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Abstract
The human sciences should seek generalisations wherever possible. For ethical and scientific reasons, it is
desirable to sample more broadly than ‘Western, educated, industrialised, rich, and democratic’ (WEIRD)
societies. However, restricting the target population is sometimes necessary; for example, young children
should not be recruited for studies on elderly care. Under which conditions is unrestricted sampling
desirable or undesirable? Here, we use causal diagrams to clarify the structural features of measurement
error bias and target population restriction bias (or ‘selection restriction’), focusing on threats to valid
causal inference that arise in comparative cultural research. We define any study exhibiting such biases,
or confounding biases, as weird (wrongly estimated inferences owing to inappropriate restriction and dis-
tortion). We explain why statistical tests such as configural, metric and scalar invariance cannot address
the structural biases of weird studies. Overall, we examine how the workflows for causal inference provide
the necessary preflight checklists for ambitious, effective and safe comparative cultural research.

Keywords: Causal inference; comparative; cross-cultural; dags; experiments; longitudinal; measurement error bias; selection
bias; single world intervention graphs; SWIGs; target validity; WEIRD

Social media summary: Many human scientists believe that diverse samples are essential to answer
the big questions. However, advances in causal inference reveal that sampling concerns often put
the cart before the horse. Investigators must first state a clear causal question and define the target
population for which answers will generalise. Next, they must assess how observations can identify
the causal quantities of interest, taking measurement error biases into account. Sample planning
and data collection come later. This article demonstrates how these foundational principles can be
precisely stated and applied to improve research design.

Introduction

Human scientists ask and answer questions. To anchor answers in facts, we collect data.
Most publishing human scientists work in what Joseph Henrich, Steven Heine, and Ara

Norenzayan have termed ‘WEIRD’ societies: ‘Western, educated, industrialised, rich, and democratic’
(Henrich et al., 2010). Unsurprisingly, WEIRD samples are over-represented in human science data-
sets (Arnett, 2008; Sears, 1986). Henrich et al. illustrate how WEIRD samples differ from non-WEIRD
samples in areas such as spatial cognition and perceptions of fairness, while showing continuities in
basic emotion recognition, positive self-views and motivation to punish anti-social behaviour. Because
science seeks generalisation wherever it can, Henrich et al. urge that sampling from non-WEIRD
populations is desirable.
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Recently, a host of institutional diversity and inclusion initiatives have been developed that com-
mend researchers to obtain data from global samples. In my view, the motivation for these mission
statements is ethically laudable. The injunction for a broader science of humanity also accords with
institutional missions. For example, the scientific mission of the American Psychological
Association (APA) is ‘to promote the advancement, communication, and application of psychological
science and knowledge to benefit society and improve lives’. The APA does not state that it wants to
understand and benefit only North Atlantic Societies (https://www.apa.org/pubs/authors/equity-
diversity-inclusion, accessed March 2024). It is therefore tempting to use such a mission statement
as an ideal by which to evaluate the samples used in human scientific research.

Suppose we agree that promoting a globally diverse science makes ethical sense. Set aside the worry
that global studies often do not sample the globe very well (this problem is discussed in Ghai et al.,
2024). Does the sampling of globally diverse populations always advance this ideal? It is easy to
find examples in which restricting our source population makes better scientific sense. Suppose we
are interested in the psychological effects of restorative justice among victims of violent crime.
Here, it would make little scientific sense to sample from a population that has not experienced violent
crime. Nor would it make ethical sense. The scientific question, which may have important ethical
implications, is not served by casting a wider net. Suppose we want to investigate the health effects
of calorie restriction. It might be unethical to include children or the elderly. It makes little
sense to investigate the psychological impact of vasectomy in biological females or hysterectomy in
biological males.

In the cases we just considered, the scientific questions pertained to a sub-sample of the human
population and so could be sensibly restricted (refer also to Gaechter, 2010; Machery, 2010).
However, even for questions that relate to all of humanity, sampling from all of humanity might be
undesirable. For example, if we were interested in the effects of a vaccine on disease, sampling from
one population might be as good as sampling from all. Sampling from one population might spare
time and expense. We might conclude that sampling universally, where unnecessary, is wasteful
and unethical.

We might agree with our mission statements in judging that ethical aspirations must guide research
at every phase. More fundamentally, we cannot assess the bandwidth of human diversity from the
armchair, without empirical study, and this is a motivation to investigate. Yet mistaking our aspira-
tions for sampling directives risks wasteful science. Because waste carries opportunity costs, wasteful
science is unethical science.

I present these examples to remind ourselves of the importance of addressing questions of sampling
in relation to the scientific question at hand.

During the past 20 years, causal data science, also known as ‘causal inference’ or ‘CI’, has enabled
tremendous clarity for questions of research design and analysis (Richardson & Rotnitzky, 2014).
Here, we examine how the workflows developed for causal inference clarify threats and opportunities
for causal inference in comparative human research. These workflows require that we state our causal
question in terms of well-defined counterfactual quantities, state the population of interest, and evalu-
ate assumptions under which it is possible to obtain valid quantitative estimates of the counterfactual
quantities we seek from data. Application of these workflows to comparative questions enables us to
clarify when comparative research is possible, and also whether it is desirable. Not all questions are
causal, of course. However, because manifest associations in a dataset may not be evidence of
association in the world, even those who seek comparative descriptive understanding may benefit
from causal inference workflows (Vansteelandt & Dukes, 2022).

In the remainder of the introduction, I review causal directed acyclic graphs (causal DAGs).
Readers familiar with causal directed acyclic graphs may skip this section. I encourage readers
unfamiliar with causal directed acyclic graphs to develop familiarity before proceeding (Barrett,
2021; Bulbulia, 2024b; Hernán & Robins, 2024: chapter 6; McElreath, 2020: chapters 5 and 6; Neal,
2020; Pearl, 2009). Because directed acyclic graphs encode causal assumptions, we will use the
terms ‘structural’ and ‘causal’ synonymously.
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Part 1 uses causal diagrams to clarify five structural features of measurement-error bias.
Understanding measurement error bias is essential in all research, especially in comparative human
science, where it casts a long shadow.

Part 2 examines structural sources of bias arising from attrition and non-response, also known as
‘right-censoring’ or simply ‘censoring’. Censoring may lead to restriction of the target population at
the end of study, even if the analytic sample population at baseline represents the target population.
Put differently, even if we succeed in capturing the relevant diversity of humanity when selecting cases
into a study, and even if there is no confounding bias (say we have randomised treatments), we never-
theless lack assurances for valid inference at the end of study. We will explain why avoiding WEIRD
samples (Western, Educated, Industrialised, Rich, Democratic) does not necessarily prevent weird
(wrongly estimated inferences due to inappropriate restriction and distortion) inferences. If the analytic
sample population at baseline is meant to be the target population, censoring at baseline may lead to bias.

Part 3 addresses biases that arise at the start of a study when there is a mismatch between the analytic
sample population and the target population. When the target population is restricted in the analytic
sample population at baseline, results may be biased. I focus on structural threats to inference when
the analytic sample population is (1) too restrictive (e.g. too WEIRD – western, educated, industrialised,
rich and democratic) and (2) insufficiently restrictive (leading to bias from WEIRD sampling). We find
that population-restriction biases are formally equivalent to certain measurement error biases. This
structural parallel is crucial because it shows that many biases in comparative research can be treated
as measurement error biases. As these biases are structural – causal in nature – they cannot be assessed
using the statistical estimation methods typically employed by comparative researchers.

Part 4 uses single world intervention graphs (SWIGs) to enhance understanding of measurement-
error bias, which is not easily conveyed through causal DAGs. Causal DAGs are designed to evaluate
assumptions of ‘no unmeasured confounding’. Consequently, they do not fully elucidate population-
restriction and measurement-error biases that do not stem from confounding. Although SWIGs are
also built to evaluate ‘no unmeasured confounding’, they represent counterfactual dependencies
directly on a graph. By graphing the measurements – or ‘reporters’ – of latent realities we aim to quan-
tify, along with the variables that perturb these reporters so that the reported quantities differ from the
latent realities, we can advance the structural understanding of measurement problems. This approach
better diagnoses threats to comparative human science and elucidates their remedies.

The importance of causal inference for comparative research has been highlighted in several recent
studies (Bulbulia, 2022; Deffner et al., 2022). Here, I focus on challenges arising from structural fea-
tures of (1) measurement error bias, (2) target population restriction bias from censoring and (3) tar-
get population restriction bias at a study’s baseline. I clarify that the basis of these biases is causal, not
statistical, by demonstrating their roots in measurement error bias. This understanding is essential
because comparative researchers often rely on statistical methods, such as configural scalar and metric
invariance, to address measurement issues. However, if the problems are causal, such methods are
inadequate. They fail to clarify the dependencies between reality, its measurements and the contextual
and cultural features that modify the effects of reality on its measurements (VanderWeele, 2022;
VanderWeele & Vansteelandt, 2022).

I begin with a brief overview of causal inference, causal DAGs, and our terminology.

What is causality?

To quantify a causal effect, we must contrast the world as it is – in principle, observable – with the
world as it might have been – in principle, not observable.

