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BOREL LINE GRAPHS

JAMES ANDERSON AND ANTON BERNSHTEYN

Abstract. We characterize Borel line graphs in terms of 10 forbidden induced subgraphs, namely the
nine finite graphs from the classical result of Beineke together with a 10th infinite graph associated with the
equivalence relation E0 on the Cantor space. As a corollary, we prove a partial converse to the Feldman–
Moore theorem, which allows us to characterize all locally countable Borel line graphs in terms of their
Borel chromatic numbers.

§1. Introduction. For a set X and k ∈ N, we use [X ]k to denote the set of all
k-element subsets of X. When A ⊆ X , we let Ac := X \ A be the complement of A.
All graphs in this paper are simple, i.e., a graph G consists of a vertex set V (G)
and an edge set E(G) ⊆ [V (G)]2. When there is no chance of confusion, we use the
standard graph-theoretic convention and write xy instead of {x, y} to indicate an
edge joining vertices x and y. The line graph L(G) of a graph G is defined by

V (L(G)) := E(G),

E(L(G)) := {{e, e′} ∈ [E(G)]2 : e ∩ e′ �= ∅}.
We say that a graph L is a line graph if it is isomorphic to the line graph of some
graph G. Beineke famously characterized all line graphs by a list of nine forbidden
induced subgraphs:

Theorem 1.1 (Beineke [1]). A graph is a line graph if and only if it does not have
an induced subgraph isomorphic to any of the nine graphs in Figure 1.

We are interested in extending Beineke’s result to the setting of Borel graphs, that
is, graphs G such that V (G) is a standard Borel space and E(G) is a Borel subset
of [V (G)]2. (We refer the reader unfamiliar with such terminology to Kechris’s
book on descriptive set theory [8]; we also review some necessary descriptive set-
theoretic background in Section 2.) The systematic study of Borel graphs and
their combinatorics was initiated in the landmark 1999 paper by Kechris, Solecki,
and Todorcevic [12], who applied descriptive set theory to the study of graph
colorings. This launched the development of the highly fruitful field of descriptive
combinatorics, which has connections to many areas of mathematics, including
group theory, measure theory, ergodic theory, theoretical computer science, and
more. For an overview of the field, see the 2020 survey by Kechris and Marks [10]
and the 2021 survey by Pikhurko [16].
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2 JAMES ANDERSON AND ANTON BERNSHTEYN

Figure 1. The nine graphs of Beineke.

Borel graphs G and H are Borel isomorphic, in symbols G ∼=B H , if there exists
a Borel isomorphism from G to H (i.e., a graph isomorphism f : V (G) → V (H )
that is a Borel function). Note that the line graph L(G) of a Borel graph G is itself a
Borel graph. We say that a Borel graph L is a Borel line graph if there exists a Borel
graph G such that L ∼=B L(G). Clearly, if a graph is a Borel line graph, then it is
both a Borel graph and a line graph. Conversely, we ask the following:

Given a Borel graph that is a line graph, when is it a Borel line graph?

To demonstrate that this question is nontrivial, let us give an example of a Borel
graph that is a line graph but not a Borel line graph. Recall that the Cantor space is
the set C := {0, 1}N of countably infinite binary strings endowed with the product
topology, where the topology on {0, 1} is discrete. The equivalence relation E0 is
defined on C by relating two elements if they are equal after some index; that is,
given α, � ∈ C, we have

α E0 � ⇐⇒ ∃m ∈ N, ∀n � m (α(n) = �(n)).

This is a Borel equivalence relation1 with countable classes (for a survey on such
equivalence relations, see the recent manuscript by Kechris [9]). From E0, we define
a graph K0 as follows:

V (K0) := C, E(K0) := {{α, �} ∈ [C]2 : α E0 �}.
In other words, K0 is obtained by making every E0-equivalence class into a clique.
Then K0 is a Borel graph, and, being a collection of vertex-disjoint cliques, it is a
line graph (a clique is isomorphic to the line graph of a star). However, K0 is not a
Borel line graph. This essentially boils down to the fact that the relation E0 is not
smooth (see Definition 2.8), as if K0 were a Borel line graph, the map picking out

1As usual, we view binary relations as sets of ordered pairs and say that a binary relation R on a
standard Borel space X is Borel if it is a Borel subset of X 2.
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BOREL LINE GRAPHS 3

the center of the star corresponding to each component of K0 would witness that
E0 is smooth. Another simple proof uses Borel chromatic numbers:

Definition 1.2 (Borel chromatic number). Given a graph G, a proper coloring of
G is a function f : V (G) → C , where C is some set, such that for all xy ∈ E(G),
f(x) �= f(y). The chromatic number of G, denoted by �(G), is the smallest
cardinality of a set C such that G has a proper coloring f : V (G) → C . For a Borel
graph G, its Borel chromatic number, �B(G), is the smallest cardinality of a standard
Borel space X such that there exists a Borel proper coloring f : V (G) → X .

A standard Baire category argument proves that �B(K0) > ℵ0 [10, p. 27]. On the
other hand, if K0 were a Borel line graph, then by the Feldman–Moore theorem (see
Theorem 1.4), we would have �B(K0) � ℵ0. It follows that K0 is not a Borel line
graph.

Given a graph G and a subset U ⊆ V (G), we let G [U ] denote the subgraph of G
induced by the vertices of U, i.e., G [U ] := (U,E(G) ∩ [U ]2). Given graphs G and
H, we say that G contains a copy of H if G has an induced subgraph isomorphic to
H, i.e., if there exists a set U ⊆ V (G) such that G [U ] ∼= H . Similarly, if G and H
are Borel graphs, we say that G contains a Borel copy of H if there exists a Borel set
U ⊆ V (G) such that G [U ] ∼=B H . It is clear that the property of being a Borel line
graph is preserved under taking Borel induced subgraphs. Therefore, for a Borel
graph to be a Borel line graph, it must contain no copies of the nine forbidden
subgraphs of Beineke nor a Borel copy of K0

2. Our main result is that the converse
is true, i.e., K0 is the only additional obstruction in the Borel setting.

Theorem 1.3. Let L be a Borel graph. Then L is a Borel line graph if and only if it
contains neither a copy of any of the nine graphs of Beineke nor a Borel copy of K0.

In view of Theorem 1.1, the above statement is equivalent to the assertion that
a Borel graph L is a Borel line graph if and only if it is a line graph that does not
contain a Borel copy of K0.

As an immediate consequence of Theorem 1.3, we obtain a characterization of
locally countable Borel line graphs in terms of their Borel chromatic numbers. This
follows from the graph-theoretic version of the Feldman–Moore theorem [3] due to
Kechris, Solecki, and Todorcevic [12], which states that locally countable Borel line
graphs have countable Borel chromatic numbers.

Theorem 1.4 (Feldman–Moore: Graph version [12, Theorem 4.10]). If L is a
locally countable Borel line graph, then �B(L) � ℵ0.

As mentioned above, �B(K0) > ℵ0, and thus Theorems 1.1 and 1.3 imply the
following partial converse to the Feldman–Moore theorem:

Corollary 1.5. Let L be a locally countable Borel graph. If L is a line graph and
�B(L) � ℵ0, then L is a Borel line graph.

2Borel copy is important here, for there are Borel graphs G whose line graphs contain a copy, but no
Borel copy, of K0. For example, consider the Borel graph with vertex set R and edge set {{x, x + n} :
x ∈ [0, 1), n ∈ Z \ {0}}. This graph has continuum many components isomorphic to countably infinite
stars, and thus its line graph L is isomorphic to K0. However, since K0 is not a Borel line graph, L cannot
contain a Borel copy of K0.
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4 JAMES ANDERSON AND ANTON BERNSHTEYN

Theorem 1.3 allows the Feldman–Moore theorem to be stated in terms of
forbidden subgraphs:

Corollary 1.6. If L is a locally countable Borel graph that contains neither a copy
of any of the nine graphs of Beineke nor a Borel copy of K0, then �B(L) � ℵ0.

