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1. Introduction
1.1 INTRODUCTORY REMARKS. Recently a number of studies (Chen & Saffman [2],

Jones & Toland [7,11], Hogan [5]) have been made of periodic capillary-gravity waves
which form the free surface of an ideal fluid contained in a channel of infinite depth.
However, little work appears to have been done on the corresponding problem when the
depth is finite. The most significant contributions appear to be those of Reeder &
Shinbrot [9], Barakat & Houston [1] and Nayfeh [8] all of whom confined themselves to
Wilton ripples (see §1.3). Yet there are sound reasons why such a study should be made.
For quite apart from the unsolved problem regarding the type of capillary-gravity waves
which may occur at finite depths, the consideration of the finite depth problem may be
regarded as a first step in the study of solitary capillary-gravity waves. In this paper, a
new integral equation for the infinite depth problem, due to J. F. Toland and the author,
is adapted to be of use in tackling the finite depth problem. Using this we obtain results
for the exact equations of motion which answer rigorously the questions of existence and
multiplicity of small amplitude solutions of the periodic capillary-gravity wave problem of
finite depth.

1.2 THE PROBLEM AND THE MAIN RESULTS. We shall be considering steady, two-
dimensional, symmetric waves of period 2n/k which arise as the free surface of an ideal
fluid of mean depth h contained in a channel of infinite extent with a horizontal bottom.
The forces on the fluid are those of gravity g (assumed constant throughout) and surface
tension T. The phase speed of the waves will be denoted by c.

It is obvious that for any values of h, T and c, one possible motion is uniform
horizontal laminar flow with flat free surface. We shall investigate the possibility of the
free surface comprising a uniform horizontal wave train of small amplitude waves.
Specifically we shall determine at what values of the phase speed a branch of waves may
bifurcate from the uniform horizontal flow. Suppose first that T and h are fixed. Then it
is a consequence of the classical theory of bifurcation [3] that a necessary condition for
bifurcation to take place from a phase speed c is that the problem linearized about the
horizontal flow should have a non-trivial solution. Such a value of c is called an
eigenspeed. We shall see that there is a countably infinite set of isolated eigenspeeds {cn}.

T 1
Further, we shall show that if —y^- (i.e. for all sufficiently small depths), then every

gh 3
eigenspeed has one dimensional solution space, whatever the value of A: is. (Such an
eigenspeed will be termed a simple eigenspeed.) The classical theory [3] then yields the
result that a single curve of small amplitude waves bifurcates from the horizontal flow at
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each eigenspeed. Hence in a neighbourhood of any eigenspeed only one possible
non-trivial wave can occur.

T 1
A much more interesting case is that when —x < -. When this is the case, we shall show

ghl 3
that for any eigenspeed cn, there is always a value of the wavenumber k such that the
linearized problem has a two dimensional solution space. (Physically this means that two
harmonics of the wave are travelling with the same phase speed.) Such an eignespeed will
be termed a double eigenspeed. The question of whether bifurcation occurs from a double
eignespeed is not one which is covered by the classical theory but we shall be able to show
that bifurcation does indeed occur and in fact more than one branch of small amplitude
waves bifurcates from the horizontal flow at cn. Hence for certain values of the phase
speed close to cn there may exist more than one capillary-gravity wave. Precisely how
many different waves are possible depends on whether the solution space of the linearized
equation contains the fundamental harmonic or not. Full results are given in §3.

Having determined the solution set near a double eigenspeed we shall then examine
the effect on this set of a perturbation in the surface tension T. It will be found that such a
perturbation causes the double eigenspeed to split into two simple eigenspeeds from each
of which a single solution curve bifurcates. However one of these solution curves may
undergo a further splitting (or secondary bifurcation) corresponding to an increase in the
period of the waves.

Throughout all this analysis the mean depth h appears through its hyperbolic tangent
tanh h. For "small" depths i.e. those for which tanh h ~ h, it is possible to approximate
tanh h by the first few terms in its Taylor series and analytic results are obtainable. The
case tanh h ~ 1 corresponds to infinite depth, while the remaining case, i.e. that when
tanh h is neither close to h nor unity, must be studied by numerical means.

1.3 RELATED WORK. Work on capillary-gravity waves in a channel of finite depth has
been carried out by Barakat & Houston [1], Nayfeh [8] and also, in a paper largely
concerned with solitary waves, Hunter & Vanden-Broeck [6]. The methods of these
authors were largely formal but they identified the eigenspeeds and calculated the first
few terms in the power series expansion of the waves along the bifurcating branches.
However, they only treated the case in which the wave interacts with its first harmonic
(the waves which arise here are called Wilton ripples) and as we shall see this case is not
typical. This paper contains a rigorous analysis of the case in which two adjacent
harmonics of the wave interact with each other. Hence our work generalises that of these
authors and also yields a vindication of the results obtained by their formal approach.
Reeder & Shinbrot [9] analysed the problem with more rigour but again they confined
themselves to Wilton ripples. Capillary-gravity waves on deep water have been treated
formally by Chen & Saffman [2] and rigorously by Jones & Toland [7,11].

