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Given a positive definite covariance matrix ̂� of dimension n, we approximate it with a covariance of
the form HH�+D, where H has a prescribed number k < n of columns and D > 0 is diagonal. The quality
of the approximation is gauged by the I-divergence between the zero mean normal laws with covariances
̂� and HH� + D, respectively. To determine a pair (H, D) that minimizes the I-divergence we construct,
by lifting the minimization into a larger space, an iterative alternating minimization algorithm (AML) à
la Csiszár–Tusnády. As it turns out, the proper choice of the enlarged space is crucial for optimization.
The convergence of the algorithm is studied, with special attention given to the case where D is singular.
The theoretical properties of the AML are compared to those of the popular EM algorithm for exploratory
factor analysis. Inspired by the ECME (a Newton–Raphson variation on EM), we develop a similar variant
of AML, called ACML, and in a few numerical experiments, we compare the performances of the four
algorithms.
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1. Introduction

Let Y be a given zero mean normal vector of dimension n and covariance Cov(Y ) = ̂�. A
standard Factor Analysis (FA) model for Y is a linear model

Y = HX + ε, (1.1)

where H is a deterministic matrix, X is a standard normal vector of dimension k < n, i.e., with
zero mean and Cov(X) = Ik (the k-dimensional identity), and ε is a zero mean normal vector,
independent from X , with Cov(ε) = D diagonal. The model (1.1) explains the n components of
Y as linear combinations of the k < n components of X , perturbed by the independent noise ε.
The FA model built-in linear structure and data reduction mechanism make it very attractive in
applied research.

It is not always possible to describe the given Y with a FA model. Indeed, as a consequence
of the hypotheses on X and ε,

̂� = HH� + D, (1.2)

a relation which imposes strong structural constraints on the covariance ̂�. Determining whether
the given Y admits a FA model (1.1) requires the solution of an algebraic problem: given ̂�, find,
if they exist, pairs (H, D) such that (1.2) holds. The structural constraints impose that H must be a
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tall matrix, and D a diagonal matrix. For a given ̂�, the existence and uniqueness of a pair (H, D)

are not guaranteed. Generically, the Ledermann bound (Anderson & Rubin, 1956; Ledermann,
1937), gives necessary conditions for the existence of a FA model in terms of k and n.

As it turns out, for the data reduction case of this paper, the right tools to deal with the
existence and the construction of an FA model are geometric in nature and come from the theory
of stochastic realization, see Finesso and Picci (1984) for an early contribution on the subject.

In the present paper we address the problem of constructing an approximate FA model of the
given Y . Since in general the relation (1.2) does not hold for any (H, D), one has to find ways to
gauge the closeness of ̂� to the FA model covariance HH� + D. One possibility is to use a form
of least squares as a loss criterion. Here we adopt the I-divergence I(̂�||HH� + D), also known
as Kullback-Leibler distance, between the corresponding (multivariate) normal laws. Throughout
the paper ̂� is given and is assumed to be non-singular.

In statistical inference it is well known, and reviewed in Section 2, that the I-divergence is,
up to constants independent of H and D, the parameters yielding the covariance HH� + D, the
opposite of the normal log likelihood. One has the identity

− I(̂�||HH� + D) = n

2
− 1

2
log

|HH� + D|
̂�

− 1

2
tr
(

(HH� + D)−1
̂�

)

, (1.3)

where ̂� is now the empirical covariance matrix, used as an estimator of the true covariance
HH� + D. In the empirical context non-singular ̂� is usually the case if the number of variables
is smaller than the number of observations. A completely different situation, singular ̂�, arises
when the number of variables is larger than the number of observations, see e.g., Bai and Li
(2012), Trendafilov and Unkel (2011) for recent results.

The choice of the best (H, D) pair can then be posed as a maximum- likelihood problem, as
first proposed by Lawley (1940). Lacking a closed form solution, the maximization problem (1.3)
has to be attacked numerically, and several optimization algorithms have been either adapted
or custom-tailored for it. Among the former, the EM method, introduced in the context of FA
estimation by Rubin and Thayer (1982), and still mutating and evolving (Adachi, 2013; Zhao, Yu,
& Jiang, 2008; Zhao & Shi, 2014), takes full advantage of the structure of the likelihood in order
to guarantee descent at each iteration, although at the expense of a less than ideal convergence
rate, which can be slow and sensitive to the initial conditions.

It has long been known, see Csiszár and Tusnády (1984), that any EM algorithm can be refor-
mulated embedding the problem in a properly chosen larger parameter space and then performing
alternating partial minimizations of the I-divergence over properly defined subspaces. This setup
has previously been followed for various problems, e.g., mixture decomposition (Csiszár & Tus-
nády, 1984), non-negative matrix factorization (Finesso & Spreij, 2006), and approximation of
non-negative impulse response functions (Finesso & Spreij, 2015). The advantage afforded by
the embedding procedure is that both partial minimizations have closed form solutions; more-
over a necessary and sufficient condition of optimality of a geometric flavor, a Pythagoras rule,
see Csiszár (1975), is available to check optimality for both partial minimizations. As it turns out,
and we prove this assertion in Section 5, the EM method proposed in Rubin and Thayer (1982)
corresponds to a suboptimal embedding, as one of the Pythagoras rules fails. The main result of
this paper is an iterative algorithm, called AML, for the construction of an (H, D) pair minimizing
the I-divergence from ̂� using an optimal embedding, for which both Pythagoras rules hold. We
also study the behavior of the algorithm in the singular case, i.e., D not of full rank, which is
well known to be problematic for FA modeling (Jöreskog, 1967). These theoretical considera-
tions make up the bulk of the paper. We emphasize that the present paper is not on numerical
subtleties and (often very clever) improvements as established in the literature to accelerate the
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convergence of EM type algorithms. Rather, the central feature is the systematic methodology
to derive an algorithm by a constructive procedure. Nevertheless, we make a brief foray into the
numerical aspects, developing a version of AML, which we call ACML, in the spirit of ECME [a
Newton–Raphson variation on EM, Liu and Rubin (1994)].

The remainder of the paper is organized as follows. In Section 2 the approximation problem is
posed and discussed, as well as its estimation problem counterpart. Section 3 recasts the problem
as a double minimization in a larger space, making it amenable to a solution in terms of alternating
minimization. In Section 4, we present the alternating minimization algorithm, provide alterna-
tive versions of it, and study its asymptotics. We also point out, in Section 5, the similarities and
the differences between our algorithm and the EM algorithm. Section 6 is dedicated to a con-
strained version of the optimization problem (the singular D case) and the pertinent alternating
minimization algorithm. The study of the singular case also sheds light on the boundary limit
points of the algorithm presented in Section 4. The last Section 7 is devoted to numerical illustra-
tions, where we compare the performance of the AML, EM, ACML, and ECME algorithms. The
Appendix contains the proofs of most of the technical results, and also decomposition results on
the I-divergence, which are interesting in their own right, beyond application to Factor Analysis.

2. Problem Statement

In the present section, we pose the approximation problem and discuss the closely related
estimation problem and its statistical counterpart.

