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Preliminaries

As the present project started as an attempt at rewriting Folland’s textbook [31], we begin
in the same direction, attempting though to give more details.

1.1 Dimension

The numerical value of many physical quantities depends on the unit one chooses to measure
them. My height is 1.8 m, or 180 cm, or 1.90 × 10−16 light-years. The use of light-years
here as a unit is weird, but not so much more than the use of centimeters to measure distances
at the scale of a nucleon as many textbooks do. (A nucleon has a size of about 10−15 m =
10−13 cm.) Tradition unfortunately has more weight than rationality in these matters.

The concept of “physical dimension” (which definitely differs from dimension in the
mathematical sense) expresses how the numerical value of a physical quantity depends on
the units you choose to measure it. A distance has dimension [l] where l stands of course
for length. If you increase the unit of length by a factor 100, the corresponding measure
decreases by a factor 100: 100 cm = 1 m. Then a surface has dimension [l2]: (100)2 cm2 =
1 m2. A volume has dimension [l3]: 1 km3 = (103)3 m3 = 109 m3. The unit of time can be
chosen independently from the unit of length. Time has dimension [t], so speed, which is
a distance divided by a time, has dimension [lt−1]. Thus 1 m/s = 3,600 m/h = 3.6 km/h.
Acceleration, which is a change of speed divided by a time, has dimension [lt−2]. It is of
course a convention to choose time and length as fundamental quantities. One could make
other choices, such as choosing time and speed as fundamental quantities. This is indeed
basically what is actually done. Since 1983, in the international system the speed of light is
defined to be exactly

c = 299,792,458 m/s (1.1)

and this serves as a definition of the meter given the unit of time.1

A formula in physics must give a correct result independently of the system of units used.
This is a strong constraint. This is why it often makes sense to multiply or divide quantities
of different dimensions, but it never makes sense to add them. As we learn in kindergarten,

1 The reason for this definition is that the speed of light is a fundamental constant of Nature, and that it makes
little sense to have its value change as the accuracy of measurements improves.
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10 Preliminaries

you do not add pears with bananas. Furthermore, when a quantity occurs in a formula as the
argument of, say, an exponential, it must be dimensionless, i.e. its value must be independent
of the unit system. To understand a formula in physics it always helps to check that it makes
sense with respect to dimension, a task we will perform many times.

The unit of mass can be chosen independently of the units of length and time. Momen-
tum,2 the product of a mass and a speed, then has dimension [lt−1m], and angular momen-
tum, the product of a momentum and a distance, has dimension [l2t−1m]. Energy has the
dimension of a mass times the square of a speed, that is [l2t−2m]. Less known is the action
which occurs in Lagrangian Mechanics as the integral over a time interval of a quantity
with the dimension of energy, and thus has the same dimension [l2t−1m] as the angular
momentum.

A fundamental constant of Nature is Planck’s constant h, which represents the basic
quantum of action (and in particular has the dimension of an action). In physical equations
it often occurs in combinations with a factor of 1/2π , so one defines the reduced Planck
constant

h̄ = h

2π
, (1.2)

whose value is about3

h̄ = 1.0546× 10−34 J · s. (1.3)

This is small, as becomes more apparent if this value is expressed in units more related to
the microscopic world4 h̄ � 6.6×10−16 eV·s. It is important to note that energy times time,
momentum times length and angular momentum all have the same dimension as h̄ so that
their quotients by h̄ are dimensionless. These quotients will occur in countless formulas.

Exercise 1.1.1 The Planck-Einstein relation gives the energy E of a photon of fre-
quency ν as E = hν. Check that this formula makes sense with respect to dimension.

Exercise 1.1.2 The de Broglie momentum–wavelength relation states that to a particle
of momentum p is associated a wavelength λ = h/p. Check that this formula makes
sense with respect to dimension.

1.2 Notation

Since to enjoy this topic one has to read the work of physicists, it is best to adopt their
notation from the beginning. Complex numbers play a central role, and the conjugate of a
complex number a is denoted by a∗. Even some of the best authors let the reader decide

2 Please do not worry if you do not have a real feeling for the concepts of momentum, energy, etc. (despite the
fact that you should experience them every day). This is not going to be an obstacle.

3 An action has the dimension of an energy times a time. In the International System of Units, the unit of energy
is the joule J and the unit of time is the second s, so action is measured in J · s. From May 2019, the value of h
is defined to be exactly 6.62607015× 10−34J · s.

