∣rn)n . From
this and (2.2), it follows that M2( f , r) ≲ I f (r) for all r > 0, which implies that f ∈
F(2, q, α). ∎

3 Embedding theorems

The purpose of this section is to answer Question B in the introduction; namely,
we characterize R ∶ Fp

α ↪ F
q
β . To achieve this, we solve completely the embedding

problem from the Fock space F
p
α to the mixed-norm space F(s, q, β). We shall do

a little more and cover the case p = ∞. On the other hand, it would be desirable to
solve the full embedding problem for mixed-norm spaces at the generality of Arévalo’s
solution for the disk case [4], namely, to characterize the embedding F(t, p, α) ⊂
F(s, q, β) with six parameters. (Despite our repeated efforts, in this paper, we can
handle five parameters only.) An obstacle is our limited knowledge on the mean
growth function Mp(r, f ) as r →∞, which calls for more study. In contrast, the same
function is well understood in the unit disk (with r → 1−).

Theorem 3.1 Let p ∈ (0,∞], q, s, α, β ∈ (0,∞), and (Xn)n≥0 be a standard random
sequence. Then F

p
α ⊂ (F(s, q, β))∗ if and only if one of the following conditions holds:

(i) α < β; or
(ii) α = β and q ≥ max{2, p}.

Corollary 3.2 Let p ∈ (0,∞], q, α, β ∈ (0,∞), and (Xn)n≥0 be a standard random
sequence. Then R ∶ Fp

α ↪ F
q
β iff either (i) or (ii) in Theorem 3.1 holds.

The proof of Theorem 3.1 follows from the following characterizations of the
inclusion relationship between F

q
β and F(s, p, α). In the case α ≠ β, we get the

following theorem.
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Theorem 3.3 Let α, β ∈ (0,∞). The following statements are true:

(a) If α < β, then F
p
α ⊂ F(s, q, β) and the inclusion is proper for p, q, s ∈ (0,∞]. In

particular, Fp
α ⊂ F

q
β for p, q ∈ (0,∞].

(b) If β < α, then F(s, q, β) ⊂ F
p
α and the inclusion is proper for p, q, s ∈ (0,∞].

In the case α = β, by [38, Corollary 2.8 and Theorem 2.10], the family of Fock spaces
F

p
α is nested, i.e.,

F
p
α ⫋ F

q
α for 0 < p < q ≤ ∞.(3.1)

In view of this, we only need to consider the case q ≠ s.

Theorem 3.4 Let p, q, s ∈ (0,∞] and α ∈ (0,∞).

(a) If s < q and p ≤ q, then F
p
α ⊂ F(s, q, α) and the inclusion is proper.

(b) If s < q < p, then F
p
α /⊂ F(s, q, α) and F(s, q, α) /⊂ F

p
α .

(c) If q < s and q ≤ p, then F(s, q, α) ⊂ F
p
α and the inclusion is proper.

(d) If p < q < s, then F
p
α /⊂ F(s, q, α) and F(s, q, α) /⊂ F

p
α .

The rest of this section is devoted to the proofs of Theorems 3.3 and 3.4. For the
reader’s convenience, we recall two facts first. We consider the reproducing kernel
Kα ,w(z) ∶= eαwz , w ∈ C, of the Hilbert Fock space F2

α . Then

∥Kα ,w∥p,α = e
α∣w∣2

2 for p ∈ (0,∞].(3.2)

By [38, Corollary 2.8],

∣ f (z)∣ ≤ e
α∣z∣2

2 ∥ f ∥p,α for f ∈ Fp
α and 0 < p ≤ ∞.(3.3)

Proposition 3.5 Let p, q ∈ (0,∞] and α ∈ (0,∞). The following holds:

(a) F
q
α ⫋ F(p, q, α) for 0 < p < q ≤ ∞; and

(b) F(p, q, α) ⫋ F
q
α for 0 < q < p ≤ ∞.

Proof We first observe that F(p2 , q, α) ⊂ F(p1 , q, α) for 0 < p1 < p2 ≤ ∞, which is
a consequence of Mp1( f , r) ≤ Mp2( f , r) for an entire function f and r > 0.

