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Introduction. The undertaking of constructing spaces 
which contain a given space as a subspace is by no means new: 
the extension of the complex number plane to the complex number 
sphere by the addition of the one point at infinity, the extension 
of the rea l line by adjoining the two infinities oo and -oo, and 
the construction of the space of rea l numbers from that of the 
rat ionals by means of Cauchy sequences or Dedekind cuts a re 
19th Century examples of this very thing. However, only the 
advent of general topology made it possible to ra i se the general 
question of space extensions. It appears that the first study of 
problems in this area was car r ied out by Alexandroff and Urysohn 
in the early twenties [ l ] . Another mile stone in the history of 
the subject was the 1929 paper by Tychonoff in which the product 
theorem for compact spaces is proved and used to identify the 
completely regular Hausdorff spaces as precisely those spaces 
which can be imbedded in a compact Hausdorff space [33]. 
During the same period, work on certain specific extension 
problems was done by Freudenthal [17] and Zippin [35]. However, 
the f irs t large body of systematic theory, used for the investiga­
tion of a wide range of extension problems, was presented by 
Stone [31] in 1937. There, one also finds the r e m a r k that "one 
of the interesting and difficult problems of general topology is 
the study of all extensions of a given space n , and it appears 
that Stone' s own work must have convinced many others of the 
truth of this observation, for since that time there has been a 
steady succession of papers in this field. But apart from that, 
the study of extension spaces clearly has a very part icular 
at tract ion for some mathematicians. The fundamental question 
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as to how an object of a specific kind can be imbedded into other 
such objects possesses a certain philosophical charm, since it 
sounds like asking "What possibil i t ies in the unknown are 
determined by the known?". Of course , looking at the existing, 
widely different extension theories in this manner does not help 
very much with a single line of proof, but in one1 s i r ra t ional 
motivations one might never theless be influenced by such con­
siderat ions, even if one otherwise abhors formulations which 
smack of metaphysics . 

This paper is neither intended to present substantial new 
resul t s nor to provide an encyclopaedic survey, but, r a the r , to 
give a unified account of cer ta in aspects of the subject, for the 
choice of which there is no other excuse or justification but that 
of personal taste and preference. Regarding the topics omitted 
here , the most significant ones a re probably the relat ion of 
uniformities, proximity functions (or relations) and a lgebras , 
lat t ices and vector spaces of continuous functions to extension 
spaces. However, it is easy to see in which way these i tems 
fit into the general framework presented below, since the t race 
fi l ters (see Section 4) of the extensions result ing from these are 
essentially known. Another type of space extension not discussed 
here is that based on a generalization of Wallman1 s method [10]; 
for th is , the t race f i l ters have not been determined, but no doubt 
this will not be difficult to do. 

1. Basic definitions. A topology on a set E is a 
collection O of subsets of E closed under a rb i t r a ry unions 
and finite intersect ions. If O is a topology on E, the pair 
( E , 0 ) is the space with E as its set of points and O as its 
topology. However, more often than not, we shall talk about 
a space E with topology O (or O(E), if this seems preferable) . 

If E is a space and O i ts topology, we put O(x) = 
{ V |x € V € O} ; this is the collection of all open neighbourhoods 
of x in the topology O. O(x) is a filter in the lattice O, and 
we shall call it the neighbourhood filter of x. The correspond­
ance x - * 0 ( x ) , x€ E, is in general not one-to-one. However, 
it will be no significant res t r ic t ion to. consider only this case , 
i. e. , all spaces a re assumed to be T . 

o 
Let E and Ef be spaces with the respect ive topologies 

O and Or , and <p : E -»* Ef a mapping. The pair (Kf ,<p) will 
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be ca l l ed an extens ion space of E iff ^(E) i s dense in E f , 

<p i s o n e - t o - o n e , and O = {? (V) |V € Of } . This m e a n s that 
<p i s a homeomorphi sm of E with the dense sub space <p(E) of 
E1 . If, in part icular , (E f , <p) i s an extens ion space of E 
such that E C E1 and <p m a p s E identical ly , then the re ference 
to <p wi l l be omitted and E f wi l l i tse l f be ca l led an extens ion 
space of E . 

Let (E1 , <p) be an extens ion space of the space E. Then, 
each point u € E f de termines the proper f i lter T(u) = ^ Of (u) -
{<P"1(V) | V € Of (u)} in the latt ice O, ca l led the trace f i l ter of 
u on E. Of c o u r s e , if E ! i t se l f is an extens ion of E then 
T(u) = { Vn E | V c Of (u)} . The family ( T ( u ) ) u € E , wi l l be ca l led 

t^ ie ^ t e r t race of the extens ion space on E. If E O E then 
the f i l ter t race of E ! on E extends the family (O(x)) „ of 

x € E 
neighbourhood f i l t ers of E to a family of f i l t ers in O with 
l arger indexing set s ince T(x) = O(x) for x € E. 

