
GROUP ALGEBRA MODULES. II 

S. L. GULICK, T. S. LIU, AND A. C. M. VAN ROOIJ 

1. Introduction. The present paper began as a natural outgrowth of our 
first paper, where we characterized the module homomorphisms from group 
algebras into a fairly restrictive class of group algebra modules. We now 
investigate module homomorphisms from group algebras into a more general 
class of group algebra modules. Although the two papers are thus related, 
they can be read quite independently. 

Section 2 contains our extension, Theorem 2.1, of P. J. Cohen's theorem on 
factorization in Banach algebras (1). Our extension is to Banach modules 
over Banach algebras equipped with an approximate identity. We should 
mention first that J.-K. Wang observed the existence of such a generaliza­
tion, and secondly, that our proof requires no ideas different from those in 
Cohen's proof. Nevertheless, we include a proof that condenses the original 
proof considerably. 

Next, let X be a locally compact, Hausdorff space and let T be not only a 
locally compact group, but also a locally compact group of homeomorphisms 
on X, with the property that the map ir : r X X —> X, defined by ir (o-, x) — ax, 
a £ r , x 6 X, is jointly continuous. If mx is a Radon measure on X and if 
F Ç I i s such that mx(Y) = 0 implies that mx(aY) = 0 for all a G I\ then 
we say that mx is quasi-invariant (with respect to T). From now on we assume 
that X has a non-zero, positive Radon measure mx which is quasi-invariant. 
We can then define, and we devote § 3 to, a generalized measure algebra 
convolution *, which renders LX{X) and M(X) as left Li(r)-modules. It is 
no accident that we describe only left Zi(r)-modules. For Haar measure on 
T is left translation-invariant and not in general right translation-invariant. 
Among our results on the Li(r)-module M(X) we note that Li(T) * M(X) 
is usually a proper subset of M(X). In fact, y. £ £ i ( r ) * M(X) if and only 
if the left shift of /x by elements of T is continuous with respect to T, and 
any measure in M(X) absolutely continuous with respect to mx has this 
property. 

With any locally compact group T there is associated a modular function 
that depends upon the group structure of T. For general locally compact 
spaces there is no such associated function. Section 4 contains the definition 
of the generalized modular function J for (T, X). We show that J acts like 
the classical Jacobian and satisfies useful functional equations. As a conse­
quence of our definitions and Theorem 2.1, we are able to show that LP(X) 
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(p G ( l , 0 0 ] ) and Cœ(X) are also left Z,i(r)-modules, and that 

LX(T)*LP(X) = LP(X), p G [1, oo), and £x ( r ) * Cœ(X) = Cœ(X). 

In § 5 we apply the results of the earlier sections to the problem of original 
interest to us. The theorems concerning homomorphisms are two. First, if 
p G (1, °°], then as a Banach space the collection of (Li(T), LP(X))-homo­
morphisms corresponds isometrically to LP(X). Secondly, the space of (Li(T), 
Li(X))-homomorphisms corresponds isometrically to the subspaces N of 
M(X), where 

N = {M G M(X) : / * M « ^ X for each / G L i ( r ) } . 

The paper concludes with an analysis of N. We discuss the case TV = M(X). 
Finally we prove that if N = M(X) and if Y acts transitively on X} then X 
is homeomorphic to a factor space of T. 

Throughout the paper, X will denote an arbitrary locally compact, Haus-
dorff space with elements x, y, z, . . . . If F C X, then X \ F is the complement 
of F in X, and if F, Z C X, then F A Z = F \ Z U Z \ K Let CC(X) denote 
the normed space of continuous, complex-valued functions on X with com­
pact support, endowed with the supremum norm. 

Next, let X be a measure space with measure /x. The characteristic function 
of a measurable set F in X is J r . A subset F of X is locally null if for each 
compact set K Q X, n(K C\ Y) = 0. If p G (1, °° ), the conjugate space (dual) 
of LP(X) is LQ(X), where 1/p + 1/q = 1. The dual of LX{X) is Lœ(X), where 
the functions are taken to be identical if they are locally identical. We think 
of Li (X) as a subspace of Li** (X). Frequently we write ff(x)dx îorjf(x)dmx (x). 
We define the point mass 8X at x G X by £*(/) = /(#)> for all / G Cœ(X). 

Let T be an arbitrary locally compact group. Its elements are denoted by 
a-, r, <£, and its subsets by 3>, ^ , Œ. The left (Haar) measure corresponding to 
T is represented by rar. The modular function associated with mr is denoted 
by A. Under convolution, Li(T) becomes a Banach algebra and has an 
approximate identity (eL)tei of norm one, where / is the indexing set related 
to the cardinality of the neighbourhood system of the identity element 1 of 
T. Let M(T) be the Banach algebra of bounded countably additive regular 
measures on T, under convolution. Then Li(T) is a two-sided ideal in M(T). 
F o r / G L i ( r ) we define the left shift by cr G r b y / , 0 ) = / O r ) , T £ T. Also, 
if / G i i ( r ) , let f(a) = A (a-1)/(o-1), for almost all a G T. Then the map 
/—>/ ' is an isometry on Li(V) of period two (2, Lemma 2.4). For /x G M(X) 
and o- G T we define the shift ^ G M(X) of n by ^ ( F ) = MO -"1 F) , F C JY* 
Borel. 

2. Factorization in Banach algebra modules. 

2.1. Definition. Let i be a Banach algebra with multiplication *. Then a 
Banach space i£ is a Banach module over 4̂ if there exists a bilinear map 
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* : A X K —» K having the following properties: 

(a) (fi */ , ) * * = / i * (f, * k), fuh €A,k£K. 

(b) \\f*k\\< ||/||||*||, feA,kex. 
The following theorem, which is a generalization of (1, Theorem 1) and 

whose proof is based on the original proof, plays a significant role through 
the rest of the paper. Since it is different in character from our other theorems, 
we set it and its corollary separately in § 2. 

2.2. THEOREM. Let A be a Banach algebra with {bounded) approximate 
identity {e^^. Let Kbea Banach module over A such that limt e, * k = ky k Ç K. 
Then every element in K can be factored, i.e., for k G K, there are f £ A and 
h £ K such that k = / * h. 

Proof. First we adjoin an identity J to A, and call the resultant Banach 
algebra A+. If we define J * k = k, k £ K, then K becomes an ^4+-module. 
Assume that c > 1 and that ||e t | | < c, for all i £ / . Let b 6 (0, 1) such that 
be/(I - b) < 1. Let EL = J - bJ + be, e A+, so that 

Et = (1 -b){J + {be J {I -b)). 

Note that \\bej{\ - b)\\ < 1, which means that J -j- be J (1 — Z>) has an 
inverse. Hence £ t has an inverse in A+. Indeed, 

E- - (1 - b)-% ( ^ ) V and IIE-II < (1 - *)-'£ ( r ^ ) " . 

Next we show that for each k 6 K, l im t £ 4
_ 1 * k — k. First we remark that 

since c > 1, we have 

\\eL
m*k- k\\ < \\er*k 

Consequently, 

p r 1 * * - k\\ 

, m— 1 

• *|| + . + | |e.**-*| | 
et * k — k\\. 