4 A joule is a huge energy at the microscopic scale. A more appropriate unit of energy at this scale is the
electron-volt eV, the energy acquired by an electron going through a difference of potential of one volt.
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whether i denotes a complex number with i2 = −1 or an integer index. Since this requires
no extra work, the complex number will be denoted by i, so that i∗ = −i.

When working with complex Hilbert spaces we adopt the convention that the inner prod-
uct (·,·) is anti-linear in the first variable (while often mathematicians use the convention
that it is anti-linear in the second variable). One says that the inner product is sesqui-linear.
That is, as another example of our notation for complex conjugation, we write

(ax,y) = a∗(x,y)

for any vectors x,y and any complex number a. Moreover

(y,x) = (x,y)∗. (1.4)

The norm ‖x‖ of a vector x is given by ‖x‖2 = (x,x), and we recall the Cauchy-Schwarz
inequality

|(x,y)|2 ≤ ‖x‖2‖y‖2,

where |a| denotes the modulus of the complex number a. A basic example of a complex
Hilbert space5 is the space Cn, where the inner product is defined by (x,y) = ∑

i≤n x∗i yi ,
with the obvious notation x = (xi)i≤n. Another very important example is the space L2(R)
of complex-valued functions f on the real line for which

∫
R
|f |2dx = ∫

R
|f (x)|2dx <∞,

where |f (x)| denotes the modulus of f (x). The inner product is then given by (f,g) =∫
R
f ∗gdx. A physicist would actually write

(f,g) =
∫ ∞
−∞

d1xf (x)∗g(x), (1.5)

where the superscript 1 refers to the fact that one integrates for a one-dimensional measure.
The reason for which the d1x is put before the function to integrate is that this makes
the formula easier to parse when there are multiple integrals. We will use this convention
systematically. We will not however mention the dimension in which we integrate when this
dimension is equal to one.

An operator A on a finite-dimensional Hilbert space H is simply a linear map H→ H.
Its adjoint A† is defined by

(A†(x),y) = (x,A(y)), (1.6)

for all vectors x,y. (Mathematicians would use the notation A∗ rather than A†.)

Exercise 1.2.1 (a) If A is an operator and α a number, prove the formula

(αA)† = α∗A†.

(b) If A and B are operators, prove that (AB)† = B†A†.

An operator (still on a finite-dimensional space) is called Hermitian if A=A†.
A Hermitian operator A has the crucial property that if a subspace F is such that A(F ) ⊂ F

then the orthogonal complement F⊥ of F is also such that A(F⊥) ⊂ F⊥.

5 In this work we consider only finite-dimensional or, more generally, separable Hilbert spaces.
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Exercise 1.2.2 Deduce this from the fact that (A(x),y) = (x,A(y)) for all x,y.

As a consequence, a Hermitian operator has a simple structure: there exists an orthonor-
mal basis of eigenvectors.6

Exercise 1.2.3 Give a complete proof of this fact by induction over the dimension of
the space.

Moreover the eigenvalues are real since (x,A(x)) is real for all x. Indeed,

(x,A(x)) = (A(x),x)∗ = (x,A(x))∗,

where the second equality uses that A is Hermitian. If A(x) = λx then (x,A(x)) = λ(x,x),
so that λ(x,x) = λ∗(x,x) and λ = λ∗. It is this property of having a basis of eigenvectors,
with real eigenvalues, which makes the class of Hermitian operators so important.

A few times we will need the notion of anti-linear operator. Such a map T does satisfy
T (x + y) = T (x)+ T (y) but for a scalar a we have T (ax) = a∗T (x).

We should also mention that in physics, vectors and inner products are denoted differ-
ently, using Dirac’s ubiquitous notation, which we will explain later. In most situations
however we prefer to use standard mathematical notation, and it is unlikely that anybody
reading this will mind.

1.3 Distributions

Laurent Schwartz invented the theory of distributions to give a rigorous meaning to many
formal calculations of physicists. The theory of distributions is a fully rigorous part of
mathematical analysis. In the main text however we will use only the very basics of this
theory at a purely informal level. In Appendix L the reader may find an introduction to
rigorous methods.