An intriguing question is whether the hypotheses of Corollary 1.6 can be
weakened. For instance, it would be interesting to know if forbidding only some of
the nine graphs of Beineke together with K0 is enough to reach the same conclusion.
This line of inquiry can be naturally viewed as an extension to the Borel setting of
the theory of �-boundedness [17], which aims to bound the chromatic number of a
graph with certain forbidden substructures by a function of its clique number. More
broadly, our work indicates the prospect of fruitful interactions between descriptive
set theory and structural (as opposed to extremal or probabilistic) graph theory and
leads to general problems such as what other natural classes of Borel graphs can be
characterized by means of excluding certain Borel induced subgraphs.

The remainder of the paper is organized as follows. In Section 2, we review some
necessary background and tools from descriptive set theory. A reader familiar with
descriptive set theory may proceed directly to Section 3, where we provide a road
map for the proof of Theorem 1.3. The rest of the paper contains proofs of the
intermediate theorems and lemmas needed in the proof of Theorem 1.3.

§2. Tools from descriptive set theory. In this section, we provide some fundamental
tools from descriptive set theory and the study of Borel equivalence relations. Our
main references for descriptive set theory are [8; 18], and the reader is invited to
consult them for any background not mentioned here.

A standard Borel space is a set X equipped with a �-algebra B(X ) (called Borel
subsets) that coincides with the Borel �-algebra generated by some Polish (i.e.,
separable completely metrizable) topology on X. All uncountable standard Borel
spaces are isomorphic [8, Theorem 15.6], so there is usually no loss of generality in
assuming that X is some specific space such as R or the Cantor space C. If X is a
standard Borel space and A ⊆ X is a Borel set, then A equipped with the �-algebra
{B ∩ A : B ∈ B(X )} is also a standard Borel space [8, Corollary 13.4]. A function
f : X → Y between two standard Borel spaces is Borel if for every Borel setA ⊆ Y ,
its preimage f–1(A) is a Borel subset of X. Equivalently, a function f : X → Y is
Borel if and only if graph(f) := {(x, y) : f(x) = y} is a Borel subset of X × Y
[8, Theorem 14.12].

It is often convenient to describe a subset B ⊆ X via a statement P(x) with one
free variable x such thatB = {x ∈ X : P(x)}. To verify such a set B is Borel, we will
usually not explicitly write its definition out set-theoretically, but instead rely on the
form of the statement P(x) itself, keeping in mind that conjunctions and universal
quantifiers (resp. disjunctions and existential quantifiers) in P(x) correspond to
intersections (resp. unions) in the construction of B, while negations correspond to
complements.

Let X be a standard Borel space. The diagonal of X is the set

Δ(X ) := {(x, x) : x ∈ X} ⊆ X 2.
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Note that Δ(X ) is a Borel subset of X 2 (it is the graph of the identity function on
X). Now consider the map pair : X 2 \ Δ(X ) → [X ]2 given by pair(x, y) := {x, y}.
We endow [X ]2 with the �-algebra

B([X ]2) := {A ⊆ [X ]2 : pair–1(A) ∈ B(X 2)}.

This makes [X ]2 a standard Borel space [11, Example 6.1 and Proposition 6.3]. By
construction, the function pair : X 2 \ Δ(X ) → [X ]2 is Borel.

Definition 2.1 (Analytic and coanalytic sets). Let X be a standard Borel space.
A set A ⊆ X is analytic if there exist a standard Borel space Y and a Borel function
f : Y → X such thatf(Y ) = A. Equivalently, A is analytic if there exist a standard
Borel space Y and a Borel set B ⊆ X × Y such that x ∈ A ⇐⇒ ∃ y ∈ Y ((x, y) ∈
B). A set A ⊆ X is coanalytic if its complement is analytic.

In practice, to show a set A is analytic we will typically write

x ∈ A ⇐⇒ ∃ y ∈ Y (P(x, y)),

where P(x, y) is a statement with two free variables such that P(x, y) holds if and
only if (x, y) ∈ B for some Borel set B ⊆ X × Y . Verifying that P(x, y) really does
correspond to a Borel set will often be routine and left to the reader. Similarly, a set
A ⊆ X is coanalytic when

x ∈ A ⇐⇒ ∀ y ∈ Y (P(x, y)),

where P(x, y) describes a Borel subset of X × Y . We give an example of a proof of
this type below; in the sequel, equally straightforward arguments will be omitted.

Example 2.2. For a Borel graph G, the set I ⊆ V (G) of all isolated vertices is
coanalytic. Indeed,

x ∈ I ⇐⇒ ∀ y ∈ V (G) (xy /∈ E(G)).

To see that the set {(x, y) ∈ V (G)2 : xy /∈ E(G)} is Borel, we observe that it is
equal to

V (G)2 \ pair–1(E(G)).

It follows that the set I is coanalytic.

The family of all analytic subsets of a standard Borel space is closed under
countable unions and intersections, and the same is true for the family of all
coanalytic subsets [8, Proposition 14.4].

Example 2.3. We argue that for a Borel graph G, the equivalence relation ≡G
whose classes are the connected components of G is analytic. Indeed, we have

x ≡G y ⇐⇒ ∃ d ∈ N, ∃ (u0, ... , ud ) ∈ V (G)d+1(
x = u0, u0u1 ∈ E(G), ... , ud–1ud ∈ E(G), ud = y

)
.

This means that we can write ≡G =
⋃
d∈N
Sd , where

(x, y) ∈ Sd ⇐⇒ ∃ (u0, ... , ud ) ∈ V (G)d+1(
x = u0, u0u1 ∈ E(G), ... , ud–1ud ∈ E(G), ud = y

)
.
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6 JAMES ANDERSON AND ANTON BERNSHTEYN

Since E(G) is Borel, we see that each set Sd is analytic, and hence their union is
analytic as well.

It should be noted that there exist analytic sets that are not Borel. This follows
from a diagonalization argument originally given by Suslin, see [8, Theorem 14.2].
We now present a classical result of Luzin and Novikov that provides a sufficient
condition for an analytic set to be Borel. A proof can be found in [8, Theorem 18.10]
or [15, Theorem 32].

Theorem 2.4 (Luzin–Novikov). Let X and Y be standard Borel spaces and let
B ⊆ X × Y be a Borel set. If for every x ∈ X , the set {y ∈ Y : (x, y) ∈ B} is
countable, then

{x ∈ X : ∃ y ∈ Y ((x, y) ∈ B)}
is a Borel subset of X.

Example 2.5. Thanks to the Luzin–Novikov theorem, many combinatorial
constructions on locally countable Borel graphs can be shown to result in Borel
sets. For instance, as in Example 2.2, let I ⊆ V (G) be the set of all isolated vertices
of G. Then

x ∈ I c ⇐⇒ ∃ y ∈ V (G) (xy ∈ E(G)).

If G is a locally countable Borel graph, then for each x ∈ V (G), the set {y ∈ V (G) :
xy ∈ E(G)} is countable, and hence, by the Luzin–Novikov theorem, the set I c is
Borel. It follows that the set of all isolated vertices in a locally countable Borel graph
is Borel. A similar argument shows that for a locally countable Borel graph G, the
relation ≡G defined in Example 2.3 is Borel.

Another classical theorem of Suslin allows separating two analytic sets by a Borel
set. A proof can be found in [8, Theorem 14.7].

