
J. Inst. Math. Jussieu (2023), 22(2), 985–999

doi:10.1017/S1474748021000438 © The Author(s), 2021. Published by Cambridge University Press.

985

BNS INVARIANTS AND ALGEBRAIC FIBRATIONS OF GROUP
EXTENSIONS

STEFAN FRIEDL1 AND STEFANO VIDUSSI 1,2

1Fakultät für Mathematik, Universität Regensburg, Germany

(sfriedl@gmail.com)
2Department of Mathematics, University of California, Riverside, CA 92521, USA

(svidussi@ucr.edu)

(Received 16 July 2020; revised 2 August 2021; accepted 4 August 2021; first published

online 21 September 2021)

Abstract Let G be a finitely generated group that can be written as an extension

1−→K
i−→G

f−→ Γ−→ 1

where K is a finitely generated group. By a study of the Bieri–Neumann–Strebel (BNS) invariants we
prove that if b1(G) > b1(Γ) > 0, then G algebraically fibres; that is, admits an epimorphism to Z with
finitely generated kernel. An interesting case of this occurrence is when G is the fundamental group of
a surface bundle over a surface F ↪→ X → B with Albanese dimension a(X) = 2. As an application, we
show that if X has virtual Albanese dimension va(X) = 2 and base and fibre have genus greater that 1, G
is noncoherent. This answers for a broad class of bundles a question of J. Hillman ([9, Question 11(4)]).
Finally, we show that there exist surface bundles over a surface whose BNS invariants have a structure
that differs from that of Kodaira fibrations, determined by T. Delzant.
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1. Introduction and Main Results

Throughout this introduction let G be a finitely generated group. We say that G

algebraically fibres if there exists an epimorphism φ : G → Z with finitely generated

kernel. The study of algebraic fibrations of groups is closely related to the study of

the Bieri–Neumann–Strebel (BNS) invariant of G. This is an open subset Σ1(G)⊂ S(G),
where

S(G) = (H1(G;R)\{0})/R+

is the sphere of characters of G. Its complement Σ1(G)c = S(G)\Σ1(G) is referred to as

the set of exceptional characters. (We refer to [1, 16] for definitions and properties used

here.) The relation between algebraic fibrations and the BNS invariant can be described
as follows: If we denote by [φ] ∈ S(G) the character associated with φ : G→ Z, thought

of as an element of H1(G;Z) ⊂H1(G;R), then it follows from [1, Corollary 4.2] that φ

algebraically fibres if and only if both [φ],[−φ] belong to Σ1(G).
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Assume that G is a group extension of the form

1−→K
i−→G

f−→ Γ−→ 1, (1)

where K is finitely generated. The study of BNS invariants of group extensions is quite
challenging (see, e.g., [12]). We collect some basic facts. To start, because K is finitely

generated it follows from [16, Proposition A.4.5] that a character χ ∈ S(Γ) belongs to

Σ1(Γ) if and only if its pullback f∗χ ∈ Σ1(G). This entails that if Γ algebraically fibres,
then so does G. When the extension is trivial – that is, when G = K ×Γ – much is

known (see, e.g., [16]) and the sets of exceptional characters are determined by the

equality

Σ1(K×Γ)c =Σ1(K)c∪Σ1(Γ)c; (2)

hence, as long as both b1(Γ),b1(K) > 0 the trivial extension will always have nonempty

BNS invariant.
This makes it reasonable to expect that any extension as in (1) with b1(Γ)> 0 satisfies

Σ1(G) �= ∅, unless f∗ : H1(Γ;R)→H1(G;R) is an isomorphism.

Our main result is the proof that this is true and, more precisely, that G algebraically

fibres.

Theorem 1. Let G be a finitely generated group that can be written as group

extension

1−→K
i−→G

f−→ Γ−→ 1 (3)

where K is a finitely generated group. Assume furthermore that b1(G)> b1(Γ)> 0. Then

G algebraically fibres.

Our interest in the problem of algebraic fibrations of group extensions arose from a

geometric perspective, namely, the case where G is the fundamental group of a surface
bundle over a surface F ↪→ X → B with base and fibre both of genus greater than 0.

(If the genus of the fibre is at least 2, the condition on the Betti numbers can be phrased

in terms of nonvanishing of the co-invariant homology of the fibreH1(F ;R)Γ; see Section 2

for details).
There is one noteworthy class of surface bundles over a surface – namely, those who

admit a Kähler structure; for example, Kodaira fibrations – where the BNS invariant is

fully understood, thanks to the work of Delzant ([6]; see also [7]). To dovetail that result
with Theorem 1, it is useful to introduce the following notation.