Consider a binary treatment variable A∈ {0, 1} representing the randomised administration of a
vaccine to individuals i in the set {1, 2,…, n}. Ai = 1 denotes vaccine administration and Ai = 0 denotes
no vaccine. The potential outcomes for each individual are Yi(0) and Yi(1), representing outcomes
yet to be realised before administration. Thus, they are called ‘potential’ or ‘counterfactual’ outcomes.
For an individual i, we define a causal effect as the contrast between the outcome observed under one
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intervention level and the outcome observed under another. This contrast, for the ith individual, can be
expressed on the difference scale as:

Individual Treatment Effect = Yi(1)− Yi(0)

where the ‘Individual Treatment Effect’ is the difference in the outcomes for an individual under two
treatment conditions, where Yi(1)− Yi(0)≠ 0 denotes a causal effect of A on Y for individual i on the
difference scale. Similarly,

Yi(1)
Yi(0)

= 1

denotes a causal effect of treatment A for individual i on the risk ratio scale. These quantities cannot be
computed from observational data for any individual i. The inability to observe individual-level causal
effects is the fundamental problem of causal inference (Holland, 1986; Rubin, 1976). This problem has
long puzzled philosophers (Hume, 1902; Lewis, 1973). However, although individual causal effects are
unobservable, we may nevertheless recover average causal effects for a population, or for strata within a
population, from observations. We next consider how experiments recover causal effects within popu-
lations and subpopulations.

How we obtain average causal effect estimates from ideally conducted randomised experiments

The average treatment effect (ATE) measures the difference in outcomes between treated and control
groups:

Average Treatment Effect = E[Y(1)]− E[Y(0)]

Here, E[Y(1)] and E[Y(0)] represent the average outcome for the target population if everyone in the
population were subjected to the treatment and control conditions, respectively.

In a randomised experiment, we estimate these averages assuming that the analytic sample popu-
lation matches the target population. We do this by considering the average observed and unobserved
outcomes under the treatment conditions:

ATE = (E[Y(1)|A = 1]+ E[Y(1)|A = 0]︸�������︷︷�������︸
unobserved

)− (E[Y(0)|A = 0]+ E[Y(0)|A = 1]︸�������︷︷�������︸
unobserved

)

Effective randomisation ensures that potential outcomes are similarly distributed across both groups.
Thus, any differences in the averages of the treatment groups can be attributed to the treatment.
Therefore, in an ideally conducted randomised experiment, the average outcomes are expected to
be equal across different treatment conditions for the population from which the sample is drawn:

[E[Y(0)|A = 1]]
︷��������︸︸��������︷unobserved

= [E[Y(0)|A = 0]]
︷��������︸︸��������︷observed

︸���������������������︷︷���������������������︸
Under A=0

, [E[Y(1)|A = 1]]
︷��������︸︸��������︷observed

= [E[Y(1)|A = 0]]
︷��������︸︸��������︷unobserved

︸���������������������︷︷���������������������︸
Under A=1

Because treatment groups are exchangeable, by randomisation, it follows that an ideally randomised
controlled experiment provides an unbiased estimate of the average treatment effect:

ÂTE = Ê[Y|A = 1]− Ê[Y|A = 0]

Note that in the context of our imagined experiment, ÂTE applies to the population from which the
experimental participants were drawn and is calculated on the difference scale. A more explicit
notation would define this effect estimate by referencing its scale and population: ÂTEa′−a

S , where
a

′
− a denotes the difference scale and S denotes the source population. I will return to this point
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in Parts 2 and 3, but it is important to build intuition early that in causal inference we must specify: (1)
the causal effect of interest; (2) a scale of contrast; and (3) a target population for whom a causal effect
estimate is meant to generalise.

Three fundamental assumptions for causal inference

An observational study aims to estimate the average treatment effects without researchers controlling
treatments or randomising treatment assignments. We can consistently estimate counterfactual
contrasts only under strict assumptions. Three fundamental assumptions are required to obtain the
counterfactual quantities required to compute causal contrasts from observational data.

Assumption 1: causal consistency

Causal consistency states that the observed outcome for each individual under the treatment they
actually received is equal to their potential outcome under that treatment. This means if an individual
i received treatment Ai = 1, their observed outcome Yi is the same as their potential outcome under
treatment, denoted as Yi(1). Similarly, if they did not receive the treatment (Ai = 0), their observed
outcome is the same as their potential outcome without treatment, denoted as Yi(0), such that:

Yi = Ai · Yi(1)+ (1− Ai) · Yi(0)

where Yi denotes the observed outcome for individual i; Ai denotes the treatment status for individual
i, with Ai = 1 indicating treatment received and Ai = 0 indicating no treatment; and Yi(1) and Yi(0)
denote the potential outcomes for individual i under treatment and no treatment, respectively
(refer to Morgan & Winship, 2014; VanderWeele, 2009).

The causal consistency assumption is necessary to link the theoretical concept of potential
outcomes – the target quantities of interest – with observable data (see Bulbulia et al., 2023).

Assumption 2: conditional exchangeability (or ignorability)

Conditional exchangeability states that given a set of measured covariates L, the potential outcomes are
independent of the treatment assignment. Once we control for L, the treatment assignment A is as
good as random with respect to the potential outcomes:

Y(a)
∐

A|L
where Y(a) denotes the potential outcomes for a particular treatment level a;

∐
denotes conditional

independence; A denotes the treatment levels to be contrasted; and L denotes the measured covariates.
Under the conditional exchangeability assumption, any differences in outcomes between treatment

groups can be attributed to the treatment. This assumption requires that all confounding variables
affecting both the treatment assignment A and the potential outcomes Y(a) are measured and included
in L.

Assumption 3: positivity

The positivity assumption requires that every individual in the population has a non-zero probability
of receiving each treatment level, given their covariates (Bulbulia et al., 2023; Chatton et al., 2020;
Hernán & Robins, 2024; Westreich & Cole, 2010). Formally,

0 , Pr(A = a|L = l) , 1, ∀a [ A, ∀l [ L such that Pr(L = l) . 0

where A denotes the treatment or exposure variable; and L denotes a vector of covariates assumed
sufficient for satisfying conditional exchangeability.

For a discussion of causal assumptions in relation to external validity, refer to Imai et al. (2008).
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Terminology

To avoid confusion, we define the meanings of our terms:

• Unit/individual – an entity, such as an object, person, or culture. We will use the term ‘individ-
ual’ instead of the more general term ‘unit’. Think ‘row’ in a dataset.

• Variable – a feature of an individual, transient or permanent. For example, ‘Albert was sleepy but
is no longer’ or ‘Alice was born 30 November’.

• Treatment – equivalent to ‘exposure’, an event that might change a variable. For instance, ‘Albert
was sleepy; we intervened with coffee; he is now wide awake’ or ‘Alice was born in November;
nothing can change that’.

• Outcome – the response variable or ‘effect’. In causal inference, we contrast ‘potential’ or ‘coun-
terfactual outcomes’. In observational or ‘real-world’ studies where treatments are not rando-
mised, the assumptions for obtaining contrasts of counterfactual outcomes are typically much
stronger than in randomised controlled experiments.

• Confounding – a state where the treatment and outcome share a common cause and no adjust-
ment is made to remove the non-causal association, or where the treatment and outcome share a
common effect, and adjustment is made for this common effect, or when the effect of the treat-
ment on the outcome is mediated by a variable which is conditioned upon. In each case, the
observed association will not reflect a causal association. Causal directed acyclic graphs clarify
strategies for confounding control.

• Measurement – a recorded trace of a variable, such as a column in a dataset. When placing mea-
surements within causal settings, we call measurements reporters.

• Measurement error – a misalignment between the true state of a variable and its reported state.
For example, ‘Alice was born on 30 November; records were lost, and her birthday was recorded
as 1 December’.

• Population – an abstraction from statistics, denoting the set of all individuals defined by certain
features. Albert belongs to the set of all individuals who ignore instructions.

• Super-population – an abstraction, the population of all possible individuals of a given kind.
Albert and Alice belong to a super-population of hominins.

• Restricted population – population p is restricted relative to another population P if the indivi-
duals p∈ P share some but not all features of P. ‘The living’ is a restriction of hominins.

• Target population – a restriction of the super-population whose features interest investigators. An
investigator who defines their interests is a member of the population of ‘good investigators’.

• Source population – the population from which the study’s sample is drawn. Investigators wanted
to recruit from a general population but recruited from the pool of first-year university psych-
ology students.

• Sample population at baseline – or equivalently the ‘analytical sample population.’ The abstract set
of individuals from which the units in a study at treatment assignment belong, e.g. ‘the set of all
first-year university psychology students who might end up in this study’. Unless stated otherwise,
we will consider the baseline analytic sample population to represent the source population; we will
consider the analytic population at baseline to be representative of the target population.

• Selection into the analytic sample – selection occurs and is under investigator control when a tar-
get population is defined from a super-population or when investigators apply eligibility criteria
for inclusion in the analytic sample. Selection into the sample is often out of the investigator’s
control. Investigators might aspire to answer questions about all of humanity but find themselves
limited to undergraduate samples. Investigators might sample from a source population but recover
an analytic sample that differs from it in ways they cannot measure, such as mistrust of scientists.
There is typically attrition of an analytic sample over time, and this is not typically fully within
investigator control. Because the term ‘selection’ has different meanings in different areas of
human science, we will speak of ‘target population restriction at the start of study’. Note that to
evaluate this bias, it is important for investigators to state a causal effect of interest with respect
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to the full data that include the counterfactual quantities for the treatments to be compared in a
clearly defined target population where all members of the target population are exposed to
each level of treatment to be contrasted (Lu et al., 2022; Westreich et al., 2017).

• (Right) censored analytic sample at the end of study – right censoring is generally uninformative if
there is no treatment effect for everyone in the baseline population (the sharp causal null hypoth-
esis). Censoring is informative if there is an effect of the treatment, and this effect varies in at
least one stratum of the baseline population (Hernán, 2017). If no correction is applied, unbiased
effect estimates for the analytic sample will bias causal effect estimates for the target population
in at least one measure of effect (Greenland, 2009; Lash et al., 2020; VanderWeele, 2012). We call
such bias from right censoring ‘target population restriction at the end of study’. Note again that
to evaluate this bias, the causal effect of interest must be stated with respect to the full data that
includes the counterfactual quantities for the treatments to be compared in a clearly defined tar-
get population where all members of the target population are exposed to each level of treatment
to be contrasted (Westreich et al., 2017).