The more mathematical aspects of the problem considered here, when a double
eigenvalue splits, under perturbation, into two simple ones have been studied by Shearer
[10] and also by Golubitsky & Schaeffer [4].
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SMALL AMPLITUDE CAPILLARY-GRAVITY WAVES 143

2. The problem

2.1 THE PHYSICAL PROBLEM. We shall be considering steady, two-dimensional, peri-
odic and symmetric waves which form the free surface of an ideal fluid which is contained
in a horizontal channel of finite depth and infinite horizontal extent. We shall denote the

wave number by k, so that the wavelength is — . (The reason for defining the wavelength

in terms of the wave number rather than vice-versa will become clear shortly.) The forces
on the fluid are those of gravity g (assumed constant throughout) and surface tension T.

This situation can be formulated mathematically as a free boundary problem as follows.
One period of the flow may be identified with the region 5 in the complex plane

S = {x + iy | -Ji/k<x<n/k, 0<y<H{x)},

where H(x) is a smooth even function of period 2n/k. (Of course H(x) is not known
a-priori). The curve

II = {x + iH{x) | -Jt/k<x < it Ik)

is called the free surface. Since the motion is irrotational, we can define the complex
potential in 5, w{z) = (f>(z) + iip(z) which is related to the velocity (u(z), v(z)), z e S by

^ w • —

Then the phase speed c is defined by

c = 5
Since the free surface n and the line y = 0 are both streamlines, \p is constant along them.
It is no loss of generality to assume

V(z) = 0, zeU. (2.3)

and the mean depth h is defined as

h = - c "V(x ) . (2.4)

Because of symmetry we have

O, (2.5)

and finally it follows from Bernoulli's theorem applied along n that

\ |Vt/;(* + iH(x))\2 + gH(x) - T(1 + ^ ) 2 ) 3 f l isconst., *6 [—,£] . (2-6)
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Then by the existence of a solution to the periodic capillary-gravity wave problem with
mean depth h, phase speed c and surface tension T, it is meant that there exist a number
k and functions H(x) and w(z) which satisfy conditions (2.1) to (2.6).

2.2 THE INTEGRAL EQUATION. The free boundary value problem (2.1) to (2.6) will be
studied by transforming it into an integral equation for 8, the angle between the free
surface of the wave and the horizontal. First we shall recall a few facts concerning Fourier
series. Let h and k be any positive numbers. Then if 8 is a continuously differentiate,

2K
odd function of period — , 8 may be expanded in a Fourier series as

AC

00

8{s) ~^j A, sin kls
i=i

where {A,} is the sequence of Fourier coefficients. Then we shall define x(s) to be the
function whose Fourier series is

oo

Ao + 2 Aicotn klh cos kls, (2.7)

where Ao satisfies

r/k /A A, cos kls\ 2JT
e \ exP(2, -urn. )ds=1~-

J-n/k \/=i sinh klh I k
It may be proved using Privalov's theorem [12], that (2.7) is the Fourier series of a Holder
continuous function.

We can now prove the following theorem which provides a precise link between
solutions of a certain equation and the existence of capillary-gravity waves.

THEOREM 1. Suppose h and k are positive numbers, and 8 is a continuously
differentiate, real-valued, odd function with period 2n/k which satisfies \8(s)\<

— for all s. Suppose in addition there are positive numbers T and c for which 8 and x

{where x is defined as above) satisfy the equation

O
rn/k \ — 11 rs rnlk

exp T(0 dt) (c2 sinh(r(jc) - x{t)) dtdx
o / V Jo Jo

f exp{x(x) + T( v) + r(O}sin 8{t) dtdy dx). (W)
f

o Jy

Then there exists a solution to the periodic capillary-gravity wave problem of period 2n/k,
mean depth h, phase speed c and surface tension T.
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SMALL AMPLITUDE CAPILLARY-GRAVITY WAVES 145

Moreover there is a parameterisation of the free surface j (x(s), y(s)):s e

- - , - such that —8(s) is the angle between the wave profile and the horizontal at the

point (x(s), y(s)).