Definition. Let F ↪→X
f→B be a surface bundle over a surface with base and fibre both

of genus greater than 0. Let G := π1(X) and, using the homotopy exact sequence of the

fibration, write G as the extension in (1). If f∗ : H1(Γ;R)→H1(G;R) is an isomorphism

we say that such bundle has Albanese dimension 1, or a(X) = 1. Any other surface bundle
will be unambiguously referred to as having Albanese dimension 2. If a surface bundle

admits a finite cover that has Albanese dimension 2, we say that X has virtual Albanese

dimension 2 and we write va(X) = 2.
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Our notation stems from the analogy with the class of (irregular) Kähler manifolds X of

Albanese dimension 1. That condition, determined solely by the fundamental group of X,

amounts to the existence of an irrational Albanese pencil (a holomorphic map f : X→B to
a Riemann surface of positive genus with connected fibres), obtained by restriction to the

image of the Albanese map of X, which induces an isomorphism f∗ : H1(Γ;R)→H1(G;R)

whereG=π1(X) and Γ=π1(B). Note that the definition above is consistent in the overlap
of the two classes; that is, surface bundles X that admit a Kähler structure. In fact, our

interest for the connection with the Kähler case arises from the fact that when X is a

Kähler surface, Delzant has shown in [6] that, as long as a(X) = 2, the BNS invariant is
nonempty. In particular, G algebraically fibres.

With the notation in place, we have the following consequence of the main theorem,

which we single out for its interest.

Corollary 2. Let F ↪→X →B be a surface bundle over a surface with fibre and base both

of genus greater than 0. Assume that the Albanese dimension of X is a(X) = 2. Then G

algebraically fibres.

Besides the interest per se in deciding that such a group G admits an algebraic fibration,

we will show that Corollary 2 entails that, as long as fibre and base have both genus greater

than 1, then G is noncoherent, namely, it contains a finitely generated subgroup that is
not finitely presented.

The question of coherence of the fundamental group of a surface bundle over a surface

was raised by Hillman in [9, Question 11(4)] (and perhaps earlier). There are two cases,

as far as we know, where this group was known to be noncoherent. The first is the case of
surface bundles with monodromy of types I and II in Johnson’s trichotomy ([11]): their

fundamental groups contain F2×F2 as subgroup. The second case appears in [7] where

the authors show that a Kodaira fibration that has virtual Albanese dimension 2 has
fundamental group that is noncoherent. Corollary 2 allows us to proceed as in that paper

to show the following.

Corollary 3. Let F ↪→ X → B be a surface bundle over a surface with both base and
fibre of genus greater than 1. If its Albanese dimension a(X) = 2, then the first BNS

invariant Σ1(G) and the second Bieri–Neumann–Strebel–Renz (BNSR) invariant Σ2(G)

of its fundamental group G= π1(X) satisfy the relation

Σ2(G)� Σ1(G)� S(G),

and G is noncoherent. If va(X) = 2, G is noncoherent.

Here, Σ2(G) is the second BNSR invariant of G, the first of a collection of refinements
of the BNS invariant introduced in [2].

In fact, we will present two proofs of noncoherence on G, the second being based on

an elegant construction appearing in [13] that inspired in various ways the techniques
employed in the present article.

We will finish this article by discussing the challenge of completely determining the BNS

invariant of a surface bundle over a surface. In particular, we will show the existence of a
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surface bundle over a surface, whose fundamental group G has exceptional characters that
do not arise from an epimorphism h : G→ C to the fundamental group of a hyperbolic

(orbi)surface and finitely generated kernel. This contrasts with what happens for Kodaira

fibrations (or Kähler manifolds). We have the following.

Proposition 4. There exists a surface bundle F ↪→X
f→B with base and fibre of genus

greater than 1 whose fundamental group G admits an epimorphism g : G → F2 such
that H1(G;R) = f∗H1(Γ;R)⊕ g∗H1(F2;R) and so that the set of exceptional characters

contains two disjoint spheres

f∗(Σ1(Γ)c)∪g∗(Σ1(F2)
c) ⊂ Σ1(G)c.

Moreover, for any epimorphism h : G → C onto the fundamental group of a hyper-
bolic orbisurface C such that the kernel is finitely generated we have g∗(Σ1(F2)

c) ∩
h∗(Σ1(C)c) = ∅.