An extens ion space (E ! , <p) of the space E m a y sat isfy 
certa in separation conditions with r e s p e c t to E: If u 4 v 
impl i e s T(u) + T(v) for u , v € E ! the extens ion i s ca l led 
re lat ive ly T ; if T(u)(t T(v) and T(v)<£ T(u), under the 

same condit ions, then the extens ion i s cal led re lat ive ly T . 

Of c o u r s e , re la t ive ly T impl i e s re lat ive ly T , and if E1 

i s Hausdorff then it certainly is re la t ive ly T . ; however , E f 

1 
m a y w e l l be T without even being re lat ive ly T . 

A number of re lat ions between the extens ion spaces of a 
given space E are of interes t ; these are: 

(1) I somorphism: Two extens ion spaces (E , <p ) and 
1 1 

(E9><p~) of E are ca l led i somorphic iff there e x i s t s a h o m e o ­
m o r p h i s m <p : E -*» E such that <p o <p.M =<p~; the mapping <p 

1 2 1 2 
i s ca l led an i s o m o r p h i s m from the f irst to the second extens ion. 
If both, <p and <p , are identity mappings ( i . e . E , E 

X ù i ù 

extens ions of E) , the condition on <p says that i t m a p s E 
identical ly . Clear ly , the relat ion of i s o m o r p h i s m i s an 
equivalence in the c l a s s of a l l extens ions of E~ 
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(2) Projective order : An extension (E , <p ) of E is 

called protectively la rger than an extension (E , <p ) of E iff 

there exists a continuous mapping <p : E -*• E (onto) such that 
J. C* 

(p o <p = <f>~- This relation is reflexive and t rans i t ive , i. e. 
j . c» 

strictly speaking a par t ia l quas i -order . 

(3) Infective order : An extension (E , <p ) of E is 
1 1 

called injectively l a rge r than an extension (E , <p ) of E iff 
there exists a continuous mapping <p : E^ -* E J which is a 

2 1 
homeomorphism from E_ to the subspace <p(E ) of E such 

2 2 1 
that cp o <p = <p - This relation is also, str ict ly speaking, a 
part ial quas i -o rder . The equivalence relat ions associated 
with the second and third of these re la t ions , i. e* (E , cp ) 

1 1 
protectively (injectively) la rger than (E , cp ) and conversely, 
coincide with the relation of isomorphism on suitable c lasses 
of extensions, i. e. for relatively T -extensions in the former 

1 
and relatively T -extensions in the la t ter case . 

o 

It follows readily from the definitions that any extension 
(E* , cp) of a space E is isomorphic to one containing E: 
assuming, without loss of generality, that ET C\ E = p one 
takes the set E , ! = (ET - <p(E))U E and defines the topology 
On on E l ! in the obvious manner . Hence, one may always 
r e s t r i c t oneself to extension spaces of a space E which 
contain E; this will be done unless the context makes it 
preferable not to do so. 

2. All extensions of a given space. Consider any family 
(F(u))u € ET of f i l ters in O which extends the family of neigh­
bourhood f i l ters of the space E, i. e. E' } E and F(x) = O(x) 
for each x € E. Then, there exis ts two "natural" topologies 
on the set E ! such that the result ing spaces a re extensions of 
E whose filter t r ace on E is just the given family (F(u))u € ET . 
The first of these spaces, called the s t r ic t extension of E with 
filter t race (F(u))u € ET , has its topology O' generated by the o 
sets V* = { u |V e F(u)} , V € O; in the second space, with 
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topology Or. , here re fe r red to as the simple extension of E 
1 

with filter t race (F(u))u € Ef , each a € Ef has as its basic 
neighbourhoods the sets V U { u} , V € F(u). 

These r e m a r k s show that any extension of the family of 
neighbourhood fil ters of a space E is the filter t race of a 
suitable extension of E. Moreover, any topology O' on E? 

such that O' C O1 C O' (same notation as above) makes Ef 

o — — 1 
into an extension space of E with the given family of fi l ters as 
its filter t r ace , and conversely any topology O' with this 
la t ter property satisfies the inequalities O' C O' C O' , since 

o — — 1 
each set V*, V € O, is readily seen to be the larges t U € Of 

with U O E = V, whereas , on the other hand, each U € Of is 
equal to U (U O E) \J { u} (u € U-E) and hence belongs to O' . 

1 
In this manner one has obtained a complete description, up to 
isomorphism, of all possible extension spaces of a given space. 

The preceding considerations lead to the following two 
par t icular types of extensions of a space E: an extension 
E1 3 E will be called s t r ic t (simple) iff it is the s tr ict (simple) 
extension of E with respect to its filter t r ace , and these t e r m s 
will be used analogously for extension spaces (E ! , <p) of E in 
general . 