We will consider distributions on Rn but here we assume n = 1. The central object is
the space S = S(R) of rapidly decreasing functions, called also test functions or Schwartz
functions. A complex-valued7 function ζ on R is a test function if it has derivatives of all
orders and if for any integers k,n ≥ 0 one has8

sup
x
|xnζ (k)(x)| <∞. (1.7)

A distribution is simply a linear functional (which also satisfies certain regularity condi-
tions which will not concern us before we reach Appendix L, as they will be satisfied in all
the examples we will consider). That is, a distribution � is a complex linear map from S
to C, and for each test function ζ the number �(ζ ) makes sense. Such a distribution should
actually be called a tempered distribution, but we will simply say “distribution” since we will

6 Later we will meet a far-reaching extension of this fact, the spectral theorem for self-adjoint operators.
7 A test function is typically complex-valued. At times, to avoid complications created by anti-linear operators,

we also consider real-valued test functions. The space of such functions is denoted by SR. Please try to
remember that the subscript R on a space of test functions means that we consider only real-valued functions.

8 The property is often described in words as follows: As |x| → ∞, the function and each of its derivatives
decrease faster than |x|−n for each n. This is what motivates the name “rapidly decreasing function”.
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1.3 Distributions 13

hardly consider any other type of distribution. Tempered distributions are also known under
the name of generalized functions. This name has the advantage of explaining the point
of the theory of distributions: it generalizes the theory of functions. Indeed, a sufficiently
well-behaved function9 f defines a distribution (= generalized function)�f by the formula

�f (ζ ) =
∫

dx ζ (x)f (x). (1.8)

Throughout the book we maintain the convention that when the domain of integration is not
mentioned, this domain is the whole space. Thus (1.8) means �f (ζ ) = ∫

R
dxf (x)ζ (x) =∫∞

−∞ dxf (x)ζ (x).
As we are going to see, distributions can be strange animals. On the other hand, distribu-

tions given by a formula such as (1.8) are much better behaved. The short way to describe
the situation where the distribution � is of the type �f as in (1.8) is to simply say that � is
a function.

In general a distribution is certainly not given by a formula of the type (1.8). However,
when dealing with distributions we will maintain the notational fiction that they are func-
tions, i.e. for a test function ζ we will write∫

dx ζ (x)�(x) := �(ζ ). (1.9)

The use of the symbol := here is to stress that the right-hand side is a definition of the
left-hand side, so that you may be reassured that your memory did not fail and that there
is no point in looking back for the definition of the left-hand side. Equation (1.9) indeed
defines the left-hand side, since the symbol �(x) is a notation, and a priori really makes no
sense whatsoever by itself. It is only the integral

∫
dx ζ (x)�(x) which makes sense for any

test function, and the value of this integral is (by definition) the quantity �(ζ ), as expressed
in (1.9).10 The central objects of this work, quantum fields, have precisely the previous
property. The value of a quantum field cannot be specified at any given point. This value
makes sense only “when it is integrated against a test function”, or smeared in physics-type
language.

Even for distributions, it is however sometimes possible to give a meaning to the quan-
tity �(x) for certain values of x. Given an open interval I of the real line, we say that
a distribution is a function on I if there exists a well-behaved function f on I such that
�(ζ ) = ∫

dx ζ (x)f (x) whenever the test function ζ has compact support contained in I .11

It is then reasonable to define �(x) = f (x) for x ∈ I . However, unless � is a function, it
is not possible to assign a meaning to the symbol �(x) for each value of x.

9 The meaning of the expression “well-behaved” varies depending on the context. In the present case, f needs
to be locally integrable and “not grow too fast at infinity”.

10 The notational fiction (1.9) is however quite useful when one likes to be informal, as we simply do not
distinguish distributions from functions until this leads us into trouble.

11 When I = R this looks different from the definition (1.8) because then it is not required that ζ has compact
support. However, using the regularity properties that are part of the definition of a distribution, and on which
we do not dwell here one may show that these definitions coincide, see Appendix L.

https://doi.org/10.1017/9781108225144.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108225144.003


14 Preliminaries

Distributions can be added, or multiplied by a scalar, but in general cannot be multi-
plied.12 The great appeal of distributions is that they can always be differentiated. The
derivative of a distribution � is the distribution defined by the formula

�′(ζ ) := −�(ζ ′) (1.10)

for every test function ζ . The reason behind this definition is best understood by integrating
by parts when � is given by the formula (1.8) for a well-behaved function f . Then �′(ζ ) =∫

dxf ′(x)ζ (x).

Exercise 1.3.1 Convince yourself from the preceding definition that “if a distribution
is actually a nice function, its derivatives as a function and as a distribution coincide”.
Hint: Recalling (1.8), prove that (�f )′ = �f ′ .