2.1. Approximation Problem

Consider independent normal, zero mean, random vectors X and ε, of respective dimensions
k and n, where k < n, and with Cov(X) = Ik and Cov(ε) = D, a diagonal matrix. For any
deterministic conformable matrix H , the n dimensional vector Y given by

Y = HX + ε (2.1)

is called a standard FA model. The matrices (H, D) are the parameters that identify the model.
As a consequence of the hypotheses,

Cov(Y ) = HH� + D. (2.2)

Given an n-dimensional covariance matrix ̂�, one can pose the problem of approximating it with
the covariance of a standard FA model, i.e., of finding (H, D) such that

̂� ≈ HH� + D. (2.3)

In this paper, we pose and solve the problem of finding an optimal approximation (2.3) when
the criterion of closeness is the I-divergence (also known as Kullback-Leibler distance) between
normal laws. Recall that [see e.g., Theorem 1.8.2 in Ihara (1993)] if ν1 and ν2 are two zero
mean normal distributions on R

m , whose covariance matrices, �1 and �2, respectively, are both
non-singular, the I-divergence I(ν1||ν2) takes the explicit form (| · | denotes determinant)

I(ν1||ν2) = 1

2
log

|�2|
|�1| − m

2
+ 1

2
tr(�−1

2 �1). (2.4)
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Since, because of zero means, the I-divergence depends only on the covariance matrices, we
usually write I(�1||�2) instead of I(ν1||ν2). The approximate FA model problem can then be
cast as follows.

Problem 2.1. Given the covariance matrix ̂� > 0, of size n, and an integer k < n, minimize1

I(̂�||HH� + D) = 1

2
log

|HH� + D|
|̂�| − n

2
+ 1

2
tr((HH� + D)−1

̂�), (2.5)

where the minimization is taken over all diagonal matrices D ≥ 0, and H ∈ R
n×k .

The first result is that in Problem 2.1, a minimum always exists.

Proposition 2.2. There exist matrices H∗ ∈ R
n×k , and non-negative diagonal D∗ ∈ R

n×n that
minimize the I-divergence in Problem 2.1.

Proof. The proof can be found in Finesso and Spreij (2007). ��
Finesso and Spreij (2006) studied an approximate non-negative matrix factorization (NMF)

problemwhere the objective functionwas also of I-divergence type. In that case, using a relaxation
technique, the original minimization was lifted to a double minimization in a higher dimensional
space, leading naturally to an alternating minimization algorithm. The core of the present paper
consists in following the sameapproach, in the completely different context of covariancematrices,
and to solve Problem 2.1 with an alternating minimization algorithm.

As a side remark note that I(�1||�2), computed as in (2.4), can be considered as an I-
divergence between two positive definite matrices, without referring to normal distributions.
Hence the approximation Problem 2.1 is meaningful even without assuming normality.

2.2. Estimation Problem

In a statistical setup, the approximation Problem 2.1 has an equivalent formulation as an
estimation problem. Let indeedY1, . . . ,YN be a sequence of i.i.d. observations, whose distribution
is modeled according to (2.1), where the matrices H and D are the unknown parameters. This is
the context of Exploratory Factor Analysis, where no constraints are imposed on thematrix H . Let
̂� denote the sample covariance matrix of the data. If the data have strictly positive covariance,
for large enough N , the sample covariance will be strictly positive almost surely. The normal log
likelihood �(H, D) yields

1

N
�(H, D) = −n

2
log(2π) − 1

2
log |HH� + D| − 1

2
tr
(

(HH� + D)−1
̂�

)

. (2.6)

One immediately sees that �(H, D) is, up to constants not depending on H and D, equal to
−I(̂�||HH� +D). Hence, maximum-likelihood estimation parallels I-divergence minimization
in Problem 2.1, only the interpretation is different.

The equations for the maximum-likelihood estimators can be found in e.g., Section 14.3.1
of Anderson (1984). In terms of the unknown parameters H and D, with D assumed to be non-
singular, they are

H = (̂� − HH�)D−1H (2.7)

D = �(̂� − HH�). (2.8)

1Note that, since ̂� > 0, the I-divergence I(̂�||HH� + D) is finite if and only if HH� + D is invertible. This
condition will always be assumed, without real loss of generality since the problem is to minimize the I-divergence.
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where �(M), defined for any square M , coincides with M on the diagonal and is zero elsewhere.
Note that the matrix HH� + D obtained by maximum-likelihood estimation is automatically
invertible. Then it can be verified that Equation (2.7) is equivalent to

H = ̂�(HH� + D)−1H, (2.9)

which is meaningful also when D is not invertible.
It is clear that the systemofEquations (2.7), (2.8) does not have an explicit solution. For this reason,
several numerical algorithms have been devised, among others a version of the EM algorithm,
see Rubin and Thayer (1982). In the present paper we consider an alternative approach, which
we will compare with the EM and some of the other algorithms.

3. Lifted Version of the Problem

In this section, Problem 2.1 is recast in a higher dimensional space, making it amenable to
solution via two partial minimizations which will lead, in Section 4.1, to an alternating mini-
mization algorithm. The original n dimensional FA model (2.1) is embedded in a larger n + k
dimensional linear model as follows:

V =
(

Y
Z

)

=
(

H In
Q� 0

) (

X
ε

)

, (3.1)

where the deterministicmatrix Q� is square of size k, and for the terms H , X , and ε the hypotheses
leading to model (2.1) still hold. The vector V , as well as its subvector Z , is therefore zero mean
normal, with

Cov(V ) =
(

HH� + D HQ
(HQ)� Q�Q

)

. (3.2)

Remark 3.1. The embedding (3.1) has a simple interpretation as a convenient reparametrization
of the following alternative version of the standard FA model (2.1),

Y = LZ + ε, (3.3)

where Z and ε are zero mean normal vectors of sizes k and n, respectively, withCov(Z) = P > 0
and Cov(ε) = In . Letting P = Q�Q and X = Q−�Z , where Q is any k × k square root2 of P ,
one easily recognizes that (3.1) is a reparametrization of (3.3).

In this paper, all vectors are zero mean and normal, with law completely specified by the
covariance matrix. The set of all covariance matrices of size n + k will be denoted as �. An
element � ∈ � can always be decomposed as

� =
(

�11 �12
�21 �22

)

, (3.4)

where �11 and �22 are square, of respective sizes n and k.

2 For any non-negative definite matrix M ≥ 0 a square root is any matrix N such that M = NN�. In general the
square root is not unique, but if M > 0 the symmetric square root is unique. A common notation for a square root of M
is M1/2.
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Two subsets of �, comprising covariance matrices with special structure, will play a major
role in what follows. The subset �0 ⊂ � contains all covariances (3.4) with �11 = ̂�, a given
matrix, i.e.,

�0 = {� ∈ � : �11 = ̂�}.
The generic element of �0 will often be denoted as �0. Also of interest is the subset �1 ⊂ �,
containing all covariances (3.4) of the special form (3.2), i.e.,

�1 =
{

� ∈ � : �11 = HH� + D, �12 = HQ, �22 = Q�Q with H, D, Q as in (3.2)
}

.