If one considers relatively T -extensions only, one can in 
o 

a sense replace the family of t race fil ters of an extension 
E1 D E in the above arguments by the set of these t race f i l ters: 
the mapping u -> T(u) is then one-to-one, and E' thus 
becomes isomorphic to an extension space of E whose points 
a re f i l ters in O, E being mapped into it by x -*» O(x), and 
the isomorphism given by u -*• T(u). It follows from this that 
the class of all relatively T -extensions of a space E contains 

o 
a subset such that any extension of E is isomorphic to some 
member of this set. 

A s a consequence of this one has the following r e m a r k 
regarding the existence, for a given space E, of projective 
maxima in certain c lasses of extensions of E: let K be a 
c lass of Hausdorff spaces such that 
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(i) the product of any family in K belongs to K, 

(ii) the closed subspaces of any m e m b e r of K 
belong to K, and 

(iii) the dense continuous image of any X € K in 
any Y s K is equal to Y. 

Then if the c lass K(E) of all extensions of E which belong 
to K is non-void, it has a projective maximum. To see this 
one takes a representat ive set R for all extensions X of E 
in K(E) and considers in P = n X(X € R) the closure E * of 
the set CC P of all constant families with values in E. 
Since E is clearly homeomorphic to C under the mapping 
<p : E -** C which maps each a € E to the constant family with 
value a, (E*, <p) is an extension space of E with E* € K 
by (i) and (ii). It now follows from (iii) that for each X* R 
the res t r ic t ion IT to E* of the natural projection of P onto 

X maps E* continuously onto X such that TT O cp maps E 

identically. This establ ishes that (E*, cp) has the desired 
property. It may be added that, on general grounds, (E*, cp) 
is actually uniquely determined, up to isomorphism, as the 
projective maximum of K(E). 

"We r e m a r k that the above three hypotheses on the c lass 
K hold for the c lass of all compact Hausdorff spaces and for 
the class of all zero-dimensional such spaces . Also, var iants 
of the above argument can be used in other ca ses . 

In the following we shall consider relat ively T -extensions 

only. As far as s t r ict extensions a re concerned, it may be 
observed that a s t r ic t T -extension is relat ively T anyway, 

o o 
and hence for these this is no new res t r ic t ion . 

3. The s t r ic t extensions of a given space. If an extension 
space E ! 3 E is ei ther s t r ic t or simple then it is entirely 
determined by its t race f i l ters and hence by data given within 
E only; th is , of course , makes them par t icular ly a t t rac t ive . 
Of the two kinds, the str ict extensions a r e by far the more 
important (and, perhaps, the more interest ing); this section 
is devoted to some general r e m a r k s about them. 
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Let E be a space, O its topology and $ the set of all 
proper f i l ters F Ç O. In $, consider the subsets $ = { FJV € 

One readily sees that J rs 5 = 5 for any V, W € O and 
V W V /~\ W 

$ = U $ (V € O); it follows from this that the sets $ , V € O, 
form the basis of a topology on $ which will be called its 
natural topology. $ together with this topology will be referred 
to as the space $, or the filter space of O. The closure 
operator r in this space is given by the identity 

T 2 = { F | F C U S } ( S Ç $ ) 

and we r e m a r k in passing that the analogous closure operator 
on the set of ideals of a commutative ring is of importance in 
connection with the components of an ideal. 

As a f irst observation concerning the space $ we have 
that (<j>, v) with v : x -> O(x) is a s t r ict extension space of E. 
That v is a home omor phi sm from E onto the sub space 
v(E) = { 0 ( x ) | x € E} of $ follows from the identity v(V) = 
$ r\ v(E) for all V€ O, and that v(E) is dense in $ from 

O(x) € & for x€ V. The s t r ic tness resul ts from the fact 

that the t r ace filter on v(E) of any F € $ is precisely v(F) 
which implies (notation as in Section 2) that v(V)# = <5 for 

each V € O. However, much more significant is the fact that 
(§, v) is the injective maximum of the class of all s tr ict 
extensions of E. In order to see this , let E O E be any 
s t r ic t extension of E and {T(u)ju€ ET } its set of t race 
f i l ters . Now, the topology of ET is generated by the sets 
V* = { u | V € T(u)} , V € O, and that of the sub space 
{ T(u) |u € Ef } of $ by the sets $ r\ { T(u) |u € Ef } = 

{T(u) |V € T(u)} , V € O. This immediately shows that 
<p : u -** T(u) is a homeomorphism of E r onto the sub space 
{ T ( u ) | u € E ! } of <j> ; since <p(x) = T(x) = O(x) for x € E, 
this proves the asser t ion . 

Since, conversely, any (S, v) with a subspace S of $ 
containing the neighbourhood fil ters of E is a s t r ic t extension 
space of E one can say, worded more suggestively but a little 
loosely, that the s t r ic t extensions of a space E a re precisely 
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the subspaces of j> which contain all neighbourhood f i l ters of 
the points of E. 