Pretending that �′ is also a function, we write �′(ζ ) as
∫

dxζ (x)�′(x), and equally
shamelessly we write (1.10) as∫

dx ζ (x)�′(x) := −
∫

dx ζ ′(x)�(x). (1.11)

In several dimensions, the class of test functions is defined as the class of infinitely
differentiable functions such that the product of any partial derivative (of any order) and
any polynomial in the variables is bounded. The reader may refer to Section L.1 for more
about test functions.

1.4 The Delta Function

Besides reviewing the delta function, this section introduces the idea of a smooth cutoff,
how to get rid of the troublesome part of an integral.

Mathematically, the delta “function” δ is simply the distribution given by

δ(ζ ) = ζ (0) (1.12)

for any test function ζ ∈ S. Pretending that the delta “function” is actually a true function
we will shamelessly write (1.12) as

ζ (0) =
∫

dxζ (x)δ(x). (1.13)

The name “delta function” is historical. Physicists have been using this object long before
distributions were invented.

Exercise 1.4.1 (a) Convince yourself that it makes perfect sense to say that δ(x) = 0
if x �= 0.
(b) Make sure that you understand that despite the terminology, the delta function δ is
not a function in the mathematical sense and that the quantity δ(0) makes no sense.

12 One of the reasons for the dreaded infinities which will occur later is that we will have no other choice to
proceed than pretending we can multiply certain distributions.
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1.4 The Delta Function 15

(c) Convince yourself from (1.13) that, in the words of physicists, “the delta function
δ is the function of x which is equal to zero for x �= 0 and to infinity for x = 0, but in
such a way that its integral is 1”.
(d) Convince yourself that the derivative of the delta function δ, i.e. the distribution δ′

given by δ′(ζ ) = −ζ ′(0) “does not look at all like a function”.

For a �= 0 let us define δ(ax) by∫
dxζ (x)δ(ax) := 1

|a|
∫

dxζ (x/a)δ(x) = 1

|a|ζ (0), (1.14)

so that

δ(ax) = 1

|a|δ(x), (1.15)

and in particular δ(−x) = δ(x).13

Proper mathematical terminology requires one to say “the function f ” but sooner or
later one always says “the function f (x)” to carry at the same time the information that the
variable is called x. In the same manner we will use expressions such as “the distribution
�(x)” which should not be interpreted as meaning that the quantity �(x) makes sense for
a given x.

We will often write the quantity δ(x − y). It can be seen as a “function” of x depending
on the parameter y. This “function” makes sense only when integrated in x against a test
function ζ , and one has

ζ (y) =
∫

dxζ (x)δ(x − y). (1.16)

It can also be seen as a “function” of y depending on the parameter x, and one has

ζ (x) =
∫

dyζ (y)δ(x − y). (1.17)

Exercise 1.4.2 The quantity δ(x − y) can also be seen as a distribution � in the
variables x,y. For a test function ξ (x,y) one has∫∫

dxdyξ (x,y)δ(x − y) := �(ξ ) :=
∫

dxξ (x,x).

Convince yourself that this is consistent with (1.16) and (1.17).

Note also that δ(x − y) = δ(y − x). We will shift freely between the previous meanings
of the quantity δ(x − y). More generally we will stay very informal. Everything we say at
this stage could be made rigorous, but this is not our objective.14

13 Please be prepared: soon we will start manipulating delta functions as if they were functions, for example
taking for granted the first equality in (1.14).

14 It makes no sense to carefully climb molehills when the Himalayas are waiting for us.
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16 Preliminaries

Exercise 1.4.3 For a test function ξ convince yourself of the formula (various versions
of which we will use many times)∫

dzδ(x − z)δ(z− y)ξ (z) = δ(x − y)ξ (x). (1.18)

We will make massive use of the formula15

δ(x) = 1

2π

∫
dy exp(ixy), (1.19)

and we first need to make sense of it. In studying physics, one must keep in mind at all
times that the goal is to make predictions about the behavior of the physical world. This is
difficult enough. To study the physical world, one makes models of it. One should as far as
possible concentrate on problems that arise from the physical world, and stay away from
the problems that arise not from the physical world, but from the models we made of it. We
may never know for sure whether the physical world is finite or not, but certainly events
located very far from our experiments are unlikely to affect very much their outcome, so
their inclusion in our model is an idealization, and in (1.19) points very far from the origin
should be discounted, for example by a factor exp(−ay2) for a very small a > 0. This is an
example of what is called a “smooth cutoff”. Thus, rather than (1.19) we mean

