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Spectrality of a class of Moran measures on
Rn with consecutive digit sets
Si Chen and Qian Li

Abstract. Let {Rk}
∞
k=1 be a sequence of expanding integer matrices in Mn(Z), and let {Dk}

∞
k=1 be

a sequence of finite digit sets with integer vectors in Z
n . In this paper, we prove that under certain

conditions in terms of (Rk , Dk) for k ≥ 1, the Moran measure

μ{Rk},{Dk} ∶= δR−1
1 D1
∗ δR−1

1 R−1
2 D2
∗⋯

is a spectral measure. For the converse, we get a necessity condition for the admissible pair (R, D).

1 Introduction

Let μ be a Borel probability measure with compact support on R
n . A fundamental

problem in harmonic analysis associated with μ is whether there exists a set Λ ⊆ Rn

such that EΛ ∶= {e2πi⟨λ ,x⟩ ∶ λ ∈ Λ} is an orthonormal basis for L2(μ). If so, we say μ
is a spectral measure and Λ a spectrum of μ. In particular, if μ is the Lebesgue measure
restricted on a Borel set Ω, then the set Ω is called a spectral set. The study of spectral
measures dates back to the work of Fuglede [14] in 1974, who conjectured that Ω is a
spectral set if and only if the set Ω tilesRn by translations. Although the conjecture has
been proved to be false in dimension n ≥ 3 [20, 21, 30], it is still open in Dimensions
1 and 2.

The studies of spectral measures entered into the realm of fractals when Jorgensen
and Pedersen [18] gave the first example of a singular, nonatomic, fractal spectral
measure. Their construction is based on a scale- 4 Cantor set, where the first and
third intervals are kept and the other two are discarded. The appropriate measure for
this set is the Bernoulli convolution μ4, which is the invariant measure of the iterated
function system {τ0(x) = x/4, τ2(x) = (x + 2)/4}. They proved that this measure is
a spectral measure with spectrum Λ ∶= {∑n

k=0 4k dk ∶ dk ∈ {0, 1}, n ∈ N}. Jorgensen
and Pedersen opened up a new field in researching the orthogonal harmonic analysis
of fractal measures including self-similar measures/self-affine measures and generally
Moran measures (see [19, 27–29]). Later on, inR, a large class of self-similar measures
have been proved to be spectral measures by Łaba and Wang [22]. Let b ≥ 2 be an
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integer, and let D ⊆ Z be a finite digit set with 0 ∈ D. Łaba and Wang [22] proved
that the self-similar measure μb ,D , which is generated by the iterated function system
{τd(x) = x+d

b }d∈D , is a spectral measure if (b, D) is admissible (see Definition1.1).
Recently, Dutkay, Hausserman, and Lai [10] generalized the result to higher dimen-
sions, thus settling a long-standing conjecture proposed by Jorgensen and Pedersen.
Meanwhile, many interesting spectral measures have been found (see, e.g., [1–7, 9, 12,
13, 15, 16, 23–26, 29] and the references therein for recent advances), but there are only
a few classes.

In the last decade, many researchers studied the spectrality of the Moran measures,
which are the nonself-similar generalization of the Cantor measures through the
infinite convolution. Note that most results of the known cases are concentrated
on one-dimensional Moran measures (see, e.g., [1, 2, 12, 13, 15] and the references
therein). There are few studies involving Moran measures of higher dimension other
than [8, 26, 29]. In this paper, we focus on the Moran measures on R

n . Let {Rk}∞k=1 be
a sequence of expanding matrices with integer entries, and let {Dk}∞k=1 be a sequence
of finite sets in Z

n . A Moran measure is defined by the following infinite convolution
of finite measures:

μ{Rk},{Dk} = δR−1
1 D1 ∗ δR−1

1 R−1
2 D2 ∗⋯,(1.1)

assuming the infinite convolution is weakly convergent to a Borel probability measure
(see [11] for an equivalent definition). Here, δE = 1

#E ∑e∈E δe , where #E is the cardi-
nality of a finite set E and δe is the Dirac measure at the point e ∈ E. In 2000, Stricharz
[29] first considered the conditions under which the infinite convolution is convergent
to a Borel probability measure with compact support and the associated measure is a
spectral measure. Later on, An and He [2] investigated the spectral property of infinite
convolution with consecutive digits in R. More precisely, let {bk}∞k=1 be a sequence
of integers with all bk ≥ 2, and let {Dk}∞k=1 be a sequence of finite digit sets, where
Dk = {0, 1, . . . , qk − 1} is a digit set of integers with sup{x ∶ x ∈ b−1

k Dk , k ≥ 1} < ∞.
They proved the following theorem.

Theorem 1.1 Suppose that qk ∣bk for k ≥ 1. Then, the Moran measure μ{bk},{Dk} is a
spectral measure.

Recently, Dutkay, Emami, and Lai [8] studied the general Moran measure
μ{Rk},{Dk} on R

n , and they investigated the spectrality and its more general frame
spectrality using the idea of frame towers and Riesz-sequence towers.

In this paper, we continue to investigate the spectral property of Moran measures
on R

n . Let {Rk}∞k=1 be a sequence of expanding matrices with integer entries, and let
Dk = {0, 1, . . . , qk − 1}v where the integer qk ≥ 2 and v ∈ Zn for k ≥ 1.