• Target population restriction bias – bias occurs when the distribution of effect modifiers in the
analytic sample population differs from that in the target population, at the start, at the end,
or throughout the study. Here we consider target population restriction bias at the start of
study and target population restriction bias at the end of study. If this bias occurs at the start
of the study, it will generally occur at the end of the study (and at intervals between), except
by accident. We require validity to be non-accidental.

• Generalisability – a study’s findings generalise to a target population if the effects observed in the
analytic sample at the end of study are also valid for the target population for structurally valid
reasons (i.e. non-accidentally).

• Transportability – when the analytic sample is not drawn from the target population, we cannot
directly generalise the findings. However, we can transport the estimated causal effect from the
source population to the target population under certain assumptions. This involves adjusting for dif-
ferences in the distributions of effect modifiers between the two populations. The closer the source
population is to the target population, the more plausible the transportability assumptions and the
less we need to rely on complex adjustment methods see (Refer to supplementary materials S2).

• Marginal effect – typically a synonym for the average treatment effect – always relative to some
population specified by investigators.

• Intention-to-treat effect – the marginal effect of random treatment assignment.
• Per-protocol effect – the effect of adherence to a randomly assigned treatment if adherence was
perfect (Hernán & Robins 2017). We have no guarantee that the intention-to-treat effect will be
the same as the per-protocol effect. A safe assumption is that:

ÂTEPer-Protocol
target = ÂTEIntention-to-Treat

target

When evaluating evidence for causality, in addition to specifying their causal contrast, effect measure
and target population, investigators should specify whether they are estimating an intention-to-treat or
per-protocol effect (Hernán, 2004; Tripepi et al., 2007).

• WEIRD – a sample of ‘western, educated, industrialised, rich, and democratic societies’ (Henrich
et al., 2010).

• weird (wrongly estimated inferences owing to inappropriate restriction and distortion) – a causal
effect estimate that is not valid for the target population, either from confounding bias, measure-
ment error bias, target population restriction at the start of study, or target population restriction
at the end of study.

For discussion of these concepts refer to Dahabreh et al. (2021), Imai et al. (2008), Cole and Stuart
(2010) and Westreich et al. (2017). A clear decomposition of key concepts needed to external validity –
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or what we call ‘target validity’ – is given in Imai et al. (2008). For a less technical, pragmatically useful
discussion, refer to Stuart et al. (2018). Note that terminology differs across the causal inference lit-
erature. See supplementary materials S1 for a causal inference glossary.

Graphical conventions
• A – denotes the ‘treatment’ or ‘exposure’, a random variable, ‘the cause’.
• Y – denotes the outcome or response, measured at the end of the study. Y is the ‘effect’.
• L – denotes a measured confounder or set of confounders.
• U – denotes an unmeasured confounder or confounders.
• R – denotes randomisation to treatment condition (R � A).
• Node – denotes characteristics or features of units within a population on a causal diagram, that is, a
‘variable’. In causal directed acyclic graphs, nodes are drawn with respect to the target population,
which is the population for whom investigators seek causal inferences (Suzuki et al., 2020).
Time-indexed nodes: Xt denotes relative chronology.

• Edge without an Arrow ( ) – path of association, causality not asserted.
• Red edgewithout an arrow ( ) –Confounding path, ignoring arrows to clarify statistical dependencies.
• Arrow (→) – denotes a causal relationship from the node at the base of the arrow (a ‘parent’) to the
node at the tip of the arrow (a ‘child’). In causal directed acyclic graphs, it is conventional to refrain
from drawing an arrow from treatment to outcome to avoid asserting a causal path from A to Y
because we aim to ascertain whether causality can be identified for this path. All other nodes
and paths – including the absence of nodes and paths – are typically assumed.

• Red arrow ( ) – denotes a path of non-causal association between the treatment and outcome.
Despite the arrows, this path is associational and may flow against time.

• Open blue arrow ( ) – denotes effect modification, which occurs when the effect of treatment
varies within levels of a covariate. We do not assess the causal effect of the effect modifier on the out-
come, recognising that itmay be incoherent to consider intervening on the effectmodifier. However, if
the distribution of effect modifiers in the analytic sample population differs from that in the target
population, then at least one measure of causal effect will differ between the two populations.

• Boxed variable ( )– denotes conditioning or adjustment for X.
• Red-boxed variable ( ) – highlights the source of confounding bias from adjustment.
• Dashed circle ( ) – denotes no adjustment is made for a variable (implied for unmeasured
confounders).

• G – names a causal diagram.

• Split node (SWIGs) ( ) – convention used in single world intervention graphs (SWIGs)
that allows for factorisation of counterfactuals by splitting a node at an intervention with post-
intervention nodes relabelled to match the treatment. We introduce single world intervention
graphs in Part 4.

• Unobserved node (SWIGs) ( ) – our convention when using single world intervention graphs to

denote an unobserved node (SWIGs): X unmeasured.

Causal directed acyclic graphs (DAGs)

Judea Pearl proved that, based on assumptions about causal structure, researchers can identify causal
effects from joint distributions of observed data (Pearl, 1995, 2009). The rules of d-separation are given
in Table 1.

Pearl’s rules of d-separation can be stated as follows:

• Fork rule ( ) –B and C are independent when conditioned on A (B
∐

C|A).
• Chain rule ( ) – conditioning on B blocks the path between A and C (A

∐
C|B).

• Collider rule ( )–A and B are independent until conditioned on C, which introduces
dependence .
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Table 1 shows causal directed acyclic graphs corresponding to these rules. Because all causal relation-
ships can be assembled from combinations of the five structures presented in Table 1, we can use causal
graphs to evaluate whether and how causal effects may be identified from data (Bulbulia, 2024b).

Pearl’s general identification algorithm is known as the ‘back door adjustment theorem’ (Pearl, 2009).

Backdoor adjustment
In a causal DAG, a set of variables L satisfies the backdoor adjustment theorem relative to the treat-
ment A and the outcome Y if L blocks every path between A and Y that contains an arrow pointing
into A (a backdoor path). Formally, L must satisfy two conditions:

(1) No path condition – no element of L is a descendant of A.
(2) Blocking condition – L blocks all backdoor paths from A to Y.

If L satisfies these conditions, the causal effect of A on Y can be estimated by conditioning on L (Pearl,
2009).

Effect-modification on causal directed acyclic graphs

The primary function of a causal directed acyclic graph is to allow investigators to apply Pearl’s back-
door adjustment theorem to evaluate whether causal effects may be identified from data, as shown in
Table 1. We have noted that modifying a causal effect within one or more strata of the target popu-
lation opens the possibility for biased average treatment effect estimates when the distribution of these
effect modifiers differs in the analytic sample population (Bulbulia, 2024c).

We do not generally represent non-linearities in causal directed acyclic graphs, which are tools for
obtaining relationships of conditional and unconditional independence from assumed structural

Table 1. Five elementary causal structures in a causal directed acyclic graph

Five Elementary Causal Structures

Structure Causal DAG Explanation Implication

Two variables

1. Causality Absent A B A and B have no causal effect on each other A
∐

B

2. Causality Present A causally affects B, and they are associated A B

Three variables

3. Fork A causally affects both B and C; B and C are
conditionally independent given A

B
∐

C|A

4. Chain C is affected by B which is, in turn, affected
by A; A and C are conditionally
independent given B

A
∐

C|B

5. Collider C is affected by both A and B, which are
independent; conditioning on C induces
association between A and B

A B|C

Key: , a directed edge, denotes causal association. The absence of an arrow denotes no causal association. Rules of d-separation: In a
causal diagram, a path is ‘blocked’ or ‘d-separated’ if a node along it interrupts causation. Two variables are d-separated if all paths
connecting them are blocked or if there are no paths linking them, making them conditionally independent. Conversely, unblocked paths
result in ‘d-connected’ variables, implying statistical association. Refer to Pearl (1995).
Note that ‘d’ stands for ‘directional’.
Implication: G denotes a causal directed acyclic graph (causal DAG). P denotes a probability distribution function. Pearl proved that
independence in a causal DAG (B

∐
C|A)G implies probabilistic independence B

∐
C|A)P; likewise if (B

∐
C|A)P holds in all distributions

compatible with G, it follows that (B∐ C|A)G (refer to Pearl 2009, p.61.) We read causal graphs to understand the implications of causality for
relationships in observable data. However, reading causal structures from data is more challenging because the relationships in observable
data are typically compatible with more than one (and typically many) causal graphs.
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relationships encoded in a causal diagram that may lead to a non-causal treatment/outcome associ-
ation (Bulbulia, 2024b).

Table 2 presents our convention for highlighting a relationship of effect modification in settings
where (1) we assume no confounding of treatment and outcome and (2) there is effect modification
such that the effect of A on Y differs in at least one stratum of the target population.

To focus on effect modification, we do not draw a causal arrow from the direct effect modifier F to
the outcome Y. This convention is specific to this article (refer to Hernán & Robins, 2024: 126–127, for
a discussion of ‘non-causal’ arrows).

Part 1: how measurement error bias makes your causal inferences weird (wrongly estimated
inferences owing to inappropriate restriction and distortion)

Measurements record reality, but they are not always accurate. Whenever variables are measured with
error, our results can be misleading. Every study must therefore consider how its measurements might
mislead.

Causal graphs can deepen understanding because – as implied by the concept of ‘record’ – there are
structural or causal properties that give rise to measurement error. Measurement error can take various
forms, each with distinct implications for causal inference:

• Independent (undirected)/uncorrelated – errors in different variables do not influence each other.
• Independent (undirected) and correlated – errors in different variables are related through a
shared cause.