δ(x) = lim
a→0

1

2π

∫
dy exp(ixy − ay2). (1.20)

Here the limit is “in the sense of distributions”. By definition of convergence in the sense of
distributions, this means that for every test function ζ ,

ζ (0) =
∫

dxζ (x)δ(x) = lim
a→0

∫
dxζ (x)ψa(x), (1.21)

where

ψa(x) := 1

2π

∫
dy exp(ixy − ay2) = 1

2
√
aπ

exp(−x2/4a),

the second equality resulting from the computation of the Gaussian integral, see Lemma
C.3.3. Making the change of variables x = √ay, (1.21) becomes

ζ (0) = lim
a→0

∫
dyζ (y

√
a)ψ1(y),

which holds by dominated convergence since ψ1 has integral 1 and ζ is uniformly
bounded.16

A regularization procedure as in (1.20) can make sense only if it is robust enough. You
might have chosen an origin different from mine, but this does not matter since for all b it
follows from (1.20) that we actually have

δ(x) = lim
a→0

1

2π

∫
dy exp(ixy − a(y − b)2).

15 exp(x) is just another notation for ex .
16 Certainly the reader has observed the fundamental idea there: a family of functions of integral 1, which peaks

more and more narrowly around zero converges to the delta function in the sense of distributions, consistently
with Exercise 1.4.1 (a).
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Exercise 1.4.4 It would seem at first that the substitution z = y− b in the right-hand
side brings a factor exp(−ixb). Why is there no such factor? Hint: Where is the delta
function different from zero?

We will also need the obvious three-dimensional generalization of (1.19). In this case, not
only might you and I have chosen different origins, we might also move at relativistic speed
with respect to each other (and consequently we may not agree on the way we measure dis-
tances). There is however little point in investigating which specific regularization schemes
would take care of this: as we will see later in this section, far more general regularization
schemes work.

1.5 The Fourier Transform

Besides reviewing some basic facts about Fourier transforms, this section provides the first
example of certain calculations common in physics.

The Fourier transform will play a fundamental role.17 Let us temporarily denote by Fm

the Fourier transform, that is

Fm(f )(x) = 1√
2π

∫
dy exp(−ixy)f (y), (1.22)

where the subscript m reminds you that this is the way mathematicians like to define it
(whereas our choice of normalization will be different). The right-hand side is defined for
f integrable, and in particular for a Schwartz function f ∈ S. Using integration by parts
in the first equality, and differentiation under the integral sign in the second one, we obtain
the fundamental facts that for any test function f ,

Fm(f ′)(x) = ixFm(f )(x) ; Fm(xf ) = iFm(f )′, (1.23)

where we abuse notation by denoting by xf the function x �→ xf (x). An essential fact is
that the Fourier transform of a test function is a test function. The details of the proof are a
bit tedious, and are given in Section L.1.18

The Plancherel formula is the equality

(Fm(f ),Fm(g)) = (f,g), (1.24)

for f,g ∈ S, where (f,g) = ∫
dxf (x)∗g(x). It is very instructive to “prove” this formula the

way a physicist would, since this is a very simplified occurrence of the type of computations
that are ubiquitous in Quantum Field Theory:

(Fm(f ),Fm(g)) = 1

2π

∫
dx
( ∫

dy1 exp(−ixy1)f (y1)
)∗ ∫

dy2 exp(−ixy2)g(y2)

= 1

2π

∫∫
dy1dy2f (y1)∗g(y2)

∫
dx exp(ix(y1 − y2))

17 As will be explained later, it provides a natural correspondence between the “position representation” and the
“momentum representation”.

18 The essential point is that iteration of the previous relations and Plancherel’s formula show that if f is a test
function then for each n,k ∈ N the function xnFm(f )(k)(x) belongs to L2.
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=
∫∫

dy1dy2f (y1)∗g(y2)δ(y1 − y2)

=
∫

dy2f (y2)∗g(y2)

= (f,g), (1.25)

where we have used (1.19) in the third line and have integrated first in y1 in the fourth line.
Although this type of manipulation might look scary at first to a mathematician, it suffices
in fact to insert a factor exp(−ax2) in the first line and let a → 0 to make the argument
rigorous using (1.20).

As a consequence of Plancherel’s formula, for f ∈ S, the Fourier transform of f has the
same L2 norm as f , i.e. Fm is an isometry when S is provided with the L2 norm. Since S is
dense in L2 for this norm, an elementary result asserts that we may extend by continuity the
Fourier transform as a linear map from L2 to itself and this extension still satisfies (1.24).
Please observe that it is by no means obvious that the right-hand side of the formula (1.22)
is well-defined when f ∈ L2.