<* - &)_15 G^)"'"** -(i - 6 r;s (T^)B* 
<(i-6r1S(rrj)"lk"**-*ll 

< a-w-1!; (r^)"iK* *-*ii' 
whence limt H-Ef"1 *k — k\\ = 0. In the same way we can show that 
limt WEr1 * / - / I l = 0, for a l l / G 4 . Let jfe G K. We shall define a sequence 
of invertible elements (Fw)w==o°° CA+ such that HF»"1 * * - Fn_rl * *|| < 2"», 
for n > 1, and that limw Fn = fn € ^4. If we have chosen such a sequence, then 
{Fn~

l * Jfe)̂ Li is a Cauchy sequence, so it converges to h Ç K. This implies 

/ * h = limw Fn * /v"1 * & = & 

and the proof is therefore completed. 
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It remains to construct the required sequence (F0, Fi, F2, . . .) C A+. We 
begin with F0 = J. For each positive n, define 

(2.1) F„ = t , K l - 6)"_1«» + (1 - b)'J, 
ra=l 

where we have yet to choose the em G (et)t<=/ inductively. Assume that 
0i, • • • > en £ (^i)t€/ a n d F0, Fi, • • • , Fn have been chosen, and that the F's 
have the appropriate properties. We shall prescribe en+i and thereby define 
Fn+i. For each i G / , define Fn+i(e,) G A+ by 

(2.2) E r 1 * ^+iOO = Fn - E 6(1 ~ i ) " 1 " ^ / ~ B r 1 ) * e«. 
ra=l 

By a calculation above, l i m t £ t
_ 1 * em = em for each w, so that 

l i m . E r 1 * Fn+1(et) = Fn. 

But Fn and £ t
_ 1 are invertible, and the set of invertible elements in A+ is 

open; so Fn+i(et) is invertible for all large t. Furthermore, 

limJFn+iOO]-1 * E t = 7^-i 

and limt | | £ t
- 1 *& — &|| = 0 ; therefore 

l i m J I ^ + x ^ ) ] - 1 * * - F-i*k\\ 

< Hmt | |{[F„+1(^)]-1 *Eg - /V"1} * ( B r 1 * * ) | | 

+ |IF»"1* ( E r 1 * * - * ) | | = 0, 

since the (Erl)ia are bounded. We can choose cn+i Ç / so that 

\\lFn+i(eLn+i)]-i*k- F-i*k\\ < 2 — i . 

Let en+i = eln+1. Then Fw+i is duly defined by (2.1). This equation makes it 
clear that lim nFn exists and is in A. Finally, if we compare (2.1) and (2.2), 
we find that Fn+i = Fn+i(en+i), and hence Fn+i is invertible. 

2.3. COROLLARY. Let A be a Banach algebra with (bounded) approximate 
identity (e,)iel1 and let K be a Banach module over A. Then A * K is a closed 
subspace of K, and k G K implies k G A * K if and only if limt eL * k = k. 

Proof. Let 
Ki= {k G K : l im te t *k = k). 

Then i£x is a linear space and is closed since the approximate identity is 
bounded. Next, for f £ A, k (z K, we have 

lim t et * (J * k) = lim t (eL *f) * & = f * k, 

so that Ki^) A * i£. Hence Z i ^ i * i£i, and i£i is a Banach module over 
^4. Therefore the preceding theorem applies, and K\ = A * i£x ÇI 4̂ * i£; thus 
K1 = 4̂ * K, as postulated. 
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3. The generalized measure algebra convolution. Here we introduce 
the concept of generalized convolution, based on convolutions given in (3). 
Recollect that ir : T X X —> X is defined by ir(<r, X) = ax, a G r , x G X, For 
a function k on X, we have 

k (ax) = (k o x) (a, x), G- £ r , x ^ I . 

If & £ Co -̂ST), then & o 7r is a bounded, continuous function on T X I . There­
fore if M € M (Y) and v G M(X), then the integral (ji X i>)(&0 7r) is well 
defined, and we can define a convolution * : M(Y) X M(X) —» M(X) by 

(3.1) (M **)(*) = (»Xv)(koir) =jrxxk(ax)d(txXv)(a,x)1 

M 6 M ( r ) , v 6 ikf(X), and £ G Cœ(X). 

Then ju * v is an element of M(X) and satisfies ||/x * v\\ < ||p|| ||i>||. Further­
more, if M» Mi € M(Y) and z> G ilf(X), then (JJL * MI) * v = M * (MI * v). To 
prove this, let k G Cœ(X) and remark that 

(JJL * (MI * v))(k) = JrSxk(ax)d(m * v)(x)dfi(a) 

= J r / x J r k(aTx)diii(r)dv(x)dn(a) 

= fxjrk(<l>x)d(n *m)(<l>)dv(x) 

= ((JJL */XX) *v)(k). 

In analogy with (3, Theorem 19.11), we can show that for each Borel 
set F Ç I , 

(3.1)' (JJL*V)(Y) =* (M X ^ ( x - 1 F) =/xJrfr((rx)dM(cr)dK*) 

= JrK^1F)^(cr). 
By choosing /x <3C Wr and by replacing p. with the Li(T)-function / it deter­
mines, we obtain a convolution * : Li(T) X M(X) —> M(X) given by 

(3.2) (f*v)(k) =jrxxk(ax)f(a)d(mT X v)(a,x), k G Cœ(X), 

(3.3) (f *„)(F) = / r x x f r ( ^ ) / W d ( m r X v)(a,x) 

= jrf((r)v(a-1 Y)da, YQX Borel. 

If in (3.1)', v « mx and rax(F) = 0, then mx(a~l Y) = 0 for every a G T 
so that ^(o--1 F) = 0 and (ju * v)(Y) = 0. Hence p * v « % . Let i> corre­
spond to j G Li(X). This induces a convolution * : M(T) X Li(X) —> Li(X) 
through 

JV (M * j ) (x)dx = jvxx Çr(<rx)j(x)d(jJL X mx) (<r, x), Y Q X Borel. 

Furthermore, if we choose fx<^mr and replace p by the Li(r)-function / it 
determines, we obtain 

(3.4) JV (f*j)(x)dx = /T-,r/(a)i(x)rf(<7, x), 

where F Ç X is Borel, and / f i i ( r ) and j <E i i ( Z ) . 
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We observe that usually Li(T) * M(X) ÇL Li(X). This will be the subject 
of § 5. We summarize our present comments in 

3.1. THEOREM. Both M(X) and Li(X) are Banach modules over M(T) and 
over L i ( r ) . 

From the fact that M(T) has a unit element and from the very definition 
of convolution, we see that M(T) * M(X).= M{X) and M(T) *LX(X) =LiX), 
without referring to Theorem 2.2. It is less trivial that always 

Ll(T)*Ll(X) =LX(X), 

and this result we shall prove in § 4. On the other hand, if T is not discrete 
and if X = I\ then L i ( r ) * M(X) = LX(X) j& M(X). Hence it is interesting 
to study the subspace Li(T) * M(X), which we know by Corollary 2.3 to be 
closed in M(X). We have the following characterization of L i ( r ) * M(X): 

3.2. THEOREM. The following conditions on v d M(X) are equivalent: 
(i) v 6 L i ( r ) *M{X). 

(ii) vff € M(X) is continuous as a function of a 6 I\ 

Proof. Let / (E £ i (T) and /z G M(X), and let v = f * ju- A simple compu­
tation shows that va = (/ * AO* = (Jv-\) * AI. But/ f f-i is a continuous function 
of a G r (3, Theorem 20.4), and M(X) is an Z,i(r)-module, and hence by 
Theorem 3.1, (i) implies (ii). Conversely, assume (ii) and let 77 > 0. By hypo­
thesis there exists a neighbourhood 12 of 1 G T such that \\v„ — v\\ < rj, o £ 12. 
Then \\via-1 Y) - v(Y)\\ = \v9{Y) - v(Y)\ < v, a Ç 12, for all Borel F Ç I 
Without loss of generality, we may assume that rar(12) < 00. Let 

/ = [mrm-1^. 

Then f * v 6 Li(T) * ikf(X), and by the definition of convolution, 

\(f*p)(Y) -v(Y)\ <rj 

for each Borel F. Therefore | | /* v — v\\ < 77, so that v is in the closure of 
Li(Y) * M(X), which by Corollary 2.3 is already closed. 

In fact, we can say more about i i ( r ) * M(X). 

3.3. THEOREM. The following conditions on /x Ç M(X) are equivalent: 
(i) jj « v for some v Ç L i ( r ) * M(X). 

(ii) For every Borel set F Ç I whose closure is compact, 

l im^ l / i l ( F AcrF) = 0, 

^ ^ F A c r F = (Y\J crY)\(Yr\aY). 