• Dependent (directed) and uncorrelated – errors in one variable influence the measurement of
another, but these influences are not related through a shared cause.

• Dependent (directed) and correlated – errors in one variable influence the measurement of
another, and these influences are related through a shared cause (Hernán & Cole, 2009;
VanderWeele & Hernán, 2012).

The six causal diagrams presented in Table 3 illustrate structural features of measurement error bias
and clarify how these structural features compromise causal inferences.

Understanding the structural features of measurement error bias will help us understand why
measurement error bias cannot typically be evaluated with statistical models and will prepare us to
understand how target-population restriction biases are linked to measurement error.

Example 1: uncorrelated non-differential errors under sharp null – no treatment effect

Table 3 G1 illustrates uncorrelated non-differential measurement error under the ‘sharp-null,’ which
arises when the error terms in the exposure and outcome are independent. In this setting, the
measurement error structure is not expected to produce bias.

For example, consider a study investigating the causal effect of beliefs in big Gods on social com-
plexity in ancient societies. Imagine that societies either randomly omitted or inaccurately recorded
details about their beliefs in big Gods and their social complexities. This might occur because of

Table 2. The five elementary structures of causality which all directed acyclic graphs are composed

Conventions for Effect Modification: We assume

Symbol Meaning Example

Boxed blue variable and blue path: observed effect-modification.
Blue arrow need not have a causal interpretation

Dashed blue circle and blue path: effect-modifier not conditioned upon.
Blue arrow need not have a causal interpretation
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varying preservation in the records of cultures which is unrelated to the actual beliefs or social
complexity. In this scenario, we imagine the errors in historical records for beliefs in big Gods and
for social complexity are independent. When the treatment is randomised, uncorrelated and
undirected errors will generally not introduce bias under the sharp null of no treatment effect for
any unit when all backdoor paths are closed. However, if confounders are measured without error
this may open a backdoor path from treatment to outcome. For example, Robins and Hernán
(2008: 2216) discuss how in non-experimental settings, mismeasured confounders can introduce

Table 3. Examples of measurement error bias

Structural Representation of Measurement Error Bias

Bias Causal Diagram

1 Uncorrelated errors under
sharp null: no
treatment effect: Under
sharp null, assuming
confounders are not
measured with error,
uncorrelated
measurement errors are
generally not expected
to lead to bias

2 Uncorrelated errors under
treatment effect:
Outside sharp null,
uncorrelated
measurement errors
distort targeted effects

3 Correlated errors: Related,
systematic errors in A
and Y measurements
that are related

4 Directed error: exposure
effects error of
outcome: A affects Y’s
measurement error

5 Directed error: outcome
affects error of
exposure: Y affects A’s
measurement error

6 Correlated/directed error:
Both systematic and
correlated errors in A
and Y measurements are
from an unmeasured
source of dependency

Key: A denotes the treatment; Y denotes the outcome; U denotes an unmeasured confounder; L denotes measured confounders;

asserts causality; indicates a latent variable X measured by proxy X′; indicates a path for bias linking A to Y absent

causation; biased path for treatment effect in the target population; indicates that conditioning on X introduces bias;

indicates that the error in a measured variable X′ modifies the effect of A → Y, such that the = ÂTE.
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bias even when the measurement errors of the treatment and outcome are uncorrelated and undirected
and there is no treatment effect. This is because mismeasured confounders will not control for con-
founding bias. We present an illustration of this bias in Table 6, G_3 where we discuss challenges to
comparative research in which the accuracy of confounder measurements varies across the sites to be
compared.

Example 2: uncorrelated non-differential errors ‘off the null’ (true treatment effect) biases true
effects towards the null

Table 3 G2 illustrates uncorrelated non-differential measurement error, which arises when the error
terms in the exposure and outcome are independent This bias is also called information bias (Lash
et al., 2009). In this setting, bias will often attenuate a true treatment effect. However, there are no
guarantees that uncorrelated undirected measurement error biases effect estimates towards the null
(Jurek et al., 2005, 2006, 2008; Lash et al., 2009: 93).

Consider again the example of a study investigating a causal effect of beliefs in big Gods on social
complexity in ancient societies, where there are uncorrelated errors in the treatment and outcome.
In this case, measurement error will often make it seem that the true causal effects of beliefs in big
Gods are smaller than they are, or perhaps even that such an effect is absent. Often but not always:
again, attenuation of the effect estimate is not guaranteed, and mismeasured confounders will open
backdoor paths. We can, however, say this: uncorrelated undirected measurement error in the presence
of a true effect leads to distortion of that effect, inviting weird results (wrongly estimated inferences
owing to inappropriate restriction and distortion).

Example 3: correlated errors non-differential (undirected) measurement errors

Table 3 G3 illustrates the structure of correlated non-differential (undirected) measurement
error bias, which arises when the error terms of the treatment and outcome share a common
cause.

Consider an example: imagine that societies with more sophisticated record-keeping systems tend
to offer more precise and comprehensive records of both beliefs in big Gods and of social complexity.
In this setting, it is the record-keeping systems that give the illusion of a relationship between big Gods
and social complexity. This might occur without any causal effect of big-God beliefs on measuring
social complexity or vice versa. Nevertheless, the correlated sources of error for both the exposure
and outcome might suggest causation in its absence.

Correlated non-differential measurement error invites weird results (wrongly estimated inferences
owing to inappropriate restriction and distortion).

Example 4: uncorrelated differential measurement error: exposure affects error of outcome

Table 3 G4 illustrates the structure of uncorrelated differential (or directed) measurement error, where
a non-causal path is opened linking the treatment, the outcome or a common cause of the treatment
and outcome.

Continuing with our previous example, imagine that beliefs in big Gods lead to inflated records
of social complexity in a culture’s record-keeping. This might happen because the record keepers
in societies that believe in big Gods prefer societies to reflect the grandeur of their big Gods.
Suppose further that cultures lacking beliefs in big Gods prefer Bacchanalian-style feasting to
record-keeping. In this scenario, societies with record keepers who believe in big Gods would
appear to have more social complexity than equally complex societies without such record
keepers.

Uncorrelated directed measurement error bias also invites weird results (wrongly estimated infer-
ences owing to inappropriate restriction and distortion).

12 Joseph A. Bulbulia



Example 5: uncorrelated differential measurement error: outcome affects error of exposure

Table 3 G5 illustrates the structure of uncorrelated differential (or directed) measurement error, this
time when the outcome affects the recording of the treatment that preceded the outcome.

Suppose that ‘history is written by the victors’. Can we give a structural account of measurement
error bias arising from such selective retention of the past? Suppose that social complexity causes
beliefs in big Gods. Perhaps kings create big Gods after the image of kings. If the kings prefer a history
in which big Gods were historically present, this might bias the historical record, opening a path of
association that reverses the order of causation. Such results would be weird (wrongly estimated infer-
ences owing to inappropriate restriction and distortion).

Example 6: uncorrelated differential error: outcome affects error of exposure

Table 3 G6 illustrates the structure of correlated differential (directed) measurement error, which
occurs when the exposure affects levels of already correlated error terms.

Suppose social complexity produces a flattering class of religious elites who produce vainglorious
depictions of kings and their dominions and also of the extent and scope of their society’s beliefs
in big Gods. For example, such elites might downplay widespread cultural practices of worshipping
lesser gods, inflate population estimates and overstate the range of the king’s political economy.
In this scenario, the errors of the exposure and of the outcome are both correlated and differential.

Results based on such measures might be weird (wrongly estimated inferences owing to inappro-
priate restriction and distortion).

Summary

In Part 1, we examined four types of measurement error bias: independent, correlated, dependent and
correlated dependent. The structural features of measurement error bias clarify how measurement
errors threaten causal inferences. Considerably more could be said about this topic. For example,
VanderWeele and Hernán (2012) demonstrate that, under specific conditions, we can infer the direc-
tion of a causal effect from observed associations. Specifically, if:

(1) the association between the measured variables A′
1 and Y ′

2 is positive;
(2) the measurement errors for these variables are not correlated; and
(3) we assume distributional monotonicity for the effect of A on Y (applicable when both are

binary);

then a positive observed association implies a positive causal effect from A to Y. Conversely, a negative
observed association provides stronger evidence for a negative causal effect if the error terms are
positively correlated than if they are independent. This conclusion relies on the assumption of distribu-
tional monotonicity for the effect of A on Y. For now, the four elementary structures of measurement
error bias will enable us to clarify the connections between the structures of measurement error bias,
target population restriction bias at the end of a study, and target restriction bias at the start of a study.

We will return to measurement error again in Part 4. Next, we focus on structural features of bias when
there is an inappropriate restriction of the target population in the analytic sample at the end of study.

Part 2: how target population restriction bias at the end of study makes your causal inferences
weird (wrongly estimated inferences owing to inappropriate restriction and distortion)

Suppose the analytic sample population at the start of a study matches the source population from
which it is drawn and that this source population aligns with the target population. In this setting,
at the start of study, if all goes well, there is hope that our results may generalise to the target popu-
lation. Right-censoring, typically abbreviated to ‘censoring’ and also known as ‘attrition and non-
response’, may bias causal effect estimates, spoiling our hopes for valid causal inferences, in one of
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two ways: by opening pathways of bias (distortion) or by inappropriately restricting the analytic sam-
ple population at the end of a study so that it is no longer representative of the target population. Both
forms of bias will make causal inferences weird (wrongly estimated inferences owing to inappropriate
restriction and distortion).