First of all, we need a decomposition of integer matrices, which has been proved
in [25]. Let R ∈ Mn(Z), and let {v , Rv , . . . , Rn−1v} be a set of vectors in Z

n with rank
r ≤ n and v ∈ Zn ∖ {0}. According to [25], there exists a unimodular matrix
B ∈ Mn(Z) such that B−1v = (vT

r , 0, . . . , 0)T with vr ∈ Zr and

R̃ ∶= B−1RB = (M1 C
0 M2

) ,(1.2)
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where M1 ∈ Mr(Z), M2 ∈ Mn−r(Z), and C ∈ Mr ,n−r(Z). Here, we use AT to denote
the transposition of a vector or matrix A.

Similar to the known theorem in [29], we have the following theorem.

Theorem 1.2 Let Rk = bk Rmk for k ≥ 1, where R ∈ Mn(Z) is an expanding matrix
and the sequences {bk}∞k=1 and {mk}∞k=1 are of positive integers. Let Dk = {0, 1, . . . ,
qk − 1}v be a digit set with v ∈ Zn ∖ {0} and the integer qk ≥ 2 for each k ≥ 1. Suppose
that supk≥1 ∣

qk
bk
∣ < ∞. Then, the sequence of measures

μn ∶= δR−1
1 D1 ∗ δR−1

1 R−1
2 D2 ∗⋯ ∗ δR−1

1 ⋯ R−1
n Dn

converges to a Borel probability measure μ{Rk},{Dk} with compact support in a weak
sense.

The measure μ{Rk},{Dk} in Theorem 1.2 is the Moran measure on which we focus
in the following of the paper. Now, we introduce the main theorem of the paper.

Theorem 1.3 Let Dk , Rk be given as in Theorem 1.2, and let v ∈ Zn ∖ {0} be an
eigenvector of R with respect to an eigenvalue λ. If λbk is divisible by qk for k ≥ 1, then
μ{Rk},{Dk} is a spectral measure.

In fact, we have the following more general conclusion. We will prove it in Section 3
so as to prove Theorem 1.3.

Theorem 1.4 Let Dk , Rk be given as in Theorem 1.2. Furthermore, we replace mk
by mk r for k ≥ 2 where r is the rank of vectors {v , Rv , . . . , Rn−1v}. Suppose that the
characteristic polynomial of M1 see (1.2) is f (x) = x r + c. If qk ∣bk det(M1) for k ≥ 1,
then the measure μ{Rk},{Dk} is a spectral measure.

It is clear that the condition supk≥1 ∣
qk
bk
∣ < ∞ is satisfied in Theorems 1.3 and 1.4.

Furthermore, if we replace bk ∈ N ∖ {0} by bk ∈ Z ∖ {0} in the above three theorems,
the same results hold.

Next, we consider the converse of Theorem 1.4. However, it is too complicated for
us to draw a necessity condition for the spectral measure μ{Rk},{Dk}. We simplify it to
the case that Rk = R and Dk = D for all k ≥ 1 and obtain the following result. Before
introducing it, we need a standard notation usually used in this setting.

Definition 1.1 Let R ∈ Mn(Z) be an expanding matrix (i.e., all its eigenvalues have
modulus strictly greater than 1), and let D be a finite subset ofZn . We say that (R, D) is
admissible if there exists a finite subset L ⊆ Zn with #D = #L = q such that the matrix

H = 1
√q
(e−2πi⟨R−1 d , l⟩)

d∈D , l∈L

is unitary, i.e., H∗H = I, where H∗ denotes the transposed conjugate of H. At this
time, (R, D, L) is also called a Hadamard triple, or (R−1D, L) is called a compatible
pair.
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By making use of the matrix decomposition as in (1.2), we obtain the following
conclusion.

Theorem 1.5 Let R ∈ Mn(Z) be an expanding matrix, and let D = {0, 1, . . . , q − 1}v
be a digit set with v ∈ Zn ∖ {0} and the integer q ≥ 2. If (R, D) is admissible, then
q∣det(M1).

In general, the converse of Theorem 1.5 is not true for n ≥ 2 (see Example 5.2).
However, in R, assuming v = 1, then q is a factor of det(M1) if and only if (R, D) is
admissible (see [2]).

The paper is organized as follows. In Section 2, we introduce some basic definitions
and properties of spectral measures. In Section 3, we will give the proofs of Theorems
1.3 and 1.4. Moreover, we devote Section 4 to proving Theorem 1.5. In Section 5, we
will give some examples to illustrate the theories.

2 Preliminaries

Let μ be a Borel probability measure with compact support in R
n . The Fourier

transform of μ is defined as usual

μ̂(ξ) = ∫ e−2πi⟨ξ ,x⟩dμ(x)

for any ξ ∈ Rn . LetZ(μ̂) = {ξ ∈ Rn ∶ μ̂(ξ) = 0} be the zero set of μ̂. Then, for a discrete
set Λ ⊂ Rn , E(Λ) = {e−2πi⟨λ ,x⟩ ∶ λ ∈ Λ} is an orthogonal set of L2(μ) if and only if
μ̂(λ − λ′) = 0 for λ ≠ λ′ ∈ Λ, which is equivalent to

(Λ − Λ) ∖ {0} ⊆ Z(μ̂).(2.1)

In this case, we call Λ an orthogonal set (resp. spectrum) of μ if EΛ is an orthonormal
family (resp. basis) for L2(μ). Since orthogonal sets (or spectra) are invariant under
translation, without loss of generality, we always assume that 0 ∈ Λ for any orthogonal
set Λ of μ.