One of the miracles of the Fourier transform is that it can be inverted by a formula very
similar to (1.22):

F−1
m (g)(y) = 1√

2π

∫
dx exp(ixy)g(x). (1.26)

To justify the notation F−1
m we observe that, using (1.26) for g = Fm(f ), and using again

(1.19),

F−1
m (Fm(f )) (y) = 1

2π

∫
dx exp(ixy)

∫
dz exp(−ixz)f (z)

= 1

2π

∫
dzf (z)

∫
dx exp(ix(y − z))

=
∫

dzf (z)δ(y − z)

= f (y). (1.27)

This again can be made rigorous just as (1.25). Let us now look back at (1.21), which we
write, using Fubini’s theorem,

ζ (0) = lim
a→0

1

2π

∫
dy exp(−ay2)

(∫
dx exp(ixy)ζ (x)

)
,

and by dominated convergence we obtain

ζ (0) = 1√
2π

∫
dy F−1

m (ζ )(y). (1.28)

Incidentally, it is now quite obvious that the regularization scheme in (1.20) is very robust.
To see this, let us investigate for which regularizing families of functions ψa , we have in
the sense of distributions

δ(x) = lim
a→0

1

2π

∫
dy exp(ixy)ψa(y).
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This means that for any test function ζ ∈ S it holds that

ζ (0) = lim
a→0

1

2π

∫∫
dxdy ζ (x) exp(ixy)ψa(y). (1.29)

The right-hand side is

lim
a→0

1√
2π

∫
dy F−1

m (ζ )(y)ψa(y) = lim
a→0

∫
dy θ(y)ψa(y),

where θ := (2π )−1/2F−1
m (ζ ). Since θ is a test function, and since its integral is ζ (0) by

(1.28), (1.29) holds true whenever ψa converges to the constant function 1 in the sense of
distributions, that is

lim
a→0

∫
dy η(y)ψa(y) =

∫
dy η(y)

for each test function η. This is the case for example (using dominated convergence) when
ψa(y) = ψ(ay) where ψ ∈ S satisfies ψ(0) = 1, and in particular when ψ(x) = exp(−x2)
as in (1.20).

Let us also mention that it is possible to define a notion of “Fourier transform of a
distribution”, and once this is done (1.28) is equivalent to the statement “the delta function
is the Fourier transform of the constant function 1/

√
2π”, which is a more elaborate way

to describe the way we made sense of (1.19).
Mathematicians love the symmetry between (1.22) and (1.26), but in physics it is better,

thinking that x has the dimension of a length and p of a momentum to define the Fourier
transform of a function f as

f̂ (p) =
∫

dx exp(−ixp/h̄)f (x) =
√

2πFm(f )(p/h̄) (1.30)

and the inverse Fourier transform as

ξ̌ (x) =
∫

dp

2πh̄
exp(ixp/h̄)ξ (p). (1.31)

This makes sense because the quantity xp/h̄ is dimensionless. The Plancherel formula then
becomes ∫

dx |f (x)|2 =
∫

dp

2πh̄
|f̂ (p)|2. (1.32)

Exercise 1.5.1 Make sure you understand (1.31) by writing out all details. The factor
2πh̄ will occur constantly.19

There are obvious multidimensional versions of these formulas. There is one factor 2πh̄
per dimension in the analog of (1.31). When integrating in p we will always include these
factors.

Exercise 1.5.2 Write the multidimensional versions of these formulas.

19 According to (1.2), we have 2πh̄ = h but we write all formulas in term of h̄.
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The formula (1.23) now becomes

̂
−ih̄

df

dx
(p) = −ih̄

d̂f

dx
(p) = pf̂ (p). (1.33)

The operator −ih̄d/dx is fundamental in Quantum Mechanics, and (1.33) means that it is
much simpler to express on f̂ than on f : applying this operator to the function f simply
amounts to multiplying the Fourier transform of f by p.

Key facts to remember:

• One should always check that an equation in physics makes sense from the point of
view of physical dimension.

• The complex conjugate of a complex number a is denoted by a∗ and the adjoint of
an operator A by A†.

• Distributions generalize functions but their value is not defined at every point and
they make sense only when integrated against a test function. The “delta function” is
not a function!

• The ubiquitous Fourier transform is not exactly defined as it would be in mathematics.
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