In view of all that has been said so far concerning s t r ic t 
extensions, it is of some interest to know conditions which will 
ensure that a given extension E' 2) E of a space E is s t r ic t . 
The most general condition known of this kind, which goes back 
to Stone [31], is that any semi- regula r extension of a space is 
s t r ict , where semi-regular i ty means that the regular open sets , 
i. e. the in ter iors of the closed sets , generate the topology. 
On the other hanti, one can prove (as remarked by Banaschewski 
[9]) that a Hausdorff space with F i r s t Axiom of Countability 
which is a str ict extension of any of its dense subspaces is 
semi- regular . We do not know what happens in the absence 
of the countability condition. 

4. Some par t icular extension opera to r s . The manner in 
which new types of space extensions usually make their appear­
ance is that some construction procedure is described which 
yields a specific extension for each space of a cer ta in type. In 
abstract t e r m s , this amounts to the definition of a mapping OJ 
from a class K of spaces into the c lass of all spaces such that 
OÙ E is an extension space for each E e K, or , more generally, 
a mapping u> which assigns to each E € K an extension space 
(CDE,<P ) in the general sense. A mapping OJ of this type will 

GO 

be called an extension operator on the c lass K. 

If an extension operator co on a c lass K of spaces is 
s t r ict , i. e. oo E is a s t r ic t extension of E for each E e K, then 
OJ is already determined by the set f l ( E ) of t race f i l ters of coE 
on E. The effect of the correspondance E -*• Q. (E) is simply to 
single out a subset of the set §(E) of all proper f i l ters in the 
topology O(E) of E which contains all O(x), x € E ; conversely, 
any such correspondance on a c lass K of space does, of course , 
give r i se to a uniquely determined str ict extension operator on K. 

In actual pract ice , this determination, for cer tain spaces 
E, of certain sets of f i l ters in O(E) can usually be described 
in one of the following two ways: 

I. Let ÇÏ be a mapping defined on the c lass T of all 
o 

spaces such that Q. (E) is a set of f i l ters in O(E) for each 
o 

E € T. Then, Q(E) =N(E) vj Q (E) with N(E) the sets of all 
o 

8 

https://doi.org/10.4153/CMB-1964-001-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1964-001-5


O(x), x € E , i s t aken to d e t e r m i n e the d e s i r e d s t r i c t ex t ens ion 
o p e r a t o r o> on a l l of T. In t h i s c a s e , one often c o n s i d e r s 
a) only on a su i t ab le s u b c l a s s K of T for which the o>E have 
p a r t i c u l a r l y i n t e r e s t i n g p r o p e r t i e s . 

II. Le t Q be a mapp ing defined on the c l a s s T such 
tha t , aga in , Çl (E) is a set of f i l t e r s in O(E) for e a c h E e T. 
Then , the r e s t r i c t i o n of Ç} to the s u b c l a s s K of T of a l l 
t h o s e s p a c e s E for which Q ( E ) con ta ins N(E) g ives a s t r i c t 
ex t ens ion o p e r a t o r on K, K be ing the l a r g e s t c l a s s of s p a c e s 
for which th i s i s the c a s e . 

In the fol lowing, the f i r s t t h r e e e x a m p l e s c o m e under I, 
the o t h e r s unde r II , and they wi l l be d e s c r i b e d a c c o r d i n g l y . 

(LC) In any space E , le t W(E) be the f i l t e r c o n s i s t i n g 
of the open s e t s V wi th c o m p a c t c o m p l e m e n t , and put 
Q (E) = { W(E)} if t h i s f i l te r i s p r o p e r and Q (E) = 0 o t h e r -

o o 
w i s e . The r e s u l t i n g ex t ens ion o p e r a t o r a i s tha t of 
Alexandrof f which ex tends any n o n - c o m p a c t space to a c o m p a c t 
one by the addi t ion of one point [2] . Of p a r t i c u l a r i n t e r e s t i s 
the fact tha t if E is loca l ly c o m p a c t Hausdorf f then th i s 
e x t e n s i o n i s c o m p a c t Hausdorff . 

(H) F o r any space E , let Q (E) be the set of a l l non-
o 

c o n v e r g e n t m a x i m a l f i l t e r s M C O(E), and denote by fi the 
e x t e n s i o n o p e r a t o r on T r e s u l t i n g a s in I. H e r e , it is the 
c l a s s H of a l l Hausdorf f s p a c e s on which JJL h a s i n t e r e s t i n g 
p r o p e r t i e s : for E € H, fiE i s H a u s d o r f f - c o m p l e t e i. e. h a s 
no p r o p e r Hausdor f f e x t e n s i o n s , and is c h a r a c t e r i z e d a s 
e s s e n t i a l l y the only p r o j e c t i v e l y m a x i m a l such Hausdorf f 
e x t e n s i o n s of E . The o p e r a t o r u h a s , to our knowledge , 
not been c o n s i d e r e d b e f o r e ; h o w e v e r , it is c l o s e l y r e l a t e d 
to KatetovT s e x t e n s i o n o p e r a t o r K on H [24]: ATE i s the 
s i m p l e ex t ens ion of E wi th the s a m e t r a c e f i l t e r s a s uE. 