For any ξ ∈ Rn , define

Q(μ)
Λ (ξ) = ∑

λ∈Λ
∣ μ̂(ξ + λ) ∣2 .(2.2)

The following lemma is a basic criterion for the spectrality of measure μ, which was
proved in [18].

Lemma 2.1 Let μ be a Borel probability measure with compact support in R
n , and let

Λ ⊆ Rn be a countable subset. Then,
(i) Λ is an orthogonal set of μ if and only if Q(μ)

Λ (ξ) ≤ 1 for ξ ∈ Rn .
(ii) Λ is a spectrum of μ if and only if Q(μ)

Λ (ξ) ≡ 1 for ξ ∈ Rn .
(iii) Q(μ)

Λ (x) has an entire analytic extension to C
2 if Λ is an orthogonal set of μ.

Definition 2.1 Let R and R̃ be n × n integer matrices, and let the finite sets D, L, D̃, L̃
be in R

n . We say that two triples (R, D, L) and (R̃, D̃, L̃) are conjugate (through the
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matrix B) if there exists an integer invertible matrix B such that R̃ = B−1RB, D̃ = B−1D,
and L̃ = B∗L, where B∗ denotes the transposed conjugate of B, in fact, B∗ = BT .

We have the following conclusion for the conjugate relationship.

Lemma 2.2 Suppose that (Rk , Dk , Lk) and (R̃k , D̃k , L̃k) are conjugate triples,
through the same matrix B, for any k ≥ 1. Then,
(i) (R̃k , D̃k , L̃k) is a Hadamard triple if (Rk , Dk , Lk) is a Hadamard triple.
(ii) Λ is a spectrum of μ{Rk},{Dk} if and only if B∗Λ is a spectrum of μ{R̃k},{D̃k}

.

Proof (i) Note that R̃k = B−1Rk B, D̃k = B−1Dk , and L̃k = B∗Lk . Then,

(e−2πi⟨R̃−1
k d , l⟩)

d∈D̃k , l∈L̃k
= (e−2πi⟨B−1 R̃−1

k BB−1 d ,B∗ l⟩)
d∈Dk , l∈Lk

= (e−2πi⟨R̃−1
k d , l⟩)

d∈Dk , l∈Lk
.

Furthermore, L̃k ⊂ Z2 since Lk ⊂ Z2 and B is an integer matrix. Hence, the conclusion
follows directly from Definition 1.1.

As for (ii), we recall

μ{Rk},{Dk} = δR−1
1 D1 ∗ δR−1

1 R−1
2 D2 ∗⋯.

By the definition of Fourier transform of μ{Rk},{Dk}, we have

μ̂{Rk},{Dk}(ξ) =
+∞

∏
k=1

δ̂R−1
1 R−1

2 ⋯R−1
k Dk(ξ) =

+∞

∏
k=1

1
qk
∑

d∈Dk

e−2πi⟨R−1
1 ⋯R−1

k d ,ξ⟩,

where qk ∶= #Dk = #D̃k . Then, for any λ ∈ Λ and ξ ∈ Rn ,

μ̂{Rk},{Dk}(λ + ξ) =
+∞

∏
k=1

1
qk
∑

d∈Dk

e−2πi⟨R−1
1 ⋯R−1

k d ,(λ+ξ)⟩

=
+∞

∏
k=1

1
qk
∑

d∈Dk

e−2πi⟨B−1 R−1
1 B⋯B−1 R−1

k BB−1 d ,B∗(λ+ξ)⟩(2.3)

=
+∞

∏
k=1

1
qk
∑

d∈D̃k

e−2πi⟨R̃−1
1 ⋯R̃−1

k d ,B∗(λ+ξ)⟩

= μ̂{R̃k},{D̃k}
(B∗(λ + ξ)).

Hence, Q(μ{Rk},{Dk})

Λ (ξ) = Q
(μ{R̃k},{D̃k}

)

B∗Λ (B∗ξ). Furthermore, (ii) follows from
Lemma 2.1. ∎

In Sections 3 and 4, we employ the following lemma several times which was
proved in [25].

Lemma 2.3 Let v ∈ Zn/{0}, and let R ∈ Mn(Z). If {v , Rv , . . . , Rn−1v} is linearly
dependent with rank r < n, then there exists a unimodular matrix B ∈ Mn(Z) such that
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B−1v = (vT
r , 0, . . . , 0)T ∈ Zn and

R̃ ∶= B−1RB = (M1 C
0 M2

) ,

where vr ∈ Zr , M1 ∈ Mr(Z), M2 ∈ Mn−r(Z), and C ∈ Mr ,n−r(Z).

3 Proofs of Theorems 1.3 and 1.4

In this section, we will focus on the Moran measure μ{Rk},{Dk} defined in Theorem 1.2.
For the sake of convenience, we introduce some notations from symbolic dynamical
system. Denote Θ0 = {ϑ} and

Θn = {θ1⋯θn ∶ θk ∈ Dk , 1 ≤ k ≤ n}

for n ≥ 1. Then, the collection of all finite words is

Θ∗ =
∞

⋃
n=0

Θn ,

and the set of all infinite words is denoted by

Θ∞ = {θ1θ2⋯ ∶ θk ∈ Dk , k ≥ 1}.

First, we give the proof of Theorem 1.2, which is the preparation for the proof of
Theorem 1.3.

Proof of Theorem 1.2 Let B(0, r)be the open ball centered at the origin with radius
r on R

n . Denote

fk ,d(x) = R−1
k (x + d)

with d ∈ Dk and k ≥ 1. Then, there exists n ≥ 1 and θk ∈ Dk for 1 ≤ k ≤ n such that

f1,θ 1 ○ f2,θ2 ○ ⋯ ○ fn ,θ n(B(0, r)) ⊆ B(0, r).