( -it it 1
Proof. Let R = \w = s + iu: — <s <-, -h<u<0 . Now define d(w) to be the

function such that d(s + iO) = 6(s), 6(w) = 0 on the rest of dR and 6(w) is harmonic in
R. Now let f(w) be the unique function such that f(w) — i6(w) is analytic in R and which
satisfies

I exp x{s - ih) ds = - ^ . (2.8)

Then it is clear that

h, \ V A sinh kl(u + h) .

and an elementary calculation using the Cauchy-Riemann equations yields that

, x ^, coshW(M + /i)
f(w) = A0+^A, . v 'cos Ids (2.10)

/ " sinh klh

where Ao is chosen so that (2.8) is satisfied. Then f (s + iO) is the function whose Fourier
oo

series is Ao + E A, coth klh cos kls and so by (2.7) f(s + iO) = T(S).

Now define a function m on R by putting

m(>v) = f exp(f(C) - ig(£)) d£. (2.11)

Now since \d\<— on dR it follows from the maximum principle that \8\ <— in R. This

fact enables us to prove m is injective. For if there were distinct wr and w2 such that
m(w,) = m(w2), this would mean

L
which contradicts the fact that |0| < —. In addition m'(w)i=0 in R, so m is a conformal

mapping from R onto some region 5 of the complex z-plane.
It further follows from (2.9) and (2.10) that 6(w) = -6(-w) and f(w) = f(-w). It is

then straightforward to show that 5 is bounded by the lines x = ±—, y = 0 and the curve
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T = \x + iH(x):x e —-, — \\ where H is a smooth, even function of period —.

Therefore

x + iH(x) = m(s + iO), s e [-~, j] (2.12)

and F is given parametrically by

(x(s), y(s)) = ( f e*«> sin 0(t) dt, eA» f exp( i AlCO^"^. + h)) dt - f e*> cos 6{t) dt).
\Jo J-h v=i sinh kin I Jo )

(2.13)

Now define a complex potential on S by putting

w(z) = <p{z) + iv»(z) = cm" 1 ^) . (2.14)

We shall then show that all the conditions defining a flow are satisfied. First note that

-— = u(z)-iv(z)

= cexp(-f(m-1(z)) + i0(m-1(z)))) (2.15)

and hence

u\z) + v\z) = |Vt/;(z)|2 = c2 exp(-2f (m-^z))). (2.16)

Thus at any point z e 5, the speed of the flow is c exp(-f(m~1(z))) and the angle of the
direction of the flow to the horizontal is — 6(m~1(z)). It is then a straightforward exercise
using (2.14) and the definition of the mapping m to show that conditions (2.2) to (2.5) are
satisfied. It remains to verify (2.6). If we differentiate (W) and rearrange it we can obtain
that

c
 e-2r(s)_g f e«) Sin e(t)dt+Te-t{s)d'(s) = const. s e \ - - , j \ (2.17)
2 Jo L k KJ

Now it follows from (2.12) that H'(x) = - t an 6(s) and a calculation yields that

H"(x) = - e ~ l W cos"3 6(s)6'{s).

Now on substituting (2.12) and (2.16) into (2.6) there results

c2 fs

-e-2r(s)_g e<o s i n 0(,) dt + Te-^6'(s)
2 Jo

which is constant by (2.17).
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SMALL AMPLITUDE CAPILLARY-GRAVITY WAVES 147

2.3 SYMMETRIES. (W) will be written in abbreviated form as

T6 = F(c, 6).

(We suppress the dependence on g since this is regarded as an absolute constant.) It is
important to realise that mathematically distinct solutions 6 of (W) need not correspond
to physically distinct capillary-gravity waves. The following results, concerning the
invariance of F(c, •) enable us to identify different solutions 6 with the same
capillary-gravity wave.

First we need to define some function spaces. Let C1 be the Banach space of
real-valued continuously differentiable functions on IR. For N eN, define

ZN = {u e C1: v(-s) = -v(s) = -v(s + -^j, sefij,

clearly ZN c C1. If v e ZN, define TN:ZN^* ZN by

Then is has been proved [11] that

F(-,ZN)cZN, VNeN

and also that

TNF(c,e) = F(c,TNd), 8eZN.

In general 6 ̂  TN6, but nevertheless it is a consequence of the symmetries in the problem
that 6 and TN0 correspond to the same capillary-gravity wave, the only difference being a
shift of origin in the parameterisation (2.13). For this reason the different families of
solutions of (W) which are obtained in what follows do not all correspond to distinct
families of capillary-gravity waves.

2.4 BIFURCATION THEORY. It is clear that for any fixed values of T and h there is a line
of solutions of (W)

rT = {(c,0)\ceU)

corresponding to uniform horizontal laminar flow with flat free surface. These will be
termed the trivial solutions. What we shall attempt to do is to discover for which
solutions (c, 0) a continuous curve of non-trivial solutions branches off from Tr. Such
trivial solutions are called bifurcation points. The definition is

DEFINITION. Suppose that for fixed T there is a curve of solutions

of (W) and that d(t) = 0 if and only if t = 0. Then (c(0), 0) is called a primary bifurcation
point and % a primary bifurcation branch or curve.
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REMARK. A secondary bifurcation point will be defined in §3. When there is no risk
of confusion a primary bifurcation point will be referred to simply as a bifurcation point.
The first step in finding the bifurcation points is to write F(c, 6) as

c2Lx6 + gL2d + H{c, 6).