The generic elements of �1 will often be denoted �1, or �(H, D, Q) when the parameters are
relevant.
We are now ready to pose the following double minimization problem.

Problem 3.2. Find

min
�0∈�0,�1∈�1

I(�0||�1).

Problems 3.2 and 2.1 are related by the following proposition.

Proposition 3.3. Let ̂� be given. It holds that

min
H,D

I
(

̂� || HH� + D
)

= min
�0∈�0,�1∈�1

I (�0||�1) .

Proof. The proof can be found in Finesso and Spreij (2007). ��

3.1. Partial Minimization Problems

The first partial minimization, required for the solution of Problem 3.2, is as follows.

Problem 3.4. Given a strictly positive definite covariance matrix � ∈ �, find

min
�0∈�0

I(�0||�).

The unique solution to this problem can be computed analytically and is given below.

Proposition 3.5. The unique minimizer �∗
0 of Problem 3.4 is given by

�∗
0 =

(

̂� ̂��−1
11 �12

�21�
−1
11

̂� �22 − �21�
−1
11 (�11 − ̂�)�−1

11 �12

)

> 0.

Moreover,
I(�∗

0 ||�) = I(̂�||�11), (3.5)

and the Pythagorean rule
I(�0||�) = I(�0||�∗

0 ) + I(�∗
0 ||�)

holds for any strictly positive �0 ∈ �0.
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Proof. See Appendix 2. ��
Next we turn to the second partial minimization

Problem 3.6. Given a strictly positive definite covariance matrix � ∈ �, find

min
�1∈�1

I(�||�1).

The proposition below gives the explicit solution to this problem.

Proposition 3.7. A minimizer �∗
1 = �(H∗, D∗, Q∗) of Problem 3.6 is given by

Q∗ = �
1/2
22

H∗ = �12�
−1/2
22

D∗ = �(˜�11),

where

˜�11 = �11 − �12�
−1
22 �21.

The corresponding minimizing matrix is

�∗
1 = �(H∗, D∗, Q∗) =

(

�12�
−1
22 �21 + �(˜�11) �12

�21 �22

)

. (3.6)

Moreover, I(�||�∗
1 ) = I(˜�11||�(˜�11)) and the Pythagorean rule

I(�||�1) = I(�||�∗
1 ) + I(�∗

1 ||�1) (3.7)

holds for any �1 = �(H, D, Q) ∈ �1.

Proof. See Appendix 2. ��
Note that Problem 3.6 cannot have a unique solution in terms of the matrices H and Q.

Indeed, if U is a unitary k × k matrix and H ′ = HU , Q′ = U�Q, then H ′H ′� = HH�,
Q′�Q′ = Q�Q, and H ′Q′ = HQ. Nevertheless, the optimal matrices HH�, HQ, and Q�Q
are unique, as it can be easily checked using the expressions in Proposition 3.7.

Remark 3.8. Note that, since � is supposed to be strictly positive, ˜�11 := �11 − �12�
−1
22 �21 is

strictly positive too. It follows that D∗ = �(˜�11) is strictly positive.

We close this section by considering a constrained version of the second partial minimization
Problem 3.6 to which we will return in Section 5, when we discuss the connection with the EM
algorithm. The constraint that we impose is Q = Q0 fixed, whereas H and D remain free. The
set over which the optimization will be carried out is �10 ⊂ �1 defined as

�10 =
{

� ∈ � : �11 = HH� + D, �12 = HQ0, �22 = Q�
0 Q0 with H, D as in (3.2)

}

.

We pose the following constrained optimization problem.
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Problem 3.9. Given a strictly positive covariance � ∈ �, find

min
�10∈�10

I(�||�10).

The solution is given in the next proposition.

Proposition 3.10. A solution �∗
10 of Problem 3.9 is obtained for H∗ = �12�

−1
22 Q�

0 , and D∗ as
in Proposition 3.7, resulting in

�∗
10 =

(

�12�
−1
22 Q�

0 Q0�
−1
22 �21 + �(˜�11) �12�

−1
22 Q�

0 Q0

Q�
0 Q0�

−1
22 �21 Q�

0 Q0

)

. (3.8)

Proof. See Appendix 2. ��
For the constrained problem, the Pythagorean rule does not hold. Intuitively, since �10 ⊂ �1 the
optimal value of the constrained Problem 3.9 is in general higher than the optimal value of the free
Problem 3.6. To compute the extra cost incurred notice that �∗

10 ∈ �1, therefore the Pythagorean
rule (3.7) gives

I(�||�∗
10) = I(�||�∗

1 ) + I(�∗
1 ||�∗

10), (3.9)

hence I(�||�∗
10) ≥ I(�||�∗

1 ), where �∗
1 is as in Proposition 3.7. The quantity I(�∗

1 ||�∗
10)

represents the extra cost. An elementary computation gives

I(�∗
1 ||�∗

10) = I(�22||Q�
0 Q0), (3.10)

i.e., the optimizing matrices �∗
1 and �∗

10, see (3.6), (3.8), coincide iff Q
�
0 Q0 = �22.

Summarizing the comments on the constrained problem: (i) the optimal value at theminimum
is higher since �10 ⊂ �1, (ii) the extra cost is explicitly given by (3.10), as I(�22||Q�

0 Q0), and
(iii) there is no analog to the Pythagorean rule (3.7). The conclusion is that the solution �∗

10 of
the constrained Problem 3.9 is suboptimal for the free Problem 3.6. The consequences of the
suboptimality will be further discussed in Section 5.

4. Alternating Minimization Algorithm

In this section, the core of the paper, the two partial minimizations of Section 3 are combined
into an alternatingminimization algorithm for the solution of Problem 2.1. A number of equivalent
formulations of the updating equations will be presented and their properties are discussed.

4.1. The Algorithm

We suppose that the given covariance matrix ̂� is strictly positive definite. To set up the
iterative minimization algorithm, assign initial values H0, D0, Q0 to the parameters, with D0
diagonal, Q0 invertible and H0H�

0 +D0 invertible. The updating rules are constructed as follows.
Let Ht , Dt , Qt be the parameters at the t-th iteration, and�1,t = �(Ht , Dt , Qt ) the corresponding
covariance, defined as in (3.2). Now solve the two partial minimizations as illustrated below.

(Ht , Dt , Qt )
Prop. 3.5−−−−−−−−−−→

min
�0∈�0

I(�0||�1,t )
�0,t

Prop. 3.7−−−−−−−−−−→
min

�1∈�1
I(�0,t ||�1)

(Ht+1, Dt+1, Qt+1) · · · ,
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where �0,t denotes the solution of the first minimization with input �1,t . To express in a compact
form the resulting update equations, define

Rt = I − H�
t (Ht H

�
t + Dt )

−1Ht + H�
t (Ht H

�
t + Dt )

−1
̂�(Ht H

�
t + Dt )

−1Ht . (4.1)

Note that, by Remark 3.8, Ht H�
t + Dt is actually invertible for all t , since both H0H�

0 + D0 and
Q0 have been chosen to be invertible. It is easy to show that also I − H�

t (Ht H�
t + Dt )

−1Ht ,
and consequently Rt , are strictly positive and therefore invertible. The update equations resulting
from the cascade of the two minimizations are

Qt+1 =
(

Q�
t Rt Qt

)1/2
, (4.2)

Ht+1 = ̂�(Ht H
�
t + Dt )

−1Ht Qt Q
−1
t+1, (4.3)

Dt+1 = �(̂� − Ht+1H
�
t+1). (4.4)

Properly choosing the square root in Equation (4.2) will make Qt disappear from the update
equations. This is an attractive feature since, at the t-th step of the algorithm, only Ht and Dt

are needed to construct the approximation Ht H�
t + Dt . The choice that accomplishes this is

(Q�
t Rt Qt )

1/2 = R1/2
t Qt , where R1/2

t is a symmetric root of Rt , resulting in Qt+1 = R1/2
t Qt .