Theorem 2.6 (Analytic separation). LetA1 andA2 be disjoint analytic subsets of a
standard Borel space X. Then there exists a Borel set B ⊆ X such that A1 ⊆ B ⊆ Ac2.

An immediate corollary of Theorem 2.6 is that a set that is both analytic and
coanalytic must be Borel, since it can be separated from its complement by a Borel
set.

Given a set X and an equivalence relation E on X, we say a setA ⊆ X is E-invariant
if no element of A is related by E to an element of Ac . The following result is
[8, Exercise 14.14]; we provide a proof for completeness.

Lemma 2.7 (Invariant analytic separation). Let X be a standard Borel space and
let E be an analytic equivalence relation on X. Suppose Y, Z ⊆ X are analytic sets
such that no element of Y is E-related to an element of Z. Then there is an E-invariant
Borel set B ⊆ X such that Y ⊆ B ⊆ Zc .

Proof. Given A ⊆ X , let [A]E be the E-saturation of A, i.e.,

[A]E := {x ∈ X : ∃ a ∈ A (x E a)}.
Observe that the set [A]E is E-invariant; furthermore, since E is analytic, if A is
analytic, then [A]E is analytic as well. Upon replacing Y by [Y ]E and Z by [Z]E , we
may assume that Y and Z are E-invariant and disjoint.
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We will now inductively define an increasing sequence of Borel sets (Bi)i∈N such
that Y ⊆ Bi ⊆ Zc and [Bi ]E ⊆ Bi+1. We do so as follows: by analytic separation,
there exists a Borel set B0 such that Y ⊆ B0 ⊆ Zc . Now let Bi be Borel with
Y ⊆ Bi ⊆ Zc . Since B is Borel, it follows [Bi ]E is analytic; furthermore, as Bi ⊆ Zc
and Z is E-invariant, it follows [Bi ]E ⊆ Zc . Thus by analytic separation there exists
Borel Bi+1 with [Bi ]E ⊆ Bi+1 ⊆ Zc . This completes the inductive construction.

Let B :=
⋃
n∈N
Bn. Clearly B is Borel and Y ⊆ B ⊆ Zc . Finally, since

B =
⋃
n∈N

[Bn]E , the set B is E-invariant, as desired. �
An important role in our arguments will be played by the following special class

of equivalence relations on standard Borel spaces:

Definition 2.8 (Smoothness). Let E be an equivalence relation on a standard
Borel space X. Then E is smooth if there exist a standard Borel space Y and Borel
function f : X → Y such that for all x, y ∈ X we have x E y ⇐⇒ f(x) = f(y).
We say f witnesses the smoothness of E.

Note that a smooth equivalence relation on a standard Borel space is automatically
Borel. Since all uncountable standard Borel spaces are isomorphic [8, Theorem 15.6],
we may, without loss of generality, use R as the codomain of f in Definition 2.8 for
concreteness.

Recall the equivalence relationE0 discussed in Section 1. Harrington, Kechris, and
Louveau showed that not only is E0 nonsmooth, but it is a “smallest” nonsmooth
equivalence relation [5]. This result is known as theE0-dichotomy. While the original
proof due to Harrington, Kechris, and Louveau uses methods of effective descriptive
set theory, a classical, graph-theoretic proof was given by Miller [15, Theorem 26].

Theorem 2.9 (E0-dichotomy). Let X be a standard Borel space and let E be a
Borel equivalence relation on X. Then exactly one of the following holds:

(1) E is smooth, or
(2) there exists a Borel embedding from E0 to E; that is, there is an injective Borel

function f : C → X such that α E0 � ⇐⇒ f(α)E f(�).

§3. Outline of the proof of Theorem 1.3.

3.1. Line graph decompositions and line graph relations. An important role in our
arguments in played by a characterization of line graphs via a partition of their
edges into cliques, which we call a line graph decomposition.

Definition 3.1 (Line graph decompositions). A line graph decomposition of a
graph L is a collection C of nonempty subsets of V (L) such that:

• for all C ∈ C, L[C ] is a clique;
• the sets E(L[C ]), C ∈ C are pairwise disjoint and their union is E(L);
• each non-isolated vertex of L is contained in exactly two sets in C; each isolated

vertex is contained in exactly one set in C.

Note that any two sets in a line graph decomposition have at most one common
vertex. Krausz observed that a graph L is a line graph if and only if L has a line graph
decomposition [13]. Indeed, ifL = L(G) for some graph G, then {{e ∈ E(G) : e �
v} : v ∈ V (G)} is a line graph decomposition of L. Conversely, given a line graph
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8 JAMES ANDERSON AND ANTON BERNSHTEYN

decomposition C of a graph L without isolated vertices, one can form a graph G
such that L(G) ∼= L as follows:

V (G) := C, E(G) := {{C,C ′} ∈ [C]2 : C ∩ C ′ �= ∅}. (3.1)

Here an isomorphism ϕ : E(G) → V (L) is given by letting ϕ({C,C ′}) for each
edge {C,C ′} ∈ E(G) be the unique vertex in C ∩ C ′. If L has isolated vertices, we
simply add to G an isolated edge corresponding to each isolated vertex of L.

Since a line graph decomposition of L induces a partition of the edge set of L, we
can use it to define an equivalence relation on E(L), called the line graph relation:

Definition 3.2 (Line graph relations). Let C be a line graph decomposition of a
graph L. The equivalence relation

∼C := {(e, e′) ∈ E(L)2 : ∃C ∈ C
(
{e, e′} ⊆ E(L[C ])

)
}

on E(L) is called the line graph relation on L under C. An equivalence relation ∼
on E(L) is called a line graph relation if there is a line graph decomposition C of L
such that ∼ = ∼C .

Note that if ∼ is a line graph relation on L, then each ∼-class is the edge set of a
clique in L. Furthermore, the following combinatorial characterization of line graph
relations is an immediate consequence of the above definitions:

Lemma 3.3 [1, p. 130]. Let L be a graph. An equivalence relation ∼ on E(L) is a
line graph relation if and only if each ∼-equivalence class is the edge set of a clique in
L and every vertex of L is incident to at most two ∼-classes.

Let G be a graph and let R be a binary relation on E(G). IfH ⊆ G is a subgraph
of G, we let R|H := R ∩ E(H )2 be the restriction of R to H. If U ⊆ V (G), then we
let R|U := R|G [U ] be the restriction of R to U.

Lemma 3.4. Let L be a graph with a line graph relation ∼. If H is an induced
subgraph of L, then ∼|H is a line graph relation on H.

Proof. Follows immediately from Lemma 3.3. �

3.2. Main steps of the proof of Theorem 1.3. We can now describe the key steps
in the proof of our main result. To begin with, we note that, thanks to Beineke’s
Theorem 1.1, Theorem 1.3 is equivalent to the following statement:

Theorem 3.5. Let L be a Borel graph that is a line graph. Then L is a Borel line
graph if and only if L does not contain a Borel copy of K0.

A significant complication in proving Theorem 3.5 arises from the fact that L is
not assumed to be locally countable. As briefly discussed in Example 2.5, in the study
of locally countable Borel graphs, the Luzin–Novikov theorem is routinely used to
show that various combinatorially defined sets are Borel, but such arguments are
unavailable for general Borel graphs. As a result, even very simple sets associated
with L, such as the set of all isolated vertices, may fail to be Borel. This makes
analyzing the structure of L through the lens of Borel combinatorics a particularly
intricate task.
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Let L be a Borel graph that is a line graph. Below we outline the major intermediate
results that go into the proof of Theorem 3.5. Each of them presents interesting
challenges in its own right, which we will comment on in the subsequent subsections.