(iii) For ê er̂ y compact I C I , i*{oK) depends continuously on a £ T. 

Proof. We first prove that (i) implies (ii). To that end, let n <<C *> for some 
v e i i ( r ) * ikf(X). Note that by hypothesis, p = / * vx for some / G L i ( r ) , 
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vi£M(X), and thus v « |/| * |^ | G Li(T) * M{X). Therefore, we may 
assume that v > 0. For any Borel set Y such that Y is compact, and for any 
7] > 0, there exist an open set U and a compact set K such that K C Y C £/ 
and v(U\K) < rj. Since 7r is continuous, <ri£ C f/ and i^ Ç a t / for a suffi­
ciently near to 1. For such <r, 

v{Y A crY) = v(Y\aY) + v(aY\Y) < v{U) - v{*K) + v{aU) - v{K), 

so that the continuity of va established in Theorem 3.2 yields 

lim sup^i v(Y A vY) < 2TJ. 

Because this is true for every positive 77, l im^i v(Y A <rY) = 0, whence 
l im^i \fi\ ( F A (TY) = 0. That (ii) implies (iii) follows from the inequality 
\IJL(TK) — ix(oK)\ < |/x| (TK A <TT-1(TK)), for all a, r Ç T. Finally, we show 
that (iii) implies (i). Let ix{<?K) depend continuously o n e Ç T. L e t / £ CC(T), 
/ > 0 with / ( l ) > 0. Define 1/ = / * |/x|. Then v G L ^ r ) * M(X) and *> > 0. 
Since /x is regular, in order to prove that n <£.v, it is enough to show that if 
K C X is compact and P(2£) = 0, then n(K) = 0. Now we note that if 
v(K) = 0, then 

0 =J r / (o )H (a - 1 ^)^ , 
so that I in I (<r-1 i£) = 0 for almost all o- in the support of / . Then a fortiori 
/zfV-1 K) = 0 for these cr. But ix{cr~l K) is a continuous function of a, so 
y.{<r~l K) = 0 for all cr in the support of / . In particular, n(K) = 0. 

3.4. COROLLARY. If v 6 -M(X) zs swc& that v(crK) is a continuous function 
of cr for every compact set K, and if v\ <3C v, then vi(<rK) is a continuous function 
of cr for each compact K. 

Proof. Apply Theorem 3.3 directly. 

3.5. THEOREM. Every element of M(X) which is absolutely continuous with 
respect to mx possesses the three properties of Theorem 3.3. 

Proof. It is easy to see that the measures in M(X) which have property 
(iii) of Theorem 3.3 form a closed subspace of M(X), and that each element 
of M(X) is a limit of members with compact support. Thus we need only 
show that il v <£ mx and if the support of v is the compact set K, then v has 
property (i). 

Assume we have such a v, and let the support of / G CC(T) be <ï>, where 
/ > 0 and / ( l ) > 0. If L = {a"1 x : a £ $ , ^ ^ I | , then L is compact, since 
7T is continuous. Let mL be the restriction of mx to L. Then 

f*mLe LX(T) *M(X). 

We shall show that v <3Cjf * mL. Let (f * mL)(Ki) = 0 where we assume 
without loss of generality that Ki Ç K. We shall show that v(Ki) = 0. Now 

O^fvfMmL^KJdo, 
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so that mL{a~l K±) = 0 for almost every a in <£. But if a Ç $, then a~lK1 Ç L, 
so that mL{(x~lKi) = mx(cr~1 Ki); hence Wx(o-_1Xi) = 0 for almost all 
a G $. Since w x is quasi-invariant, it follows that mx(Ki) = 0, and hence 
KXi) = 0. 

3.6. COROLLARY. If Y Ç X and Y is compact, then l im^i mx{Y A a F) = 0, 
awd mx(o"F) is a continuous function of a G F. 

Proof. To prove the first assertion, let $ be a compact neighbourhood of 
1 G T and let L = <ï>F, so that L is also compact. From Theorem 3.5, the 
restriction mL of mx to L fulfils condition (ii) of Theorem 3.3 so that 

lim mx(Y A aY) = lim mx{Y A aY) = lim w L ( F A crF) = 0. 
< r - ^ l o " - » l < r _ > l 

The second assertion results from the following: 

lim \mx(jY) — mx{<j>Y)\ = lim \mx{rY) — WX(OTF) | 

< lim mx{jY A or7) = 0. 

It is easy to generalize this corollary and to show that \x (vY) depends 
continuously upon a for every Radon measure M (bounded or not) which is 
absolutely continuous with respect to mx. 

4. The generalized modular function and generalized convolution. 
In this section we introduce a generalized modular function, which we use 
to define a convolution in LX(T) X LP(X), where p € [1, <»]. We are then 
able to use Theorem 2.2 to prove that Li(T) * LV{X) = LP(X) if p G [1, °° ) 
and that LX{Y) * Cœ(X) = Cœ(X). We begin, however, with the modular 
function J, which we assert exists. 

4.1. THEOREM. There exists a positive locally integrable function J, defined 
on r x i , such that 

(i) jrxx F(a, x)d(a, x) = jrxx F (a, ax)J(a, x)d(a, x), F <E L i ( T X X). 

We also have 

(ii) frxx F(a, ax)d(af x) = jTxx F(a, x)J{a~l, x)f(da, x), 

whenever jrxx F (a, ax)d(a, x) exists. 

Proof. Define 1^ : Y X X-+ Y X X by T(a, x) = (o-, ax). Then T is a 
homeomorphism. To prove the existence of / which satisfies the first equa­
tion above, it suffices (3, Theorem 12.17) to show that if 31 is compact in 
Y XX, then (mr X mx){%) = 0 if and only if (mr X mx){T~l §1) = 0. Now 
assume that SI Ç r X X and §1 is compact and that (mr X % ) (21) = 0. Then 
jx &(<*ix)dx = 0 for almost all a Ç T, so that the quasi-invariance of mx 

implies fx %%(<?> ax)dx — 0 for almost all a Ç T. Thus 

(mr X m x ) ( 7 w ? 0 = jrxx &(<r, crx)d(a, x) = frfx h(<r, <ix)dx da = 0. 
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T h e proof t h a t (mT X w x ) ( r ~ 1 3 ) = 0 implies t ha t (mT X mx){%) = 0 is 
similar, so we omit it. 

Next we prove the second s ta tement of the theorem. Let F be a measurable 
function on T X X and assume tha t 

JTXX F(p, (xx)d((x,x) 

exists. By applying the first half of our theorem, we obtain 

JTXX F {a, ax)d(ay x) = j x JT F (a, ax)da dx = JXJT ^ 0 ~ \ <r~l x)A(a-1)do- dx 

= JTXX F((7-\ o - 1 x)A(<j-1)d(a, x) 

= j x JT Ffa-1, x)A(a-1)J(a, x)d<x dx 

= Jx JT F(o, x)J(a~~1
1 x)d<x dx 

= JTXX F(CT, x)J(a~1
1 x)d(a, x). 

T h e proof of Theorem 4.1 shows t ha t for a locally null set F Ç X the 
set TT-^Y) = r - ^ r X F) is locally null in T X X. Hence, if k is a measurable 
function on X, then k o ir is measurable on T X X. Hence if 

F(<r,x) G i i ( r X I ) 

and if k G L i ( X ) , then F (a-, x)£(ax) is measurable with respect to the pro­
duc t measure, and we can apply Fubini 's theorem, as we shall frequently do 
in the future. 

Examples: If T is measure-preserving on X , then J(<T,X) = 1, for almost 
all (o-, x ) , so t h a t we can define J (a, x) = 1 for all <r £ T, and all x G X . If 
X = r and if m x is the right Haar measure, then J(<r, x) = A (or-1), for all 
(<r, x ) . We mention here t h a t A. M. Macbeath and S. éwierczkowski (4) con­
sider the Jacobian which arises when X is a factor space of T. T h e y prove 
t h a t J satisfies the functional equation 

J(<JT, x) = J(<r, TX)J(T, X), (r, T G I \ x G X . 