Upon substituting Qt+1 in Equation (4.3), one gets the AML algorithm.

Algorithm 4.1. (AML) Given Ht , Dt from the t-th step, and Rt as in (4.1), the update equations
for a I-divergence minimizing algorithm are

Ht+1 = ̂�(Ht H
�
t + Dt )

−1Ht R
−1/2
t (4.5)

Dt+1 = �(̂� − Ht+1H
�
t+1). (4.6)

Since Rt only depends on Ht and Dt , see (4.1), the parameter Qt has been effectively removed
from the update equations, although its presence was essential for the derivation.

Remark 4.2. Algorithm 4.1 has one immediate attractive feature: it preserves at each step the
diagonal structure of ̂�. Indeed, if we let �t = Ht H�

t + Dt , then it follows from Equation (4.6)
that �(�t ) = �(̂�).

Algorithm 4.1 potentially has two drawbacks making its implementation computationally
less attractive. To update Ht via Equation (4.5) one has to compute, at each step, the square root
of the k × k matrix Rt and the inverse of the n × n matrix Ht H�

t + Dt . The latter problem
may in principle be addressed via the matrix inversion lemma, but this requires an invertible Dt

which could be problematic in practical situations when one encounters nearly singular Dt . An
alternative approach to Algorithm 4.1, to avoid the square roots at each iteration, is to update
Ht := Ht H�

t and Dt as before.

Proposition 4.3. Let Ht be as in Algorithm 4.1. Pick H0 = H0H�
0 , and D0 such that H0 + D0

is invertible. The update equation forHt becomes

Ht+1 = ̂�(Ht + Dt )
−1Ht

(

Dt + ̂�(Ht + Dt )
−1Ht

)−1
̂�. (4.7)

Proof. See Appendix 2. ��
One can run the update Equation (4.7), for any number T of steps, and then switch back to HT ,
taking any n × k factor ofHT i.e., solveHT = HT H�

T . Since Equation (4.7) transformsHt into
Ht+1 preserving the rank, the latter factorization is always possible.
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4.2. Asymptotic Properties

In Proposition 4.4 below, we collect the asymptotic properties of Algorithm 4.1, also quan-
tifying the I-divergence decrease at each step.

Proposition 4.4. For Algorithm 4.1, the followings hold.

(a) Ht H�
t ≤ ̂� for all t ≥ 1.

(b) If D0 > 0 and �(̂� − D0) > 0 then Dt > 0 for all t ≥ 1.
(c) The matrices Rt are invertible for all t ≥ 1.
(d) If Ht H�

t + Dt = ̂� then Ht+1 = Ht , Dt+1 = Dt .
(e) Decrease of the objective function:

I(̂�||̂�t ) − I(̂�||̂�t+1) = I(�1,t+1||�1,t ) + I(�0,t ||�0,t+1),

where ̂�t = Ht H�
t + Dt is the t-th approximation of ̂�, and �0,t , �1,t were defined in

Section 4.1.
(f) The interior limit points (H, D) of the algorithm satisfy

H = (̂� − HH�)D−1H, D = �(̂� − HH�), (4.8)

which are the ML Equations (2.7) and (2.8). If (H, D) is a solution to these equation
also (HU, D) is a solution, for any unitary matrix U ∈ R

k×k .
(g) Limit points (H, D) satisfy

H = ̂�(H + D)−1H, D = �(̂� − H).

Proof. (a) This follows from Remark 3.8 and the construction of the algorithm as a com-
bination of the two partial minimizations.

(b) This similarly follows from Remark 3.8.
(c) Use the identity I − H�

t (Ht H�
t + Dt )

−1Ht = (I + H�
t D−1

t Ht )
−1 and ̂� non-negative

definite.
(d) In this case, Equation (4.1) shows that Rt = I and substituting this into the update

equations yields the conclusion.
(e) As matter of fact, we can express the decrease as a sum of two I-divergences, since

the algorithm is the superposition of the two partial minimization problems. The results
follow from a concatenation of Proposition 3.5 and Proposition 3.7.

(f) Assume that all variables converge. Then, from (4.3), it follows that Equation (2.9) holds
in the limit. This gives the first of the desired relations, the rest is trivial.

(g) This follows by inserting the result of (f.).
��

In part (f) of Proposition 4.4, we made the assumption that the limit points (H, D) are interior
points. This does not always hold true as it may happen that D contains zeros on the diagonal.
See also Section 6.2.

Remark 4.5. Assertions (b) and (c) of Proposition 4.4 agree with the recent results of Adachi
(2013) (Lemma 1 and Theorem 1) for the closely related EM algorithm with a strictly positive
definite empirical covariance matrix ̂�. We note that the assertions (b) and (c) are automatic
consequences of our setup, they follow from the casting of the problem as a double divergence
minimization problem. Indeed, the solutions to the ensuing partial minimization problems are
automatically strictly positive definite matrices, as otherwise the minimum divergences would be
infinite, which is impossible.
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5. Comparison with the EM Algorithm

In Rubin and Thayer (1982), a version of the EM algorithm (see Dempster, Laird, & Rubin,
1977) has been put forward in the context of estimation for FA models. This algorithm is as
follows, with Rt as in (4.1).

Algorithm 5.1. (EM)

Ht+1 = ̂�(Ht H
�
t + Dt )

−1Ht R
−1
t

Dt+1 = �(̂� − Ht+1Rt H
�
t+1).

TheEMAlgorithm5.1 differs in both equations fromourAMLAlgorithm4.1. It iswell known
that EM algorithms can be derived as alternating minimizations, see Csiszár and Tusnády (1984),
it is therefore interesting to investigate how Algorithm 5.1 can be derived within our framework.
Thereto one considers the first partial minimization problem together with the constrained second
partial minimization Problem 3.9, the constraint being Q = Q0, for some Q0. Later on we will
see that the particular choice of Q0, as long as it is invertible, is irrelevant. The concatenation of
these two problems results in the EM Algorithm 5.1, as is detailed below.

Starting at (Ht , Dt , Q0), one performs the first partial minimization that results in the matrix

(

̂� ̂�(Ht H�
t + Dt )

−1Ht Q0

Q�
0 H

�
t (Ht H�

t + Dt )
−1

̂� Q�
0 Rt Q0

)

.