Since L is a line graph, it has a line graph decomposition, and hence there is a line
graph relation on L. The first step in our proof is to find a Borel line graph relation
on L:

Theorem 3.6 (Borel line graph relations). If L is a Borel graph that is a line graph,
then L has a Borel line graph relation.

Proof. Section 4. �
Theorem 3.6 yields a Borel line graph relation regardless of whether L is a Borel

line graph. The question arises: Given a Borel graph L with a Borel line graph
relation ∼, how can we tell whether L is a Borel line graph? The answer is given by
the following theorem:

Theorem 3.7 (Smooth line graph relations). Let L be a Borel graph that is a line
graph. Then the following are equivalent:

(1) L is a Borel line graph,
(2) L has a smooth line graph relation,
(3) all Borel line graph relations on L are smooth.

Of the above equivalences, we only use (1) ⇐⇒ (2) in our proof of Theorem 1.3.
Still, the equivalence (2) ⇐⇒ (3) is of independent interest, as it is a natural addition
to our characterization of Borel line graphs by the smoothness of their Borel line
graph relations. The implication (2) ⇒ (3) is proved in Appendix 7.1, and the details
of (2)⇒ (1) are presented in Section 5 (see also Section 3.4 for an informal discussion
of this implication). The other implications in Theorem 3.7 are straightforward:

Proof. (1) ⇒ (2): Without loss of generality, we may assume that L = L(G) for
some Borel graph G. The following definition gives a line graph relation on E(L):

{e1, e2} ∼ {e′1, e′2} ⇐⇒ e1 ∩ e2 = e′1 ∩ e′2.
The smoothness of ∼ is witnessed by the function f : E(L) → V (G) defined by
letting f({e1, e2}) be the unique vertex in e1 ∩ e2. Therefore, L has a smooth line
graph relation.

(2) ⇒ (1): Section 5.
(2) ⇒ (3): Appendix 7.1.
(3) ⇒ (2): Follows from Theorem 3.6. �
Assuming L is not a Borel line graph, Theorems 3.6 and 3.7 yield a nonsmooth

Borel line graph relation ∼ on E(L), which we utilize in Section 6 to find a desired
Borel copy of K0 in L.

In the following subsections we describe in a little more detail some of the ideas
used in accomplishing these steps.

3.3. Finding a Borel line graph relation (Theorem 3.6). A key ingredient in our
proof of Theorem 3.6 is the fact that a connected line graph has a unique line graph
decomposition, save for four graphs. This is shown in Corollary 3.9. These four
graphs are listed in the second column of Table 1 and illustrated in Figure 2. We
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Figure 2. The four singular graphs.

G L(G)

K3 or K1,3 K3
K+

1,3 K–
4

K–
4 Square pyramid
K4 Octahedron

Table 1. Exceptional graphs in Whitney’s strong isomorphism theorem (left) with
the corresponding line graphs (right).

call a graph singular if it is isomorphic to any of these 4 graphs, and we call a graph
exceptional if its line graph is singular. The exceptional graphs are listed in the first
column of Table 1 (here K+

1,3 is K1,3 with one additional edge, and K–
4 is K4 with a

single edge removed).

Theorem 3.8 (Whitney’s strong isomorphism theorem). If G and H are connected
non-exceptional graphs, then every isomorphism ϕ : E(G) → E(H ) from L(G) to
L(H ) is induced by an isomorphism � : V (G) → V (H ) from G to H, that is, if
xy ∈ E(G), then ϕ(xy) = �(x)�(y).

Whitney [20] proved Theorem 3.8 for finite graphs in 1932. A short alternative
proof was given by Jung [7], who also extended the result to infinite graphs. Jung’s
paper is in German; for an English version of the proof, see [6] or [4, Theorem 8.3].
We shall apply Theorem 3.8 in the form of the following corollary:

Corollary 3.9 (Uniqueness of line graph decompositions). If L is a connected
nonsingular line graph, then L has a unique line graph decomposition (and thus a
unique line graph relation).

Proof. Let L be a connected nonsingular line graph. If L has one vertex, its
line graph decomposition is clearly unique. Otherwise, suppose C and C′ are line
graph decompositions of L. Let G and G ′ be the graphs obtained from C and C′

respectively as in (3.1). Then L(G) ∼= L and L(G ′) ∼= L, say by isomorphisms ϕ
and ϕ′ respectively. By construction, for all C ∈ C and C ′ ∈ C′,

C = {ϕ({C,B}) : B ∈ NG(C )} and C ′ = {ϕ′({C ′, B ′}) : B ′ ∈ NG ′(C ′)}.

Since � := (ϕ′)–1 ◦ ϕ is an isomorphism from L(G) to L(G ′), by Theorem 3.8,
� is induced by an isomorphism � from G to G ′, i.e., if {C,C ′} ∈ E(G), then
�({C,C ′}) = {�(C ), �(C ′)} ∈ E(G ′). Now, for any C ∈ C, we can write
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�(C ) = {ϕ′({�(C ), B ′}) : B ′ ∈ NG ′(�(C ))}
= {ϕ′({�(C ), �(B)}) : B ∈ NG(C )}
= {ϕ′(�({C,B})) : B ∈ NG(C )} = {ϕ({C,B}) : B ∈ NG(C )} = C.

Thus C ∈ C′, and hence C ⊆ C′. A symmetrical argument shows that C′ ⊆ C and
thus C = C′. �

With Corollary 3.9 in hand, it is not difficult to argue that if a Borel graph L
is a line graph and all its components are nonsingular, then the unique line graph
relation on L must be Borel. On the other hand, if all components of L are singular,
then in particular they are finite, and it is again straightforward to find a Borel
line graph relation on L by picking one of the finitely many such relations on each
component of L. (This is an instance of the generally well-understood fact that
Borel combinatorics essentially trivialize on Borel graphs with finite components,
see, e.g., [16, Section 5.3] and [2, Section 2.2].) The difficult case in the proof of
Theorem 3.6 is when L has a mixture of singular and nonsingular components. The
challenge is that it may be impossible to separate the singular components from
the nonsingular ones in a Borel way: the union of all singular components of L
is a coanalytic—but not necessarily Borel—set. To overcome this difficulty, we use
Corollary 3.9 and the analytic separation theorem to first construct a Borel relation
R on E(L) that induces a line graph relation on every infinite component of L, but
can behave arbitrarily on finite components. Next we consider the following two
sets:

A1 := {x ∈ V (L) : the component of x is infinite},
A2 := {x ∈ V (L) : R does not induce a line graph relation on the component of x}.

These sets are analytic and—by the construction of R—disjoint. With the help of
invariant analytic separation (Lemma 2.7), we are able to find a Borel set B such that
A1 ⊆ B ⊆ Ac2 and B is a union of connected components of L. Since B ∩ A2 = ∅,
every component of L contained in Bc is finite, which allows us to modify R
on Bc to obtain a desired line graph relation on L. The details are presented in
Section 4.

The argument sketched above is representative of the techniques used in this
paper, in that it involves a series of applications of analytic separation to construct a
Borel structure with desirable combinatorial properties. The proof of Theorem 3.7
relies on similar ideas, but with even more rounds of analytic separation.