(a) Suppose that 0 < p < q ≤ ∞. Then F
q
α = F(q, q, α) ⊂ F(p, q, α). We need to

prove that F
q
α ≠ F(p, q, α). Otherwise, by the open mapping theorem, there is a

constant C > 0 such that

C−1∥ f ∥q ,α ≤ ∥ f ∥p,q ,α ≤ C∥ f ∥q ,α for f ∈ Fq
α .(3.4)

We estimate the norm ∥Kα ,w∥p,q ,α .

M p
p(Kα ,w , r) = 1

2π ∫
2π

0
∣eαwre iθ

∣ pdθ = 1
2π ∫

2π

0
e pα∣w∣r cos θ dθ

= I0(pα∣w∣r) ∼ e pα∣w∣r
√

2πpα∣w∣r
as ∣w∣r →∞,
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where I0 is the modified Bessel function and the last estimate is deduced from [2,
Section 9.7]. Thus,

Mp(Kα ,w , r) ≃ eα∣w∣r

(∣w∣r)
1

2p
for r ≥ 1 and ∣w∣ ≥ 1.(3.5)

If q = ∞, then by (3.5), for ∣w∣ ≥ 1, we get

∥Kα ,w∥p,∞,α ≲ sup
r<1

Mp(Kα ,w , r)e−
αr2

2 + ∣w∣−
1

2p sup
r≥1

eα∣w∣r− αr2
2 r−

1
2p

≲ eα∣w∣ + e
α∣w∣2

2 ∣w∣−
1

2p sup
r≥1

e−
α(r−∣w∣)2

2 ≲ e
α∣w∣2

2 ∣w∣−
1

2p .(3.6)

From this and (3.2), it follows that
∥Kα ,w∥p,∞,α

∥Kα ,w∥∞,α
≲ ∣w∣−

1
2p → 0 as ∣w∣ → ∞.

If 2p < q < ∞, then by (3.5), for ∣w∣ ≥ 1, we get

∥Kα ,w∥q
p,q ,α

≃∫
1

0
Mq

p(Kα ,w , r)e−
qαr2

2 r dr + ∣w∣−
q

2p ∫
∞

1
eqα∣w∣r− qαr2

2 r1− q
2p dr

≲ eqα∣w∣ + e
qα∣w∣2

2 ∣w∣−
q

2p ∫
∞

1
e−

qα(r−∣w∣)2
2 dr (since 1 − q

2p
< 0)

≲ eqα∣w∣ + e
qα∣w∣2

2 ∣w∣−
q

2p ∫
∞

−∞
e−

pα(r−∣w∣)2
2 dr ≲ e

qα∣w∣2
2 ∣w∣−

q
2p .(3.7)

Similarly as above, we get

∥Kα ,w∥p,q ,α

∥Kα ,w∥q ,α
≲ ∣w∣−

1
2p → 0 as ∣w∣ → ∞.

If p < q ≤ 2p, then by (3.5), for ∣w∣ ≥ 1, we get

∥Kα ,w∥q
p,q ,α ≲ eqα∣w∣ + e

qα∣w∣2
2 ∣w∣−

q
2p ∫

∞

1
e−

qα(r−∣w∣)2
2 r1− q

2p dr

≲ eqα∣w∣ + e
qα∣w∣2

2 ∣w∣−
q

2p ∫
∞

−∞
e−

qαt2
2 (∣t∣ + ∣w∣)1− q

2p dt (since 1 − q
2p

≥ 0)

≲ eqα∣w∣ + e
qα∣w∣2

2 ∣w∣−
q

2p (∣w∣1−
q

2p ∫
∞

−∞
e−

qαt2
2 dt + ∫

∞

−∞
e−

qαt2
2 ∣t∣1−

q
2p dt)

≲ e
qα∣w∣2

2 ∣w∣1−
q
p ,(3.8)

which, together with (3.2), implies that

∥Kα ,w∥p,q ,α

∥Kα ,w∥q ,α
≲ ∣w∣

1
q −

1
p → 0 as ∣w∣ → ∞ (since q > p).

Thus, we get a contradiction to (3.4).
(b) Let 0 < q < p ≤ ∞. Then F(p, q, α) ⊂ F(q, q, α) = F

q
α . It remains to show that

the inclusion from F(p, q, α) into F
q
α is proper. Otherwise, as above, we assume that
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(3.4) holds by contradiction. If q < p < ∞, then using (3.5), for ∣w∣ ≥ 1, we get

∥Kα ,w∥p,q ,α ≳ (∣w∣−
q

2p ∫
∞

∣w∣
eqα∣w∣r− qαr2

2 r1− q
2p dr)

1
q

≥ e
α∣w∣2

2 ∣w∣
1
q −

1
p (∫

∞

∣w∣
e−

qα(r−∣w∣)2
2 dr)

1
q

(since 1 − q
2p

> 0)

≳ e
α∣w∣2

2 ∣w∣
1
q −

1
p .(3.9)

From this and (3.2), it follows that

∥Kα ,w∥p,q ,α

∥Kα ,w∥q ,α
≳ ∣w∣

1
q −

1
p →∞ as ∣w∣ → ∞.