For any θ = θ1⋯θn ∈ Θn , we write

fθ(x) = f1,θ 1 ○ f2,θ2 ○ ⋯ ○ fn ,θ n .

Denote

T({Rk}, {Dk}) = {
∞

∑
k=1
(Rk . . . R1)−1dk ∶ dk ∈ Dk} ∶=

∞

∑
k=1
(Rk . . . R1)−1Dk .

Then, it is easy to check that

T({Rk}, {Dk}) =
∞

⋂
n=1
⋃

θ∈Θn
fθ(B(0, r)).

Thus, it is a compact set.
We now define two bounded linear operators T1 and T2 as follows. T1 ∶ Rn → R

n

is given by

T1x = B∗x ,
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where the unimodular matrix B satisfies B−1RB = (M1 C
0 M2

) and B−1v =

(vr
T , 0, . . . , 0)T (see Lemma 2.3). T2 ∶ Rn → R

r is given by

T2((x1 , x2 , . . . , xr , . . . , xn)T) = (x1 , . . . , xr)T .

For any n ≥ 1, we denote

μn = δR−1
1 D1 ∗ δR−1

1 R−1
2 D2 ∗⋯ ∗ δR−1

1 ⋯ R−1
n Dn .

Fix a compact set I ⊆ Rn . For each ξ ∈ I, we get

μ̂n(ξ) = δ̂R−1
1 D1(ξ)δ̂R−1

1 R−1
2 D2(ξ)⋯δ̂R−1

1 ⋯ R−1
n Dn(ξ),

and

∣δ̂R−1
1 ⋯R−1

k Dk(ξ) − 1∣ =
'''''''''''

1
qk
∑

d∈Dk

(e−2πi⟨R−1
1 ⋯R−1

k d ,ξ⟩ − 1)
'''''''''''

=
'''''''''''

1
qk

qk−1

∑
l=0
(e−2 l π i⟨(b1⋯bk)

−1 B−1 R−m1 B⋯B−1 R−mk BB−1 v ,B∗ ξ⟩ − 1)
'''''''''''

=
'''''''''''

1
qk

qk−1

∑
l=0
(e−2 l π i⟨(b1⋯bk)

−1 M−ηk
1 v r ,T2 T1 ξ⟩ − 1)

'''''''''''
,

where ηk ∶= m1 +m2 +⋯+mk for 1 ≤ k ≤ n. Moreover, we have

∣e−2 l π i⟨(b1⋯bk)
−1 M−ηk

1 vr ,T2 T1 ξ⟩ − 1∣

≤ ∣2lπ⟨(b1⋯bk)−1M−ηk
1 vr , T2T1 ξ⟩∣

≤ 2lπ(b1⋯bk)−1∥M−ηk
1 ∥ ⋅ ∥vr∥ ⋅ ∥T2T1 ξ∥,

where the first inequality follows from the fact that ∣e ix − 1∣ ≤ ∣x∣, and the second
inequality follows from the Schwartz inequality. Hence,

∞

∑
k=1
∣δ̂R−1

1 ⋯R−1
k Dk(ξ) − 1∣ ≤

∞

∑
k=1

1
qk

qk−1

∑
l=0

2lπ(b1⋯bk)−1∥M−ηk
1 ∥ ⋅ ∥vr∥ ⋅ ∥T2T1 ξ∥

≤ π
∞

∑
k=1

qk − 1
bk
∥M−ηk

1 ∥ ⋅ ∥vr∥ ⋅ ∥T2T1 ξ∥(3.1)

≤ C∥vr∥ ⋅ ∥T2∥ ⋅ ∥T1∥ ⋅ ∥ξ∥
∞

∑
k=1
∥M−ηk

1 ∥,

where C = π supk≥1
qk
bk

. We can easily obtain ∑∞k=1 ∥M
−ηk
1 ∥ < ∞ from the fact that

R is an expanding integer matrix. As T1 , T2 are bounded, it follows from (3.1) that
μ̂n(ξ) = ∏n

k=1 δ̂R−1
1 ⋯R−1

k Dk(ξ) converges uniformly on each compact set to an entire
function f (ξ) = ∏∞k=1 δ̂R−1

1 ⋯R−1
k Dk(ξ). By Levy’s continuity theorem [17, p. 167], there

exists a probability measure μ such that μ̂(x) = f (x) and μn converges weakly to μ.
Moreover, the support of μ is compact. ∎
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In the following of this section, we define

R(r)k =
⎧⎪⎪⎨⎪⎪⎩

b1 Mm1
1 , k = 1,

bk Mmk r
1 , k > 1,

D(r)k = {0, 1, . . . , qk − 1}vr ,(3.2)

where M1 , vr are the same ones as in Lemma 2.3. We will prove Theorem 1.4 first.
Before doing this, we introduce a needed lemma.

Lemma 3.1 Let R be an expanding integer matrix, and let Rk , Dk be given as in
Theorem 1.4. Then, μ{Rk},{Dk} is a spectral measure if and only if μ

{R(r)
k },{D(r)

k }
is a

spectral measure.