3.4. Analyzing smooth line graph relations (Theorem 3.7). The proof of the
implication (2) ⇒ (1) is not as straightforward as may initially appear. To indicate
the source of the difficulty, let us sketch an obvious naive approach (which ends up
failing). Suppose that∼ is a smooth line graph relation on L and letf : E(L) → Rbe
a Borel function witnessing the smoothness of ∼. This means that for each point x in
the image of f, f–1(x) is a ∼-class. Recall the endpoints of the edges of each ∼-class
induce a clique in L; let us denote this clique by Cx ⊆ V (L). For x ∈ R \ im(f), set
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Cx := ∅. In an attempt to mimic (3.1), let us consider the graph G with V (G) := R

and

E(G) := {xy ∈ [R]2 : Cx ∩ Cy �= ∅},
and define a map ϕ : E(G) → V (L) by letting ϕ(xy) for each edge xy ∈ E(G) be
the (necessarily unique) vertex in Cx ∩ Cy . Ideally, ϕ witnesses L(G) ∼=B L by ϕ.
Unfortunately, there are two issues with the construction:

• First, the map ϕ defined in this way is an embedding of L(G) into L, but it
is only surjective if every vertex of L is incident to exactly two ∼-classes. In
general, some vertices of L may be incident to one ∼-class or be isolated. Note
that the set of all isolated vertices, as well as the set of all vertices incident to a
single ∼-class, need not be Borel.

• The second problem is that the set E(G) defined above is analytic but not
necessarily Borel. In other words, G may fail to be a Borel graph.

The crux of the difficulty here is that the following relation may not be Borel:

R := {(v, x) ∈ V (L) × R : ∃ e ∈ E(L) (f(e) = x, v ∈ e)}.
To circumvent this obstacle, we repeatedly apply analytic separation to construct a
sequenceR0,R1,R2,R3,R4,R5 of Borel relations that in some sense “approximate”
R. With care, we are able to ensure that the final relation, R5, has the following
properties:

• R ⊆ R5, and if v R5 x and x ∈ im(f), then v R x,
• every vertex of L R5-relates to at most two elements of R,
• every element of R \ im(f) R5-relates to at most one vertex of L.

We then show that these properties enable us to use R5 in place of R in the
construction of a Borel graph G withL(G) ∼=B L. The details are given in Section 5.

3.5. Finishing the proof. Let L be a Borel graph with a nonsmooth Borel line
graph relation ∼. To obtain a Borel copy of K0 in L, we seek a Borel induced
subgraph H ⊆ L such that:

• every component of H is a clique, and
• the equivalence relation ≡H on V (H ) whose classes are the components of H

is nonsmooth.
Once we find such H, we can take ϕ : C → V (H ) to be a Borel embedding from E0

to ≡H guaranteed by the E0-dichotomy and observe that L[im(ϕ)] is a Borel copy
of K0 in L, as desired.

To motivate our construction of H, note that since ∼ is nonsmooth, the E0-
dichotomy yields a Borel embedding � : C → E(L) from E0 to ∼. In particular, if
α, � ∈ C are not E0-related, then �(α) �∼ �(�). We want to strengthen this property
as follows:

If α, � ∈ C are not E0-related, then the endpoints of the edge �(α) are not adjacent

to the endpoints of �(�). (3.2)

It is not hard to see that if (3.2) holds, we can let H be the subgraph of L induced
by the vertices incident to im(�). In order to find � satisfying (3.2), we rely on the
following lemma:
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Lemma 3.10. Let X be a standard Borel space and let E ⊆ X 2 be a nonsmooth
Borel equivalence relation on X. If R ⊆ X 2 is a Borel set such that for each x ∈ X ,
the restriction of E to the set

R(x) := {y ∈ X : x R y}

is smooth, then there is a Borel injective homomorphism � : C → X from (Ec0, E0) to
(Rc, E).

Here, given binary relations (E1, ... , En) on a set X and (F1, ... , Fn) on a set Y, a
homomorphism from (E1, ... , En) to (F1, ... , Fn) is a function � : X → Y such that
x Ei y ⇒ �(x)Fi �(y) for all x, y ∈ X and 1 � i � n. We derive Lemma 3.10 from
the E0-dichotomy and a Mycielski-style theorem due to Miller [14, Proposition 3].
We then argue that it can be applied with E = ∼ and

R := {(e, e′) : e and e′ have adjacent endpoints},

resulting in a mapping � : C → E(L) with the desired properties. The details are
presented in Section 6.

§4. Proof of Theorem 3.6.

Theorem 3.6. If L is a Borel graph that is a line graph, then L has a Borel line
graph relation.

Proof. Given e, f ∈ E(L), we write e 	 f whenever there exists a clique C in L
with e, f ∈ E(C ). Note that the relation 	 is Borel, since

{x1, x2} 	 {x3, x4} ⇐⇒ ∀ 1 � i, j � 4 (xi = xj or xixj ∈ E(L)).

Let∼L be an arbitrary (not necessarily Borel) line graph relation on L. Then∼L ⊆ 	.
Call an induced subgraph Γ ⊆ L nice if Γ is connected, finite, and |V (Γ)| � 7. Note
that if Γ is a nice subgraph of L, then it is a nonsingular line graph, as it is an induced
subgraph of L and all singular graphs have at most six vertices. Thus, by Corollary
3.9, every nice graph Γ has a unique line graph relation, ∼Γ. By Lemma 3.4, ∼L|Γ is
also a line graph relation on Γ, and thus ∼Γ = ∼L|Γ.

Define relations R1 and R2 on E(L) as follows:

e R1 f ⇐⇒ ∃ nice Γ ⊆ L with e, f ∈ E(Γ) and e ∼Γ f.

e R2 f ⇐⇒ e 	 f and ∀ nice Γ ⊆ L
(
e, f ∈ E(Γ) ⇒ e ∼Γ f) .

Claim 4.1. The relations R1 and R2 have the following properties:

(i) R1 ⊆ R2 ⊆ 	,
(ii) if H is an infinite component of L, then R1|H = R2|H = ∼L|H ,

(iii) R1 is analytic, while R2 is coanalytic.

Proof. We start by observing that if edges e, f ∈ E(L) are contained in some
nice graph, then

e R1 f ⇐⇒ e R2 f ⇐⇒ e ∼L f, (4.1)

because ∼Γ = ∼L|Γ for every nice graph Γ and ∼L ⊆ 	.

https://doi.org/10.1017/jsl.2024.50 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.50


14 JAMES ANDERSON AND ANTON BERNSHTEYN

(i) The inclusion R2 ⊆ 	 is clear, while R1 ⊆ R2 follows by (4.1).
(ii) If H is an infinite component of L, then for any pair of edges e, f ∈ E(H ) we

can find a nice subgraph of H containing both e and f, so R1|H = R2|H = ∼L|H by
(4.1).

(iii) For each n ∈ N, let

Pn :=
{
(e, f, v1, ... , vn) ∈ E(G)2 × V (G)n :

the graph Γ := L[{v1, ... , vn}] is nice , e, f ∈ E(Γ), and e ∼Γ f
}
.

The statement “the graph Γ := L[{v1, ... , vn}] is nice, e, f ∈ E(Γ), and e ∼Γ f”
can be expressed as a Boolean combination of statements of the form “vi = vj ,”
“vivj ∈ E(L),” “e = {vi , vj},” and “f = {vi , vj}.” It follows that the setPn is Borel.
By definition,

e R1 f ⇐⇒ ∃ n ∈ N, ∃ (v1, ... , vn) ∈ V (G)n
(
(e, f, v1, ... , vn) ∈ Pn

)
,

which shows that R1 is a countable union of analytic sets, hence it is itself analytic.
The proof that R2 is coanalytic is similar, so we omit the details. �

By Claim 4.1 and the analytic separation theorem, there exists a Borel set
R ⊆ E(L)2 such that R1 ⊆ R ⊆ R2. Let ≡ be the equivalence relation on V (L)
whose classes are the components of L. Note that ≡ is analytic (see Example 2.3).
For a vertex x ∈ V (L), let [x] denote the component of L containing x, and define:

A1 := {x ∈ V (L) : [x] is infinite}.
A2 := {x ∈ V (L) : R|[x] is not a line graph relation on [x]}.