Example 1: confounding by common cause of treatment and attrition

Table 4 G1 illustrates confounding by common cause of treatment and outcome in the censored such
that the potential outcomes of the population at baseline Y(a) may differ from those of the censored
population at the end of study Y

′
(a) such that Y

′
(a) ≠ Y(a).

Suppose investigators are interested in whether religious service attendance affects volunteering.
Suppose that an unmeasured variable, loyalty, affects religious service attendance, attrition and volun-
teering. The structure of this bias reveals an open backdoor path from the treatment to the outcome.

We have encountered this bias before. The structure we observe here is one of correlated
measurement errors (Table 3 G3). In this example, attrition may exacerbate measurement error bias
by opening a path from

Table 4. Five examples of right-censoring bias

Structural Representation of Biases from Right-Censoring

Bias Description

1 Confounding by common cause of
treatment and attrition

2 Treatment affects censoring

3 No treatment effect when outcome
causing censoring: Bias is not
expected under the strict null

4 Treatment effect when outcome
causes censoring and there is a
true treatment effect. Expect a
biased effect estimate for the
target population on at least one
causal contrast scale

5 Treatment effect and
effect-modifiers differ in
censored (restriction bias
without confounding)

Key:
A denotes the treatment;
Y denotes the outcome;
U denotes an unmeasured confounder;
R denotes randomisation into treatment;

asserts causality
biased path for treatment effect in the target population.

indicates a latent variable X measured by proxy X′.

indicates a path for bias linking A to Y absent causation.

indicates that conditioning on X introduces bias.

indicates effect modification of by X.
indicates effect modification of by UDF
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The results obtained from such a study would be distorted – that is, weird (wrongly estimated infer-
ences owing to inappropriate restriction and distortion). Here, distortion operates through the restric-
tion of the target population in the analytic sample population at the end of the study.

Example 2: treatment affects censoring

Table 4 G2 illustrates bias in which the treatment affects the censoring process. Here, the treatment
causally affects the outcome reporter but does not affect the outcome itself.

Consider a study investigating the effects of mediation on well-being. Suppose there is no treatment
effect but that Buddha-like detachment increases attrition. Suppose those with lower Buddha-like
detachment report well-being differently than those with higher Buddha-like detachment. Buddha-
like detachment is not a cause of well-being, we suppose; however, we also suppose that it is a
cause of measurement error in the reporting of well-being. In this setting, we discover a biasing
path that runs: ( ). Note that there is no confounding bias here because there is no
common cause of the treatment and the outcome.

We have encountered this structural bias before. The structure we observe here is one of directed
uncorrelated measurement error (Table 3 G4). Randomisation ensures no backdoor paths. However, if
the intervention affects both attrition and how the outcome is reported the treatment will cause meas-
urement error bias (note this is not confounding bias because the treatment and outcome do not share
a common cause.)

The results obtained from such a study risk distortation, inviting weirdness (wrongly estimated
inferences owing to inappropriate restriction and distortion). Here, distortion operates through the
restriction of the target population at the end of the study, assuming the analytic sample at the
start of the study represented that target population (or was weighted to represent it).

Example 3: no treatment effect when outcome causing censoring

Table 4 G3 illustrates the structure of bias when there is no treatment effect yet the outcome affects
censoring.

If G3 faithfully represents reality, under the sharp null we would generally not expect bias in the
average treatment effect estimate from attrition. The structure we observe here is again familiar: it
is one of undirected uncorrelated measurement error (Table 3 G1). However, as before, at the start
of study it is generally unclear whether the sharp null holds (if it were clear, there would be no motiv-
ation for the study). In theory, however, although the analytic sample population in the setting we have
imagined would be a restriction of the target population, such a restriction of the target population is
not expected to bias the null result. Again, we consider this example for its theoretical interest; no stat-
istical test could validate what amounts to a structural assumption of the sharp null.

Example 4: treatment effect when outcome causes censoring and there is a true treatment effect

Table 4 G4 illustrates the structure of bias when the outcome affects censoring in the presence of a
treatment effect. If the true outcome is an effect modifier of the measured outcome, we can expect
bias in at least one measure of effect (e.g. the risk ratio or the causal difference scale). We return
to this form of bias with a worked example in Part 4, where we clarify how such bias may arise
even without confounding. We shall see that the bias described in Table 4 G4 is equivalent to meas-
urement error bias. For now, we note that the results of the study we have imagined here would be
weird (wrongly estimated inferences owing to inappropriate restriction and distortion).

Example 5: treatment effect and effect-modifiers differ in censored (restriction bias without
confounding)

Table 4 G5 represents a setting in which there is a true treatment effect, but the distribution of effect-
modifiers – variables that interact with the treatment – differs among the sample at baseline and the
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sample at the end of the study. Knowing nothing else, we might expect this setting to be standard.
Where measured variables are sufficient to predict attrition, that is, where missingness is at random,
we can obtain valid estimates for a treatment effect by inverse probability of treatment weighting (Cole
& Hernán, 2008; Leyrat et al., 2021) or by multiple imputation – on the assumption that our models
are correctly specified (Shiba & Kawahara, 2021). However, if missingness is not completely at ran-
dom, or if our models are otherwise misspecified, then causal estimation is compromised
(Malinsky et al., 2022; Tchetgen Tchetgen & Wirth, 2017).

Note that Table 4 G5 closely resembles a measurement structure we have considered before, in

Part 1: Table 3 G2. Replacing the unmeasured effect modifiers and UΔF in Table 4 G5 for

in Table 3 G2 reveals that the unmeasured effect modification in the present setting can be viewed
as an example of uncorrelated independent measurement error when there is a treatment effect
(i.e. censoring ‘off the null’.)

In the setting we describe in Table 4 G5 there is a common cause of the treatment and outcome.
Nevertheless, the analytic sample population at the end-of-study is an undesirable restriction of the
target population because the marginal effect estimate for this analytic sample population will differ
from that of the target population (refer to supplementary materials S4 for a simulation that covers
applies to this setting). We infer that results in this setting just described permit weirdness (wrongly
estimated inferences owing to inappropriate restriction and distortion) because censoring leads to
inappropriate restriction.

Summary

In this section, we examined how right-censoring, or attrition, can lead to biased causal effect
estimates. Even without confounding bias, wherever the distribution of variables that modify
treatment effects differs between the analytic sample population at the start and end of the
study, the average treatment effects may differ, leading to biased estimates for the target popula-
tion. To address such bias, investigators must ensure that the distribution of potential outcomes
at the end of the study corresponds with that of the target population. Again, methods such as
inverse probability weighting and multiple imputation can help mitigate this bias (refer to
Bulbulia, 2024a).

The take-home message is this: attrition is nearly inevitable, and if attrition cannot be checked it
will make results weird (wrongly estimated inferences owing to inappropriate restriction and distor-
tion). Refer to supplementary materials S3 for a mathematical explanation of why effects differ
when the distribution of effect modifiers differs. Refer to supplementary materials S4 for a data simu-
lation that makes the same point.

Next, we investigate target population restriction bias at the start of the study (left-censoring). We
shall discover that structural motifs of measurement error bias reappear.

Part 3: how target population restriction bias at the start of study makes your causal inferences
weird (wrongly estimated inferences owing to inappropriate restriction and distortion)

Consider target-restriction bias that occurs at the start of a study. There are several failure modes.
For example, the source population from which participants are recruited might not align with the
target population. Moreover, even where there is such alignment, the participants recruited into a
study – the analytic sample – might not align with the source population. For simplicity, we imagine
the analytic sample population at the start of the study accurately aligns with the source population.
What constitutes ‘alignment’? We say the sample is unrestrictive of the target population if there are
no differences between the sample and target population in the distribution both of confounders
(common causes of treatment and outcome) and of the variables that modify treatment effects
(effect modifiers). Proof of alignment cannot be verified with data (refer to supplementary materials
S3).
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Target population restriction bias at baseline can be collider-restriction bias

Table 5 G1 illustrates an example of target population restriction bias at baseline in which there is
collider-restriction bias.

Suppose investigators want to estimate the causal effects of regular physical activity, A, and heart
health, Y, among adults visiting a network of community health centres for routine check-ups.

Suppose there are two unmeasured variables that affect selection into the study S = 1:

(1) Health awareness, U1, an unmeasured variable that influences both the probability of partici-
pating in the study, S = 1 , and the probability of being physically active, A. Perhaps people
with higher health awareness are more likely to (1) engage in physical activity and (2) partici-
pate in health-related studies.

(2) Socioeconomic status (SES), U2, an unmeasured variable that influences both the probability of
participating in the study, S = 1 , and heart health, Y. We assume that individuals with higher
SES have better access to healthcare and are more likely to participate in health surveys; they
also tend to have better heart health from healthy lifestyles: joining expensive gyms, juicing,
long vacations and the like.

As presented in Table 5 G1, there is collider-restriction bias from conditioning on S = 1:

(1) U1 – because individuals with higher health awareness are more likely to be both physically
active and participate in the study, the subsample over-represents physically active individuals.
This overestimates the prevalence of physical activity, setting up a bias in overstating the poten-
tial benefits of physical activity on heart health in the general population.

(2) U2 – because individuals with higher SES may have better heart health from SES-related fac-
tors, this opens a confounding path from physical activity and heart health through the
selected sample, setting up the investigators for the potentially erroneous inference that phys-
ical activity has a greater positive impact on heart health than it actually does in the general
population. The actual effect of physical activity on heart health in the general population
might be less pronounced than observed.

Table 5. Collider-Stratification bias at the start of a study (‘M-bias’)

Selection Restriction Before Start of Study Arising from Collider Stratification Bias

Bias Causal Graph

1 Problem: Sample selection may induce M-bias
(M-bias): threat to external validity

2 Response: (a) Do not restrict sample;
(b) condition on descendent of U1 or U2
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It might seem that researchers would need to sample from the target population. However, Table 5 G
makes it clear that by adjusting for health awareness or SES or a proxy for either, researchers may
block the open path arising from collider stratification bias. After such conditioning, we should expect
a null effect in the sample population just as in the target population.