Proof According to Lemma 2.3, there exists a unimodular matrix B ∈ Mn(Z) such
that

R̃ ∶= B−1RB = (M1 C
0 M2

) , ṽ = (vr
T , 0, . . . , 0)T ,(3.3)

D̃k ∶= B−1Dk = {0, 1, . . . , qk − 1}(vr
T , 0, . . . , 0)T ,(3.4)

where M1 ∈ Mr(Z), M2 ∈ Mn−r(Z), C ∈ Mr ,n−r(Z), and vr ∈ Zr . Denote R̃k =
B−1Rk B. Then, Lemma 2.2 implies that μ{Rk},{Dk} is a spectral measure if and only if
μ{R̃k},{D̃k}

is a spectral measure. Note that

R̃−1
1 = B−1R−m1 B = 1

b1
(

M−m1
1 ×
0 M−m1

2
) .(3.5)

For any ξ = (ξ1 , . . . , ξn)T ∈ Rn , we denote its first r terms by ξ(r) = (ξ1 , . . . , ξr)T ∈ Rr .
Then,

δ̂R̃−1
1 ⋯R̃−1

k D̃k
(ξ) = 1

qk
∑

d∈D̃k

e−2πi⟨R̃−1
1 ⋯R̃−1

k d ,ξ⟩

= 1
qk

qk−1

∑
j=0

e−2πi j⟨R̃−1
1 ⋯R̃−1

k (vr
T ,0, . . . ,0)T ,ξ⟩(3.6)

= 1
qk

qk−1

∑
j=0

e−
2πi j

b1⋯bk
⟨M−m1

1 ⋯M−mk r
k vr

T ,ξ(r)⟩ = δ̂
(R(r)

k ⋯R(r)
1 )

−1 D(r)
k
(ξ(r))

for any k ≥ 1. It follows that

μ̂{R̃k},{D̃k}
(ξ) =

∞

∏
k=1

δ̂R̃−1
1 ⋯R̃−1

k D̃k
(ξ) =

∞

∏
k=1

δ̂
(R(r)

k ⋯R(r)
1 )

−1 D(r)
k
(ξ(r)) = μ̂

{R(r)
k },{D(r)

k }
(ξ(r)).

(3.7)

Now, we define a bounded linear operator T ∶ Rn → R
r given by

T((ξ1 , . . . , ξr , . . . , ξn)T) = (ξ1 , . . . , ξr)T .
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If μ{R̃k},{D̃k}
is a spectral measure with a spectrum Λ, we set

Λ′ = {λ(r) ∶ T(λ) = λ(r) , λ ∈ Λ}.

Then, (3.7) implies

∑
λ∈Λ
∣μ̂{R̃k},{D̃k}

(ξ + λ)∣2 = ∑
λ(r)∈Λ′

∣μ̂
{R(r)

k },{D(r)
k }
(ξ(r) + λ(r))∣2 .(3.8)

It follows from Lemma 2.1 that μ
{R(r)

k },{D(r)
k }

is a spectral measure with a spectrum Λ′.
Conversely, if μ

{R(r)
k },{D(r)

k }
is a spectral measure with a spectrum Λ′, we let Λ =

{(λT , 0, . . . , 0)T ∶ λ ∈ Λ′}. Proceeding as in (3.8), we obtain that Λ is a spectrum of
μ{R̃k},{D̃k}

. Now, we complete the proof. ∎

The following lemma has been proved in [25].

Lemma 3.2 Let R ∈ Mn(Z) be a matrix with characteristic polynomial f (x) = xn +
a1xn−1 +⋯+ an−1x + an and v = (x1 , x2 , . . . , xn)T ∈ Zn ∖ {0}. If the set of vectors
{v , Rv , . . . , Rn−1v} is linearly independent, then there exists an integer matrix B such
that

R̃ ∶= B−1RB =

⎛
⎜⎜⎜⎜⎜
⎝

−a1 1 0 ⋯ 0
−a2 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−an−1 0 0 ⋯ 1
−an 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

and ṽ = B−1v = (0, 0, . . . , 0, 1)T .

Moreover, we can choose the matrix B = (Rn−1v , Rn−2v , . . . , Rv , v) from the proof
of Lemma 3.2 in [25].

Proof of Theorem 1.4 By Lemma 3.1, we just need to prove μ
{R(r)

k },{D(r)
k }

is a
spectral measure. As {v , Rv , . . . , Rn−1v} is linearly dependent with rank r, we know
that

{B−1v , B−1Rv , . . . , B−1Rn−1v}

is also linearly dependent with rank r, where B is the same one as in (3.3). And thus,
{ṽ , R̃ṽ , . . . , R̃n−1ṽ} is linearly dependent with rank r, where R̃ and ṽ are the same ones
as in (3.3) and (3.4). Now, we claim that {ṽ , R̃ṽ , . . . , R̃r−1ṽ} is linearly independent.
In fact, if {ṽ , R̃ṽ , . . . , R̃r−1ṽ} is dependent, then there exist {l i}r−1

i=0 ⊂ Z such that

l0v + l1R̃ṽ +⋯+ lr−1R̃r−1ṽ = 0.(3.9)

Denote s as the first index such that ls ≠ 0. Then, (3.9) implies that

ls R̃s ṽ +⋯+ lr−1R̃r−1ṽ = 0.
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It follows that

ṽ = − 1
ls
(ls+1R̃ṽ +⋯+ lr−1R̃r−1−s ṽ).(3.10)

Then, we know that {0, R̃ṽ , . . . , R̃n−1ṽ} is also linearly dependent with rank r. Note
that (3.10) is equivalent to the following equality:

R̃ṽ = − 1
ls
(ls+1R̃2ṽ +⋯+ lr−1R̃r−s ṽ).

