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Abstract
In this article, an angle-independent wideband metamaterial microwave absorber (MMA) for
C (4–8 GHz) and X (8–12 GHz) band frequency is presented. The unit cell of the proposed
MMA consists of outer and inner structure associated with lumped resistors. The outer struc-
ture consists of rectangular split-ring resonator, whereas the inner structure consists of circular
split-ring resonator. The structure is made up of three layers, in which top and bottom layers
are made up of copper acting as a conducting material. The middle layer is made up of FR-4
acting as a dielectric substrate.The resonating structure at the top is designed in such away that
wideband absorption is achieved in the range from 6.11 to 13.52 GHz. The wideband absorp-
tion within the range approaches almost unity having a bandwidth of 7.41 GHz.Three different
peaks are considered in the range of interest havingmaximumabsorption of 0.94, 0.94, and 0.99
at frequencies of 6.76, 11.15, and 13.07GHz, respectively.The structure is analyzedwith respect
to the effective parameters, i.e., effective permittivity (𝜀eff) and effective permeability (𝜇eff), to
prove that the structure acts as ametamaterial. Electric field and current distribution are plotted
at three different peaks to prove the mechanism of wideband absorption. Normal and oblique
incidence are plotted to determine that the structure is behaving as an angle independent. The
simulated structure is fabricated on FR-4 substrate and measured inside an anechoic chamber.
Finally, to prove the novelty of the work, the proposed structure is compared with the already
reported MMA.The proposed MMA finds practical applications in radar cross section reduc-
tion, terrestrial communication, keyless entry system, space communication, radar, and baby
monitor.

Introduction

In recent years, there has been a great deal of attention devoted toward metamaterial, and the
related research lab moved from being simply a theoretical concept to a field with developed
and marketed applications. It is an engineered material having negative permittivity (𝜀) or per-
meability (𝜇) or both negative 𝜀 and 𝜇 simultaneously [1]. Due to these unique electromagnetic
(EM) properties, it supports backward waves [2], inverse Snell’s law [3], opposite group and
phase velocity [4], inverse Doppler’s effect [5], etc., which are not found in naturally occur-
ring materials. They are formed by the combination of different materials such as metals and
substrate. Different materials are arranged in repeating patterns, at scales that are smaller than
the wavelength of the influenced phenomena. Metamaterials achieve their characteristics not
from the single material but from the arrangement of repeating pattern structure. Their shape,
geometry, size, and arrangement lead to smart properties which are capable of manipulating
EM waves: blocking, absorbing, enhancing, or bending waves [6].

For the first time, Jagdish Chander Bose at the end of nineteenth century in the year 1898
performed some experiments that became the seed work for today’s dynamic field of meta-
materials [7]. In 1914, Lindell continued the work by embedding artificial chiral elements in a
host medium [8]. Thereafter in 1948, Kock tailored the effective medium properties, i.e., effec-
tive permittivity (𝜀eff) and effective permeability (𝜇eff) by periodically arranging the conducting
disks, strips, and spheres [9]. In 1968, Veselago theoretically explained the wave propagation in
a double negative (DNG) material and concluded that 𝜀eff and 𝜇eff and the refractive index (𝜂)
are negative with less than zero values [10]. He explored that the direction of phase velocity is
opposite to the direction of Poynting vector in a DNG material. However, this extraordinary
finding could not be verified until Sir John Pendry et al. in 1999 [11] postulated that the artifi-
cially engineered structures such as split-ring resonator (SRR) with negative effective material

https://doi.org/10.1017/S1759078723000685
Downloaded from https://www.cambridge.org/core. IP address: 3.144.47.8, on 13 Nov 2024 at 07:19:27, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1759078723000685
https://doi.org/10.1017/S1759078723000685
mailto:2017rsec004@nitjsr.ac.in
https://orcid.org/0000-0002-9614-0256
https://crossmark.crossref.org/dialog?doi=10.1017/S1759078723000685&domain=pdf
https://doi.org/10.1017/S1759078723000685
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


102 Chetan Barde et al.

Figure 1. Schematic diagram of proposed MA.

Figure 2. Front view of proposed MA unit cell.