If q < p = ∞, then M∞(Kα ,w , r) = eα∣w∣r , and hence,

∥Kα ,w∥∞,q ,α ≃ (∫
∞

0
eqα∣w∣r− qαr2

2 r dr)
1
q

= e
α∣w∣2

2 (∫
∞

0
e−

qα(r−∣w∣)2
2 r dr)

1
q

≥ e
α∣w∣2

2 (∫
∞

−∣w∣
e−

qαt2
2 (t + ∣w∣)dt)

1
q

≳ e
α∣w∣2

2 (∣w∣ ∫
∞

−∣w∣
e−

qαt2
2 dt + ∫

∞

−∣w∣
e−

qαt2
2 tdt)

1
q

≳ e
α∣w∣2

2 ∣w∣
1
q .

Similarly as above, we obtain

∥Kα ,w∥p,q ,α

∥Kα ,w∥q ,α
≳ ∣w∣

1
q →∞ as ∣w∣ → ∞.

Thus, we obtain a contradiction to (3.4). ∎

Now, we come to the proof of Theorem 3.3.

The proof of Theorem 3.3 (a) Let α < β. For f ∈ Fp
α , by (3.3),

∣ f (z)∣ ≤ ∥ f ∥p,α e
α∣z∣2

2 for all z ∈ C.

Hence,

Ms( f , r) ≤ ∥ f ∥p,α e
αr2

2 for all r > 0.

If q < ∞, then

∥ f ∥s ,q ,β ≃ (∫
∞

0
Mq

s ( f , r)e−
qβr2

2 r dr)
1
q

≤ ∥ f ∥p,α (∫
C

e−
q(β−α)r2

2 r dr)
1
q

≲ ∥ f ∥p,α .
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If q = ∞, then

∥ f ∥s ,∞,β = sup
r>0

Ms( f , r)e−
βr2

2 ≤ ∥ f ∥p,α sup
r>0

e−
(β−α)r2

2 = ∥ f ∥p,α .

Therefore, Fp
α ⊂ F(s, q, β). As above, to prove properness of the inclusion, we assume

by contraction and by the open mapping theorem that there is a constant C > 0 such
that

C−1∥ f ∥s ,q ,β ≤ ∥ f ∥p,α ≤ C∥ f ∥s ,q ,β for f ∈ Fp
α .(3.10)

Moreover, for p, q ∈ (0,∞], we have

∥zn∥p,α ∼ ( n
eα

)
n
2

n
1

2p and ∥zn∥s ,q ,β = ∥zn∥q ,β ∼ ( n
eβ

)
n
2

n
1

2q as n →∞,(3.11)

where, here and below, we write 1
p ∶= 0 if p = ∞ for simplicity. Thus,

∥zn∥s ,q ,β

∥zn∥p,α
∼ (α

β
)

n
2

n
1

2q −
1

2p → 0 as n →∞,

which is a contradiction to (3.10).
(b) The case β < α is divided into three subcases.

Subcase 1. Suppose that q ≤ s. By Proposition 3.5 and part (a), we have

F(s, q, β) ⊂ F
q
β ⊂ F

p
α for p ∈ (0,∞].

Subcase 2. Suppose that p ≤ s < q. If q < ∞, then

∥ f ∥p
p,α ≃ ∫

∞

0
M p

p( f , r)e−
pαr2

2 rdr

≤ ∫
∞

0
(M p

s ( f , r)e−
pβr2

2 r
p
q )(e

p(β−α)r2
2 r1− p

q ) dr

≤ (∫
∞

0
Mq

s ( f , r)e−
qβr2

2 rdr)
p
q

(∫
∞

0
e

pq(β−α)r2
2(q−p) rdr)

q−p
q

≃ ∥ f ∥p
s ,q ,β .