Claim 4.2. A1 and A2 are disjoint analytic ≡-invariant sets.

Proof. That A1 and A2 are ≡-invariant is immediate from the way they are
defined. Next, we write

x ∈ A1

⇐⇒ ∀ n ∈ N, ∃ y1, ... , yn ∈ V (L)
(
y1, ... , yn are distinct and ∀i ∈ [n] (x≡yi)

)
,

which shows thatA1 is a countable intersection of analytic sets, so it is itself analytic.
To see that A2 is analytic, recall that by Lemma 3.3, R|[x] is a line graph relation if
and only if:

(1) R|[x] is an equivalence relation,
(2) each equivalence class of R|[x] is the edge set of a clique in [x], and
(3) for each vertex y ≡ x, y is incident to at most two equivalence classes ofR|[x].

For the first condition, we have

(1) ⇐⇒ ∀ e, f, g ∈ E([x])
(
e R e, e Rf ⇒ f R e,

(
e Rf and f Rg

)
⇒ e R g

)
.

For the second condition, assuming (1) holds, we have

(2) ⇐⇒ ∀ e = {a, b},

f = {c, d}∈E([x])
(
e Rf⇒

(
a = c or

(
{a, c} ∈ E(L), {a, c}R e

)))
.
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For the third condition, assuming (1) holds, we have

(3) ⇐⇒ ¬
(
∃ y ≡ x, ∃ e, f, g ∈ E([x])

(
y ∈ e ∩ f ∩ g, e Rc f, e Rc g, f Rc g

))
.

Since R is Borel and the relation

e ∈ E([x]) ⇐⇒ ∃ u ≡ x (u ∈ e),

is analytic, these three conditions define coanalytic sets, and thus A2 is analytic.
Finally, to see that A1 and A2 are disjoint, let H be an infinite component of

L. By Claim 4.1, R1|H = R2|H = ∼L|H . Since R1 ⊆ R ⊆ R2, it follows that R|H =
∼L|H . In particular, R|H is a line graph relation on H, so H is contained in Ac2, as
desired. �

By Claim 4.2, we may apply invariant analytic separation (Lemma 2.7) with
X = V (L), E = ≡, Y = A1, and Z = A2 to obtain a Borel ≡-invariant set B ⊆
V (L) such that A1 ⊆ B ⊆ Ac2. Since B ⊆ Ac2, it follows that R|B is a Borel line
graph relation on L[B]. On the other hand, since A1 ⊆ B , every component of
L[Bc ] is finite. This means that we may employ the Luzin–Novikov theorem to pick,
in a Borel way, a single line graph relation on each component of L[Bc ] and form a
Borel line graph relation R∗ on L[Bc ]. (Since arguments dealing with Borel graphs
with finite components in this manner are standard, we defer the details to Appendix
7.2.) As B is ≡-invariant, we conclude that R|L[B] ∪R∗ is a desired Borel line graph
relation on L. �

§5. Proof of Theorem 3.7, (2) ⇒ (1).

Theorem 3.7, (2) ⇒ (1). Let L be a Borel graph that is a line graph. If L has a
smooth line graph relation ∼, then L is a Borel line graph.

Proof. Letf : E(L) → R witness the smoothness of ∼. Define R,R′ ⊆ V (L) ×
R by

v R x ⇐⇒ ∃ uw ∈ E(L)
(
f(uw) = x and (v = u or v = w)

)
,

v R′ x ⇐⇒ ∀ uw ∈ E(L)
(
f(uw) = x ⇒(

(vu ∈ E(L), f(vu) = x) or (vw ∈ E(L), f(vw) = x)
))
.

Note thatR ⊆ R′ andR′ \R = {(v, x) ∈ V (L) × R : x /∈ im(f)}. Since f is Borel,
it follows that R is analytic and R′ is coanalytic.

As R ⊆ R′, analytic separation yields a Borel set R0 such that R ⊆ R0 ⊆ R′.
Define B0 ⊆ R0 by

B0 := {(v, z) ∈ R0 : ∃ u ∈ V (L) ((u, z) ∈ R0, uv ∈ E(L), f(uv) �= z)}.

Since R0 is Borel, B0 is analytic. Note that if (v, z) ∈ R, then z ∈ im(f), so if u is a
neighbor of v such that (u, z) ∈ R0, then (u, z) ∈ R as well. Thus both u and v are
incident to edges that are mapped by f to z. Since f–1(z) is the edge set of a clique,
it follows that f(uv) = z for all such u, so (v, z) /∈ B0. In other words, R ∩ B0 = ∅.
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By analytic separation, there is a Borel set R1 with R ⊆ R1 ⊆ R0 \ B0. Define
B1 ⊆ R1 by

B1 := {(v, z) ∈ R1 : ∃ u ∈ V (L) (u �= v, uv /∈ E(L), (u, z) ∈ R1)}.
Again, B1 is analytic. Moreover, for each z ∈ im(f), the vertices of L to which z
is R-related form a clique, so R ∩ B1 = ∅. Thus, by analytic separation, there is a
Borel set R2 with R ⊆ R2 ⊆ R1 \ B1.

Next we define a subset B2 ⊆ R2 by

B2 := {(v, z) ∈ R2 : ∃x, y ∈ R ((v, x), (v, y) ∈ R, |{x, y, z}| = 3)}.
SinceR2 is Borel and R is analytic,B2 is analytic. Furthermore, each vertex of L can
be R-related to at most two elements of R, so R ∩ B2 = ∅. By analytic separation,
there exists a Borel setR3 withR ⊆ R3 ⊆ R2 \ B2. LetB3 ⊆ R3 be defined as follows:

B3 := {(v, z) ∈ R3 : ∃x, y ∈ R ((v, x) ∈ R, (v, y) ∈ R3, |{x, y, z}| = 3)}.
Since R3 is Borel and R is analytic, B3 is analytic. Take any (v, z) ∈ B3 with
(v, x) ∈ R, (v, y) ∈ R3, and |{x, y, z}| = 3. If (v, z) ∈ R, then (v, y) ∈ B2, and thus
(v, y) /∈ R3, which is a contradiction. Thus, R ∩ B3 = ∅. By analytic separation,
there is a Borel set R4 with R ⊆ R4 ⊆ R3 \ B3. Let

B4 := {(v, z) ∈ R4 : ∃x, y ∈ R ((v, x) ∈ R4, (v, y) ∈ R4, |{x, y, z}| = 3)}.
Since R4 is Borel, B4 is analytic. If (v, z) ∈ B4 with (v, x) ∈ R4, (v, y) ∈ R4, and
|{x, y, z}| = 3, and (v, z) ∈ R, then (v, x) ∈ B3, which is impossible. Therefore,
R ∩ B4 = ∅.

Finally, analytic separation yields a Borel setR5 withR ⊆ R5 ⊆ R4 \ B4. Observe
that R5 has the following properties:

(i) R ⊆ R5 ⊆ R′.
This is clear from the construction.

(ii) Every vertex of L R5-relates to at most two elements of R.
This follows since R5 ∩ B4 = ∅.

(iii) Every element of R \ im(f) R5-relates to at most one vertex of L.
Indeed, suppose z ∈ R R5-relates to two different vertices u, v ∈ V (L). Since
R5 ∩ B1 = ∅, it follows that uv ∈ E(L). Then, since R5 ∩ B0 = ∅, we have f(uv) =
z, i.e., z ∈ im(f), as claimed.