We derive a slightly weaker form (Theorem 4.14) of this relation for our 
more general investigation. A part icular case of this third example is the 
following. Let X be an n-dimensional complex linear space and let T be the 
general linear group acting on X . Then J(cr, x) = det (er) -1. 

4.2. T H E O R E M . For f G L i ( r ) and k G £ i ( X ) , 

(/ * k) (x) = Jrf(v)k (a'1 x)J(a-\ x)d<r, 

for locally almost all x G X . 

Proof. For compact 7 Ç Z , Theorem 4.1 implies t ha t 

jx £ r (*)[( / * fc)(tf)]ds = JTXX £Y(<rx)f(<r)k(x)d(<r, x) 

= JTXX ^Y{oo)f{(j)k{<j-1 x)J((x~\ x)d(<r, x) 

= JXJT ^r{x)f{(j)k{a~l x)J(a~1
1 x)d<r dx, 

and the result follows. 
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4.3. T H E O R E M . If k Ç CC(X), then 

Jx k(ax)dx = j x k(x)J(a~1
t x)dx 

for locally almost all a G T. If k £ L\(X)y then 

Jx k(x)dx = Jx k(ax)J(a} x)dx 

for locally almost all a G T. 

Proof. In either case define F(<r} x) = i-$(<r)k(x), where $ C r is any open 

set of finite measure, and apply Theorem 4.1 . 

After we have more machinery (Theorem 4.11), we can change the values 
of J on a locally null set and prove Theorem 4.3 wi thou t the "locally a lmost . " 
In any case, Theorem 4.1 readily yields a functional equat ion for / . Indeed, 
for any F Ç Li(T XX) we first use (i) and then (ii) to obtain 

J r x x F(o, x)d(ay x) = Jrxx F(a, ax)J{o, x)d(a, x) 

= J r x x F(o, x)J(a, <j~l x)J((T~1
1 x)d(a, x). 

T h u s we have 

4.4. T H E O R E M . For locally almost all (a, x) £ r X X, 

J(a, o~l x)J{o~l,x) = 1. 

In Theorem 4.3, J(a, o) plays the role of a " Jacob ian" for the m a p x —> ax. 
Accordingly, we have a chain rule: 

4.5. T H E O R E M . For locally almost all triples (o-, r, x) £ T X T X X, 
J((7T, X) — J((J, TX)J(Tj X). 

Proof. Take F G LX(T X r X X). Then 

J r x r x x F(a, r, x)d(<r, r, x) = J r J r x x F(a, r, ax)J(a} x)d(aJ x)dr 

— J r J r x x F (a, r, GTX)J(<J, TX)J(T, x)d(r, x)da 

= J r x r x x F(<r, r, OTX)J(<T, TX)J(T, x)d(a, r, x). 

On the other hand, 

J r x r x x F(<r, r, x)d(o, r, x) = J r x x J r F(o, o _ 1 r, x)drd{<r, x) 

= J r J r x x F(a, a'1 r, x)d(r, x)dcr 

= J r J r x x F(o, a'1 r, TX)J(T, x)d{r. x)do 

— J r x x J r F(<r, o~l r, TX)J(T, x)drd(o, x) 

= J rxx J r F (a, r, <TTX)J(OTJ x)drd{o, x) 

= J r x r x x F (a, r, arx)J{cTJ x)d(a, r, x) 
and the theorem follows. 
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Now we can extend the concept of convolution to Li(T) X LP(X) where 
p G [1 ,« ] . Recall that f (a) = / (a- 1 )A(o- 1 ) , for almost all <J G T, when 
/ G i i ( r ) . Define a convolution * : L^T) X Lœ(X) -> Lœ(X) by 

(f * k)j = *(f * j ) , / 6 Z ^ r ) , « 6 Lœ(X), j G Li(X). 

Clearly for such / and k, f * * G Lœ(Z) and | | / ** | | < ||/[| ||£||, and Lœ(X) 
is rendered an Li(T)-module. In addition, 

( f * * ) j = $xk(x)(f *j)(x)dx = jxk(x)fTf((r)j(Gx)J(<T,x)dGdx 

= Jrxx k{o~l x)f(<r)j(x)d(<r, x). 
Hence 

(4.1) (f *k)j =fxj(x)Jrf(<r)k(<T-ix)dodx. 

Now let p G 1, oo). Then for any o- G T, Theorem 4.3 and Holder's in­
equality imply that 

jx\k(a-1x)J(o-\xy~1j(x)\dx < i J x l à O r - 1 * ) / ^ - 1 , x)*"^* dx]*'1. 

x LfxIiWl̂ dxF1 = Lfxl*^-1^)!'/^^)^]'"1 x Hill, = \\k\\p\\j\\q. 
Therefore, if for/ £ L^T), k £ LP(X), and j G L,(X), we define (/ * k) (j) by 

(4.2) </**)0") =/rxx/(cr)^((7-1x)j(x)J((r-1 ,xr"1^((7,x), 

then by the inequalities just above and by an application of Fubini's theorem, 
equation (4.2) defines / * & G L*(X) = LP(X), and | [ / * * | | < ||/|| \\k\\. In 
addition, if we make the convention that J{o, x)° = 1 for every a G T, 
x G X, then (4.2) coincides with (4.1) when p = oo. Also, if £ = 1, then (4.2) 
agrees with the formula arising from Theorem 4.2. Thus we may define / * k 
by means of (4.2); here / G L i ( r ) and k G LP(X), for any p G [1, «>]. We 
note that the convolution has a simplified form: for p G [1, °°], if / G Li(T) 
and k G A>(X), (4.2) yields 

(4.3) (f*k)(x) = jTf(o-)k(o-lx)J(o-\ xY~l do for locally almost all x G X. 

Next, let / , g G L i ( r ) , and let k G LP(X), where £ G [1, » ] . Then 

[(f*g) **](/') = / x { J r J r / ^ k ^ - i r ^ l ^ r - i x ^ r - S x ^ ^ r b X x M x 

= J x l J r / W U r g(r)*(r-i a"1 x ) / ^ 1 a"1, x)*~\/(r)]J(a) }j(x)dx 

= J r x r x x / M s t o M r - 1 ^_1 x)j(x)J(r~l G~\ x)*'1 d(o, r, x) 

= Jx{Jr/(a)Lfr g C r ) * ^ 1 a"1 x ) / ^ " 1 , a"1 x ) ^ 1 ^ ] / ^ " 1 , x)^<r}j(x)</x 

= \S*{g*k)]{j). 

We recapitulate in 

4.6. THEOREM. Under convolution, LP(X) is an Li(T)-module, where 
P G [1 ,« ] . 

We can now utilize Theorem 2.2, as we shall presently do. 
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4.7. LEMMA. If f € L i ( r ) , k 6 LP(X), and j € Lq{X), then 

(f*k)j = k(f*j). 

Proof. By Theorems 4.1 (i) and 4.4, 

if * k)j = jrxxffàkia-1 x)J(a~\ x)p~1j(x)d(a1 x) 

= Jrxxf((r)k(x)J(a-1
1 ox)v j(<jx)J(<ry x)d(aJ x) 

= jvxxk(x)f(o)j(o--1 X)J(<J, a"1 x)p J(a-\ x)d(<j, x) 

= jrxxk(x)f(cr)j(a-ix)J(a-\xy~1d(<T,x) = £( f *j). 