And thus, {0, 0, R̃2ṽ , . . . , R̃n−1ṽ} is linearly dependent with rank r. Proceeding induc-
tively for finite steps, we know that {0, 0, . . . , 0, R̃s+1ṽ , . . . , R̃r−1ṽ} is linearly depen-
dent with rank r, which is impossible. Therefore, the claim follows. Then, we know
from the claim and (3.3) that {vr , M1vr , . . . , Mr−1

1 vr} is linearly independent. Com-
bining Lemmas 2.2 and 3.2, we only need to show μ

{R̃(r)
k },{D̃(r)

k }
is a spectral measure

where

R̃(r)k =
⎧⎪⎪⎨⎪⎪⎩

b1 M̃m1
1 , k = 1,

bk M̃mk r
1 , k > 1,

m1 = m′1r + l , with m′1 ≥ 0 , 1 ≤ l ≤ r,

D̃(r)k = {0, 1, . . . , qk − 1}ṽr , ṽr = (0, . . . , 0, 1)T ,

and

M̃1 =
⎛
⎜⎜⎜⎜
⎝

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
−c 0 0 ⋯ 0

⎞
⎟⎟⎟⎟
⎠

.

It follows from qk ∣bk det(M1) that qk ∣bk c. For the sake of brevity, we denote Bk = R̃(r)k
from now on. As

M̃−(m1+∑
k
i=2 m i r)

1 = ( − 1
c
)

m′1+∑
k
i=2 mk

( 0 − 1
c E l×l

E(r−l)×(r−l) 0 ) ,

then for any ξ = (ξ1 , . . . , ξr)T ∈ Rr , we have

⟨B−1
1 ⋯B−1

k ṽr , ξ⟩ = ξ l

b1⋯bk(−c)m′1+m2+⋯+mk+1 ,

where l = m1 −m′1r ∈ {1, 2, . . . , r}. Now, we set

bk =
⎧⎪⎪⎨⎪⎪⎩

b1∣c∣m
′
1+1 , k = 1,

bk ∣c∣mk , k > 1,
and Dk = {0, 1, . . . , qk − 1}.

Applying Theorem 1.1, we know that there exists a set Λ ⊆ R satisfying
Q(μ{bk},{Dk})

Λ (ξ) ≡ 1 for any ξ ∈ R. Denote

Λ′ = {(0, . . . , 0, λ, 0, . . . , 0)T ∶ λ ∈ Λ},
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where λ is the lth coordinate of (0, . . . , 0, λ, 0, . . . , 0)T . Then, for any

ξ = (ξ1 , . . . , ξ l , . . . , ξr)T ∈ Rr ,

we have

Q
(μ
{R̃(r)

k },{D̃(r)
k }
)

Λ′ (ξ) = ∑
λ′∈Λ′
∣μ̂
{R̃(r)

k },{D̃(r)
k }
(ξ + λ′)∣2

= ∑
λ′∈Λ′

∞

∏
k=1

'''''''''''

1
qk
∑

d∈D̃(r)
k

e−2πi⟨B−1
1 ⋯B−1

k d , ξ+λ′⟩
'''''''''''

2

= ∑
λ∈Λ

∞

∏
k=1

1
qk

'''''''''''

qk−1

∑
l=0

e
−2πi l(ξl+λ)

b1⋯bk ∣c∣
m′1+m2+⋯+mk+1

'''''''''''

2

= ∑
λ∈Λ
∣μ̂{bk},{Dk} (ξ l + λ)∣2

= Q(μ{bk},{Dk})

Λ (ξ l) ≡ 1.

Hence, μ
{R̃(r)

k },{D̃(r)
k }

is a spectral measure with the spectrum Λ′. ∎

As an application of Theorem 1.4, the proof of Theorem 1.3 is apparent.

Proof of Theorem 1.3 Since Rv = λv, we have

{v , Rv , . . . , Rn−1v} = {v , λv , . . . , λn−1v}.

It follows that the rank of vectors {v , Rv , . . . , Rn−1v} is 1, i.e., r = 1. From Lemma 2.3,
we know that there exists a unimodular matrix B ∈ Mn(Z) such that

B−1RBB−1v = λB−1v ,(3.11)

i.e.,

(M1 C
0 M2

)
⎛
⎜⎜⎜
⎝

vr

0
⋮
0

⎞
⎟⎟⎟
⎠
= λ
⎛
⎜⎜⎜
⎝

vr

0
⋮
0

⎞
⎟⎟⎟
⎠

,

where vr ∈ Zr , M1 ∈ Mr(Z), M2 ∈ Mn−r(Z), and C ∈ Mr ,n−r(Z). Hence, M1vr = λvr .
That is, λ is an eigenvalue of M1. And thus, λ = det(M1) as r = 1. Then, the character-
istic polynomial of M1 is x −M1. Applying Theorem 1.4, we know that μ{Rk},{Dk} is a
spectral measure. ∎

4 Proof of Theorem 1.5

In this section, we will prove Theorem 1.5. According to the dependence of the set of
vectors {v , Rv , . . . , Rn−1v}, we distinguish the following two cases: r = n (Theorem
4.1) and r < n (Theorem 4.3).
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Theorem 4.1 Let R ∈ Mn(Z) be an expanding matrix, and let D = {0, 1, . . . ,
q − 1}v, where the integer q ⩾ 2 and v ∈ Zn ∖ {0}. Suppose {v , Rv , . . . , Rn−1v} is
linearly independent. If (R, D) is admissible, then q∣det(R).