Having found a Borel relationR5 satisfying conditions (i)–(iii), we can now define
a Borel graph G such that L(G) ∼=B L. To this end, let

V0 := {v ∈ V (L) : ∀x ∈ R ((v, x) /∈ R5)},
V1 := V (L) \ (V0 ∪ V2), where

V2 := {v ∈ V (L) : ∃x, y ∈ R ((v, x), (v, y) ∈ R5, x �= y)}.
AsR5 is Borel, the Luzin–Novikov theorem together with property (ii) of R5 shows
thatV0 andV2 are Borel sets, and thusV1 is Borel as well. Without loss of generality
(e.g., by replacing V (L) with {2} × V (L)), we may assume that the sets R, V (L),
and {0, 1} × V (L) are disjoint. We then construct G as follows:

V (G) := ({0, 1} × V0) ∪ V1 ∪ R, E(G) := E0 ∪ E1 ∪ E2,
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Figure 3. The construction of G using the relation R5. Here the dashed edges
represent the relation R and the dotted ones represent the relation R5 \R. In this
example, V0 = {v8}, V1 = {v1, v2, v4, v9}, and V2 = {v3, v5, v6, v7}.

where

E0 :=
{
{(0, v), (1, v)} : v ∈ V0

}
,

E1 :=
{
{v, x} : v ∈ V1, (v, x) ∈ R5

}
,

E2 :=
{
{x, y} : x �= y and ∃ v ∈ V2

(
(v, x), (v, y) ∈ R5

)}
.

This construction is illustrated in Figure 3. To see that G is a Borel graph, we need
to verify that the sets E0, E1, and E2 are Borel. For E0 and E1, this is clear. For
E2, notice that if x, y ∈ im(f) are distinct, then there is at most one vertex v ∈ V2

such that (v, x), (v, y) ∈ R5, namely the common vertex of the cliques f–1(x) and
f–1(y). On the other hand, if, say, x ∈ R \ im(f), then by (iii), there is at most one
vertex v such that (v, x) ∈ R5. In either case, there is at most one vertex v with (v, x),
(v, y) ∈ R5 and hence, by the Luzin–Novikov theorem, the set E2 is Borel.

To argue that L ∼=B L(G), we define a Borel isomorphism ϕ from L(G) to L as
follows. For {(0, v), (1, v)} ∈ E0, let ϕ({(0, v), (1, v)}) := v ∈ V0, for {v, x} ∈ E1,
define ϕ({v, x}) := v ∈ V1, and for {x, y} ∈ E2, let ϕ({x, y}) be the unique v ∈ V2

such that (v, x), (v, y) ∈ R5. It is immediate from the definition that ϕ is indeed a
desired Borel isomorphism. �

§6. Finishing the proof. Recall that a subset of a topological space is meager if it
is a union of countably many nowhere dense sets. We shall use the following result
of Miller [14]:

Theorem 6.1 (Miller [14, Proposition 3]). LetR ⊆ C2 be a meager set. Then there
exists a continuous injective homomorphism � : C → C from (Ec0, E0) to (Rc, E0).

With Theorem 6.1 in hand, we can prove Lemma 3.10:

Lemma 3.10. Let X be a standard Borel space and let E ⊆ X 2 be a nonsmooth
Borel equivalence relation on X. If R ⊆ X 2 is a Borel set such that for each x ∈ X ,
the restriction of E to the set

R(x) := {y ∈ X : x R y}
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is smooth, then there is a Borel injective homomorphism � : C → X from (Ec0, E0) to
(Rc, E).

Proof. By the E0-dichotomy, there is a Borel embedding f : C → X from E0 to
E. Since f is injective, its image is Borel, so we may, without loss of generality, replace
X by im(f) and assume that f is a bijection. (For each x ∈ X , the restriction of E
toR(x) ∩ im(f) ⊆ R(x) remains smooth, so the assumptions of the lemma are still
satisfied.) Since Borel bijections between standard Borel spaces are isomorphisms
[8, Corollary 15.2], we may in fact assume that X = C, f is the identity map, and
E = E0. If A ⊆ C is a Borel set such that E0|A is smooth, then A is meager [19,
Corollary 4.12], so R(x) is meager for all x ∈ C. By the Kuratowski–Ulam theorem
[8, Theorem 8.41], it follows that R is a meager subset of C2. Therefore, we may apply
Theorem 6.1 to get a continuous (hence Borel) injective homomorphism � : C → C
from (Ec0, E0) to (Rc, E0), as desired. �

Now we have all the necessary ingredients to complete the proof of our main
result.

Lemma 3.5. Let L be a Borel graph that is a line graph. Then L is a Borel line
graph if and only if L does not contain a Borel copy of K0.

Proof. By Theorem 3.6, there is a Borel line graph relation ∼ on L. If ∼ is
smooth, then L is a Borel line graph by Theorem 3.7, and thus contains no Borel
copies of K0. Now suppose that ∼ is nonsmooth. Our goal is to show that L contains
a Borel copy of K0.

As ∼ is Borel, every ∼-class is a Borel subset of E(L). For a ∼-class C, let
V (C ) ⊆ V (L) be the set of all vertices incident to an edge in C. The set V (C ) is
Borel since, fixing an arbitrary edge e ∈ C and a vertex x ∈ e, we can write

V (C ) = {w ∈ V (L) : w = x or wx ∼ e}.
For an edge e ∈ E(L), let Ce be the ∼-class containing e, and for each ∼-class C,
define

S(C ) := {e ∈ E(L) : e �∈ C and V (Ce) ∩ V (C ) �= ∅}.
Claim 6.2. For each ∼-class C, S(C ) is a ∼-invariant Borel set and the relation

∼|S(C ) is smooth.

Proof. Fix a ∼-class C. It is clear from the definition that S(C ) is ∼-invariant.
Observe that

S(C ) = {uv ∈ E(L) \ C : ∃w ∈ V (C ) (w = u or wu ∼ uv)}.
Since for e �∈ C , there can be at most one vertex w in V (Ce) ∩ V (C ), the set
S(C ) is Borel by the Luzin–Novikov theorem. Additionally, the following function
f : S(C ) → V (C ) is Borel:

f(e) := the unique vertex w ∈ V (Ce) ∩ V (C ).

If e, e′ ∈ S(C ) are ∼-equivalent, then f(e) = f(e′) by construction. Conversely,
if f(e) = f(e′) =: w, then e and e′ belong to the same ∼-class, namely the unique
∼-class other than C incident to w. In other words, f witnesses the smoothness of
∼|S(C ), as desired. �
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Define a relation R ⊆ E(L)2 as follows:

x1x2Ry1y2 ⇐⇒ ∃ i, j ∈ {1, 2} (xiyi ∈ E(L)).

Claim 6.3. For each xy ∈ E(L), the restriction of ∼ to R(xy) := {e ∈ E(L) :
xy R e} is smooth.

Proof. Fix an edge xy ∈ E(L) and observe that

R(xy) ⊆ Cxy ∪ S(Cxy) ∪ S(Cx) ∪ S(Cy), (6.1)

whereCx and Cy are the ∼-classes distinct from Cxy containing x and y respectively
(if x or y is incident to only one ∼-class, we let the corresponding set in (6.1)
be empty). For each t ∈ {xy, x, y}, let ft : S(Ct) → R witness the smoothness of
∼|S(Ct ) (such functionsft exist by Claim 6.2). Then the following mapf : R(xy) →
{0, 1, 2, 3} × R witnesses the smoothness of ∼|R(xy):

f(e) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0), if e ∈ Cxy,
(1, fxy(e)), if e ∈ S(Cxy),
(2, fx(e)), if e ∈ S(Cx) \ (Cxy ∪ S(Cxy)),
(3, fy(e)), if e ∈ S(Cy) \ (Cxy ∪ S(Cxy) ∪ S(Cx)). �

With Claim 6.3 in hand, we may apply Lemma 3.10 to obtain a Borel injective
homomorphism � : C → E(L) from (Ec0, E0) to (Rc, ∼). Since � is injective, its
image im(�) is a Borel subset of E(L). Let U ⊆ V (L) be the set of all vertices
incident to an edge in im(�). Since every E0-class is countable, each ∼-class contains
countably many edges in im(�). As every vertex belongs to at most two ∼-classes,
it is incident to countably many edges in im(�). It follows by the Luzin–Novikov
theorem that the set U is Borel, and hence H := L[U ] is a Borel induced subgraph
of L.