Here Lx and L2 are linear functions of 6 given by

LX6 = I TX(X) dx
Jo

/•S rnlk rxK [S rJl/k rx

L26 = - d(w)dwdydx
Jt J0 J0 iy

where
oo

ri(x)= 2 At coth klh cos klx,

and
H(c,0) = O(||0||2) as || 011-0.

Then it follows from the classical theory of bifurcation [3] that a necessary condition for
(c0, 0) to be a bifurcation point is that there should exist a non-zero 60 such that

Such values of 90 and c0 will be termed eigenfunctions and eigenspeeds respectively. This
is not in general a sufficient condition for bifurcation to occur. However it again follows
from the classical theory that if the solution space of (J£) corresponding to c0 is one
dimensional (such a c0 will be termed a simple eigenspeed) then (c0, 0) is indeed a
bifurcation point and a single curve of solutions bifurcates from TT there. It is an
elementary calculation to verify that there is a countably infinite set of positive
eigenspeeds {cn}, given by

c2
n = (gn~lk~1 + Tnk)t3inhnkh, neN,

and that the eigenfunction corresponding to cn is sin nks. We shall be concerned with the
possibility that for some N,cN = cN+1. Then there are two linearly independent
eigenfunctions corresponding to cN, namely sin Nks and sin(N + l)ks. The classical theory
of bifurcation does not apply and to determine whether or not bifurcation does occur we
must employ the method of Lyapunov-Schmidt, described in §3. (We could study the
more general case in which for some M, N, cM = cN but the algebra would seem too
complicated to make this worthwhile. The case considered here is physically important
because it means that the double eigenspeed cn is the smallest eigenspeed.) First we shall
see under what conditions the set {cn} can contain a double eigenspeed.

To begin with, observe that {c2,} may be described as the set of values of the function

f(x) = (gx"1*:""1 + Txk)tanhxkh
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1 2 3 K
T 1

Figure 1. Position of the squares of the eigenspeeds when —ja T •
gh 3

T 1
at positive integer points. Now, it is an easy exercise to verify that if — ; > - ,

gh 3
then for any vaue of k,f(x) is, for x>0, a monotonic increasing function which is
unbounded above, (see Fig. 1). Hence for all n > l , cn+{>cn, or in other words if
T 1

—2> - then for all wavenumbers k, the set {cn} consists entirely of simple eigenvalues,
gh 3

T 1
Now s u p p o s e - j < - . Then/'(0) = 0,/"(0) < 0 and/(*)-»°° asx->°°. Therefore, for

gh 3
x>0, the graph of/has a single stationary point which must be a local minimum, (see
Fig. 2). We shall show that for any N € N it is always possible to choose a value of the
wavenumber k such that cN is a double eigenspeed. To see this, just observe that it is
required to find a real value of k such that cN = cN+l i.e. such that

)~lk~l + T(N + l)k)tanh(N + l)kh,^k-1 + TNk)tanh Nkh = (g(N + I)"1*:

or, on rearranging,

T N tanh(W + l)kh - (N + l)tanh Nkh
gh2 N(N + \)k2h2{N tanh Nkh -(N + l)tanh(W + \)kh)

(2.18)

Now, lim F(k) = 3, lim F(k) = 0, so there does indeed exist a real k such that (2.18) is

T 1
satisfied. Put another way, if - r ? < - , for any given N, there is always a wavenumber

gh 3
k e R such that cN is a double eigenspeed. This situation is depicted in Fig. 2.
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N+l

Figure 2. Position of the squares of the eignespeeds when -75 < - .
gn 3

REMARK. The conditions presented here which ensure that all eigenspeeds of the
linearized problem are simple, are not directly comparable with those given on p. 402 of
[11]. This is because [11] is exclusively concerned with waves of wavelength 2n (i.e. k — 1)
whereas this paper treats the more general case.