Performing now the constrained secondminimization, according to the results of Proposition 3.10,
one obtains

Ht+1 = ̂�(Ht H
�
t + Dt )

−1Ht R
−1
t (5.1)

Dt+1 = �
(

̂� − ̂�(Ht H
�
t + Dt )

−1Ht R
−1
t H�

t (Ht H
�
t + Dt )

−1
̂�

)

. (5.2)

Substitution of (5.1) into (5.2) yields

Dt+1 = �(̂� − Ht+1Rt H
�
t+1). (5.3)

One sees that the matrix Q0 does not appear in the recursion, just as the matrices Qt do not occur
in Algorithm 4.1, but we lost the second optimality property in the construction of Algorithm 4.1,
due to the imposed constraint Q = Q0. Moreover, the EM algorithm does not enjoy the diagonal
preservation property mentioned in Remark 4.2 for Algorithm 4.1, due to the presence of Rt in
Equation (5.3).

Summarizing, bothAlgorithms4.1 and5.1 are the result of twopartialminimizationproblems.
The latter algorithm differs from ours in that the second partial minimization is constrained. In
view of the extra cost incurred by the suboptimal constrained minimization, see Equation (3.9),
our Algorithm 4.1 yields a better performance. We will illustrate these considerations by some
numerical examples in Section 7.
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6. Singular D

It has been known for a long time, see e.g., Jöreskog (1967), that numerical solutions to theML
Equations (2.7), (2.8) often produce a nearly singular matrix D. This motivates the analysis of the
minimization Problem2.1when D is constrained, at the outset, to be singular (Section 6.1), and the
investigation of its consequences for the minimization algorithm of Proposition 4.3 (Section 6.2).

6.1. Approximation with Singular D

In this section, we consider the approximation Problem 2.1 under the constraint D2 = 0
where

D =
(

D1 0
0 D2

)

=
(

˜D 0
0 0

)

, (6.1)

with D1 = ˜D > 0 of size n1 and D2 = 0 of size n2. The constrained minimization problem can
be formulated as follows.

Problem 6.1. Given ̂� > 0 of size n × n and integers n2 and k, with n2 ≤ k < n, minimize

I(̂�||HH� + D),

over (H, D) with D satisfying (6.1).

Remark 6.2. Alternatively, in Jöreskog (1967), the solution of the likelihood Equations (2.8)
and (2.9) has been investigated under zero constraints on D. In this section, we work directly on
the objective function of Problem 6.1.

To reduce the complexity of Problem 6.1 wewill now decompose the objective function, choosing

a convenient representation of the matrix H =
(

H1
H2

)

, where Hi has ni rows. Inspired by the

parametrization in Jöreskog (1967) we make the following observation. Given any orthogonal
matrix Q, define H ′ = HQ, then clearly H ′H ′� +D = HH� +D. Let H2 = U (0 �)V� be the
singular value decomposition of H2, with � a positive definite diagonal matrix of size n2 × n2,
and U and V orthogonal of sizes n2 × n2 and k × k, respectively. Let

H ′ = HV

The blocks of H ′ are H ′
1 = H1V and H ′

2 = (H ′
21 H

′
22) := (0 U�), with H ′

21 ∈ R
(k−n2)×n2 and

H ′
22 ∈ R

n2×n2 . Hence, without loss of generality, in the remainder of this section we assume that

H =
(

H1
H2

)

=
(

H11 H12
0 H22

)

, H22 invertible. (6.2)

Finally, let

K = ̂�12̂�
−1
22 − H1H

�
2 (H2H

�
2 )−1,

which, under (6.2), is equivalent to

K = ̂�12̂�
−1
22 − H12H

−1
22 .

Here is the announced decomposition of the objective function.
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Lemma 6.3. Let D be as in Equation (6.1). The following I-divergence decomposition holds.

I(̂�||HH� + D) = I(˜�11||H11H
�
11 + ˜D) + I(̂�22||H22H

�
22)

+ 1

2
tr

(

̂�22K
�(H11H

�
11 + ˜D)−1K

)

. (6.3)

Proof. The proof follows from Lemma 9.1. ��
We are now ready to characterize the solution of Problem 6.1. Observe first that the second

and third terms on the right-hand side of (6.3) are non-negative and can be made zero. To this end,
it is enough to select H22 such that H22H�

22 = ̂�22 and then H12 = ̂�12̂�
−1
22 H22. The remaining

blocks, H11 and ˜D, are determined minimizing the first term. We have thus proved the following

Proposition 6.4. Any pair (H, D), as in (6.1) and (6.2), solving Problem 6.1 satisfies

(i) I(˜�11||H11H�
11 + ˜D) is minimized,

(ii) I(̂�||HH� + D) = I(˜�11||H11H�
11 + ˜D),

(iii) H22H�
22 = ̂�22,

(iv) H12 = ̂�12̂�
−1
22 H22.

Remark 6.5. In the special case n2 = k, the matrices H11 and H21 are empty, H12 = H1, and
H22 = H2. From Proposition 6.4, at the minimum, H2H�

2 = ̂�22, H1H�
2 = ̂�12, and ˜D

minimizes I(˜�11||˜D). The latter problem has solution ˜D = �(˜�11). It is remarkable that in this
case the minimization problem has an explicit solution.

6.2. Algorithm When a Part of D has Zero Diagonal

In Section 6.1, we have posed the minimization problem under the additional constraint that
thematrix D contains a number of zeros on the diagonal. In the present section, we investigate how
this constraint affects the alternating minimization algorithm. For simplicity, we give a detailed
account of this, only using the recursion (4.7) forHt . Initialize the algorithm at (H0, D0) with

D0 =
(

˜D0 0
0 0

)

, (6.4)

where ˜D0 > 0, and

H0 =
(

H10
H20

)

, (6.5)

where H20 ∈ R
n2×k is assumed to have full row rank, so that n2 ≤ k. Clearly, H0H�

0 + D0 is
invertible. For H0 as in Equation (6.5) put

˜H0 = H10(I − H�
20(H20H

�
20)

−1H20)H
�
10. (6.6)

Proposition 6.6. Consider the update Equation (4.7). The upper left block H11
t of Ht can be

computed running a recursion for ˜Ht := H11
t − ̂�12̂�

−1
22

̂�21, with initial condition ˜H0,

˜Ht+1 = ˜�11( ˜Ht + ˜Dt )
−1

˜Ht (˜Dt + ˜�11( ˜Ht + ˜Dt )
−1

˜Ht )
−1

˜�11,
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whereas the blocks on the border ofHt remain constant. The iterates for Dt all have a lower right
block of zeros, while the upper left n1 × n1 block ˜Dt satisfies

˜Dt = �(˜�11 − ˜Ht ).

Limit points ( ˜H, ˜D) with ˜D > 0 satisfy ˜H = ˜�11( ˜H + ˜D)−1
˜H, ˜D = �(˜�11 − ˜H).

Proof. See Appendix 2. ��
Note that the recursions of Proposition 6.6 are exactly those that follow from the optimization
Problem 6.1. Comparison with (4.7) shows that, while the algorithm for the unconstrained case
updates Ht of size n × n, now one needs to update ˜Ht which is of smaller size n1 × n1.