4.8. LEMMA. JTze fiwmr hull of the set {f * k : / Ç i i ( T ) , & G £ P P 0 } is 
dewse in LP(X), for p Ç [1, œ). 

P /w/ . Let j e £*(*) . Assume j ( f *g) = 0 for ail / Ç L^T), k € L P (Z) . 
Then 

0 = j(f'*k) = * ( / * j ) =/ rxx*W/(cr) i ( ( r - 1 ^) / (a- 1
l x)«" 1 d(cr ,x) , 

by Lemma 4.7. However, J(o~l, x) > 0 locally almost everywhere in T X X, 
so that j(o~l x) = 0 for locally almost all (a, x) Ç r x i However, rax is 
quasi-invariant. Thus ( x ^ I 'j(x) = 0} is locally null and hence null, which 
means that j = 0. The Hahn-Banach theorem then yields the result. 

The lemma is not true for p = oo, even if X = T. However, considering 
Cœ(X) as a subspace of Lœ(X), we can prove 

4.9. LEMMA. The space Li(T) * (^(X) is contained in Cœ(X). 

Proof. In Theorem 4.6 we proved that the convolution is jointly continuous. 
Therefore it suffices to prove that Ce(T) * CC(X) C. CC(X). If / Ç CC(T) and 
k e CC(X), then 

(f * k)(x) = Jr/(o')^((7~1 x)^(7 for locally almost all x £ X. 

However, the integral exists for all x. Therefore we may assume that the 
value of the integral is in fact (f * k)(x), for all x G X. There exist compact 
sets $ Ç r and K C X such that f(a) = 0, a g $, and £(*) = 0, x g K. 
Since 7r is jointly continuous and k is continuous, we find that for any e > 0, 
and any given x £ Kf there is a neighbourhood U of x such that 

\k{d-ix) - k(<x-iy)\ < e, a e $, ? e c/. 

But then y G Z7 implies that ! ( /*£)(*) - (/*Jfe)Cy)| < e ||/||, w h e n c e / * * 
is continuous at x. Furthermore, (f * k)(x) = 0 if x $ <£i£, and <l>i£ is, again 
by the continuity of 7r, compact. Thus / * k Ç CC(X). 

4.10. LEMMA. 77K? famr te// 0/ ffo? *?* { /** : / G L i ( r ) , ife Ç Cœ(X)} w 
dew se 2>z Cœ(X). 
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Proof. By Lemma 4.9, {/ * k : / G L i ( r ) , k G Cœ(X)} C Cœ(X). It suffices 
to show that if ^ G ikf(X) satisfies /*(/**) = 0 for a l l / G Z i ( r ) , * G C«.(Z), 
then M = 0. For k G CC(X) and a G T, we shall let *„ G CC(X) be defined 
by kff(x) = k(<jx), x G X. Then for / G i i ( r ) , 

0 = n(f'*k) = JxJTf((j)k(a-1x)dadfM(x) = frfxf(<r)H<rx)dv(x)d* 

= jrf(<r)v(ka)d<r-

Therefore /*(&*) = 0 for locally almost every a G T. However, 7r is a con­
tinuous function, so that ka G Ce(X) depends continuously on a. Thus 
M(&<T) = 0 for each a G T, so that in particular n(k) = 0; therefore /x vanishes 
on CC(X), and hence // = 0. 

At last we come to the theorem referred to after Theorem 4.6. 

4.11. THEOREM. Every element k of LP(X)9 p G U, 0 0 ) (Cœ(X)) can be 
factored, i.e., k = f * h, for some f G i i ( T ) , h G LP(X) (h G (^ (X)) . Afere-
over, if To is an open subgroup of T and if Y is a subset of X outside of which 
k vanishes, then we can choose f G Li(T) and h G LV{X) (Cœ(X)) such that 
f(a) = o for a G To, and h{x) = 0 for x G T0 Y. 

Proof. By virtue of Lemma 4.8 and 4.10, the first statement follows from 
Corollary 2.3. Actually, we can say more. Let A = Li(T). We may take the 
approximate identity in A to have support in F0, so that in the proof of Theorem 
2.2, the portions in A of Fni Fn~

l have support confined to r0 ; hence limw Fn=f 
vanishes outside T0 and limn Fn~

l * k = h vanishes outside r 0 Y. 

We mentioned after Theorem 4.3 that Theorem 4.11 would enable us to 
improve the generalized modular function / . That is what we shall presently 
do. In fact, we shall change the values of J on a locally null set so that we 
obtain Theorem 4.3 without the "locally almost" occurring. 

First, we note that T contains an open, sigma-compact subgroup T0, as 
is well known. By (3, Theorem 11.39), there is a family {XL : i G /} of dis­
joint compact subsets of X such that X\ U XL is locally null, while an open 
set of finite measure in X can intersect only countably many of the Xt. For 
each i G I let 

$ t = {a ç. T: J(T-1<J,X) = J{r~l, ax)J(<r, x), for almost all (r, x) G T0 X r 0 Z t } . 

By Theorem 4.5, r\<J>t is locally null, since r 0 X r 0 Xt is sigma-compact. 

4.12. LEMMA. Let i G / be fixed. Let k G Li(X) with k{x) = 0 for x G Xt. 
Then 

Jxk(x)dx = Jx k(<rx)J(<T, x)dx for all a G $ t O T0. 

Proof. By Theorem 4.11, there exist / G Lx(T) and h G Li(X) such that 
* = / * h and / ( r ) = 0, T G r0, and h(x) = 0, x G T0 Xt. Let a G 3\ H T0. 
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Now we use Theorems 4.1 (i) and 4.2 and the definition of $ t to provide us 
with 

Jxk(x)dx = ^Txxf{r)h{r-1 X)J{T~\ x)d{r1 x) = JrXxf(r)h(x)d(T1 x) 

= JTXxf(^r)h(x)d(r1 x) = J r x x / O ^ O - 1 x)J(r~\ x)d(ry x) 

= hxxf(j)h(j-1 <TX)J(T-1 a, x)d(r, x) 

= JroxroXt/OO/zO-"1
 (TX)J(T-1 <r, x)d(r, x) 

= JroxroxJO-^O" - 1 (JX)J(T-1, OX)J(O, x)d(r, x) 

= Jx[J r / ( r )^ (T - 1
 GX)J(T~1, (rx)dr]J((7, x)6fcc 

= Jx k(ax)J(o, x)dx. 

This concludes the proof. 

The Jf which we now construct, and which differs from J by a locally null 
set, is created in four steps. We first define a subset 21 of r x i where J 
behaves badly, and show that 21 is locally null. Then secondly, we define J' 
on r o X l so that 

(1 ) Jx k (x)dx = Jx k (ox) J' (<r, x)dx ; 

for all k G LX(X) and all a G T0; the J' so defined equals / o n ( r 0 X X)\%. 
Thirdly, we extend J' to Y X X so that (1) holds true for all k G LX(X) and 
all o G T. Finally, we note that J' is measurable, and that J' = J locally 
almost everywhere. 

In the first place, we let 21 = U t € 7 [ ( r 0 \ $ t ) X XJ\. Then 21 is locally null. 
For if K Ç X is a compact set of finite mx-measure, then by our remarks 
above, K intersects only countably many Xt, say Xu X2, . . . . This means 
that 

21 n (r x K) Q 0 [(r0\*w) x xn\. 
n=l 

Thus 21 is locally null. 
In the second place, the quasi-invariance of mx and (3, Theorem 12.17) 

guarantee the existence of a function Ji on T X X, such that Jx is a locally 
integrable function on X for each o G Y and furthermore, 

Jxk(x)dx = Jxk(arx)Ji(a, x)dx, a G T, & G LX(X). 

Define J7 on T0 X X by 

(Ji(ff,*) if (a,x) 6 2T, 
J'(V, x) = < 

\j(a,x) if (a,*) G ( r 0 X X ) \ 2 L 

For a fixed t G J, let * 6 LX(X) with £(#) = 0, x £ X t . Then 

Jxk(<rx)Ji(<rt x)dz = Jx k((xx)jf((rf x)dx if a G r 0 \ $ t , 

Jxk(ax)J((TJx)dx = Jxk((rx)J'(o, x)dx if <r G T0 P\ 3\, 
Jx k(x)dx = 
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so t h a t (1) holds for any <r G r 0 . However, any element of L\(X) is a sum 
of countably many functions each of which vanishes outside some part icular 
Xt. Hence (1) will hold for all a G T0, k G LX(X). 