A detailed analysis of the bounds for simple eigenvalues will appear elsewhere.
The rest of the paper will be concerned with determining the solution set of (°W) in a

neighbourhood of the double eigenspeed cN. First we shall make some simplifications and
fix some notation. In particular we shall henceforth take k = \. This will simplify the
algebra considerably and may be done without loss of generality since it just means that
the wavenumber k is taken to be the unit of length. Also we shall write, for any n e M,
th(n) and cth(n) for tanh nh and cothn/i respectively. Now, let

g(Nth(N l)th(N))
" N(N + l)(Nth(N)-(N + l)th(N + l))

so that the corresponding double eigenspeed is

2 g(2N+l)th(N))th(N + l)

N(N- l)th(N + 1) - Nth(N))'

(2.19)

(2.20)

with eigenfunctions sin Ns and sin(7V + l)s. We therefore wish to determine the solution
set of

TO = F{c, 6) (W)
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when T and c are close to TN and cN and 6 is close to zero. What we shall actually do is fix
T at TN and study the solution set of (W) in a neighbourhood of (cN, 0). Then we shall
investigate the effect on this solution set of pertrubing T from TN.

2.5 THE REDUCTION OF (W). In this section we shall describe the method of
Lyapunov-Schmidt, whereby the infinite dimensional problem (W) may be reduced to
one of finite dimensions.

Define

§ = sp{sin Ns, sin(7V + l)s},

so that £ is the solution space of

TN6 = c2
NLx 6 + gL2d, and set

:\ u(s)sinnsds = O,ne{N,

so that Zj = I © 9. If 0 e Zu then

d = x sin Ns + y sin(N + l)s +f

where / e & and (x, y) e U2 (sometimes we shall use this to identify IR2 with f). Also, let
P and Q be the projections of Zx onto f and & respectively. Then if we introduce new
variables a and p by writing

c2 = c%+ag, T = TN + Pg.

(W) then takes the form

(TN + fig)(x sin Ns+y sin(7V + l)s + / ) = F(cN + ag, x sin Ns+y sin(N + l)s + / ) (2.21)

which is equivalent to the two equations

(TN + 0g)(x sin Ns+y sin(N + l » = PF(cN + ag, x sin Ns+y sin(N + l)s + / ) (2.21a)

(TN + Pg)f = QF(cN + ag, x sin Ns+y sin(N + l)s + / ) . (2.216)

It now follows from the Implicit Function Theorem that there is a neighbourhood U of
the origin in U4 and a function z: U—* F such that / = z(a, p, x,y) is the unique solution
of (2.21b) for (or, p, x, y) e U. If we substitute / = z(a, P, x, y) in (2.21a) we obtain

Pg(x sin Ns+y sin(N + l)s) = PF(cN + ag, x sin Ns+y sin(N + l)s + z{a, P, x, y))

- Tn(x sin Ns+y sin(N + \)s). (S8)

This is known as the bifurcation equation. It is a pair of polynomial equations in the four
variables (a, p, x, y) and will be written in the abbreviated form

px=fl(a,p,x,y)
Py=f2{a,p,x,y). (M)
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(38) is equivalent to the infinite dimensional problem (W) in the sense that to every
solution (a, /3, x, y) of (38) there coresponds a solution (a, P, x sin Ns +y sin(N + l)s +
z(a, ft, x, y)) of (W). The polynomials/i and/2 may, in principle, be computed up to any
degree of accuracy but due to the rapidly increasing labour involved, only the terms up to
the third degree are calculated. We do not give the details of these calculations but they
are along the same lines as those to be found in [11] for the case of infinite depth. What
we wish to do now is provide a description of the solution set of (38) for (a, /3, x, y) in a
neighbourhood of the origin in R4. First we shall fix /3 at zero. Then the only possible
bifurcation point in a neighbourhood of the origin is at a = 0, and we shall determine the
number and nature of the solution curves which bifurcation from this point. Next we shall
perturb /3 from zero. Now there are two possible bifurcation points near the origin: at
a = Nf3th(N) and a = (N + l)fith(N + 1). Since the linearized problem has one dimen-
sional solution space at each of these points it follows from the classical theory that a
single curve of solutions does indeed bifurcate from each of these points. However we
shall describe the nature of these curves and also determine whether secondary
bifurcation occurs along them. The precise form of fx and f2 will be given in due course,
but first we shall give some properties of the bifurcation equations which arise from the
symmetry observations of §2.3. Recall that when N> 1, ZN is a proper subspace of Z1;

F( •, ZN)c,ZN, and further that when a = Nfith(N), the solution space of (£6) is one
dimensional and spanned by sin Ns e ZN. Then it is a consequence of the invariance
results of §2.3 that z(a, /3, x, 0) e ZN and hence it follows from the definition of f2 and the
fact that sin(N + l)s is orthogonal (in the L2-sense) to every element of ZN that

f2(a,p,x,0) = 0,N>l. (2.22)

Similarly

Mat,P,0,y) = 0, NeN. (2.23)

However, if N = 1, the argument used to prove (2.22) breaks down. Indeed (2.22) is false
in the case N = 1 and the bifurcation diagrams are different in the cases N > 1 and N = 1.