If q = ∞, then

∥ f ∥p
p,α ≃ ∫

∞

0
M p

p( f , r)e−
pαr2

2 rdr

≤ ∫
∞

0
(M p

s ( f , r)e−
pβr2

2 )(e
p(β−α)r2

2 r) dr

≤ ∥ f ∥p
s ,∞,β ∫

∞

0
e

p(β−α)r2
2 rdr ≃ ∥ f ∥p

s ,∞,β .

Subcase 3. Let q > s and p > s. By Subcase 2 and (3.1), F(s, q, β) ⊂ Fs
α ⊂ F

p
α . The

remaining arguments for the properness of the inclusion are similar to the above,
hence skipped. ∎

Now, we come to the proof of Theorem 3.4.
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The proof of Theorem 3.4 (a) Let s < q and p ≤ q. Then, by Proposition 3.5 and (3.1),

F
p
α ⊂ F

q
α ⫋ F(s, q, α).

(b) Let s < q < p. First, we assume thatFp
α ⊂ F(s, q, α). As above, there is a constant

C > 0 such that

∥ f ∥s ,q ,α ≤ C∥ f ∥p,α for f ∈ Fp
α .(3.12)

On the other hand, by (3.11), we get

∥zn∥s ,q ,α

∥zn∥p,α
∼ n

1
2q −

1
2p →∞ as n →∞.

Thus, we get a contradiction to (3.12), which implies that Fp
α /⊂ F(s, q, α). Next, we

assume that F(s, q, α) ⊂ F
p
α . Then, there is a constant C > 0 such that

∥ f ∥p,α ≤ C∥ f ∥s ,q ,α for f ∈ F(s, q, α).(3.13)

On the other hand, using (3.2) and (3.6)–(3.8), we get

∥Kα ,w∥s ,q ,α

∥Kα ,w∥p,α
→ 0 as ∣w∣ → ∞.

Thus, we get a contradiction to (3.13), which implies that F(s, q, α) /⊂ F
p
α .

(c) Let q < s and q ≤ p. Then, by Proposition 3.5 and (3.1), we get

F(s, q, α) ⫋ F
q
α ⊂ F

p
α .

(d) Let p < q < s. Similar to the proof of part (b), by contradiction, we assume that
F

p
α ⊂ F(s, q, α), and hence, (3.12) holds. On the other hand, using (3.2) and (3.9), we

get

∥Kα ,w∥s ,q ,α

∥Kα ,w∥p,α
→∞ as ∣w∣ → ∞.

Thus, we get a contradiction to (3.12). Now, we assume thatF(s, p, α) ⊂ F
q
α , and hence

(3.13) holds. On the other hand, by (3.11), we get

∥zn∥s ,q ,α

∥zn∥p,α
∼ n

1
2q −

1
2p → 0 as n →∞,

which is a contradiction to (3.13). ∎

4 Hadamard lacunary series

This section studies random Hadamard lacunary series in Fock spaces induced by a
more general sequence of random variables (Xn)n≥0. Recall that a Hadamard lacunary
sequence is a subsequence (nk)k≥1 ⊂ N such that inf k≥1

nk+1
nk

> 1. The main result in this
section is the following.

Theorem 4.1 Let p, q, s, α, β ∈ (0,∞), (nk)k≥1 be a Hadamard lacunary sequence,
and (Xn)n≥0 a sequence of independent, identically distributed symmetric random
variables with finite variances.
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(a) For an entire function f (z) = ∑∞k=1 ak znk , the series R f (z) = ∑∞k=1 ak Xnk znk

belongs to F(s, p, α) a.s. if and only if f ∈ Fp
α .

(b) The seriesR f (z) belongs toF(s, q, β) a.s. for a lacunary series f (z) = ∑∞k=1 ak znk ∈
F

p
α if and only if one of the following conditions holds:

(i) α < β; or
(ii) α = β and q ≥ p.

To proceed, we need to extend a result of Tung [35, Theorem (Summary)] from
p ∈ [1,∞) to p ∈ (0,∞).

Proposition 4.2 Let p, s, α ∈ (0,∞), (nk)k≥1 be a Hadamard lacunary sequence. For
an entire function f (z) = ∑∞n=0 ak znk , the following statements are equivalent:

(i) f ∈ Fp
α ;

(ii) f ∈ F(s, p, α); and
(iii)

∞
∑
k=0

∣ak ∣p (
nk !
αnk

)
p
2

n−
p
4 +

1
2

k < ∞.