Proof Let f (x) = xn + a1xn−1 +⋯+ an−1x + an be the characteristic poly-
nomial of R. According to Lemma 3.2, there exists an integer matrix B =
(Rn−1v , Rn−2v , . . . , Rv , v) such that

R̃ = B−1RB =

⎛
⎜⎜⎜⎜⎜
⎝

−a1 1 0 ⋯ 0
−a2 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−an−1 0 0 ⋯ 1
−an 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

,(4.1)

D̃ = B−1D = {0, 1, . . . , q − 1}(0, 0, . . . , 0, 1)T ,(4.2)

ṽ = B−1v = (0, 0, . . . , 0, 1)T .(4.3)

Denote

d = gcd(an , q), q = dq′ , ∣an ∣ = da′n ,(4.4)

where q′ and a′n are positive integers with gcd(q′ , a′n) = 1. As (R, D) is admissible, we
know from Lemma 2.2 that (R̃, D̃) is admissible. Then, there exists

C = {x( j) ∶ x( j) = (x( j)
1 , x( j)

2 , . . . , x( j)
n )

T
∈ Zn , j ∈ {0, 1, 2, . . . , q − 1}}

with x(0) = 0 such that (R̃, D̃, C) is a Hadamard triple. Note

R̃−1ṽ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 − 1
an

1 0 ⋯ 0 − a1

an

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 − an−2

an

0 0 ⋯ 1 − an−1

an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

⋮

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 1
an

− a1

an

⋮

− an−2

an

− an−1

an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Denote D̃ = {d̃k}q−1
k=0. Then, for any m ∈ Z,

δ̂R̃−1 D̃(x
( j)) = 1

q

q−1

∑
k=0

e−2πi⟨R̃−1 d̃k ,x( j)⟩

= 1
q

q−1

∑
k=0

e2πi k
x( j)

1 +a1 x( j)
2 +⋯+an−2 x( j)

n−1+an−1 x( j)
n

an(4.5)

= 1
q

q−1

∑
k=0

e2πi k
(x( j)

1 +man)+a1 x( j)
2 +⋯+an−2 x( j)

n−1+an−1 x( j)
n

an .
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Note that there exists m j ∈ Z so that 0 ≤ L j ∶= (x( j)
1 +m j an) + a1x( j)

2 +⋯+
an−2x( j)

n−1 + an−1x( j)
n ≤ ∣an ∣ − 1 for each 0 ≤ j ≤ q − 1. Since (R̃, D̃, C) is a Hadamard

triple, it follows from (4.5) that L i ≠ L j for any 0 ≤ i ≠ j ≤ q − 1. Then, we may as well
suppose that 0 = L0 < L1 < ⋯ < Lq−1 < ∣an ∣. Set

C̃ = {x̃( j) ∶ x̃( j) = x( j) + (m j an , 0, . . . , 0)T , x( j) ∈ C}

with m0 = 0. Obviously, (R̃, D̃, C̃) is a Hadamard triple. This together with (4.5)
implies that for each 1 ≤ j ≤ q − 1,

'''''''''''

1
q ∑d̃k∈D̃

e−2πi⟨R̃−1 d̃k , x̃( j)−0⟩
'''''''''''
=
∣sin(a−1

n qL jπ)∣
∣q sin(a−1

n L jπ)∣
= 0.

It follows that L j = α j a′n(0 ≤ j ≤ q − 1) where all α j are integers with 0 = α0 < α1 <
⋯ < αq−1. Hence, αq−1 ≥ q − 1. And thus, ∣an ∣ > Lq−1 = αq−1a′n ≥ (q − 1)a′n . This
together with (4.4) implies that d > q − 1. On the other hand, d = gcd(q, an).
Therefore, d = q. Notice that det(R) = (−1)n an . Then, the assertion follows. ∎

Especially, we have the following corollary.

Corollary 4.2 Let

R =

⎛
⎜⎜⎜⎜⎜
⎝

−a1 1 0 ⋯ 0
−a2 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

−an−1 0 0 ⋯ 1
−an 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟
⎠

be an expanding integer matrix, and let D = {0, 1, . . . , q − 1}v, where v = (0, 0, . . . ,
0, 1)T . Then, (R, D) is admissible if and only if q∣det(R).

Proof The necessity is proved in Theorem 4.1. Conversely, Set

L = {0, 1, . . . , q − 1}( an

q
, 0, . . . , 0)

T
.

As det(R) = (−1)n an and q∣det(R), we have L ⊂ Zn . Note that

R−1v =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 ⋯ 0 − 1
an

1 0 ⋯ 0 − a1

an

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ 0 − an−2

an

0 0 ⋯ 1 − an−1

an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

⋮

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

− 1
an

− a1

an

⋮

− an−2

an

− an−1

an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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Then, for any distinct l1 , l2 ∈ {0, 1, . . . , q − 1},

δ̂R−1 D
⎛
⎝
(l1 − l2)(

can

q
, 0, . . . , 0)

T⎞
⎠
= 1

q ∑d∈D
e−2πi⟨R−1 d ,(l1−l2)(

can
q ,0, . . . ,0)T⟩

= 1
q

q−1

∑
k=0

e−2πi⟨kR−1(0,0,. . . ,0,1)T ,(l1−l2)(
can

q ,0, . . . ,0)T⟩ = 1
q

q−1

∑
k=0

e−2πi kc(l2−l1)
q = 0.