3. The main results

In this section we describe the solution set of C^) in a neighbourhood of the origin and
identify the primary and secondary bifurcation points. The definition of the latter is

DEFINITION. Suppose that % is a primary solution curve of (W) which bifurcates from
(a*,0) and that 3) = {(a(s), 6(s)):s e(-8, 6)} is another solution curve such that
^ ( 1 3 = {(a, 6)} a ^\{(ar*, 0)}. Then (dr, 6) is said to be a secondary bifurcation point
and 3) is said to be a secondary bifurcation curve.

From now on the cases N = 1, N > 1 will be treated separately.

3.1 WILTON RIPPLES^—THE CASE N = 1. The bifurcation equations are

Px = axcth{\)-^cth{\) + u(a, j8, x, y) (3.1a)
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Py=^ cth(2) - ^ cth(2) + v(a, P, x, y), (3. \b)

where |(M, U)| = O{\a, p, x, y)|3) as (a, p, x, y)-»0, and, by (2.22)

u(a, P, x, y) = xui(a, p, x, y).

A detailed analysis of such equations can be found in [4,10]. The precise details are
rather technical and involve various detailed scaling arguments but the conclusion is that
for a qualitative description of the solution set of (3.1) in a neighbourhood of the origin
in (R4 it is sufficient to study the truncated equations I.e.

Px = axcth(\) - -j- cth(\) (3.2a)

and

Py = — cth(2) - — cth(2). (3.2b)

First note that one solution of (3.2) is a = 2pth(2), x = 0, which corresponds to the
primary bifurcation curve %\ bifurcating from Tp at (2pth(2), 0). Further, it follows from
the symmetry results of §2.3 that ^ c [R x Z2 and hence the solutions on ^p correspond
physically to water-waves of period n. As it stands (3.2) gives no indication of the
direction of bifurcation from Tp. However, it is possible to carry out a more detailed
calculation to determine the cubic terms in (3.1). From these there results that for some e
(independent of P)

% = {(a*(y, P), y sin 2s + O(y2)): \y\ < e} (3.3)

where

<**(y> P) =

• l( v, P)\). (3.4)

Hence %\ is a subcritical pitchfork which is divided into two branches by the bifurcation
point (2pth(2), 0). These branches will be denoted ±c€2p according as ±y > 0 and it follows
from the symmetry observations of §2.3 that both branches correspond to the same set of
capillary-gravity waves.

Since ^\ accounts for all non-trivial small solutions of (3.2) for which x = 0, it now
suffices to consider equations (3.2a) divided by x and (3.2b). On rearranging there results
that these are equivalent to

(3.5a)

When P > 0, these represent a primary curve %\ which bifurcates subcritically from Tp
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6 < 0
6 > 0

(b)
Figure 3. In both these figures a represents the perturbation of the phase speed from c, and /3 the perturbation
of the surface tension from Tv (a). Small solutions (a, x, y) of the bifurcation equations (3.1) for fi positive,
zero and negative. represents solutions along which x = 0, and • • • • represent solutions along which
neither x nor y is zero. (b). Small solutions (or, 0) of the capillary-gravity wave problem for /} positive, zero and
negative. represents waves with minimal period n, and • • • • represents waves with minimal period

2

at ar = p7/i(l), and a secondary curve 2dp which bifurcates supercritically from +c€z
p at a

point at which (or, y) ~ (2p7/i(2), ip(2th(2) - th(l))).
When /3 < 0, the situation is the same except that %\ bifurcates supercritically and 3>p

bifurcates subcritically from ~%\. The water-waves corresponding to the solutions on
these curves all have minimal period 2TC and those on the two branches of the same
bifurcation curve correspond physically to the same set of water-waves: however the
solutions on the different curves ^ and 2)p are distinct; they cannot be brought into
coincidence by a change of origin.

When p" = 0, (3.5) represents two straight lines which intersect at the origin.
However, as is suggested by the analysis when /3 =£ 0, these are better interpreted as two
degenerate pitchfork bifurcations, one super- and one sub-critical which bifurcate from To

at a = 0. To every non-zero value of a, there are then two solutions 8 of (W)
corresponding to the solutions (±JC, y) of (3.5) and these both correspond to the same
water-wave and have minimal period In. (Of course the addition solutions lying on the
subcritical curve %\ are still present.)

The conclusions for all values of /3 are pictured in Fig. 3. Fig. 3(a) depicts the small
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solutions of the bifurcation equations (3.1) while Fig. 3(b) interprets these in the context
of solutions of the capillary-gravity wave problem.