In the third place, let $ C r be a set t h a t intersects every coset of T0 in 
exactly one point. Assume tha t <ï> P\ T0 = {1}. Then for a G $ and r G r 0 

define J' (<TT, X) for locally almost every x G X by 

/ ' ( ( T T , x) = Ji(o-, rx)Jf(r, x) 

so t h a t J 7 is now defined on the whole of r x l . For r G r 0 , a- G $, and 

* G £ i ( * ) , 

J x k(x)dx = J x k(ax)Ji(a, x)dx = J*x k(arx)Ji((X, rx)Jf (T, x)dx 

= Jx k((TTX)J' ((TT, X)dx. 

Therefore (1) will now hold t rue for all a G I \ k G L i ( X ) . 
Now to show t h a t J' is measurable we need only mention t h a t r 0 X X is 

open in r x l , and /i(o", o) is measurable on X , for all a G T, so t h a t J' is 
measurable on T X X. Fur thermore , for F G Li(T X X ) , we have 

J r x x (̂o*> x)d(o-, x) = Jr Jx F (a-, x)dxda = J r Jx F(<r, (rx)Jr {o, x)dxda 

= Jrxx F(<r, <rx)J'{<j,x)d(o, x) ; 

together with Theorem 4.1 (i) this yields t h a t J — J' locally almost every­
where in r x l , and we have completed the construction of J'. Henceforth 
we shall write / instead of Jr. We restate our final result: 

4.13. T H E O R E M . For all a G r and all k G L±(X), 

Jx k(x)dx = Jx k(<rx)J(<r, x)dx. 

Indeed our new J has all the properties of the one defined earlier. In part i ­
cular, 

4.14. T H E O R E M . For all o-, r G T, 

J(<JT, x) = J(a, TX)J(T, X) and J(a, o--1 x ) / ( a _ 1 , x) = 1 

for locally almost all x G X. 

Proof. If * G LX{X), then by Theorem 4.13, 

Jx k((7Tx)J((jT, x)dx = J x k{x)dx = Jx k(ax)J(<r, x)dx 

— Jx k(oTx)J((T, TX)J(T, x)dx. 

T h e second assertion follows from the first one. 

We mention t ha t we do not know if the s ta tements in Theorem 4.14 are 
t rue for all x G X. We conjecture t ha t they are. For later use we prove the 
following 
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4.15. LEMMA. Let r G T. Then for locally almost all (a, x) G r X I , 

J(VT, x) = J((7, TX)J(T, X). 

Proof. For any F G C c ( r X X), 

jrxx F((T, X)J(<TT, x)d((r, x) = J r [fx F(<r, X)J(<TT, x)dx]da 

= J r [jx F(o> x)J((Xy TX)J(T> x)dx]da 

= Jrxx ^ 0 , x)/(o-, TX)J(T, x)d(<r, x). 

We conclude this section with the introduction of the shift on LP(X), 
p G [1, oo ]. For a G T and & G LP(X), we define the shift &«, of & by 

ka(x) = k(<rx)J(a, x)1 /p , x G X 

Thus ((&a)r) = <̂rr for all <7, r G T. We remark that if mx is invariant under 
T, then J(G,X) = 1 and hence ka(x) = k(ax), cr G r , x f I . Also we men­
tion that such a definition of the shift was impossible until J was defined for 
all <r G T. 

4.16. THEOREM. If k £ LP(X), then for each a G I \ &«, G LP(X) and 

11*11* = INI,-
Proof. Cf. Theorem 4.13. 

Indeed, Theorem 4.16 tells us that f o r / G £ i ( r ) and & G LP(X), the con­
volution / * k given in Theorem 4.2 may be written as 

(f*k) (x) = jrfMK-i (x)d*, 

for locally almost all x G X. This formula is similar to the classical definition 
of convolution. Note that if k G Li(T), then ka can be written in terms of 
the convolution of k with elements of M(T). In fact, let 8a be the point mass 
at cr G T. Then 

4.17. THEOREM. Let k G LX(X) and <r G r . 77œ» jfe, = 5,-1 * k. 

Proof. Let jfe G i i ( X ) , <r G T, and let F Ç I be any Borel set. By the 
definition of convolution, and by Theorem 4.13, 

jx %Y(x)k(0x)J(v, x)dx = j x £Y(O~1 x)k(x)dx 

= jxjr iY{rx)k{x)db<T~i{r)dx 

= J x { r W [ ^ - i *&)(x)]dx, 

so that k<r{x) = (5,-1 *&)(x) for almost all x £ X. 
We should also mention that if k G LP(X) and j G Lq(X), then 

j(*,) = (j,-0(&) 
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for any a G T, since by Theorem 4.13, 

j(k*) = §xj{x)k{<jx)j(<j, x)l,qdx 

= jxjio'1 x)k(x)J(a, a'1 x)1/QJ(o-\ x)dx 

= jxjio-1 x)J(a~\ x)1/pk(x)dx 

= 0V0(*). 
We finish this section by showing that the shift is a continuous function. 

4.18. THEOREM. Let p G [1 ,» ) . For f G L i ( r ) , k G LP(X), and a G r , 
(f * k)ff = fff * k. Hence k<r depends continuously on a G r . 

Proof. S ince/ G Z,i(r), there exists a sigma-compact set $ in T such that 
f(a) = 0, for all a (? <£ ((3, Theorem 11.40). From Lemma 4.15, we know 
that for locally almost all x G X, 7(r _ 1 a, x) = J ( r _ 1 , ax)J((r1 x) for almost 
every r f $. For all these x Ç l , 

(/ * k),(x) = Jvfi^kir-1 crx)J(r-\ «xylite, xY'Hr 

= 5*f{j)k(t-\ <rx)J{r-\ XVY'WT 

= jvf^kir-1 X)J(T-\ x)1/pdr 

= (f, **) (*) , 

and the first statement is proved. For the second, we use the fact that LP(X) 
is factorable, by Theorem 4.11. Thus k = / * h, where/ G Z1(T)and A G LP(X). 
Thus &„ = (f*h)a = f„ * h. The continuity of the shift on Z>i(r) and the 
continuity of the convolution (Theorem 4.6) complete the proof that k, is a 
continuous function of a. 

5. The (Li(r) ,L2 , (X))-homomorphisms. In this section we apply the 
previous results. The first two theorems generalize the major portions of (2, 
Theorems 3.10 and 3.11). Let Lp(X),p G [1, °°], and Li(T) be modules over 
i i ( r ) . 

5.1. DEFINITION. Let p G [1, °°]. We call a linear continuous map 

R : LX(T) -> LP{X) 

an (Li(T), Lp{X))-homomorphism if 

f*R(g) = R(f*g), k e i i ( r ) . 
These homomorphisms form a Banach space which we denote by 

9t (Li( r ) , LP(X)). On account of Theorem 4.6, every j G LP(X) gives rise 
to an element R G SR(Li(r), LP(X)) through £ ( / ) = / * j , / G L i ( r ) ; thus 
LP(X) can be embedded in 9î(Li(T), LP(X)). In fact, for £ G (1, °° ], we have 
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5.2. THEOREM. For p G (1, œ], the formula 

R(f) =f*h / 6 L i ( r ) f 

yieftfo a linear isometry between LP(X) and $l(Li(T), LP(X)). 