To prove this proposition, we need the following characterization of functions in
F(2, p, α) through their Taylor coefficients. In particular, the case p = 2 reduces to the
well-known characterization of functions in the Hilbert Fock space F2

α .

Lemma 4.3 Let p, α ∈ (0,∞) and f (z) = ∑∞n=0 anzn be an entire function.

(a) For 0 < p ≤ 2,

∞
∑
n=0

∣an ∣p (
n!
αn )

p
2

n−
p
4 +

1
2 < ∞⇒ f ∈ F(2, p, α) ⇒

∞
∑
n=0

∣an ∣p (
n!
αn )

p
2

n
3p
4 −

3
2 < ∞.

(b) For 2 ≤ p < ∞,

∞
∑
n=0

∣an ∣p (
n!
αn )

p
2

n
3p
4 −

3
2 < ∞⇒ f ∈ F(2, p, α) ⇒

∞
∑
n=0

∣an ∣p (
n!
αn )

p
2

n−
p
4 +

1
2 < ∞.

Proof (a) Let p ∈ (0, 2]. Using Stirling’s approximation, we get

∥ f ∥p
2, p,α = ∫

∞

0
(
∞
∑
n=0

∣an ∣2r2n)
p
2

dλpα(r) ≤
∞
∑
n=0

∣an ∣p ∫
∞

0
rnp pαre−

pαr2
2 dr

=
∞
∑
n=0

∣an ∣p (
2

pα
)

n p
2

∫
∞

0
t

n p
2 e−tdt =

∞
∑
n=0

∣an ∣p (
2

pα
)

n p
2

Γ (np
2

+ 1)

≃
∞
∑
n=0

∣an ∣p (
n

eα
)

n p
2

n
1
2 ≃

∞
∑
n=0

∣an ∣p (
n!
αn )

p
2

n−
p
4 +

1
2 .

From this, the first implication follows, whereas the second one can be reduced from
Proposition 3.5 and [34, Theorem 4(i)].
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(b) Let p ∈ [2,∞). Similarly as above, we have

∥ f ∥p
2, p,α = ∫

∞

0
(
∞
∑
n=0

∣an ∣2r2n)
p
2

dλpα(r) ≥
∞
∑
n=0

∣an ∣p ∫
∞

0
rnp pαre−

pαr2
2 dr

≃
∞
∑
n=0

∣an ∣p (
n!
αn )

p
2

n−
p
4 +

1
2 .

From this, the second implication follows, whereas the first one can be obtained from
Proposition 3.5 and [34, Theorem 4(ii)]. ∎

Proof of Proposition 4.2 From Khintchine’s inequality for lacunary series ([14,
Theorem 6.2.2, p. 114] or [36], [39]), it follows that Ms( f , r) ≃ M2( f , r) for s ∈ (0,∞),
which implies that f ∈ Fp

α if and only if f ∈ F(2, p, α) or, equivalently, f ∈ F(s, p, α).
In the rest of the proof, we consider s = 2. For p ∈ [2,∞), (ii) �⇒ (iii) by Lemma
4.3(b) and (iii) �⇒ (i) by [35, Theorem 2.4]. For p ∈ (0, 2], (ii) follows from (iii) by
Lemma 4.3(a). It remains to prove (ii) �⇒ (iii). For f ∈ F(2, p, α), we get

∥ f ∥p
2, p,α = ∫

∞

0

⎛
⎝
∞
∑
j=0

∣a j ∣2r2n j
⎞
⎠

p
2

dλpα(r)

≥
∞
∑
k=0

∫

√
nk+1

α
√

nk
α

⎛
⎝
∞
∑
j=0

∣a j ∣2r2n j
⎞
⎠

p
2

dλpα(r)

≥
∞
∑
k=0

∣ak ∣p ∫

√
nk+1

α
√

nk
α

rpnk dλpα(r)

≳
∞
∑
k=0

∣ak ∣p (
nk !
αnk

)
p
2

n−
p
4 +

1
2

k ,

where the last inequality is based on [35, Lemma 2.1]. ∎

The proof of Theorem 4.1 (a) For a Hadamard lacunary series f (z) = ∑∞k=0 ak znk ,
by Proposition 4.2, the series R f (z) belongs to F(s, p, α) a.s. if and only if