Figure 3. Absorptivity for different cases—height of the substrate.

properties can be constructed. Based on this concept, the existence
of first DNG material was experimentally demonstrated by Smith
et al., and this type of material is also named as left-handed mate-
rial [12]. In the demonstration, Smith et al. used a periodic array
of SRR and continuous wire, to provide simultaneously negative
value of 𝜀eff and 𝜇eff. Since then, these artificially engineered mate-
rials, i.e., metamaterials, became the theme of investigation for the
researchers worldwide.

Metamaterials have awide range of potential applications in EM
(ranging from low microwave to optical frequencies), including
controllable “smart” surfaces [13], miniaturized cavity resonators
[14], novel wave-guiding structures [15], angular-independent
surfaces [16], biomedical devices [17], terahertz switches [15],
fluid-tunable frequency-agile materials [14], radar cross section

Figure 4. Absorptivity for different cases—outer resistance.

Figure 5. Absorptivity for different cases—inner resistance.

(RCS) reduction [18], EM compatibility in electronic devices [19],
antennas [20], chip-less RFID [21], solar cells [22], cloaking [23],
phase modulators [23], thermal emitters [24], power imaging [25],
bolometers [26], photo-detectors [27], artificial magnetic conduc-
tors [28], and metamaterial absorber (MA) [29].

This article presents an angle-independent wideband metama-
terial microwave absorber (MMA). The proposed structure con-
sists of outer (rectangular SRR [RSSR]) and inner (circular SSR
[CSRR]) geometry. The structure is a three-layer design in which
top and bottom surfaces are made up of copper, and middle layer
consists of FR-4 substrate. The resonate surface is designed to
achieve maximum absorption in the range of 6.11–13.52 GHz.
The bandwidth of absorption achieved is 7.41 GHz. In the range
of interest, three different peaks are considered having maximum
absorption with respect to other points. At three different peaks,
electric and current distribution are plotted to show the absorp-
tion phenomenon. The metamaterial behavior is satisfied by using
effective parameters 𝜀eff and 𝜇eff. Normal and oblique incidence
are plotted to verify angle-independent phenomenon. The simu-
lation of the proposed structure is carried out using commercially
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Figure 6. Absorptivity vs frequency plot.

Figure 7. Simulated normal impedance.

available ANSYS HFSS 19.1v.The simulated structure is fabricated
and measured inside the anechoic chamber. Finally, the proposed
and already reported MMA are compared to find the novelty of
the structure [30–36]. It is observed that the proposed structure
is novel in terms of uniquely used resistors in congestion with two
circular slotted rings, which is compact in size and has larger band-
width. The proposed MMA finds practical applications in RCS
reduction, terrestrial communication, keyless entry system, space
communication, radar, and baby monitor.

Structure design

The unit cell of the proposed MMA consists of outer and inner
structures. The outer structure is an RSRR, and the inner structure
is CSRR.The lumped resistors are connected to the outer and inner
structures.The geometry of the structure ismade up of three layers.
The top and bottom layers aremade up of copper (Cu, conductivity

Figure 8. Simulated real part of permittivity and permeability.

Figure 9. Simulated imaginary part of permittivity and permeability.

Figure 10. Refractive index vs frequency.
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Figure 11. Current distribution: (a) top and (b) bottom surfaces at 6.76, 11.15, and 13.07 GHz of proposed MA.

𝜎 = 5 × 107 S/m, thickness= 0.035 mm).Themiddle layer is made
up of FR-4 (𝜀r = 4.4, loss tangent 𝛿 = 0.02, thickness = 3.2 mm)
substrate acting as a dielectric medium. The three-layer geometry
is portrayed in Fig. 1. The overall dimension of the structure is
14 mm × 14 mm × 3.2 mm, as shown in Fig. 2. The top resonat-
ing structure is designed in such a way that maximum absorption
and angle independence are achieved for C and X band frequency
applications.

Simulation and parametric analysis

The MMA proposed in this article is simulated using commer-
cially available ANSYS HFSS 19.1 v. The maximum absorption is
achieved by optimizing the geometry with respect to height of
substrate, inner resistance, and outer resistance. The height of the
substrate varies from 0.8 to 4.8 mm in the step size of 0.8 mm,
and for substrate height equal to 3.2 mm maximum absorption is
achieved as shown in Fig. 3. Second, the outer value of resistance
varies from 50 to 150 Ω in the step size of 20 Ω, and for 110 Ω
maximum absorption is achieved as shown in Fig. 4. Finally, the
inner value of resistance varies from 105 to 185 Ω in the step size
of 20 Ω, and for 145 Ω maximum absorption is achieved as shown
in Fig. 5.