(SR) F o r any space E, a f i l t e r F C O(E) wil l be ca l l ed 
s e m i - r e g u l a r iff it h a s a b a s i s cons i s t i ng of r e g u l a r open s e t s . 
Le t Ci (E) now be the set of a l l m a x i m a l n o n - c o n v e r g e n t 

o 
s e m i - r e g u l a r f i l t e r s , and denote by <r the r e s u l t i n g ex t ens ion 
o p e r a t o r . The s u b c l a s s of T on which o* h a s a p a r t i c u l a r l y 
i n t e r e s t i n g effect i s the c l a s s SR of s e m i - r e g u l a r Hausdorf f 
s p a c e s . F o r E € SR', cr E i s a H a u s d o r f f - m i n i m a l e x t e n s i o n , 
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and essential ly the only protectively maximal such extension 
of E. The extension operator tr on SR was introduced by 
Katetov [25] and studied in some detail by Banaschewski [9]. 

(CR) For any two open sets U and V of a space E, 
let U < V mean that there exists a continuous mapping 
f : E -*• [0, 1] which is 0 on U and 1 on the complement of 
V. The relat ion < on O(E) will be called the relat ion of 
completely regular inclusion, and a filter F C O(E) is called 
completely regular (Alexandroff, Bourbaki) iff for each U € F 
there exists a V € F with V < U. It can then be proved that 
the space B(E)C $(E) of all maximal completely regular 
f i l ters is compact Hausdorff. Moreover , B ( E ) 3 N ( E ) iff E 
is a completely regular Hausdorff space. Thus, one has a r r ived 
at an extension operator on this c lass of spaces which extends 
every such space to a compact Hausdorff space, and it turns 
out that for each admis sable E the resulting, extension is (3E, 
the Stone-Cech cornpactification, charac te r ized as the projective 
maximum in the c lass of all compact Hausdorff extensions of E 
(whose existence is a s su red on general grounds). The extension 
operator p was in actual fact introduced by Tychonoff [33], but 
with an al ternative character izat ion for BE. It was discussed 

v 
in grea te r detail for the f i rs t t ime by Stone [31] and Cech [13]. 
However, the present description in t e r m s of its t r ace filter 
was only given in 1939 by Alexandroff [3]. 

(RC) Let a filter F C O(E), E any space, be called 
r im-compact iff it has a bas i s consisting of sets with compact 
boundary, and regular iff for each U € F there exists a V € F 
with r V C U. Then, the space P(E)C_ $(E) of all maximal 
r im-compact regular f i l ters in O(E) is Hausdorff, and 
P ( E ) 3 N ( E ) iff E is Hausdorff and O(E) is generated by 
the open sets with compact boundary, i. e. E is r im-compac t . 
Moreover, in this case P(E) is compact. Thus, one has an 
extension operator p on the c lass of all r im-compac t spaces. 
The extension pE of such E is a compact Hausdorff space 
whose topology is generated by the open sets with boundary in 
E, and pE is the projective maximum of this c lass of exten­
sions. The operator p was introduced by Freudenthal [17] 
for a more res t r i c ted c lass of spaces, and was studied in full 
generality by Morita [26]. 

(Z) On any space E, let a filter F C O(E) be called 
zero-dimensional iff it is generated by open-closed sets . 
Then, the space Z(E) of all such f i l ters in O(E) is a zero-
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dimensional compact Hausdorff space, and can alternatively 
be described as the ultrafilter space of the Boolean lattice of 
all open closed sets in E. Z(E)D N(E) holds iff E is zero-
dimensional Hausdorff, and on the c lass Z of these spaces 
one thus has a compact Hausdorff extension operator £,. For 
E € Z, £E is the projective maximum in the c lass of all zero-
dimensional compact Hausdorff extensions of E. The operator 
t, was apparently f irst studied by Banaschewski [4]. A note­
worthy property of £,E is that it turns out to be the component 
space of pE. 

5. Methods of generating extension opera tors . Some 
of the above examples have led, by abstraction, to cer tain 
methods for the construction of further extension opera tors . 
We first give a few instances of these, and then make some 
general r e m a r k s concerning the overall pattern which prevails 
in this context. 

(L) Let K be a fixed class of spaces, and on each space 
E let W(E) be the filter consisting of all those open V Ç E 
such that its complement CVC U \J . . . \j U with open U 

— 1 n i 
for which r U € K. Then, if one is fortunate in one' s choice 

l 

of K, the one-point extension of E by means of W(E) will 
belong to K if each point in E has an open neighbourhood 
whose closure belongs to K. This is obviously of the type 
discussed in the previous section, with K as the c lass of all 
compact spaces . It works similarly for the c lass of all 
countably compact spaces, arfd for the c lass of all Hausdorff-
complete Hausdorff spaces (Obreanu [27]). With certain 
modifications, this method can also be applied when K is the 
c lass of normal Hausdorff spaces (Cech [13]). 