∞
∑
k=0

∣ak Xnk ∣p (
nk !
αnk

)
p
2

n−
p
4 +

1
2

k < ∞ a.s.,

which, by [15, Theorem 5, p. 33], is equivalent to

∞
∑
k=0

∣ak ∣p (
nk !
αnk

)
p
2

n−
p
4 +

1
2

k < ∞, i.e., f ∈ Fp
α ,

where the last argument is based on Proposition 4.2 again.
(b) The sufficiency follows from part (a), (3.1), and Theorem 3.3. For the necessity,

we consider α = β and q < p first. We construct the following function:

f0(z) ∶=
∞
∑
k=1

ak znk with ak ∶= (αnk

nk !
)

1
2

n
1
4−

1
2q

k , k ∈ N.
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Then
∞
∑
k=0

∣ak ∣q (
nk !
αnk

)
q
2

n−
q
4+

1
2

k =
∞
∑
k=1

1 = ∞

and
∞
∑
k=0

∣an ∣p (
nk !
αnk

)
p
2

n−
p
4 +

1
2

k =
∞
∑
k=1

n
q−p
2q

k < ∞,

where the last inequality is based on the fact that (nk)k≥1 is a Hadamard lacunary
sequence. From this and Proposition 4.2, it follows that f0 ∈ Fp

α and f0 ∉ Fq
α , and

hence, by part (a), R f0 does not belong to F(s, q, α) a.s. Now, let β < α. Similarly as
above, we consider the function

g0(z) ∶=
∞
∑
k=1

bk znk with bk ∶= (βnk

nk !
)

1
2

n
1
4−

1
2q

k , k ∈ N,

and get that the series R f0 ∉ F(s, q, β) a.s. and f0 ∈ Fq′
β for q′ > q, and hence f0 ∈ Fp

α
by Theorem 3.3. ∎

5 Random multipliers

In this section, we present a complete description of random multipliers between Fock
spaces; namely, we characterize the symbol space (M(Fp

α ,Fq
β))∗, where M(Fp

α ,Fq
β)

denotes the space of multipliers from F
p
α to F

q
β .

Theorem 5.1 Let p, q ∈ (0,∞] and α, β ∈ (0,∞).
(a) If either α > β or α = β and q < p, then (M(Fp

α ,Fq
β))∗ = {0}.

(b) If α = β and p ≤ q, then (M(Fp
α ,Fq

β))∗ consists of only constant functions.
(c) If α < β and p ≤ q, then (M(Fp

α ,Fq
β))∗ = (F∞β−α)∗.

(d) If α < β and q < p < ∞, then (M(Fp
α ,Fq

β))∗ = F (2, pq
p−q , β − α).

(e) If α < β and q < p = ∞, then (M(F∞α ,Fq
β))∗ = F (2, q, β − α).

The proof of this theorem follows from Theorems 2.6 and 5.2, which characterizes
the space M(Fp

α ,Fq
β). This is clearly of independent interests. Recall that an entire

function ϕ is called a multiplier from F
p
α to F

q
β , if ϕ f belongs to F

q
β for f ∈ Fp

α . If
ϕ ∈M(Fp

α ,Fq
β), then, by the closed graph theorem, the multiplication operator Mϕ ∶

f ↦ ϕ f is necessarily bounded.

Theorem 5.2 Let p, q ∈ (0,∞] and α, β ∈ (0,∞).
(a) If either α > β or α = β and q < p, then M(Fp

α ,Fq
β) = {0}.

(b) If α = β and p ≤ q, then M(Fp
α ,Fq

β) consists of only constant functions.
(c) If α < β and p ≤ q, then M(Fp

α ,Fq
β) = F∞β−α and

∥Mϕ∥Fp
α→F

q
β
≃ ∥ϕ∥∞,β−α .
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(d) If α < β and q < p < ∞, then M(Fp
α ,Fq

β) = F
pq

p−q

β−α and

∥Mϕ∥Fp
α→F

q
β
≃ ∥ϕ∥ pq

p−q ,β−α .

(e) If α < β and q < p = ∞, then M(F∞α ,Fq
β) = F

q
β−α and

∥Mϕ∥Fp
α→F

q
β
≃ ∥ϕ∥q ,β−α .

Proof Fix a nonzero function ϕ ∈M(Fp
α ,Fq

β). Then

∥Mϕ f ∥q ,β ≤ ∥Mϕ∥Fp
α→F

q
β
∥ f ∥p,α for f ∈ Fp

α .