Observe that if xy, yz ∈ E(H ), then xy ∼ yz. Indeed, let α, � , 
 ∈ C be such
that the edges �(α), �(�), and �(
) are incident to x, y, and z respectively. Then
�(α)R�(�)R�(
), and thus α E0 � E0 
 because � is a homomorphism from E

c
0 to

Rc . Since � is a homomorphism fromE0 to∼, we conclude that �(α) ∼ �(�) ∼ �(
).
Therefore, x, y, and z are all incident to the same ∼-class, and thus xy ∼ yz, as
desired.

We conclude that the edge set of every component of H is contained in a single
∼-class. Define the relation ≡H on V (H ) by

x ≡H y ⇐⇒ x and y are in the same component of H.

Since H is locally countable, ≡H is Borel by the Luzin–Novikov theorem (see
Examples 2.3 and 2.5).

Claim 6.4. ≡H is nonsmooth.

Proof. Suppose to the contrary that ≡H is smooth, and let f : V (H ) → R

witness the smoothness of ≡H . Then � : E(H ) → R defined by �(xy) := f(x) is
well-defined and witnesses the smoothness of ∼|H . But ∼|H is nonsmooth as � is an
embedding from E0 to ∼|H . �
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Since ≡H is nonsmooth, by the E0-dichotomy there exists a Borel embedding
ϕ : C → V (H ) from E0 to ≡H . As H is a union of disjoint cliques, it follows that ϕ
is a Borel isomorphism from K0 to L[im(ϕ)]. Therefore, L contains a Borel copy of
K0, as desired. �

§7. Appendices.

7.1. Proof of Theorem 3.7, (2) ⇒ (3). As Corollary 3.9 implies two line graph
relations differ only on singular components, which are all finite, the statement (2)
⇒ (3) is an immediate corollary of the following lemma:

Lemma 7.1. If E and E ′ are Borel equivalence relations on a standard Borel space
X such that E is smooth and every infiniteE ′-class is also an E-class, thenE ′ is smooth.

Proof. Letf : X → Rwitness the smoothness of E. Define the following subsets
of X :

A1 := {x ∈ X : [x]E′ is infinite},
A2 := {x ∈ X : ∀ y ∈ X (xE ′y ⇐⇒ xEy)}.

Clearly A1 is analytic and A2 is coanalytic. Furthermore, if x ∈ A1, then [x]E′ =
[x]E , and thus x ∈ A2. So A1 ⊆ A2. Since A1 is E ′-invariant and analytic, while
A2 is coanalytic, invariant analytic separation (Lemma 2.7) yields an E ′-invariant
Borel set B such that A1 ⊆ B ⊆ A2.

Fix a Borel linear ordering, say �, on X (for instance, we may assume thatX = R

[8, Theorem 15.6] and use the standard ordering onR). If x ∈ Bc , then [x]E′ is finite.
Thus there exists a �-minimum element, say �(x) ∈ Bc , such that x E ′ �(x). For
each x ∈ Bc , there are only finitely many y ∈ X such that x E ′ y, and so the map
� : Bc → Bc is Borel by the Luzin–Novikov theorem. Furthermore, for x, y ∈ Bc ,
we have x E ′ y if and only if �(x) = �(y). On the other hand, if x, y ∈ B , then,
since B ⊆ A2, we have x E ′ y if and only if f(x) = f(y).

Without loss of generality, we may assume thatX ∩ R = ∅. Define g : X → X ∪ R

by

g(x) :=

{
f(x), if x ∈ B,
�(x), if x ∈ Bc.

Since f and � are Borel functions and B is a Borel set, g is a Borel function.
Furthermore, the above discussion implies that g witnesses the smoothness of E ′,
as desired. �

7.2. Borel line graph relations for graphs with finite components. In this appendix
we prove the following lemma, which was used in the proof of Theorem 3.6:

Lemma 7.2. Let L be a Borel graph with finite components. If L is a line graph,
then L has a Borel line graph relation.

Statements such as Lemma 7.2 are considered routine in descriptive set theory.
Indeed, Lemma 7.2 can be seen as a special case of certain general facts about Borel
combinatorics on Borel graphs with finite components, for example, [16, Section 5.3]
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and [2, Section 2.2]. Nevertheless, in an effort to make this paper more accessible to
non-experts, we present a complete proof here. In the following argument, it will be
useful to keep in mind that if X is a standard Borel space and Y is a countable set,
then a map f : X → Y is Borel if and only if f–1(y) is a Borel set for each y ∈ Y .

Proof. Let L be a Borel graph with finite components such that L is a line
graph. For each x ∈ V (L), let [x] denote the component of L containing x.
Since the components of L are finite, the Luzin–Novikov theorem implies that
the relation ≡ := {(x, y) ∈ V (L)2 : y ∈ V ([x])} is Borel (see Examples 2.3 and
2.5). Fix a Borel linear ordering, say �, on V (L) (for instance, we may assume that
V (L) = R [8, Theorem 15.6] and use the standard ordering on R). Define a function
r : V (L) → N by

r(x) = k ⇐⇒ x is the kth element of V ([x]) under �
⇐⇒ ∃x1, ... , xk–1 ∈ V ([x])

(
(x1 ≺ x2 ≺ ··· ≺ xk–1 ≺ x) and

∀ y ∈ V ([x])\{x1, ... , xk–1} (x � y)
)
.

As [x] is finite, all the quantifiers in the above definition range over finite sets, so
the function r is Borel by the Luzin–Novikov theorem. The map s(x) := |V ([x])| is
also Borel, since we can write

s(x) = k ⇐⇒
(
∃ y ≡ x (r(y) = k)

)
and

(
∀ y ≡ x (r(y) � k)

)
.

Next we define, for each positive integer k, a partial mapping nk : V (L) ��� V (L)
as follows:

nk(x) = y ⇐⇒ y ≡ x and r(y) = k.

The function nk is again Borel. Note that for each x ∈ V (L),

V ([x]) = {n1(x), n2(x), ... , ns(x)(x)} and n1(x) ≺ n2(x) ≺ ··· ≺ ns(x)(x).

LetG<∞ be the (countable) set of all finite line graphs with vertex set a subset ofN.
For every Γ ∈ G<∞, fix an arbitrary line graph relation ∼Γ on Γ. Given x ∈ V (L),
define Γx ∈ G<∞ by

V (Γx) := {1, 2, ... , s(x)}, E(Γx) :=
{
{i, j} : {ni(x), nj(x)} ∈ E(L)

}
.

Then r establishes an isomorphism [x] ∼= Γx , and if y ≡ x, then Γx = Γy . Since the
setE(L) and the functions s and nk for all k are Borel, the mapV (L) → G<∞ : x �→
Γx is Borel as well. (To clarify, this means that for each graph Γ ∈ G<∞, the set of
all x ∈ V (L) with Γx = Γ is Borel.)

Finally, we define a relation ∼ on E(L) as follows: if e = xy and f = uv, let

e ∼ f ⇐⇒ x ≡ u and r(x)r(y) ∼Γx r(u)r(v).

In other words,∼ is obtained by “copying”∼Γx from Γx onto [x] for each x ∈ V (L)
in the obvious way. It is now clear that ∼ is a desired Borel line graph relation
on L. �
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