(B) Another method which follows the general pattern I 
of the previous section, this time an abstraction from the 
examples (H) and (SR), is the following: given any basis B 
for the topology of a space E, let a filter F C O(E) be called 
a B-fil ter iff F n B generates F. Then, by considering the 
set M (B) of all maximal non-convergent B-fi l ters one obtains 
a s t r ic t extension of E. Of course , ra ther little can be said 
about this unless one imposes suitable conditions on B. 
Extensions of this kind have been considered in detail by 
Shanin [29]. 

(R) If one examines Alexandroff1 s description of the 
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V 

Stone-Cech| compactification one can see that the relevant 
proper t ies of the space of maximal completely regular f i l ters 
are the outcome of cer ta in conditions which the relat ion of 
completely regular inclusion sat isf ies . Put in t e r m s of an 
unspecified binary relat ion p on the topology O of a space 
E these conditions a r e , for U, V and W in O: 

R l . If UpV then r U C V 

R2. If UpV and U! C U, V Ç V' then Uf pV1 

R3. If UpV and UpW then U p ( V n W ) 

R4. If UpV and WpV then (U \J W)pV 

R5. If UpV then C r V p C r V 

R6. If UpV then UpW, WpV for suitable W. 

A relation p of this kind will be called a relat ion of 
completely regular inclusion. 

A filter FC O is called a p-fi l ter iff for each U € F 
there exists a V 6 F such that VpU. Then the space Q (p) 
of all maximal p-f i l ters is a compact Hausdorff space, and 
Q(p) 2 N(E) holds iff 

R7. For each U € O, U=UV(VpU) . 

In this case , we shall call p basic . Thus, every basic relation 
of completely regular inclusion on O(E) de te rmines a compact 
Hausdorff extension of E. Clear ly , then there exist such 
relat ions on O(E) iff E is completely regular Hausdorff. 
As an added feature, one can prove that every compact Hausdorff 
extension of such a space E is obtainable in this fashion: if K 
is such an extension of E then the relat ion p = { (U, V) | r UC V*} 

where E__ denotes c losure in K and * has the usual meaning, 

is a basic relation of completely regular inclusion on O(E) 
such that Çl(p) is isomorphic to K as an extension of E. 

These relat ions p were first considered by Freudenthal 
[18] and have recently been studied in great detail by Taylor [32]. 
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(N) Let E be any space. A collection NC O(E) is 
called a normal system in O iff 

NI. N is /^ -c losed 

N2. For each U € N, U = i r u and ICU e N 

N3. If r u C V for U, V € N then there exists a W e N 
with ruC w, r w ç v 

N4. For each U € N, U = 0 V(TVC U, V € N). 

The fi l ters in O which are of interest in relation to a normal 
system N in O are the regular N-f i l ters , i . e . the f i l ters 
F C O for which F r\ N is a basis and U € F implies the 
existence of a V € F with r V Ç U. The space M(N) of all 
maximal regular N-fi l ters is then compact Hausdorff and 
M ( N ) ) N ( E ) iff N generates the topology O(E). Hence, any 
generating normal system in O(E) determines a compact 
Hausdorff extension of E. 

The extensions by means of normal systems generalize 
an ea r l i e r type introduced by Fan and Gottesman [16] who 
assumed a s tronger condition than N3, and who obtained their 
method by generalizing ea r l i e r work of Freudenthal [19]. 
Normal systems were introduced and studied extensively by 
Banaschewski [8]. 

Looking at the last three of these examples, and bearing 
in mind several others which we have not mentioned, one dis­
cerns the following pattern: What is , in actual fact, being 
considered are not extension operators on c lasses of mere 
spaces, but of composite objects which consist of (i) a topological 
space and (ii) some further s t ructure given to the space by the 
addition of a new entity, e. g. a par t icular basis or a relation 
on the topology. Other examples of this kind a re met r ic spaces, 
uniform spaces and proximity spaces where the additional 
s tructure is a me t r i c , a uniformity or a proximity function 
respect ively. In all these cases , the role of the additional 
entity on the space can be considered as that of singling out, 
usually by some extremality condition, a suitable set of f i l ters 
in the lattice of open se ts . This is obvious for all the examples 
mentioned except, perhaps, for the case of the completion of a 
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uniform space; however, if one considers that type of extension 
closely one readily sees that its trace filters are precisely 
those filters in the topology which are minimal Cauchy filters 
with respect to the given uniformity. 

6- Problems concerning extension operators. Many of 
the topics usually studied in connection with particular extension 
operators can be placed under one of the following headings: 

(1) Characterization 

(2) Functorial properties 

(3) Comparison 

(4) Internal properties 

(5) Recovery 

(6) Effect on sub space s 

(7) Behaviour with respect to topological operations. 

To illustrate this classification of problems we shall give a 
number of examples. 