In the special case n2 = k, the matrix ˜H0 of (6.6) is equal to zero. Therefore, ˜H11
1 =

̂�12̂�
−1
22

̂�21 which proves the following

Corollary 6.7. Let the initial value D0 be as in Equation (6.4) with n2 = k. Then for any initial
valueH0, the algorithm converges in one step and one has that the first iterates D1 andH1, which
are equal to the terminal values, are given by

D1 =
(

�(˜�11) 0
0 0

)

H1 =
(

̂�12̂�
−1
22

̂�21 ̂�12
̂�21 ̂�22

)

.

It is remarkable that in this case the algorithm reaches in one step, the optimal values are computed
explicitly in Remark 6.5.

7. Numerical Comparisons with Other Algorithms

We briefly investigate the numerical performance of our AML Algorithm 4.1, and compare
it against the performance of other algorithms. The natural competitor of AML is the EM Algo-
rithm 5.1. After the publication of Rubin and Thayer (1982), the EM algorithm has evolved into a
cohort of improved alternatives (Liu&Rubin, 1994, 1998, andmore recently by Zhao et al., 2008),
basically differing from the original EM on numerical implementation aspects. Most notably, in
the ECME variant (Liu & Rubin, 1998), Ht is updated as in the EM algorithm, but Dt is updated
by direct maximization of the likelihood (equivalently minimization of the I-divergence) with
respect to D, keeping H fixed at the value Ht+1. This step cannot be done analytically, and is
realized taking a few Newton–Raphson iterations, and Liu and Rubin (1998) suggests that one or
two iterations are usually sufficient. The resulting Dt+1 does not necessarily increase the likeli-
hood with respect to Dt ; therefore, a check has to be performed, and possibly the iteration has to
be repeated adjusting its size. The rationale behind ECME is that the advantage in speed afforded
by the direct (along the D parameter) maximization of the likelihood outweighs the drawback
of having to check each iteration for actual improvement. We have derived, in the same spirit,
a variant of AML retaining the Ht update Equation (4.5) and replacing the Dt update Equation
(4.6) with the same Newton–Raphson iterations as in ECME. We named the resulting algorithm
ACML. All numerical experiments in this section should be read as comparisons between the
performances of AML and ACML versus EM and ECME.
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7.1. Findings

To run the numerical comparisons, we have selected from the published literature five exam-
ples of correlationmatrices, some ofwhich arewell known for being problematic for FAmodeling.
We have also constructed a sixth data set as an exact FA covariance ̂� = HH� + D, selecting
randomly the entries of H and D, see below. For each of the six data sets we ran the four algorithms
in parallel (sharing the same initial conditions) several times, changing the initial conditions at
each run. The figures at the end of the paper are plots of the I-divergence vs. iterations and have
been selected to show the typical behaviors of the four algorithms for each data set. The data sets
are the following correlation matrices ̂� of size n × n.

Figure 1: Rubin–Thayer, n = 9, taken from Rubin and Thayer (1982).
Figure 2:Maxwell,n = 9,Table 4 inMaxwell (1961), also analyzed as data set 2 in Jöreskog
(1967).
Figure 3: Rao, n = 9, taken from Rao (1955).
Figure 4: Harman, n = 8, Table 5.3 in Harman (1967).
Figure 5: Emmett, n = 9, Table I in Emmett (1949), also analyzed as data set 1 in Jöreskog
(1967).
Figure 6: The data set is a randomly generated covariance of the standard FA model type,
i.e., ̂� = HH� + γ D, with n = 20. The elements of H ∈ R

20×4 and of D ∈ R
20×20 are

samples of a uniform on [1, 10]. For the choice of γ ∈ R+ see below under (c2).

In all numerical experiments, the number of factors has been fixed, equal to k = 4. Initially
it was found that, for a number of runs with different data sets and initial conditions, the ECME
algorithm produced negative values for the diagonal matrices Dt caused by a routine application
of the Newton–Raphson (NR) algorithm. The NR routine has afterward been improved, imple-
menting the restricted step version of the NR algorithm for both ECME and ACML. In all ECME
and ACML experiments, we have consistently taken 2 steps of the NR algorithm at each iteration.
To present the findings, we have grouped the data sets into three groups (a.), (b.), and (c.), within
which we observed similar behaviors. Different behaviors are ranked according to their limit
divergence and speed of convergence, with priority given to the former.

(a1) Rubin–Thayer data (Figure 1). The graphs of the EM/ECME pair are very similar to
those of Liu and Rubin (1998) and we observe that the AML/ACML pair outperforms
EM/ECME. The typical ranking for this data set was ACML best, followed by ECME,

Figure 1.
Rubin–Thayer.
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Figure 2.
Maxwell.

Figure 3.
Rao.

AML, EM in that order. In a few occasions we observed AML best, followed by EM,
ACML, and ECME. The ECME was the most sensitive to initial conditions.

(a2) Maxwell data (Figure 2). The typical ranking for this data set is as above, ACML,
ECME, AML, EM, in decreasing order. For both ECME and ACML we have been able
to reproduce Table 5 of Jöreskog for the elements of the D-matrix, and also identified the
eighth element of the D-matrix as D8 = 0. In a few occasions ACML and ECME dis-
played very close behaviors, significantly outperformingAMLandEMwhose behaviors
were also close to each other.

(b1) Rao data (Figure 3). The typical ranking for the data set was ACML, AML, EM,
and ECME. Sometimes it took more than 1500 iterations before a significant drop
in the divergence of the best performing algorithm could be seen. The D1 should be
estimated close to zero (Jennrich & Robinson, 1969), which was usually the case for
ACML, forAMLandEMwith slower convergence.ECMEdisplayeddifferent behaviors
(sometimes very good), depending on the initial conditions.

Downloaded from https://www.cambridge.org/core. 07 Jan 2025 at 13:44:09, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


718 PSYCHOMETRIKA

Figure 4.
Harman.

Figure 5.
Emmett.

(b2) Harman data (Figure 4). The typical ranking for the data set was as above, ACML,
AML, EM, ECME. In our runs, ACML performed consistently best, whereas ECME
consistently exhibited much larger divergences. For this data set, D2 is known to be zero
(Jennrich & Robinson, 1969). All runs of the ACML have quickly produced D2 = 0,
sometimes ECME too, although large deviations have been seen as well. AML and ME
exhibited much slower convergence, often 5000 iterations were not enough.
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Figure 6.
True FA model.

(c1) Emmett data (Figure 5). The behavior of the four algorithms for this data set is excep-
tional. Very often AML and EM gave faster and better (i.e., to smaller values) conver-
gence than ACML and ECME.

(c2) True FA covariance matrix (Figure 6). Since ̂� = HH� + γ D, where H ∈ R
20×4

and the selected number of factors is k = 4, this is a perfect modeling situation, with
vanishing theoretical minimum divergence. The AML is the best performer, reaching
null divergence extremely fast, while the ranking of the other algorithms is sensitive to
the value of γ . Figure 6, for γ = 10, shows AML and EM. The pair ACML and ECME
has a much worse behavior, which cannot be plotted on the same graph. For γ = 0.1,
the ranking of behaviors is different. AML is still the best, immediately followed by
ACML, whereas ECME and EM behave erratically and do not converge to zero. We
omitted the figure.