The next series of examples illustrates challenges to obtaining valid causal effect estimates in the
presence of interactions.

Target population restriction bias at baseline without collider-restriction bias at baseline

Problem 1: the target population is not WEIRD (western, educated, industrialised, rich and democratic);
the analytic sample population is WEIRD
Table 6 G1.1 presents a scenario for target population restriction bias at baseline. When the analytic
sample population obtained at baseline differs from the target population in the distributions of vari-
ables that modify treatment effects, effect estimates may be biased, even without confounding bias.
Results may be weird without arising from confounding bias. This problem has been recently consid-
ered in Schimmelpfennig et al. (2024).

Suppose we are interested in the effects of political campaigning but only sample from our preferred
political party. Results for the general population will be distorted if the distribution of effect modifiers of
the treatment varies by party. One such effect modifier might be ‘party affiliation’. This valid concern
underscores the call for broader sampling in the human sciences. WEIRD samples will not be inform-
ative for science generally whenever the distribution of effect modifiers among humans differs from
those of the restricted population of humans from which WEIRD analytic samples are drawn.

Note that we have encountered Table 6 G1.1 twice before. It is the same causal directed acyclic graph
as we found in Table 5 G5. As we did before, we may replace the unmeasured effect modifiers and
UΔF for in Table 3 G2 and observe that we recover uncorrelated measurement error ‘off the null’
(i.e. when there is a true treatment effect).

The structural similarity suggests options might be easily overlooked. Where the distributions of
treatment-effect modifiers are known and measured and where census (or other) weights are available
for the distributions of effect modifiers in the target population, it may be possible to weight the sam-
ple to more closely approximate the target population parameters of interest (Stuart et al., 2015).

Let ÂTEtarget denote the population average treatment effect for the target population.
Let ÂTErestricted denote the average treatment effect at the end of treatment. Let W denote a set of vari-
ables upon which the restricted and target populations structurally differ. We say that results generalise
if we can ensure that:

ÂTEtarget = ÂTErestricted

or if there is a known function such that

ATEtarget ≈ fW(ATErestricted, W)

In most cases, fW will be unknown, as it must account for potential heterogeneity of effects and unob-
served sources of bias. For further discussion on this topic, see Imai et al. (2008), Cole and Stuart
(2010) and Stuart et al. (2018).

Table 6 G1.2 provides a graphical representation of the solution.
Importantly, if there is considerable heterogeneity across humans, then we might not know how to

interpret the average treatment effect for the target population of all humans even if this causal effect can
be estimated. In comparative research, we are often precisely interested in treatment heterogeneity.
If we seek explicitly comparative models, however, we will need to ensure the validity of estimates
for every sample that we compare. If one stratum in the comparative study is weird (wrongly estimated
inferences owing to inappropriate restriction and distortion), errors will propagate to the remainder of
the comparative study. To understand such propogation consider scenarios where the target
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Table 6. The association in the population of selected individuals differs from the causal association in the target
population. Hernán (2017) calls this scenario ‘selection bias off the null’. Lu et al. (2022) call this scenario ‘Type 2
selection bias’. We call this bias ‘target population restriction bias at baseline’

Target Population Restriction Before Start of Study

Bias Causal Graph

1 Problem: Target
population is not
WEIRD; sample
population is WEIRD

Response: Sample from
the target population
(with assumptions)

2 Problem: Target
population is WEIRD;
sample population is
not WEIRD

Response: Eligibility
restrictions

3 Problem: Correlated
measurement error of
treatment and outcome
in an overly ambitious
target population

Response: Eligibility
restrictions for a less
ambitious target

4 Problem: Correlated
measurement error of
measured
effect-modifiers for an
overly ambitious target
population

Response: Eligibility
restrictions for a less
ambitious target
population

Key: A denotes the treatment; Y denotes the outcome; asserts causality; indicates conditioning on variable X; indicates

fixing co-variate to level X = 1; indicates effect modification of by F; biased path for treatment effect arising from

confounding by a common cause; biased path for treatment effect in target population; indicates a latent variable X

measured by proxy X′; indicates that conditioning on X introduces bias.
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population is a deliberate restriction of the the source population from which the analytic sample at
baseline is drawn. We deliberately seek restriction wherever ‘eligibility criteria’ are desirable for a study.
Although this point is perhaps obvious, Although this point is perhaps obvious, many observational
studies do not report eligibility criteria.

Example 2: the target population is a sub-sample of WEIRD (western, educated, industrialised, rich and
democratic); the analytic sample population is not WEIRD enough.
Table 6 G2.1 presents a scenario where the source population does not meet eligibility criteria.
Consider again the question of whether vasectomy affects a sense of meaning and purpose in life.
Suppose further we want to evaluate effects in New Zealand among men over the age of 40 who have
no prior history of vasectomy, and who are in relationships with heterosexual partners. The target popu-
lation is a stratum of WEIRD population (western, educated, industrialised, rich and democratic). That is,
the WIERD population would be too broad for scientific interest. We should not sample from young
children, the elderly or any who do not qualify. Not only is it clear that a narrow population is desirable
for many scientific questions, but also it is easy to imagine settings in comparative human science for
which a fully unrestricted human population would be undesirable. In causal inference, we attempt to
emulate ideal (although typically implausible) experiments with ‘real world’ data. Just as eligibility criteria
are often useful for isolating populations of interest in experimental designs, so too are eligibility criteria
often useful for isolating populations of interest in real-world ‘target trials’ (Hernán et al., 2008).

Note again Table 6 G2.1 is identical to Table 4 G5 – right-censoring bias with effect modifiers in an
otherwise unconfounded study. The structure is also similar to Table 3 G2: the problem is structurally
that of uncorrelated measurement error ‘off the null’. Where it is the defusion of the effect-modifiers
that causes we may fix the measurement error by restricting the sample.

Table 6 G2.2 presents a solution. Ensure eligibility criteria are scientifically relevant and feasible.
Sample from this eligible population. With caution, apply survey or other weights where these weights
enable a closer approximation to the distributions of effect-modifiers in the target population. Notice
that here we avoid weird inferences (wrongly estimated inferences owing to inappropriate restriction
and distortion) by imposing greater restriction on what would otherwise be an inappropriately unre-
stricted target population.

Example 3: correlated measurement error of covariates and outcome in the absence of a treatment
effect
Table 6 G3.1 considers the threats to external validity from correlated measurement errors in the target
population arising from structured errors across heterogeneous strata. For simplicity imagine the
groups with structured errors are cultures. Even if the treatment is measured without error, multiple
sources of error may led to statitical association without causation.

Suppose we plan a cross-cultural investigation to clarify the relationship between interventions on
religious service attendance, A, and charitable giving, Y. We plan to obtain measures of covariates L
sufficient to control for confounding. Suppose we observe religious attendance so that it is not mea-
sured with error (as did Shaver et al., 2021), yet there is heterogeneity in the measurement of covariates
L and the outcome Y. For example, if charitable giving measures are included among the baseline
covariates in L, measurement errors at baseline will be correlated with outcome measures. Perhaps
in certain cultures, charitable giving is under-reported (perhaps charity is associated with the vice
of gullibility), while in others, it is over-reported (perhaps only the charitable are hired and promoted).
Suppose further that true covariates affect the treatment and outcome. As shown in Table 6 G3.1, in
this setting, multiple paths of confounding bias are open.

Moreover, because measurements are causally related to the phenomena we record, we cannot
apply statistical tests to verify whether measures are recorded with error (VanderWeele, 2022;
Vansteelandt & Dukes, 2022). Whether the phenomena that we hope to measure are functionally
equivalent across cultural settings remains unknown, and can generally only be discovered slowly,
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through patient, careful work with local experts. Although big cross-cultural projects are preferred in
certain science journals, including multiple cultures in a single analysis imposes considerable burdens
on investigators. All sources of error must be evaluated – and errors from one culture can poison the
wells in the analysis of others.

Table 6 G3.2 provides a sensible solution: restrict one’s study to those cultures where causality can
be identified. Democritus wrote, ‘I would rather discover one cause than gain the kingdom of Persia’
(Freeman, 1948). Paraphrasing Democritus, we might say, ‘I should rather discover one WEIRD cause
than the kingdom of weird comparative research’.

Example 4: correlated measurement error of effect modifiers for an overly ambitious target population
Table 6 G4.1 considers the threats to target validity from correlated measurement errors in the target
population arising from structured errors linking measurements for the effect modifiers. Here, we
discover a familiar structural bias of correlated measurement error bias Table 3 G3.

Even if the treatment is randomised so that there are no open backdoor paths, and even if the treat-
ment and outcome are measured without error, we will not be able to obtain valid estimates for
treatment-effect heterogeneity from their data, nor will we be able to apply target-sample weights
(such as census weights) to obtain valid estimates for the populations in which the measurement
errors of effect modifiers are manifest.

Table 6 G4.2 suggests that where measures of effect modification are uncertain, it is best to consider
settings in which the measurements are reliable – whether or not the settings are WEIRD (western,
educated, industrialised, rich and democratic). Moreover, in comparative settings where multiple cul-
tures are measured, unless each is proven innocent of structural measurement error bias, it is generally
best to report the results for each culture separately, without attempting comparisons.

Part 4: measurement error bias understood through single world intervention graphs

Thus far, we have repeatedly observed that all biases in causal inference relate to confounding. In Part 1,
we examined undirected/uncorrelated measurement error bias and found that measurement bias can
arise ‘off the null’ without any confounding (Table 3 G2). In Part 2, we examined population-restriction
bias at the end of a study, finding it to be a variety of undirected uncorrelated measurement error bias
(Table 4 G5). In Part 3, we examined population-restriction bias at baseline; of the five biases considered,
only one could be classified as confounding bias.