(1) For most of the extensions discussed in Section 4 
we have already mentioned a characterization in terms of 
properties different from the defining conditions which always 
referred to the trace filters. In some cases , further such 
characterizations can be given. For instance: for any locally 
compact Hausdorff space E, aE is the projectively smallest 
compact Hausdorff extension of E (Samuel [28]). pE is that 
compact Hausdorff extension of the completely regular space 
E in which any two closed subsets A, BC E with A < CB 
have disjoint closures (Smirnov [30]). £,E is that zero-
dimensional compact Hausdorff extension of the zero-
dimensional Hausdorff space E in which any two disjoint 
open-closed subsets of E have'disjoint closures. A similar 
characterization in terms of disjoint closures can be given for 
the extension operator p. 

(2) Some extension operators turn out to be the "object 
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par t " of a c ova r ian t functor on a suitable category, and 
naturally it is of interest to know when this occurs . If it does, 
the usual effect of the functor on a mapping in the category is 
to extend it continuously to the extension spaces concerned. 
This is the case in all the following examples, and it is the re ­
fore sufficient to name the category for the extension operator 
concerned: 

a: locally compact Hausdorff spaces and proper 
continuous mappings. 

(3: completely regular Hausdorff spaces and continuous 
mappings, 

p: r im-compact spaces and proper continuous mappings. 

£,: zero-dimensional Hausdorff spaces and continuous 
mappings. 

In each of these cases , the proof is based on the funda­
mental theorem concerning the extension of a continuous 
mapping from a dense subspace of a space into a regular space 
to a continuous mapping of the whole space (Bourbaki [12], 
Ch. I, §6, Thm. 1). 

(3) Given two extension operators co and co on the 

c lasses K. and K respectively, it is natural to ask where 
1 2 

on K C\ K co and co coincide, especially if K DK . 

This problem has been considered in a number of cases . 
Thus (3E = £E holds exactly for those zero-dimensional 
Hausdorff spaces E for which each set {x|f(x) < 0} , f any 
continuous r ea l function on E, is the countable union of open-
closed sets (Heider [22]), and there a re examples for which 
pE ^ £E (Dowker [15]). On the other hand, a necessary and 
sufficient condition that #E = (3E for a locally compact Hausdorff 
space E is that of any two closed A, B G E with A < CB at 
least one be compact (Doss [14]). A similar resul t for locally 
compact Hausdorff E, is that aE» = pE if each compact subset 
of E is contained in some compact subset of E whose comple­
ment is connected (Banaschewski [11]). An extreme situation 
prevai ls for p. and p: there a re no non-compact completely 
regular Hausdorff spaces with pE = pE (Banaschewski [6]). 
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(4) Asa particular example of the study of internal 
properties of the spaces which occur under a specific extension 
operator we mention the following concerning the operator (3 
on the class of completely regular Hausdorff spaces: pE is 
locally connected iff E is locally connected and every continu­
ous real function on E is bounded (i.e. E is pseudo-compact). 
The necessity of this condition was obtained, in a slightly dif­
ferent form, by Banaschewski [5]; the sufficiency is due to 
Henriksen and Isbell [23], who gave several further results 
concerning the points of (3E which have arbitrarily small 
connected neighbourhoods. As another result in the same 
context one has that for connected, locally connected and 
pseudo-compact E, pE is simply connected (in the covering 
space sense) iff E is. This example illustrates a general 
type of problem which comes under the present heading, 
namely the question as to what properties of a space E are 
inherited by coE for a specific applicable extension operator 
w (Wallace [34]). 

(5) The problem referred to is the following: given an 
extension! operator o> on a class of spaces K, find conditions 
for E, E1 € K which will ensure that any homeomorphism f : 
OJE -> CÛE1 induce a homeomorphism E -*• E' . More specifi­
cally, a condition of this kind might be derived from a charac­
terization, for certain E, of E as a sub space of wE which 
amounts to recovering the original space from its larger 
extension. 

The first condition of this type appears to have been 
given by Cech [13] when he proved that for a completely regular 
Hausdorff space E satisfying the First Axiom of Countability, 
E consists of exactly those points of pE whose neighbourhood 
filters have a countable basis. Less restricted conditions for 
the characterization of E within pE (and Hewitt' s extension 
i/E)J were given by Heider [21]. A general approach to this 
topic was developed by Banaschewski [7], the main result being 
as follows: let K be a class of spaces such that Ef K implies 
E - { x} € K for each x € E, and co : K -*• K an extension 
operator which satisfies the two conditions 

(i) if f: E -** E' and g: ET -*• E are dense imbeddings 
such that the composite g o f maps E identically then there 
exists continuous extensions fw : coE -+• oiE' and g^ : C J E ' -*• coE 
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of f and g respect ively; and 