8. Conclusions

Given a positive definite covariance matrix ̂�, which may be an empirical covariance, of
dimension n, we considered the problem of approximating it with a covariance of the form
HH� + D, where H has a prescribed low number columns and D > 0 is diagonal. We have
chosen to gauge the quality of the approximation by the I-divergence between the zero mean
normal lawswith covariances ̂� and HH�+D, respectively. By lifting theminimization problem
into a larger space, we have been able to develop an optimal procedure from first principles to
determine a pair (H, D) that minimizes the I-divergence. As consequence, the procedure also
yields an iterative alternating minimization algorithm (AML) à la Csiszár–Tusnády. As it turns
out, the proper choice of the enlarged space is crucial for optimization. We have obtained a
number of theoretical results that are of independent interest. The convergence of the algorithm
has also been studied, with special attention given to the case where D is singular. The theoretical
properties of the AML have been compared to those of the popular EM algorithm for exploratory
factor analysis. Inspired by the ECME (a Newton–Raphson variation on EM), we also developed
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a similar variant of AML, called ACML, and in a few numerical experiments we compared the
performances of the four algorithms. We have seen that usually the ACML algorithm performed
best, in particular, better than ECME. In some specific experiments, AML was best, and always
outperforming the EM algorithm.
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Appendix 1: Decompositions of the I-Divergence

Recall that, for given probability measures P1 and P2, defined on the same measurable space, and
such that P1  P2, the I-divergence is defined as

I(P1||P2) = EP1 log
dP1

dP2
, (9.1)

where dP1
dP2

denotes the Radon-Nikodym derivative of P1 w.r.t. P2. If P1 and P2 are distributions
onRm of a random vector X with corresponding densities f1 and f2 that are everywhere positive,
the Radon-Nikodym derivative dP1

dP2
becomes the likelihood ratio f1(X)

f2(X)
and (9.1) reduces to the

integral

I(P1||P2) =
∫

Rm

f1(x) log
f1(x)

f2(x)
dx . (9.2)

We note that all subsequent expressions for the I-divergence have similar counterparts in terms
of densities. In this section we derive a number of decomposition results for the I-divergence
between two probability measures. Similar results are derived in Cramer (2000), see also Finesso
and Spreij (2006) for the discrete case. These decompositions yield the core arguments for the
proofs of the propositions in Sections 3.1 and 6.1.

Lemma 9.1. Let PXY and QXY be given probability distributions of a Euclidean random vector
(X,Y ) and denote by PX |Y and QX |Y the corresponding regular conditional distributions of X
given Y . Assume that PXY  QXY . Then

I(PXY ||QXY ) = I(PY ||QY ) + EPY I(PX |Y ||QX |Y ). (9.3)

Proof. It is easy to see that we also havePY  QY . Moreover, we also have absolute continuity of
the conditional laws, in the sense that if 0 is a version of the conditional probabilityQ(X ∈ B|Y ),
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then it is also a version of P(X ∈ B|Y ). One can show that a conditional version of the Radon-

Nikodym theorem applies and that a conditional Radon-Nikodym derivative dPX |Y
dQX |Y exists QY

almost surely. Moreover, one has the QXY as factorization

dPXY

dQXY
= dPX |Y

dQX |Y
dPY

dQY
.

Taking logarithms on both sides, and expectation under PXY yields

EPXY log
dPXY

dQXY
= EPXY log

dPX |Y
dQX |Y

+ EPXY log
dPY

dQY
.

Writing the first term on the right-hand side as EPXY {EPXY [log dPX |Y
dQX |Y |Y ]}, we obtain EPY {EPX |Y

[log dPX |Y
dQX |Y |Y ]}. The result follows. ��

The decomposition of Lemma 9.1 is useful when solving I-divergence minimization problems
with marginal constraints, like the one considered below.

Proposition 9.2. LetQXY andP0
Y be given probability distributions of aEuclidean randomvector

(X,Y ), and of its subvector Y , respectively. Consider the I-divergence minimization problem

min
PXY∈P

I(PXY ||QXY ),

where

P :=
{

PXY

∣

∣

∣

∫

PXY (dx,Y ) = P
0
Y

}

.

If the marginal P0
Y  Q

0
Y , then the I-divergence is minimized by P

∗
XY specified by the Radon-

Nikodym derivative

dP∗
XY

dQXY
= dP0

Y

dQY
. (9.4)

Moreover, the Pythagorean rule holds i.e. for any other distribution P ∈ P ,

I(PXY ||QXY ) = I(PXY ||P∗
XY ) + I(P∗

XY ||QXY ), (9.5)

and one also has

I(P∗
XY ||QXY ) = I(P0

Y ||QY ). (9.6)

Proof. The starting point is Equation (9.3), which now takes the form

I(PXY ||QXY ) = I(P0
Y ||QY ) + EPY I(PX |Y ||QX |Y ). (9.7)
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Since the first term on the right-hand side is fixed, the minimizing P∗
XY must satisfyP∗

X |Y = QX |Y .
It follows thatP∗

XY = P
∗
X |YP0

Y = QX |YP0
Y , thus verifying (9.4) and (9.6).Wefinally show that (9.5)

holds.

I(PXY ||QXY ) = EPXY log
dPXY

dP∗
XY

+ EPXY log
dP∗

XY

dQXY

= I(PXY ||P∗
XY ) + EPY log

dP0
Y

dQY

= I(PXY ||P∗
XY ) + E

P
0
Y
log

dP0
Y

dQY
,

where we used that any PXY ∈ P has Y -marginal distribution P
0
Y . ��

The results above can be extended to the case where the random vector (X,Y ) := (X,Y1, . . . Ym),
i.e.,Y consists ofm randomsubvectorsYi . For anyprobability distributionPXY on (X,Y ), consider
the conditional distributions PYi |X and define the probability distribution˜PXY on (X,Y ):

˜PXY =
∏

i

PYi |XPX .

Note that, under˜PXY , theYi are conditionally independent given X . The following lemma sharpens
Lemma 9.1.

Lemma 9.3. Let PXY and QXY be given probability distributions of a Euclidean random vector
(X,Y ) := (X,Y1, . . . Ym). Assume that PXY  QXY and that, under QXY , the subvectors Yi of
Y are conditionally independent given X, then

I(PXY ||QXY ) = I(PXY ||˜PXY ) +
∑

i

EPXI(PYi |X ||QYi |X ) + I(PX ||QX ).

Proof. The proof runs along the same lines as the proof of Lemma 9.1. ��
The decomposition of Lemma 9.3 is useful when solving I-divergence minimization problems
with conditional independence constraints, like the one considered below.

Proposition 9.4. Let PXY be a given probability distribution of a Euclidean random vector
(X,Y ) := (X,Y1, . . . Ym). Consider the I-divergence minimization problem

min
QXY∈Q

I(PXY ||QXY ),

where

Q :=
{

QXY

∣

∣

∣ QY1,...,Ym |X =
∏

i

QYi |X

}

.