Throughout this article, we encountered challenges in using causal direct acyclic graphs to
represent biases that arise from effect modification. The blue arrows that we use to convey this bias
in causal dags might make it appear that bias occurs through action at a distance. That causal directed
acyclic graphs are limited in representing such biases should come as no surprise because causal DAGs
are designed to clarify confounding bias and not other biases (Hernán & Robins, 2024; Pearl, 2009).

To enrich our understanding of bias from measurement error bias and target population
restriction – certain forms of which occur without confounding bias – we turn to Single World
Intervention Graphs (SWIGs). These are causal diagrams that allow us to read counterfactual depend-
encies directly off a graph (Richardson & Robins, 2013a). Similar to causal DAGs, Single World
Intervention Graphs (SWIGS) are not purpose-built to evaluate measurement error and restriction
biases: they function to factorise conditional probability distributions from assumed causal structures
so that investigators may evaluate identifiability conditions – or ‘no unmeasured confounding’
(Bulbulia, 2024c). However, because Single World Intervention Graphs (SWIGS) encode assumptions
about the relationships of treatments to the counterfactual outcomes that arise after an intervention is
made, they may help us to better understand the causal mechanisms at work when there are measure-
ment error biases. We can demonstrate that there is no ‘action at distance’ in measurement error
biases. Furthermore, because target population restriction biases can be approached as measurement
error biases, our results extend to target restriction biases as well.

Single World Intervention Graphs (SWIGs) operate by ‘node-splitting’ at each intervention
(Bulbulia, 2024c; Richardson & Robins, 2013a), dividing the intervention into a random component
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and a fixed component. Nodes that follow a fixed intervention are relabelled with the value of the
intervention depicted in a SWIG. Importantly only one intervention is represented in any given
SWIG (we never observe the joint distribution of more than one intervention at a time). Single
World Intervention Templates (SWITs) are ‘graph value functions’ that we may use to generate mul-
tiple SWIGs (Richardson & Robins, 2013b). Whether we imagine a single-point treatment or sequen-
tial treatments, one reads a SWIG just as one would read a causal DAG, ensuring that there are no
backdoor paths linking the random part of the node to the outcome. The deterministic part of a
node is fixed, preventing confounding in the counterfactual future from the fixed portion of the
node unless an open backdoor path arises before a subsequent intervention such that the subsequent
intervention is no longer d-separated from the outcome. Again, although SWIGs, like causal DAGs,
are built to evaluate the ‘no unmeasured confounding’ assumption of causal inference by factorising
observed joint distributions into conditional and marginal distributions associated with a graph, the
explicit representation of counterfactual states in a SWIG makes it easier to understand how bias arises
in the absence of confounding, without supposing action at a distance.

Measurement error in the treatment biases causal contrasts because the treatment reporter is a
post-treatment collider

Table 7 G1.1 presents a single world intervention template from which we may generate two counter-
factual states of the world under two distinct interventions A = ã [ {0, 1}. We call the measurement
of the intervention a ‘reporter of A’ and denote the state of the reporter under A = ã as B(ã). In our
convention, if a node in a SWIG (or template) is unobserved, we shade it in grey. EA denotes an
unmeasured variable or set of variables that cause the reporter B(ã) to differ from ã, the fixed state
of the intervention when A is set to ã. In template Table 7 G1.1, A = ã remains unobserved. The
only observed nodes are B(ã) and Y(B(ã)), which is the potential outcome for Y as reported by
B(ã). Note that here we include reporters of the unobserved true state of the treatment directly in
our representation of the causal order as encoded in our SWIG. Table 7 G1.2 corresponds to the
assumed state of the world when the reporter of A is set to B(0). Table 7 G1.3 corresponds to the
assumed state of the world when the reporter of A is set to B(1); in this world, investigators observe
Y(B(1)). We assume that EA is independent of both A and Y(ã). However, we assume that EA causes
B(ã) to differ from the true state A = ã. As a result of this misclassification, we have no assurance
whether E[Y(B(1)) − Y(B(0))] = E[Y(1) − Y(0)]. The SWIGs make it apparent that although A is
independent of EA, A = ã and EA become statistically entangled in the reporter B(ã), and it is this
reporter, not the unobserved true state of Y(ã), that investigators record.

Consider the following example. Coach Alice randomly assigns one of two running programmes to
club runners: A = 1 (train), A = 0 (do not train). Alice is not interested in estimating the effect of ran-
dom treatment assignment (the intent-to-treat effect). Rather, she wants to understand the causal
effect of training compared with rest – a per-protocol effect. Unknown to Alice, 20% do not follow
the programme. Table Table 7 G1.1 is a SWIG template that presents bias from measurement error
in the treatment. The template serves as a ‘graph value function’ that generates SWIGs: Table 7
G1.1, in which all runners receive A = 0 (do not train), and Table 7 G1.2, in which all runners receive
A = 1 (train). Here, B(0) and B(1) denote the reporters of the level of the intervention.

Again, we note that the treatment recorded is not the per-protocol effect E[Y(1) − Y(0)] but rather
the intention-to-treat effect E[Y(B(1)) − Y(B(0))]. Generally, the effect we obtain will understate the per-
protocol effect of training both on the difference scale and the risk ratio scale. Those who were assigned to
training but rest will dilute the effect of training: E[Y(1)] . E[Y(B(1))]. Those who were assigned to rest
but who nevertheless train will inflate the expected effect of resting: E[Y(B(1))] . E[Y(1)]. Hence:

E[Y(1)− Y(0)] . E[Y(B(1))− Y(B(0))]

Note that attenuation of a true treatment effect in a setting of uncorrelated errors is not guaranteed (Jurek
et al., 2008; Lash et al., 2020). The SWIGs in Table 7 G1.1–1.3 make the general measurement bias problem
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clear: although the treatment that is estimated remains d-separated from the potential outcomes, the cau-
sal contrast that we obtain at the end of the study is not the treatment we seek and will often (although
not always) diminish a true treatment effect because the reporter under treatment is a common effect of
the unmeasured source of bias and the treatment that has been applied, and it is the outcomes under
mismeasured treatments that investigators contrast.

Measurement error in the outcome biases causal contrasts because the unmeasured error of the
outcome is an effect modifier of the outcome reporter

Table 7 G2.1 presents a single world intervention template from which we may generate two counter-
factual states of the world under two distinct interventions A = ã [ {0, 1}. Here, the treatment is

Table 7. Uncorrelated/Undirected Measurement Error in Single-World Intervention Graph. There is no ‘action at a
distance’: all measurement errors have causes; errors entering reporters of the treatment and outcome clarify that the
treatment reporter induces collider bias, and the outcome reporter induces effect modification during estimation

Measurement Error Bias: Non-directional Uncorrelated Measurement Errors

Bias in Treatment Reporter Off-The-Null

1.1 GE[Y (B(ã))]=E[Y (ã)]

1.2 GE[Y(B(0))]=E[Y(0)]

1.3 GE[Y(B(1))]=E[Y(1)]

Bias in Outcome Reporter Off-The-Null

2.1 GE[V (Y (ã))]=E[Y(ã)]

2.2 GE[V(Y(0))]=E[Y(0)]

2.3 GE[V(Y(1)]=E[Y(1)]

Measurement Error On The Null: No Bias

1.4 GE[Y (B(∅))]=E[Y (∅)]

2.4 GE[V (Y (∅))]=E[Y(∅)]

Key: Y (ã) denotes the the true outcome; A = ã a denotes the true treatment. B(ã) denotes the mismeasured treatment; V(B(ã)) denotes the
mismeasured outcome; EA: unmeasured variable(s) that, together with A = ã cause measurement: B(ã); EY Unmeasured variable(s) that,
together with Y (ã) cause measurement: V(ã); Shaded nodes are unobserved. Treatment reporter bias: E[Y(B(ã))] = E[Y(ã)]; Outcome
reporter bias: E[V(Y (ã))] = E[Y (ã)].
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observed and recorded without error. Hence we do not include a reporter of the treatment. However,
the true outcome is not observed, but only reported with error. EY denotes the unmeasured source of
error in the reporting of Y(ã), which we assume to be independent of A and of Y. We shade these
nodes in grey because both EY and Y(ã) are not observed. The node V(Y(ã)) denotes the observed
state of Y when A = ã. In template Table 7 G2.1, A = ã remains unobserved. Table 7 G2.2 corresponds
to the assumed state of the world when A = 0 and Y(0) is reported with error as V(Y(0)). Likewise,
Table 7 G2.3 corresponds to the assumed state of the world when A = 1 and Y(1) is reported with
error as V(Y(1)). We assume that EY is independent of A and of Y. Misclassification will tend to
increase the variance of the estimated treatment effect. If the outcome is continuous, the expected dif-
ference in the mean of the outcome for the reported outcome may differ from that for the true out-
come. How bias affects the outcome will vary depending on the scale we use to evaluate such bias.

Suppose that under training, the athlete runs a marathon in 3 hours, and under rest, they run a
marathon in 4 hours. To keep figures easy, we will use round numbers. Suppose the bias in reporting
is 1 hour. Thus, we have E[Y(1)] = 3, E[Y(0)] = 4; E[V(Y(1))] = 2 and E[V(Y(0))] = 3.