(ii) for each a € E, there exists a dense imbedding 
h : coE - {a } -*• co(E - {a }) which maps E - {a } identically, 

a 

Now, for each E c K, let co E denote the sub space of 
o 

E consisting of all those points a € B for which the identity 
mapping E - { a} -+• E cannot be extended to a homeomorphism 
co(E - { a} ) -* coE. These subspaces co E play a decisive rôle 

o 
with respect to the question of recovery on account of the 
following two resu l t s : first , if f: E -*• E1 is any homeo­
morphism (E, E ' € K) then f(co E) = co E' , and, secondly, 

o o 
co (coE) =co E for each E € K. This means that co E is a 

o o o 
topological invariant of E € K, and that any E € K with 
co E =E is character ized within co E by E = co (coE); in 

o o 
par t icular , any homeomorphism co E -**coE' for E, Ef € K 
with co E = E and co E1 = E' maps E onto E1 . 

o o 

The above conditions on K and co a re satisfied by a 
considerable number of extension operators and their domains, 
and a character izat ion of the condition co E = E in t e rms of 

o 
internal proper t ies of E is not very difficult to obtain in these 
cases [7]. 

(6) If an extension operator co is defined on a class K 
of spaces , and a subspace A of a space E e K also belongs 
to K, one can ask what the relation is between coA and coE. 
An example of the kind of answer one might find is the following 
generalization of a resul t of Ôech [13] concerning (3 and com­
pletely regular spaces: for any subspace AC E, (3A is 
isomorphic to the closure of A in (3E iff every bounded 
continuous rea l function has a bounded continuous extension 
to all of E. 

(7) If a c lass K of spaces is closed under, say, sum­
mation or multiplication of suitable families (E ) T in K, 

a a € I 
and co is an extension operator defined on K, the comparison 
of co (SE ) with 2coE or co(llE ) with TIooE poses a natural 

a a a a 
problem. A fairly obvious resul t along these lines is that 
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W ( 2 E ) and 2w E a r e isomorphic extensions of the sums 
a a 

SE with finitely many summands for a considerable number 

of extension opera to rs ; in fact, this holds for al l cases 
mentioned in Section 4 except for a. For products and the 
operator (3, one has (Glicksberg [20]): p(n X ) is isomorphic 

a 
to TI(3X as extension of n X iff ei ther n , X is finite for 

a a a^a a 
o 

some a or n X is pseudocompact, 
o a 

7. Problems concerning methods of generating extension 
opera tors . Apart from the analogues, as far as they make 
sense, of the problems which a r i se for individual extension 
operators one encounters new types of questions in this context 
which a re specific to it. A few typical examples of these a r e : 

(1) Character izat ion of scope. 

(2) Character izat ion of range. 

(3) Comparison. 

The following r e m a r k s will i l lustrate the topics covered by each 
of these headings. 

(1) More explicitly stated, the question is : For what 
c lasses of spaces is the method under consideration applicable? 
The aim, therefore , is to determine what types of spaces 
possess the additional entity of s t ructure on which the method 
is based. In the case of the relat ions of completely regular 
inclusion, for instance, the scope is simply the c lass of all 
completely regular spaces, as was remarked ea r l i e r . Another 
resul t of the same nature concerns the construction of extensions 
by means of countable normal bases : the spaces which possess 
such bases a re precisely the r im-compact Hausdorff spaces 
satisfying the Second Axiom of Countability (Banaschewski [8]). 

(2) Whether or not the scope of a method of generating 
extension opera tors is known, there is also the other question 
as to what type of extensions the operator thus generated gives 
r i se to. For instance, in the case of the relat ions of completely 
regular inclusion, the result ing extensions a r e precise ly all 
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compact Hausdorff extensions for each completely regular 
Hausdorff space. Similarly, a description of all extensions 
obtainable from countable normal bases can be given: for each 
admissable space E, they are all metr ic compact extensions 
E * 2 E such that dim (E* - E) = 0. 

(3) The comparison problem occurring in the present 
context is somewhat different from that discussed in the 
previous section. It can best be i l lustrated by an example: 
Every compact Hausdorff extension of a completely regular 
Hausdorff space E is obtainable by means of a relation of 
completely regular inclusion on the topology O of E, and 
some such extensions of E a re derived from normal systems 
generating O. Hence, each of these normal systems must 
determine a relation of completely regular inclusion on O, 
indirectly via the associated extension of E, and it should 
therefore be possible to give a direct description of the cor­
respondance normal system -*• relation. Put in the most general 
t e r m s , the question is : Which additional entity of s tructure 
(of the type that generate extensions) of one kind on a space E 
corresponds to which of another kind, whenever that question 
is defined? The reason why this question could be of interest 
in par t icular cases (e .g . the one just mentioned) is that a 
satisfactory answer might lead to a bet ter understanding as 
to which extensions of a given space a re obtainable by a 
specific method, i. e. resul t in a character izat ion of the 
range of that method. A discussion which falls under the 
present heading, but concerned with entities not dealt with 
here , occurs in [10]. 
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