If PXY  QXY for some QXY ∈ Q then the I-divergence is minimized by

Q
∗
XY = ˜PXY
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Moreover, the Pythagorean rule holds, i.e., for any QXY ∈ Q,

I(PXY ||QXY ) = I(PXY ||Q∗
XY ) + I(Q∗

XY ||QXY ).

Proof. From the right-hand side of the identity in Lemma 9.3, we see that the first I-divergence is
not involved in the minimization, whereas the other two can be made equal to zero, by selecting
QYi |X = PYi |X and QX = PX . This shows that the minimizing Q

∗
XY is equal to ˜PXY . To prove

the Pythagorean rule, we first observe that trivially

I(PXY |Q∗
XY ) = I(PXY |˜PXY ). (9.8)

Next we apply the identity in Lemma 9.3 withQ∗
XY replacing PXY . In this case the corresponding

˜Q
∗
XY obviously equals Q∗

XY itself. Hence the identity reads

I(Q∗
XY ||QXY ) =

∑

i

EQ
∗
X
I(Q∗

Yi |X ||QYi |X ) + I(Q∗
X ||QX )

=
∑

i

EPXI(PYi |X ||QYi |X ) + I(PX ||QX ), (9.9)

by definition of Q∗
XY . Adding up Equations (9.8) and (9.9) gives the result. ��

Appendix 2: Proof of the Technical Results

Proof of Proposition 3.5. (First partial minimization). Consider the setup and the notation of
Proposition 9.2. IdentifyQwith the normal N (0, �), and Pwith N (0, �0). By virtue of (9.4), the
optimal P∗ is a zero mean normal whose covariance matrix can be computed using the properties
of conditional normal distributions. In particular,

�∗
21 = EP∗ XY� = EP∗(EP∗ [X |Y ]Y�)

= EP∗(EQ[X |Y ]Y�)

= EP∗(�21�
−1
11 YY

�)

= �21�
−1
11 EP0YY�

= �21�
−1
11

̂�.

Likewise

�∗
22 = �22 − �21�

−1
11 �12 + �21�

−1
11

̂��−1
11 �12.

To prove that �∗
0 is strictly positive, note first that �∗

11 = ̂� > 0 by assumption. To conclude,
since � > 0, it is enough to note that

�∗
22 − �∗

21(�
∗
11)

−1�∗
12 = �22 − �21�

−1
11 �12.

Finally, the relation I(�∗
0 ||�) = I(̂�||�11) is Equation (9.6) adapted to the present situation.

The Pythagorean rule follows from this relation and Equation (9.7). ��
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Proof of Proposition 3.7. (Second partial minimization).We adhere to the setting and the notation
of Proposition 9.4. Identify P = PXY with the normal distribution N (0, �) and Q = QXY

with the normal N (0, �1), where �1 ∈ �1. The optimal Q∗ = Q
∗
XY is again normal and

specified by its (conditional) mean and covariance matrix. SinceQ∗
Yi |X = PYi |X for all i , we have

EQ∗ [Y |X ] = EP[Y |X ] = �12�
−1
22 X ; moreover, Q∗

X = PX . Hence we find

�∗
12 = EQ∗Y X� = EQ∗EQ∗ [Y |X ]X� = EPEP[Y |X ]X� = �12.

Furthermore, underQ∗, theYi are conditionally independent given X . ThenCovQ∗(Yi ,Y j |X) = 0,
for i �= j , whereas VarQ∗(Yi |X) = VarP(Yi |X), which is the i i-element of ˜�11 := �11 −
�12�

−1
22 �21, from which it follows that CovQ∗(Y |X) = �(˜�11). We can now evaluate

�∗
11 = CovQ∗(Y ) = EQ∗YY�

= EQ∗
(

EQ∗ [Y |X ]E [Y |X ]� + CovQ∗(Y |X)
)

= EQ∗
(

�12�
−1
22 XX��−1

22 �21 + �(˜�11)
)

= �12�
−1
22 �21 + �(˜�11).

The Pythagorean rule follows from the general result of Proposition 9.4. ��
Proof of Proposition 3.10. (Constrained second partial minimization). We can still apply
Lemma 9.3 and Proposition 9.4, with the proviso that the marginal distribution of X is fixed
at some Q0

X . The optimal distribution Q
∗
XY will therefore take the form Q

∗
XY = ∏

i PYi |XQ0
X .

Turning to the explicit computation of the optimal normal law, inspection of the proof of Propo-
sition 3.7 reveals that under Q∗ we have EQ∗Y X� = �12�

−1
22 Q�

0 Q0 and

CovQ∗(Y ) = �(˜�11) + �12�
−1
22 Q�

0 Q0�
−1
22 �21,

thus completing the proof. ��
Proof of Proposition 4.3. (Update rule for Ht ). From Equation (4.5) one immediately gets

Ht+1 = Ht+1H
�
t+1 = ̂�(Ht + Dt )

−1Ht R
−1
t H�

t (Ht + Dt )
−1

̂�. (10.1)

The key step in the proof is an application of the elementary identity, see e.g., Exercise 16(h) of
Chapter 5 in Searle (1982),

(I + H�PH)−1H� = H�(I + PHH�)−1,

valid for all H and P of appropriate dimensions for which both inverses exist. We have already
seen that Rt is invertible and of the type I + HPH�. Following this recipe, we compute

R−1
t H�

t = H�
t

(

I − (Ht + Dt )
−1Ht + (Ht + Dt )

−1
̂�(Ht + Dt )

−1Ht
)−1

= H�
t

(

(Ht + Dt )
−1Dt + (Ht + Dt )

−1
̂�(Ht + Dt )

−1Ht
)−1

= H�
t

(

Dt + ̂�(Ht + Dt )
−1Ht

)−1
(Ht + Dt ).

Insertion of this result into (10.1) yields (4.7). ��
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Proof of Proposition 6.6. (Update rule for Ht , singular case). It is sufficient to show this for one
iteration. We start from Equation (4.7) with t = 0 and compute the value of H1. To that end
we first obtain under the present assumption an expression for the matrix (H0 + D0)

−1H0. Let
P = I − H�

20(H20H�
20)

−1H20. It holds that

(H0 + D0)
−1H0 =

(

(˜D0 + H10PH�
10)

−1H10PH�
10 0

(H20H�
20)

−1H20H�
10(

˜D0 + H10PH�
10)

−1
˜D0 I

)

, (10.2)

as one can easily verify bymultiplying this equation byH0+D0.We also need the inverse of D0+
̂�(H0+D0)

−1H0, postmultipliedwitĥ�. IntroduceU = ˜D0+˜�11(H10PH�
10+˜D0)

−1H10PH�
10

and

V = ̂�−1
22

̂�21(H10PH�
10 + ˜D0)

−1 + (H20H
�
20)

−1H20H
�
10(H20H

�
20)

−1
˜D0.

It results that

(

D0 + ̂�(H0 + D0)
−1H0

)−1
̂� =

(

U−1
˜�11 0

−VU−1
˜�11 + ̂�−1

22
̂�21 I

)

. (10.3)

Insertion of the expressions (10.2) and (10.3) into (4.7) yields the result. The equations for the
stationary points follow as before. ��
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