Proof. To any j G LP(X) there corresponds a unique element i? of 9î(Li(T), 
LP(X)), by our previous comments. Since LP(X) is an Li(r)-module, 
| | j | | p > ||22||. On the other hand, let R G ^ ( L ^ r ) , ^ ^ ) ) . Also let {et: t G /} 
be an approximate identity in i i ( T ) with ||e t | | = 1 for each i. In addition, 
let / G Lt(T) and k G L f f(Z), where \/p +l/q = 1 and q = 1 if p = œ. 
Then Lemma 4.7 yields 

(J2(0)* = Hmt (R(f*e>))k = lim, (f *R(e,))k = lim4 (*(*.)) (f' * *) . 

By Theorem 4.11, ^(è) can be defined for every & G Lq(X), by the equation 
^(fe) = limt (R{el))k. Evidently F is linear. Furthermore, if k G Lq(X), then 

|/?(*)| < sup, ||(2&.)|| 11*11, < ||.R|| sup, IWIx ||*||, < 11*11 ||*||„ 

so F is continuous. Hence F G LP(X) and there exists a unique j G LP(X) 
for which jp(è) = j(k), k G Lq(X). In addition, | | j | | p < ||2?||. Furthermore, 

for/eii(r), ^ a B ( i ) , 
(R(f))k = F(f'*k) = j ( f **) = (f*j)kt 

so that i?(f) = f *j, for all / G ^ i ( T ) . Thus the correspondence is an iso­
metry, which is obviously linear. 

The essential ingredients of Theorem 5.2 are that LP(X) is isometric to 
the dual space of Lq(X), and that Li(T) * La(X) is dense in Lq(X). Both 
these properties of Lq(X) are lacking when p = 1 (i.e., g = oo). Actually, 
dt(Li(T), Li(X)) usually is not isometric to Li(X). For instance, it is well 
known that 9 î (Li( r ) , Li(T)) is isometric to Jkf(T), which is equal to Li(T) 
only when T is discrete. Nevertheless, for /> = 1, the situation is not hope­
less. In the rest of this section we identify k G Li(X) with the element of 
M(X) absolute continuous with respect to mx which k defines. Thus for a 
Borel set F Ç I we write 

k(Y) =jYk(x)dx. 

5.3. THEOREM. The formula R(f) = / * JU, / G Li(T), yields a linear isometry 
from 5R(Li)(r) ,Zi(Z)) into M(X). The image is 

N= {MG M(X):f^«mXlfeL1(T)\. 

Proof. By Theorem 3.1, each n G N defines a unique R G 9î (L 1 ( r ) , LX{X)) 
by the formula i?(/) = / * /*, / G £ i ( r ) , and p | | < ||p||. On the other hand, 
let (e t) l€7 be an approximate identity in Li(T) with ||« t | | < 1 and let 
R G 9?(Li(r),Z,!(X)). Just as in Theorem 5.2 define /x G M(X) such that 
limlR(el)k = /*(&), where this time £ G Cœ(X). Then Lemma 4.10 tells us 
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that n is uniquely denned, and as in Theorem 5.2, we have R(f)k = n(f' * k), 
k £ Cœ(X), / Ç L i ( r ) . An easy calculation yields R(f) = f * /x, for all 
f £ Li(T). Furthermore, it is clear that \\R\\ > ||/x||. Finally, since 
R(f) G Li(X), it follows that / * ju is absolutely continuous with respect to 
% , for a l l / G Li(T), so that y, G iV. Again the isometry is clearly linear. 

Since Li(X) is an Li(r)-module, LX{X) C TV C ilf (X). On the other hand, 
iV may reside anywhere from Li(X) to M{X). In order to describe more 
precisely the nature of N we give a tractable characterization of N. 

5.4. THEOREM. An element /z 0/ M(X) is in N if and only if for every com­
pact K C X with mx{K) = 0, we have H{<JK) = 0 for locally almost all a G Y. 

Proof. By (3.3), 

(f*n)(K) = Jr/MMOr-^Odo-, /or / G i i ( r ) , I C I compact; 

it is readily seen that ju G iV if and only if the condition holds. 

Examples: (i) Let T be discrete. Then the condition on M G Af (X) for JU, 
to be in N is that if mx{K) — 0, then H((TK) = 0 for a// <r G I\ and in parti­
cular, M ( I ) = 0> whence /x <^mx. Thus in this case, TV = Li(X). This also 
occurs when 7r(o-, X) = x, for all a G r , x £ X. On the other hand, if X = T, 
and mx = w r , then iV = ikf(X) because Li(Y) is an ideal in M(T). 

(ii) Let i^ be the additive group of the reals, with the ordinary topology, 
and let m be the Lebesgue measure on R. Let r = R and X = R VJ {00 }, 
the one-point compactification of R, and let ôœ be the point mass at 00. Finally 
let mx be denned by mx(Y) = m(RC\ Y) + <5œ(F), Y Borel, and define the 
action of r on X by 

7r((T, X ) = X + (7, X G i?, (X G T, 

7r(cr, 00 ) = 00 , <r G T . 

Then it is easy to see that N = Af(X), and of course, Li(X) ^ M(X). 
(iii) Let T be the circle group with its usual topology and its Haar measure 

Wr. Let X = T X T and mx = mT X mv. For <r G T and (x, y) G X, let 
7r(cr, (x, 3>)) = (o"X, 3;). Then iV contains no point masses, so N ^ M(X). On 
the other hand, N 9e £ i (X) because N contains /x G M(X), where 

M(F) = J r £F(i , ^fo, YQX Borel. 

We now continue our analysis of N. 

5.5. THEOREM. If /* G Nf then the support of y, is contained in the support 
of mx. 

Proof. Without loss of generality, let /z be a real-valued measure with 
positive and negative parts jii+> M~ respectively. Assume that the conclusion 
is false, i.e., that there is a compact K C X such that K and the support 
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of mx have void intersection, and such that n(K) ^ 0. Such a K can be 
written as Kx \J K2, where Kx C\ K2 = 0 and n\Kl > 0, JJL\K2 < 0. We may 
further assume that n\Kl ^ 0. Then there is a compact subset L of K\ such 
that M + ( £ ) > 0 and yr(L) = 0. Since ju" is regular, there is an open neigh­
bourhood U of L such that yr(U) < ^(L). Let <ï> be an open neighbourhood 
of 1 G T such that <ï>-1 l>L C [7 and that «IL intersects the support of rax 

in the void set. From mx($L) = 0 and /x 6 iV we may conclude that 
ju(<r-1 <£>L) = 0 for locally almost all a G T. In particular there must be a 
(70 G $ such that At(o"o-1 &L) = 0. Then 

M+(L) = MOO"1 ^ O L ) = M^o"1 *L) - M^o"1 f i \ ^ ) 

< 0 + M - ^ O - 1 *L\L) <ir(U)< M+(i), 

which is a contradiction. This yields the theorem. 

Henceforth let T0 be an open sigma-compact subgroup of I\ 

5.6. THEOREM, r&e following conditions on y G X are equivalent: 
(i) r&e £0ift2 mass 5y is i» iV. 

(ii) If K Q X is compact and mx(K) = 0, then ay (? K for locally almost 
all a G T. 

(iii) If ^ is a Borel subset of V with positive measure, then the outer measure 
of $y is positive. 

(iv) mx(T0y) > 0. 

Proof. That (i) is equivalent to (ii) follows from Theorem 5.4. Next, if 
Wr($) > 0, then <3> contains a compact set ^ of positive measure. Let 
K = S&y, and note that K is compact. Then (ii) implies that mx(^y) > 0; 
thus (ii) implies (iii). Next, (iii) implies (iv) because T0 and T0y are sigma-
compact and because Wr(r0) > 0. To prove that (iv) implies (ii), let K 
be a compact subset of X such that mx{K) = 0. If L is a compact subset 
of X, then 

jL JrQ £JT (ax)dadx = JT0JL %K(vx)dxda = Jr0 WxOr""1 X H L)^cr 

< J r 0 ^ x ( c 7 - 1 X ) ^ = 0; 
hence 

jr0ÏK(<rx)d<r = 0 

for locally almost all x £ X. However, since r 0 y has positive measure, there 
exists a r 6 T0 such that 

Jr0 U(vry)d<j = 0. 