3.2 THE CASE N > 1. A long and involved calculation yields that in this case the
bifurcation equations are

fix = ̂  cth(N) + Ax3 + Cxy2 + p(a, P,x,y) (3.6a)

Py = j ^ cth(N + 1) + By3 + Dx2y + q(a, 0, x, y). (3.66)

The coefficients A, B, C, D are rather complicated functions of N and h and are given in
the appendix. The higher order terms satisfy

where

\Pi\ + \qi\ = O(\(a,p,x,y)\3) as (a,p,x,y)^0.

For a qualitative analysis of the solutions of (3.6) near the origin, it is sufficient, just
as when N = l, to study the truncated equations, i.e. (3.6a) and (3.6b) with p and q set to
zero. First note that one solution of these equations is

a = Nth(N)(P - Ax2), y = 0. (3.7)

This corresponds to the primary curve ^ which bifurcates from Fp at a = Npth(N). (The
direction of the bifurcation is dependent on the sign of A, which numerical calculations
indicate to be positive. This would mean that ^ bifurcatues subcritically.) It follows
from the invariance results of §2.3 that ^ s IR x ZN. Another solution of the truncated
equations is

By2), x = 0, (3.8)

which corresponds to the primary curve ^^ + 1 c B x ZN+1 which bifurcates from Tp at
a = (N + l)Pth(N + 1). (Again, numerical evidence suggests B is positive which means
<ti%+1 is a subcritical bifurcation.) It further follows [10] that the solutions on ^ U <€p+1

are the only non-trivial solutions of (W) in a neighbourhood of the origin which belong to
R x (ZN U ZN+i). In future therefore it suffices to consider equations (3.6) divided by x
and v respectively.

Any secondary bifurcation points on ^ U ^p+1 correspond to solutions of (3.6) for
which xy = 0. A straightforward calculation yields that the only possible such solutions are

PN(N + 1)(B - C)th(N)th(N + 1)

l)Bth(N + I) - NCth(N)

2_ p((N + l)th(N+l)-Nth(N))
~ {{N + l)Bth(N + 1) - NCth(N))
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and
pN(N + 1)(£> - A)th(N)th(N

y = 0, a =
(N + l)Dth(N + 1) - NAth(N)

l)Dth{N + 1) - NAth(N))'

Now divide the numerator and denominator in the expressions for x2 and y2 in (3.9) by
N(N + 1). Then the numerator of both resulting expressions becomes

P(N~lth(N + 1) - (N + lyU

which has the same sign as /3.
Therefore the existence of solutions of (3.6) which have xy = 0 is dependent on the

signs of

(3.10)

and

— th(N + l)-——-th(N). (3.11)

To determine the signs of these quantities it is necessary to use both analytic and
numerical techniques. If we first fix N and let h—> °° the limiting value of (3.10) is

-(UN4 + 55N3 + 39N2 + N + 2)
8N2(N + 1)\N - l)(N + 2)

which is negative for all N > 1, while that of (3.11) is
r + 10

8N2(N + l)2

which is positive for all N > 1. (It is reassuring to note that these expressions are the same
as those obtained in [11] which deal with the case of infinite depth.)

Calculations were carried out on a computer to determine the values of (3.10) and
(3.11) for other values of N and h. (3.10) and (3.11) were evaluated for integral values of
N between 2 and 100 and for tanh/i between 0 1 and 1 at intervals of 0-1. It was found
that the signs of (3.10) and (3.11) never changed and indeed for fixed N, (3.10) is a
monotonic increasing function of h while (3.11) is a monotonic decreasing function of h.

Finally, for "small" values of Nh i.e. those for which tanh Nh ~ Nh, it is possible to
approximate (3.10) and (3.11) by replacing tanh Nh by the first few terms in its Taylor
series. If this is done (see appendix) it is seen that the signs of (3.10) and (3.11) are still
negative and positive respectively.

The conclusion is therefore that for /3 > 0 there are two secondary bifurcation points
on <6lp\ one on each of ±(€p and none on ^^+ 1. For /3 <0, the situation is reversed: there
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is one bifurcation point on each of ±c€p+1 and none on <€%. The two secondary curves are
pitchforks since they are given approximately by (3.9). Each is divided into two subsets by
the secondary bifurcation point and it is a consequence of the symmetry considerations of
§2.3 that these four solution curves correspond to only two distinct families of
capillary-gravity waves which have minimal period 2n.