For each w ∈ C, we consider the normalized reproducing kernel

kα ,w ∶= eαwz− α∣w∣2
2

of the Hilbert Fock space F2
α . Then, ∥kα ,w∥p,α = 1 for p ∈ (0,∞]. By (3.3), for

z, w ∈ C,

∥Mϕ∥Fp
α→F

q
β
≥ ∥Mϕ kα ,w∥q ,β ≥ ∣ϕ(z)kα ,w(z)∣e

−β∣z∣2
2 .

In particular, with w = z, we get

∣ϕ(z)∣ ≤ ∥Mϕ∥Fp
α→F

q
β
e
(β−α)∣z∣2

2 for z ∈ C.(5.1)

If α > β, then, by (5.1), ϕ(z) → 0 as ∣z∣ → ∞, that is, ϕ(z) ≡ 0 on C. If α = β, then, by
(5.1), ϕ(z) is a constant function. If q < p, then, by (3.1), Fq

β is a proper subspace of
F

p
α , and hence M(Fp

α ,Fq
β) = {0}. Thus, (a) and (b) are proved.

(c) Let α < β and p ≤ q. Then, by (5.1),

M(Fp
α ,Fq

β) ⊂ F∞β−α and ∥ϕ∥∞,β−α ≤ ∥Mϕ∥Fp
α→F

q
β
.

On the other hand, for ϕ ∈ F∞β−α , using (3.1) and (3.3), we get

∥Mϕ f ∥q ,β = (qβ
2π ∫

C

∣ϕ(z)∣q ∣ f (z)∣q e−
qβ∣z∣2

2 dA(z))
1
q

≤ ∥ϕ∥∞,β−α (
qβ
2π ∫

C

∣ f (z)∣q e−
qα∣z∣2

2 dA(z))
1
q

≃ ∥ϕ∥∞,β−α∥ f ∥q ,α ≲ ∥ϕ∥∞,β−α∥ f ∥p,α .

Thus,

ϕ ∈M(Fp
α ,Fq

β) and ∥Mϕ∥Fp
α→F

q
β
≲ ∥ϕ∥∞,β−α .
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(d) Let α < β and q < p < ∞. Fixing a nonzero function ϕ ∈M(Fp
α ,Fq

β), for f ∈ Fp
α ,

we get

∥Mϕ∥Fp
α→F

q
β
∥ f ∥p,α ≥ ∥Mϕ f ∥q ,β = (qβ

2π ∫
C

∣ f (z)ϕ(z)∣q e−
qβ∣z∣2

2 dA(z))
1
q

≃ (∫
C

∣ f (z)e−
α∣z∣2

2 ∣ q ∣ϕ(z)∣q e−
q(β−α)∣z∣2

2 dA(z))
1
q

= (∫
C

∣ f (z)e−
α∣z∣2

2 ∣ qdμϕ ,q ,β−α(z))
1
q

,

where dμϕ ,q ,β−α(z) ∶= ∣ϕ(z)∣q e−
q(β−α)∣z∣2

2 dA(z). The last inequality means
that μϕ ,q ,β−α is a (p, q)-Fock Carleson measure [13, Section 3]. Then, by
[13, Theorem 3.3],

μ̃ϕ ,q ,β−α(w) ∶= ∫
C

∣kα ,w(z)∣q e−
qα∣z∣2

2 dμϕ ,q ,β−α(z) ∈ L
p

p−q (C, dA).

For w , z ∈ C, by (3.3),

μ̃ϕ ,q ,β−α(w) = ∫
C

∣kα ,w(z)∣q ∣ϕ(z)∣q e−
qβ∣z∣2

2 dA(z)

≥ ∣kα ,w(z)∣q ∣ϕ(z)∣q e−
qβ∣z∣2

2 .

Thus, μ̃ϕ ,q ,β−α(z) ≥ ∣ϕ(z)∣q e−
q(β−α)∣z∣2

2 for z ∈ C. Hence,

∥ϕ∥ pq
p−q ,β−α ≃ (∫

C

∣ϕ(z)∣
pq

p−q e−
pq(β−α)∣z∣2

2(p−q) dA(z))
p−q
pq

≤ (∫
C

(μ̃ϕ ,q ,β−α(z))
p

p−q dA(z))
p−q
pq

= ∥μ̃ϕ ,q ,β−α∥
1
q

L
p

p−q (C,d A)
< ∞.