ATE Difference Scale: no measurement error = E[Y(1)]− E[Y(0)] = 3− 4 = −1

ATE Difference Scale: measurement error = E[V(Y(1))]− E[V(Y(0))] = 2− 3 = −1

The effect estimates do not differ:

ATE no measurement error = ATE measurement error

However, consider this bias on the risk ratio scale:

ATE Risk Ratio Scale: no measurement error = E[Y(1)]/E[Y(0)] = 3/4 = 0.75

ATE Risk Ratio Scale: measurement error = E[V(Y(1))]/E[V(Y(0))] = 2/3 = 0.66

These effect estimates differ:

ATE RR no measurement error = ATE RR measurement error

Imagine that the bias was positive, such that runners added an hour to their times – perhaps the run-
ners do not want to stand out. The true risk ratio for the treatment remains 0.75. However, the biased
risk ratio for the treatment would become:

ATE Risk Ratio Scale: measurement error = E[V(Y(1))]/E[V(Y(0))] = 4/5 = 0.8

Here we would understate the true treatment effect. The SWIGs (Table 7 G2.1–2.3) make clear the rea-
son for the scale sensitivity of the bias. Although the source of bias in the outcome (EY) is independent
of the treatment (A), EY functions as an effect modifier for the reported outcome V(Y(ã)).

Consider: it has long been understood that where treatment effects vary across different population
strata, an estimate of the causal effect on the risk difference scale will differ from the estimate on the
risk ratio scale (Greenland, 2003). Here, we find that reporters of the outcome are subject to similar
relativity. For example, we might have constructed a multiplicative error function for the outcome such
that we subtract 1 hour if the response is 3 and subtract 1.344 if the response is 4. Under this error
function, the risk ratio would remain stable at 0.75 irrespective of whether the outcome was measured
with error; however, the risk difference would no longer be constant.

Note that we have encountered SWIGs Table 7 G1.2–1.3 and Table 7 G2.2–2.3 before. These causal
graphs are structurally equivalent to the causal directed acyclic graph in Part 1 Table 3 G2, in
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which we considered uncorrelated independent measurement error. Moreover, Table 7 G2.2–2.3 is
equivalent to Part 2 Table 4 G5, in which we considered target-restriction bias without confounding;
and Part 3 Table 5 G1, G2, G4 in which we considered target population restriction biases in the ana-
lytic sample at the start of the study. Single world intervention graphs are useful in providing a more
detailed representation of causality in which the biases that give rise to biased causal effect estimates
when there is measurement error bias ‘off the null’ – such as when restricted representation of the
target population by the analytic sample at the start or end invalidates the causal inferences we
seek for the target population.

Measurement error in the treatment or outcome will not modify a strictly ‘null’ effect

As shown in Table 7 G1.4 and Table 7 G2.4, if we assume randomisation into treatments, or equivalently
if we assume no unmeasured confounding conditional on perfectly measured covariates, we will not
expect a biasing path leading to an association between treatment and outcome. However, a strict ‘null’
effect cannot be assumed. Note that we do not use ‘null’ here in the sense of null hypothesis signifi-
cance testing, where there is no such thing as a ‘null’ effect. Supplementary materials S5 uses SWIGs to
describe correlated and directed measurement error and consider how bias correction may be inter-
preted mechanistically as interventions on reporters.

Summary of part 4

We have characterised target-population restriction bias, whether at the start or the end of the study,
as formally equivalent to undirected uncorrelated measurement error. Here, SWIGs allow us to
apply lessons from the study of effect modification to the analysis of measurement error biases.
As shown in G2.1–2.3, SWIGs greatly clarify how measurement error bias for the outcome arises
in the absence of confounding bias: the unmeasured causes of error function as effect modifiers
of the outcome reporters, such that causal contrasts will differ on at least one scale of effect ‘off
the null’. The mathematical explanation in supplementary materials S3 for threats to external val-
idity from right censoring applies equally to threats from left censoring, as does the simulation
in supplementary materials S4.

Note that all of the biases we have considered cannot be evaluated by statistical tests. For example,
even if investigators were to obtain satisfactory test statistics for metric, configural and scalar equiva-
lence, they would be unable to diagnose target population restriction biases with these tests. Nor would
we be able to diagnose other forms of measurement error biases using statistical tests. Rather, they can
only evaluate evidence for bias by first representing the causal structures they assume hold in the
world, and investigating the implications of each assumption one by one. Likewise, we cannot take
the invalidation of standard statistical tests as evidence that similar causal effects underpin sample
responses to the interventions of interest. Assumptions alone do not clarify the causal realities that
give rise to them. A similar point about the role of assumptions in comparative research is made in
Schimmelpfennig et al. (2024).

Conclusions

In causal inference, we start by clearly defining treatments and outcomes and specifying contrasts
for hypothetical interventions on a specific scale (such as the additive scale) across a well-defined
target population. We then evaluate the prospects for identifying these causal effect estimates on
the full data – the entire counterfactual dataset where the population is simultaneously observed
under each intervention to be contrasted. Obtaining valid contrasts requires that we consider
sources of measurement error, and target population restriction bias (also known as ‘selection
bias’) – biases that may arise in the absence of confounding by a common cause of the treatment
and outcome. Although causal inference is gaining popularity, there is considerable scope to
improve habits of reflecting on the threats to valid inference that measurement error bias and
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target population-restriction bias present. We have considered how these threats become evident in
the comparative human sciences, and furthermore, how target population-restriction biases often
take the form of measurement error bias. Although SWIGs were developed to evaluate the con-
ditional exchangeability assumption, they also clarify the diagnosis of structural sources of meas-
urement error bias. We have considered more generally that lacking structural assumptions – that
is causal assumptions – statistical tests alone are insufficient for diagnosing the implications of
measurement error biases, which may be directed, correlated, both directed and correlated, or
undirected and uncorrelated. Whether and how we may correct for measurement-error biases
requires structural assumptions that we do not obtain from the data alone, refer to supplementary
materials S2 and S5.

Nothing I have said here should detract from the importance of seeking species-level knowledge.
We should seek such knowledge. Science should seek generalisations where it can because generalisa-
tion is knowledge. In my view, there are also ethical reasons – a great many populations remain under-
studied. Where there are no scientific reasons for restriction, where a valid target population can be
stated for a cross-cultural sample and where costs permit, we should seek wider samples. Here, we
have considered that problems of measurement-error bias remain even if adequate samples are
taken from broader populations. To put the point metaphorically, before investigators venture into
the vast wildernesses of human existence, locally understood gardens of human existence must be cul-
tivated. Because a long shadow of measurement error bias casts its shade over nearly every aspect of
the human condition that scientists hope to understand, locally understood gardens of human exist-
ence remain largely uncultivated. The good news is that standard workflows for causal inference offer
investigators practical guidance. We avoid weird (wrongly estimated inferences owing to inappropriate
restriction and distortion) inferences in comparative research in the same way that we avoid weird
inferences in any research by undertaking the following steps:

(1) State a well-defined intervention – clearly define the treatment or exposure to be evaluated. For
which exposures do we hope to infer consequences? Which levels of the exposure shall we
compare? Why these levels and not others?

(2) State a well-defined outcome – clearly define the outcome to be evaluated. Which consequences
are of interest? Which comparisons will be made? At which time scale following exposure are
we interested in evaluating outcomes? At which scale of causal contrast are we interested?

(3) Clarify the target population – use eligibility criteria to define the population to whom the results
are meant to generalise, understanding that causal contrasts may differ for different populations,
even in the absence of confounding or measurement error biases (Hernán et al., 2016).

(4) Ensure treatments to be compared satisfy causal consistency – verify that the treatments corres-
pond to interpretable interventions (Hernán & Robins, 2024). Satisfying the causal consistency
assumption is a necesary condition for valid causal inference.

(5) Evaluate whether treatment groups, conditional on measured covariates, are exchangeable – bal-
ancing confounding covariates across treatment levels ensures that differences between groups
are ‘ignorable’, or equivalently, are conditionally exchangeable, or equivalently, that all back-
door paths have been closed, or equivalently that the treatment and outcome are d-separated.
Ensuring that confounders are balanced in the treatments to be compared is a necessary con-
dition for valid causal inference.

(6) Check if the positivity assumption is satisfied – confirm that all individuals in the target popu-
lation have a non-zero probability of receiving each treatment level, given their covariates.
Satisfying the positivity assumption is a necesary condition for valid causal inference.

(7) Ensure that the measures relate to the scientific questions at hand – ensure that the data col-
lected and the measures used directly relate to the research question to hand. As part of
this, evaluate structural features of measurement error bias. As we have considered, there
are manifold possibilities for measurement error bias to obscure the phenomena under
study and bias results. For example target-population-restriction biases manifest as
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measurement error biases where inferences for the analytic sample population differ from
inferences for the target population.

(8) Consider strategies to ensure the analytic sample measured at the end of the study represents the
target population – if the distribution of effect modifiers in the study population at the end of
treatment differs from the distribution of effect modifiers in target population, the study will be
biased in at least one measure of effect.

(9) Clearly communicate the reasoning, evidence and decision-making that inform steps 1–8 –
provide transparent and thorough documentation of how steps 1–8 have been made.
This includes stating investigator assumptions, disagreements and decisions. Prepare to
conduct and report multiple analyses where causal assumptions are debated or ambiguous
(Bulbulia, 2024b).

We have seen that the demands of following this workflow in comparative research are more stringent
because measurement error biases must be evaluated at every site to be compared. Correlated and
directed structures of measurement error bias can distort treatment effect estimates for the broader
target population. More fundamentally, the target population in comparative research may not be eas-
ily defined, sampled, or when required by the scientific question, appropriately restricted.
Methodologists broadly agree on these points but can easily forget them (as discussed in Ghai
et al., 2024). We have shown how workflows for causal inference act as essential preflight checklists
for ambitious, effective and safe comparative cultural research. These workflows help propel the
human sciences forward without overreaching.
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