0 = 0

In this case the only possible bifurcation point in a neighbourhood of the origin is at
a = 0 and indeed there are two curves <€% and c€^+x bifurcating from this point. To see if
there are any others we must seek solutions of (3.6) with /? = 0. The truncated form of
these equations is easily seen to be equivalent to

a /NCth(N) - {N + l)Bth(N + 1)\
N(N + l)th(N)th(N + \){AB - CD) \(N + l)Dth(N + 1) - NAth(N))

/A:2\

\y2) ~

Figure 4. In both these figures a represents the perturbation of the phase speed from cN and p the perturbation
of the surface tension from TN, N>\. (a). Small solutions (a-, x, y) of the bifurcation equations (3.6) for 0
positive, zero and negative. represents solutions along which x = 0, represents solutions along
which y = 0, • • • • represents solutions along which neither x nor y is zero.(b). Small solutions (a, d) of the
capillary-gravity wave problem for /3 positive, zero and negative. represents solutions with minimial period

-, represents solutions with minimal period —, • • • • represents solutions with minimal period 2n.
N+V
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and the existence of solutions is, as before, dependent on the signs of (3.10) and (3.11).
Thus, by the same calculations as when /J =£ 0, there results that two further primary
curves bifurcate from a = 0. These curves are divided by the origin into four subsets and
it again follows from symmetry considerations that they correspond to only two distinct
families of capillary-gravity waves all of which have minimal period 2n. (Observe that the
sign of (AB - CD) does not influence the existence of solution curves, only their
direction. We have not attempted to determine this sign, but as h—>°° this quantity tends
to the ratio of two polynomials in N which is easily seen to be negative. Hence for
sufficiently large depths these bifurcations are subcritical.)

These conclusions are depicted in Fig. 4. Fig. 4(a) shows the small solutions of the
bifurcation equations (3.6) while Fig. 4(b) interprets these in the context of capillary-
gravity waves.

4. Conclusion

Broadly speaking the bifurcation diagrams are similar to those obtained in [11] for the
case of infinite depth, so it appears that the introduction of the depth as an extra
parameter does not affect this problem to any significant extent. It would, however, be
possible to obtain triple eigenspeeds for certain critical values of the depth h and it is
hoped to present an analysis of this case in due course.

Appendix

We here present the values of A, B, C and D, the coefficients in the bifurcation equations
(3.6). Some preliminary definitions are required. Set

P(N) = (3N + 1)(N - l)th(N + l)th(2N) - 3N(N + l)th(N)th(2N)

+ 2(2N + l)th(N)th(N + l),

Q(N) = 3N(N + l)th(N + l)th2(N + 1) - (3N + 2)(N + 2)th(N)th2(N + 1)

+ 2(2N+l)th(N)th(N + l),

R(N) = (N + l)th(N + 1) - Nth(N),

S(N) = N2(3N + 2)th(N + l)th(2N + 1) - (N + 1)2(3JV + l)th(N)th(2N + 1)

+ (2N + l)2th(N)th(N + 1),

T(N) = N\N + 2)th(N + l)tfi(l) - (N2 - 1)(N + l)th(N)th(l) - (2N + l)th(N)th(N + 1),

U(N) = (3N + 1)(N + l)th(N) + N(3N + 2)th(N + 1),

V(N) = N(N + 2)th(N + 1) + (1 - N2)th(N).
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Then

2 l)th(2N)R(N)\
)

A - l Un - AA~8N2th2(N)V{i m(N)V{i m^)>+ (N + 1)R(N) P(N)

9Nth2(N + 1)R(N)\

Q(N) ) '

W2th2(N +1

2N2th(N + 1) - (27V2 + 8N + 3)th(N) /V(3/V + 2)th(2N + 1)U(N)R(N)
+ (2/V + l)th(N) (TV + 1)(2/V + l)th(N)S(N)

N(N + 2)th(l)V(N)R(N)\
+ (N + l)th(N)T(N) ) '

~4(N+l)2th2(N)Y~th ^N'+ NR(N)

(2/V2 - 4/V - 3)th(N +1) - 2(/V + 1)2^(7V)
+ (2/V + l)th(N + 1)

(N + 1)(3/V + l)th(2N + 1)U(N)R(N) (N2 + 4/V + l)th(l)V(N)R(N)\
N(2N + l)th(N

When Nh is small e.g. <0-l, tanh Nh may be approximated by the first few terms in
I T 3 L 3 *y AJ5L 5

its Taylor expansion i.e. tanh Nh ~ Nh 1 ——, and the signs of (3.10) and (3.11)

may be determined analytically. This is quite a complicated calculation since the first
non-vanishing term in P{N), Q(N), S(N) and T(N) is that in h6. Again we need a
preliminary definition to describe these results. Let

F(N) = 18N7 + 177N6 + 680N5 + 1334N4 + 1416JV3 + 829N2 + 254N + 32.

Then there results that for small Mi,

C 135

K2(3N* + UN3 + 23N2 + 16N + 4)(187V3 + 27N2 + 13N + 2) (N
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which is negative, and

/ 18/V5 + 57/V4 - 41/V3 - 23/V2 + 7/V + 6 (3/V + 1) >
X 1)(97V2 - 6/V - 1)(/V - 1)(/V + 2) + 9/V2 + 9/V + 2)

which is positive.
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