Therefore, ϕ ∈ F
pq

p−q

β−α and, by [13, Theorem 3.3] again,

∥ϕ∥ pq
p−q ,β−α ≲ ∥μ̃ϕ ,q ,β−α∥

1
q

L
p

p−q (C,d A)
≲ ∥Mϕ∥Fp

α→F
q
β
.

Conversely, fixing a nonzero function ϕ ∈ F
pq

p−q

β−α , for f ∈ Fp
α ,

∥Mϕ f ∥q ,β ≃ (∫
C

∣ f (z)e−
α∣z∣2

2 ∣ q ∣ϕ(z)e−
(β−α)∣z∣2

2 ∣ qdA(z))
1
q

≤ (∫
C

∣ f (z)e−
α∣z∣2

2 ∣ pdA(z))
1
p

(∫
C

∣ϕ(z)e−
(β−α)∣z∣2

2 ∣
pq

p−q dA(z))
p−q
pq

≲ ∥ϕ∥ pq
p−q ,β−α∥ f ∥p,α .

Thus, ϕ ∈M(Fp
α ,Fq

β) and ∥Mϕ∥Fp
α→F

q
β
≲ ∥ϕ∥ pq

p−q ,β−α .
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(e) Let α < β and q < p = ∞. Fixing a nonzero function ϕ ∈M(F∞α ,Fq
β), similar to

part (d), for f ∈ F∞α , we get

∥Mϕ∥F∞α →F
q
β
∥ f ∥∞,α ≥ ∥Mϕ f ∥q ,β = (qβ

2π ∫
C

∣ f (z)ϕ(z)∣q e−
qβ∣z∣2

2 dA(z))
1
q

≃ (∫
C

∣ f (z)∣ q ∣ϕ(z)∣q e−
qβ∣z∣2

2 dA(z))
1
q

= (∫
C

∣ f (z)∣ qdλϕ ,q ,β(z))
1
q

,

where dλϕ ,q ,β ∶= ∣ϕ(z)∣q e−
qβ∣z∣2

2 dA(z). The last inequality means that λϕ ,q ,β is a
q-Carleson measure for F∞α [1, Section 3.2]. Then

∥ϕ∥q
q ,β−α = ∫

C

∣ϕ(z)∣q e−
q(β−α)∣z∣2

2 dA(z) = ∫
C

e
qα∣z∣2

2 dλϕ ,q ,β(z) < ∞,

where the last step is based on [1, Section 3.2.2]. Therefore, ϕ ∈ Fq
β−α . Moreover,

following the arguments in the proof of [1, Theorem 1.2], we conclude that

∥ϕ∥q ,β−α ≲ ∥Mϕ∥F∞α →F
q
β
.

Conversely, fixing a nonzero function ϕ ∈ Fq
β−α , for f ∈ F∞α , using (3.3), we get

∥Mϕ f ∥q ,β ≃ (∫
C

∣ f (z)e−
α∣z∣2

2 ∣ q ∣ϕ(z)e−
(β−α)∣z∣2

2 ∣ qdA(z))
1
q

≤ ∥ f ∥∞,α (∫
C

∣ϕ(z)e−
(β−α)∣z∣2

2 ∣ qdA(z))
1
q

≲ ∥ϕ∥q ,β−α∥ f ∥∞,α .

Thus, ϕ ∈M(F∞α ,Fq
β) and ∥Mϕ∥F∞α →F

q
β
≲ ∥ϕ∥q ,β−α . ∎

Remark 5.1 We end this paper with a remark on the definition of standard ran-
dom sequences. It is perhaps natural to wonder whether one can replace them by
more general sequences of i.i.d. random variables, which are centered (E(X) = 0),
symmetric (X d= −X), and with finite second moment (E(X2) < ∞). This is perhaps
true, but not obvious to us. The obstacle lies in the Fernique theorem, which holds for
Gaussian vectors. For the Bernoulli and Rademacher cases, one has Kahane’s inequal-
ity to roughly the same effect. These two inequalities are needed, in particular, for
Proposition 2.3. Extending them to more general random sequences (in a meaningful
way) is a nontrivial task in probability. On the other hand, since there exist no other
obviously contending methods of randomization to the standard random sequences,
we are content with our choice so far. Another small extension, to complex Gaussian
variables, however, holds true easily for every result in this work by considering the
real and imaginary parts separately.
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