If A is the modular function on I\ then 

/ r 0 fjsrfoOAr = A(r)Jr 0 £*(<""?)<fo = 0, 

so that ay d K for almost all a G T0. Since Wx(0r o y) > 0 for all <j> G T, 
and since {<£L0 : 0 G T} forms an open cover of T, it follows that ay Q K 
locally almost everywhere in T. 
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5.7. THEOREM. The following conditions are equivalent: 
(i) N = M{X). 

(ii) N contains all the point masses. 
(iii) If n £ M(X) and if iia is continuous as a function of o G T, then 

M € LX(X). 
(iv) If M G M(X) and if for each compact I C I , V((TK) is continuous as 

a function of a G r , / ^ n ^ G L\(X). 

Proof. That (i) implies (ii) is trivial. To show that (ii) implies (i), let 
\x G M(X) and / G LX{Y). Assume that K C X is compact and mx{K) = 0. 
Then 

(f*Li)(K) =jxfrU(<rx)f(°)dodn(x) = jx Jr [fx £K(cry)dôx(y)]f(<T)d<rdtJi(x) 

= jxjxSrU(°y)f(<r)d<rdox(y)dn(x) = j x (f * ôx)(K)d»(x). 

By hypothesis, f*8x<^mx for each x G X, so (/ * 5X)(K) = 0; hence 
(f*n)(K) = 0. This implies that / */* G Li(X). Thus ju 6 N. 

To show that (i) implies (iii), we note that if y.a is continuous as a function 
of er, then /i £ I i ( r ) * M(X) by Theorem 3.2, so that 

fx G ii(r) * M(Z) = Lx(r) * N c ii(r). 

On the other hand, if /x G Af(Z) and /x G i i ( T ) * M(X), then by Theorem 
3.2, n<r is continuous as a function of cr, so by (iii), ^ G Zi(X). Thus 

whence N = M{X) by the definition of iV. 
We now prove that (i) implies (iv). Note that if id(o-K) is continuous for 

every compact Z Ç I , then by Theorem 3.3 there is a v G M(X) such that 

v G Z,i(r) * Af (X) = Z,i(r) * # C Z ^ X ) , and » « is 

which means that LI G Li(X) also. Conversely, (iv) implies (i) by Theorem 3.3. 
W. Rudin (6) noted that (iv) holds if X = V and if V is abelian. In our 

context this implication follows from the fact that N = M(X) if X = I\ We 
can extend his result by use of the preceding theorems. Let X be a factor 
space of r with the induced topology and action of V. With r 0 open in T, 
it follows that r 0 y is open in X, for each y G X. The support of the induced 
mx is the whole space X, and since the projection map of T onto X is open, 
% ( r 0 } ' ) > 0. Thus N contains 8y by Theorem 5.6. However, y G X is 
arbitrary. Thus iV = .M(x), according to Theorem 5.7. Thus part (iv) of 
Theorem 5.7 is true, provided X is a factor space of r . 

Our final theorems concern the cases in which N = M{X). 

5.8. THEOREM. If N = M(X), then the support of mx is X and every positive 
quasi-invariant Radon measure on X is absolutely continuous with respect to mx. 
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Proof. Since N contains all the point masses, the support of mx is X> by 
Theorem 5.5. Let v be a positive quasi-invariant Radon measure on X. Then 
Theorem 3.5 (with v in place of mx) implies that if y. G M(X) and if /x <3C ,̂ 
then fj, is absolutely continuous with respect to some element of Li(T) * M(X). 
But N = M(X) implies L i ( r ) * M(X) Ç LX(X, mx). Thus whenever ju « ?, 
then y <<C % . Hence z> <<C m x . 

We mention that even if N = M(X), mx need not be absolutely continuous 
with respect to every positive quasi-invariant Radon measure on X. As in 
one of the examples preceding Theorem 5.5. let R denote the reals, and let 
T = R and X = R U {oo }, the one-point compactification of R. As we men­
tioned earlier, N = M(X). Let v{Y) = mx(R H F) , Y Ç X Borel, so that 
so that v is an invariant measure whose support is X. However, mx is not 
absolutely continuous with respect to v. 

Given a group T acting as a transformation group on the locally compact 
Hausdorff space X, we say that T acts transitively on X if for any x, y G X 
there is a a G T such that ax = 3/. The orbit of x G X is the set Tx. For 
y G X, let 7Ty : r —» T̂y be defined by %((?•) = <ry, all <r £ T. 

5.9. LEMMA. If N = M(X), then there is a y £ X for which T0y and Ty 
are open sets. For such an element y, the map wy is open and Ty is homeomorphic 
to the factor space T/Tv, where Ty = {<r G T : cry = y}. 

Proof. Let U be an open subset of X with finite measure. If y G Uy then 
the set {a G r 0 : c^ G C/} is open and non-empty, and therefore has positive 
measure. However, N = M(X) by hypothesis, so ôv is in N, and hence, by 
Theorem 5.6 ((i) implies (iii)), r 0 y H U has positive measure. Moreover, 
since mx(U) < °°, this means that U can intersect at most a countable 
collection of IVorbits, say T0 yi, T0 y2, . . . . But each r 0 yt is sigma-compact, 
so that each T0yi (^ U is the union of countably many sets each of which 
is closed in U. By the Baire category theorem one of the sets T0 yif say T0 y, 
contains a non-empty set V which is open in U and thus open in X. Then 
T0y = Waçr0 <rV, which is open. Similarly, Ty = U ^ r <rV is open. Remem­
ber that r 0 is a sigma-compact group and acts transitively on the locally 
compact space T0 y. Therefore, according to (5, Theorem 20), the restriction 
of 7Ty to T0 is open as a map from r 0 onto T0 y, and therefore as a map from 
r 0 into T^. But then for any a G I\ nv defines an open map from aT0 into 
T^. In addition, the various crT0 form an open covering of T. Thus ny is 
open. The rest of the proof follows easily. 

5.10. THEOREM. Let N = M(X). Then every orbit Ty,y G X, is the inter­
section of a closed and an open subset of X. For each y G X, the map ny is open. 
Also, T y is homeomorphic to the factor space T/Tyi where Ty = {ad T: ay — y}. 

Proof. We define a well-ordering { Tyt : t < 1^) of the orbits in X as follows. 
Let t0 be an ordinal number and assume that Tyu has been defined for all 
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i < to, so that \J{TyL : i < L0} is open. If KJ{Tyt : i < t0} = -X"» we call 
to = tœ and stop the induction process. However, if \J{Yy, : t < t0} 5e X, 
then Xl0 = X\\J{Tyl : t < to} is closed in X; hence it is locally compact. 
In addition, Xi0 is invariant under T, and for y £ X t0, T0 3> has positive 
measure. Therefore, by Lemma 5.9, there is a yt0 £ X l0 such that T0 3>l0 and 
TylQ are open in X l0. Then 

X \ U { r ; y t : t < t o } = X l 0 \ r3 ; l 0 

is closed, so VJ{ Yyt : t < t0} is open and we have prepared the way for the 
next induction step. By this construction, for every t < tœ, Tyt is open in 
Xt and X t itself is closed in X. Thus Tyt is the intersection of a closed and an 
open set. That the map ry is open and that Ty is homeomorphic to Y/Yy 

follows directly from the lemma. 

5.11. THEOREM. If N = M(X), and if V acts transitively on X> then X is 
homeomorphic to a factor space of T. 

Proof. Apply Theorem 5.10 directly. 

We mention that the map -n (o, y) : Y —> X is not open, even though ity is 
open. We also mention two unsolved questions. First, exactly when does 
N = LiiX) hold. Secondly, if /x Ç N and if v « /*, then is v € N? 

Added in proof. Recently, E. Hewitt and also A. Figà-Talamanca and P. 
Curtis have generalized Cohen's result. 
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