After varying the parameters, i.e., height of substrate, outer
resistance, and inner resistance, the wideband absorptivity A(𝜔) is
obtained when height of substrate equals 3.2 mm, outer resistance
equals 110 Ω, and inner resistance equals 145 Ω.

Wideband absorptivity A(𝜔) is calculated from Eq. (1), which
depends upon reflected (S11) and transmitted (S21) power, but as
the lower layer is completely covered with copper, the transmit-
ted power in Eq. (1) is zero and absorptivity completely depends
upon reflected power given byEq. (2).The absorptivity of the struc-
ture can be increased by minimizing the reflected power from the
surface.

A (𝜔) = 1 − |S11 (𝜔)|2 − |S21 (𝜔)|2 (1)

A (𝜔) = 1 − |S11 (𝜔)|2 (2)

The proposed geometry obtains wideband absorption of
7.41 GHz ranging from 6.11 GHz to 13.52 GHz above 0.9 absorp-
tivity with three absorption peaks at 6.76, 11.15, and 13.07 GHz as
shown in Fig. 6.

Absorption mechanism

The unit cell of the proposed MMA is considered a homogeneous
medium for the absorption mechanism process. The normalized
impedance can be evaluated by Eq. (3).

Z =
√√√
⎷

(1 + S11)
2 − S221

(1 − S11)
2 − S221

(3)

In Eq. (3), transmitted power (S21) is absent because the bottom
layer is completely covered with conducting material; due to this,
no incident wave will be transmitted from the structure.Therefore,
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Figure 12. Electric field distribution: (a) top and (b) bottom surfaces at 6.76, 11.15, and 13.07 GHz of proposed MA.

Eq. (3) is now modified as Eq. (4).

Z =
(1 + S11)
(1 − S11)

(4)

For analysis purpose and to calculate the exact normalized
impedance, transmitted power (S21) plays an important role. To
calculate S21 the small portion from the bottom conducting layer is
etched from all the four corner in such a way that absorption curve
remains the same.The normalized impedance curve obtained after
the process of etching is portrayed in Fig. 7. From Fig. 7 it is
observed that in the range of interest real part is approaching
toward unity while imaginary part is approaching toward zero,
which confirms that proper impedance matching is achieved for
the proposed structure.

The real and imaginary parts approach toward 1 and 0, respec-
tively, as shown in Fig. 7, which is due to the fact that effective
parameters, i.e., 𝜀eff and 𝜇eff are changing very rapidly at the wide
range of absorption frequency, which is the region of interest. This
can be proven by the observation from Figs. 8 and 9, respectively.

The refractive index (𝜂) is calculated using Eq. (5) and plotted
in Fig. 10. The 𝜂 changes abruptly due to resonance conditions at a

particular value or range of 𝜀 and 𝜇.

𝜂 = 1
kd cos

−1 [ 1
2S21

(1 − S221 − S211)] (5)

The absorption mechanism can be properly explained from the
electric field and current distribution at the top and bottom sur-
face of the proposed structure. To simulate the plot fields, three
different frequencies are considered in the region of interest. The
three different frequencies are 6.76, 11.15, and 13.07 GHz with
absorptivities of 0.94, 0.94, and 0.99, respectively.

The current distribution plot shows that the current flowing
at top and bottom surface is anti-parallel to each other, as shown
in Fig. 11. Due to circulating current, magnetic excitation is cre-
ated perpendicular to magnetic field. Electric field is induced due
to electric excitation, as shown in Fig. 12; due to this strong EM,
resonance occurs which maximizes the absorption.

Metasurface analysis under normal and oblique incidence

The angle independence of MMA is observed by analyzing the
structure under normal and oblique (TE and TM) incidence. The
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Figure 13. Simulated absorptivity curve under normal incidence.

Figure 14. Measured absorptivity curve under normal incidence.

electric field direction is fixed, and the wave vector and magnetic
field direction are changed to analyze the absorption. Under nor-
mal incidence, the structure is rotated fromhorizontal polarization
(𝜙 = 0∘) to a vertical polarization (𝜙 = 90∘), and the reflection
coefficient is measured at every 15∘ increments. When the polar-
ization angle changes the absorptivity remains the same.Therefore,
the proposed MMA is angle independent as shown in Fig. 13 as
simulated and Fig. 14 as measured.