Hence, (R, D, L) is a Hadamard triple. ∎

Theorem 4.3 Let R ∈ Mn(Z) be an expanding matrix, and let D = {0, 1, . . . , q − 1}v,
where the integer q ⩾ 2 and v ∈ Zn ∖ {0}. Suppose that {v , Rv , . . . , Rn−1v} is linearly
dependent with rank r < n. If (R, D) is admissible, then q∣det(M1), where M1 is
expressed as in (1.2).

Proof According to Lemma 2.3, there exists a unimodular matrix B ∈ Mn(Z) such
that

R̃ ∶= B−1RB = (M1 C
0 M2

) ∈ Mn(Z), ṽ ∶= B−1v = (vT
r , 0, . . . , 0)T(4.6)

and

D̃ ∶= B−1D = {0, 1, . . . , q − 1}(vT
r , 0, . . . , 0)T ,(4.7)

where vr ∈ Zr , M1 ∈ Mr(Z), M2 ∈ Mn−r(Z), and C ∈ Mr ,n−r(Z). By Lemma 2.2, we
know that (R̃, D̃) is admissible since (R, D) is admissible. As {v , Rv , . . . , Rn−1v}
is linearly dependent with rank r, we know that {ṽ , R̃ṽ , . . . , R̃n−1ṽ} is also
linearly dependent with rank r. Similar to the proof in Theorem 1.4, we know
that {ṽ , R̃ṽ , . . . , R̃r−1ṽ} is linearly independent. Then, we know from (4.6) that
{vr , M1vr , . . . , Mr−1

1 vr} is linearly independent. Now, we define a bounded linear
operator T ∶ Rn → R

r given by

T((x1 , . . . , xr , . . . , xn)T) = (x1 , . . . , xr)T

for any (x1 , . . . , xn)T ∈ Rn . Note that

R̃−1ṽ = (
M−1

1 ×
0 M−1

2
)
⎛
⎜⎜⎜
⎝

vr

0
⋮
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

M−1
1 vr

0
⋮
0

⎞
⎟⎟⎟
⎠

.

Since (R̃, D̃) is admissible, there exists L̃ ⊆ Zn with #L̃ = #D̃ = q such that

H = 1
√q
(e−2πi⟨R−1 d , l⟩)

d∈D̃ , l∈L̃
= 1
√q
(e−2πi k⟨M−1

1 vr , l⟩)
k∈{0,1, . . . ,q−1}, l∈T(L̃)

is unitary. It follows that (M1 , T(D̃), T(L̃)) is a Hadamard triple. Combining with
Theorem 4.1, we have q∣det(M1). ∎

Now, we have all ingredients to prove Theorem 1.5.
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Proof of Theorem 1.5 The conclusion follows directly from Theorems 4.1
and 4.3. ∎

5 Some examples

In this section, we give some examples to illustrate our theory. The first example is an
application of Theorem 1.4.

Example 5.1 Let Rk = bk
⎛
⎜
⎝

1 −3 3
3 −5 3
6 −6 4

⎞
⎟
⎠

mk

and Dk = {0, 1, . . . , qk − 1}v, where

bk , mk ∈ Z+ and v =
⎛
⎜
⎝

1
1
2

⎞
⎟
⎠

for k ≥ 1. Then, μ{Rk},{Dk} is a spectral measure if qk ∣4bk .

Proof Let

R =
⎛
⎜
⎝

1 −3 3
3 −5 3
6 −6 4

⎞
⎟
⎠

, v =
⎛
⎜
⎝

1
1
2

⎞
⎟
⎠

, B =
⎛
⎜
⎝

1 0 0
1 1 0
2 0 1

⎞
⎟
⎠

.

Thus,

Rv = 4v and B−1RB =
⎛
⎜
⎝

4 −3 3
0 −2 0
0 0 −2

⎞
⎟
⎠

.

According to Theorem 1.4, μ{Rk},{Dk} is a spectral measure if qk ∣4bk . ∎

The following example is given to explain that the condition q∣det(M1) in Theorem
1.5 is not sufficient.

Example 5.2 Let R = (2k + 1 0
2c 2c) ∈ M2(Z) and D = {0, 1}v, where v = (1, 0)T

and k, c are nonzero integers. Then, (R, D) is not admissible.

Proof By a direct calculation, we have

Z(δ̂D) =
1
2
(1, 0)T + (Z,R)T ,(5.1)

where (Z,R) = {(x1 , x2) ∶ x1 ∈ Z, x2 ∈ R}. If (R, D) is admissible, then there exists
C1 ⊆ Z2 such that (R−1D, C1) is a compatible pair with 0 ∈ C1. Let C = R∗−1C1. Then,
we know that C ⊆ Z(δ̂D) and there exist n ∈ Z and m ∈ R such that

C = {0, ( 1
2
+ n, m)T} .
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Since C1 = R∗C ⊆ Z2, we have

R∗ (
1
2 + n

m ) =
⎛
⎝
( 1

2
+ n)(2k + 1) + 2mc

2mc

⎞
⎠
∈ Z2 ,

i.e.,
⎧⎪⎪⎨⎪⎪⎩

(2k + 1)(1 + 2n) + 4mc ∈ 2Z,
2cm ∈ Z.

(5.2)

This is a contradiction. Hence, (R, D) is not admissible. ∎

In Example 5.2, we notice that {v , Rv} is linearly independent and 2∣det(R),
but (R, D) is not admissible. Hence, the condition q∣det(M1) in Theorem 1.5 is not
sufficient.
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