The structure is further examined under oblique incidence of
wave. The proposed structure is investigated at different angles
from 0∘ to 90∘ at each 15∘ increments for both TE and TM polar-
ization, and the absorptivity curves are plotted in Figs. 15 and 16,
respectively. It is observed that absorptivity response degrades as
angle of incidence increases.

The proposed and already reported MMA are compared with
respect to size of unit cell, bandwidth, and thickness in Table 1. It
is observed from the table that the proposed structure is compact
in terms of size and has larger bandwidth.

Figure 15. Absorptivity curve under oblique incidence for TE polarization.

Figure 16. Absorptivity curve under oblique incidence for TM polarization.

Measurement setup

The proposed MMA was fabricated on FR-4 substrate having an
overall dimension of 140 cm× 140 cm, containing 10 × 10 unit cells
as depicted in Fig. 17.The backside of FR-4 sheet has been covered
with copper. The measurement of absorptivity under normal inci-
dence is carried out inside an anechoic chamber with the help of
vector network analyzer. The setup consists of two horn antennas
acting as a transmitter and receiver. The complete setup for mea-
surement is replicated in Fig. 18.The simulation andmeasurement
results for absorptivity are shown in Fig. 19. and a close agreement
between the simulation and measured results is observed.

Conclusion

The MMA reported in this article is angle-independent wide-
band absorber.The structure is simulated on FR-4 substrate having
overall dimension of 14 mm × 14 mm × 3.2 mm. The unit cell
of proposed MMA consists of outer and inner structure associ-
ated with lumped resistors. The outer structure consists of RSRR,
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Table 1. Comparison between proposed and already published metamaterial
absorber articles

Ref. No.

Center
frequency
(GHz)

Size of unit
cell (mm)

Thickness
(mm)

Bandwidth
(GHz)

[30] 10.25 16 × 16 (0.55𝜆
× 0.55𝜆)

3 (0.10𝜆) 1.5

[31] 11.15 10 × 10 (0.38𝜆
× 0.38𝜆)

2.5 (0.09𝜆) 2.7

[32] 12.56 15 × 15 (1.53𝜆
× 1.53𝜆)

4.2 (0.42𝜆) 3.19

[33] 9.62 16.5 × 16.5
(0.53𝜆 × 0.53𝜆)

4.2 (0.013𝜆) 4.89

[34] 9.23 16.5 × 16.5
(0.91𝜆 × 0.91𝜆)

3 (0.166 𝜆) 5.7

[35] 10 15 × 15 (1.53𝜆
× 1.53𝜆)

4.2 (0.42𝜆) 6.8

[36] 11.2 14 ×14 (0.53𝜆
× 0.53𝜆)

3.2 (0.123𝜆) 7.2

Proposed
work

9.81 14 × 14 (0.46𝜆
× 0.46𝜆)

3.2 (0.106𝜆) 7.41

Figure 17. Fabricated 140 cm × 140 cm sheet.

Figure 18. Experimental setup inside anechoic chamber.

whereas inner structure consists of CSRR. The structure is made
up of three layers, in which top and bottom layer is made up of
copper acting as a conducting material. The middle layer is made

Figure 19. Simulated and measured absorptivity plot.

up of FR-4 acting as a dielectric substrate. The resonating struc-
ture at the top is design in such a way so that wideband absorption
is achieved in the range from 6.11 to 13.52 GHz. The wideband
absorption within the range is approaching almost toward unity
having bandwidth of 7.41 GHz. Three different peaks are consid-
ered in the range of interest having maximum absorption of 0.94,
0.94, and 0.99 at frequencies of 6.76, 11.15, and 13.07 GHz, respec-
tively. The structure is analyzed using the effective parameters, i.e.,
effective permittivity (𝜀eff) and effective permeability (𝜇eff), to sat-
isfy that structure is acting as a metamaterial. Electric field and
current distribution are plotted at three different peaks to prove
the mechanism of wideband absorption. Normal and oblique inci-
dence are plotted to satisfy that structure is behaving as an angle
independent. The simulated structure is fabricated on FR-4 sub-
strate and measured inside an anechoic chamber. Finally, to prove
the novelty of the work, the proposed structure is compared with
the already reported MMA. The proposed MMA finds practical
applications in RCS reduction, terrestrial communication, keyless
entry system, space communication, radar, and baby monitor.

Competing interest. The authors report no conflict of interest.
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