(Note that Σ1(Γ)c = S(Γ) and Σ1(F2)
c = S(F2).)

2. Proofs

Before proceeding with the proofs of the results listed in the Introduction, we want

to discuss the meaning of the assumption b1(G) > b1(Γ) in Theorem 1. Given a group

extension G as in (1), the action by conjugation of G on its normal subgroup K induces

a representation ρ : G → GL(V ) on the homology of the kernel V = H1(K), where the
homology can be taken with Z or R coefficients. Because the action of K on its homology is

trivial, this representation descends to Γ. The Lyndon–Hochschild–Serre spectral sequence

associated to (1) gives, in low degree, the following exact sequence:

H2(G)
f−→H2(Γ)−→H1(K)Γ

i−→H1(G)
f−→H1(Γ)−→ 0. (4)

The image of the map H1(K;R)Γ → H1(G;R) measures the failure of f : H1(G;R) →
H1(Γ;R) (or, equivalently, f∗ : H1(Γ;R) → H1(G;R)) to be an isomorphism; that is,

it measures the mismatch between b1(G) and b1(Γ). A similar sequence exists for the

cohomology groups, with the role of co-invariant homology of K played by the invariant

cohomology group H1(K)Γ. In the case where G is a surface bundle with fibre of genus
greater than 1, the map H2(G;R)−→H2(Γ;R) in the sequence (4) is surjective (see, e.g.,

[14]); hence, the condition b1(G)> b1(Γ) is equivalent to H1(K;R)Γ �= {0}.
In the proof of Theorem 1 we will use some general results on the behavior of BNS

invariants for an amalgamated free product. The first is quite well-known and appears as

[16, Lemma B1.14].

Lemma 2.1. Let Π = Π1 ∗K Π2 be a free product with amalgamation of two finitely
generated groups along a finitely generated subgroup K. Let χ ∈ S(Π) be a character

whose restrictions satisfy the conditions χ1 ∈ Σ1(Π1), χK �= 0 and χ2 ∈ Σ1(Π2). Then

χ ∈ Σ1(Π).
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The second result, instead, seems new, and it is possibly interesting per se. The proof
that we present is similar in flavor (and at times verbatim) to the proof of Lemma 2.1 in

[16] (whose notation we follow) but requires some further work.

Lemma 2.2. Let Π=Π1∗KΠ2 a free product with amalgamation of two finitely generated

groups along a finitely generated subgroup K. Assume that Π2 is an Higman-Neumann-

Neumann (HNN) extension Π2 = K �Z = 〈K,s|sks−1 = f(k)〉 for some automorphism

f : K → K. Let χ ∈ S(Π) be a character whose restrictions satisfy the conditions χ1 ∈
Σ1(Π1), χK �= 0 and χ2(s) = 0. Then χ ∈ Σ1(Π).

Proof. Let X1 be a finite generating set for Π1. Let XK be a finite generating set for K and
let X2 =XK ∪{s}. Denote by Γ(Π1,X1),Γ(Π2,X2) the Cayley graphs for Π1,Π2 associated

to their respective generating sets. Then X = X1∪X2 constitutes a finite generating set

for Π, with associated Cayley graph Γ(Π,X ).
Recall that, by the very definition of the BNS invariant, to prove that χ ∈ Σ1(Π) we

need to show that the subgraph Γ(Π,X )χ of Γ(Π,X ) determined by the vertices Πχ with

nonnegative χ -value is connected.

Let g ∈ Πχ; there exists a finite collection of elements g1,j ∈ Π1,g2,j ∈ Π2,j = 1, . . . ,n
such that

g = g1,1 ·g2,1 ·g1,2 ·g2,2 · · · · ·g1,n ·g2,n. (5)

We will show that there exists a path in Γ(Π,X )χ from 1 to g by induction on n.

Let us consider the initial case n = 1; that is, g = g1 · g2. Because χK �= 0, there exist

two elements h1,h2 ∈K such that all three

g′1 = g1 ·h1, g′2 = h−1
1 ·g2 ·h2, h2

are contained in Πχ. Because Γ(Π1,X1)χ1
is connected by the assumption that χ1 ∈

Σ1(Π1), there exists a path p1 = (1,w1) from 1 to g′1 contained in Γ(Π1,X1)χ1
, where w1

is a word in X±
1 .

Next, consider the element g′2 = h−1
1 · g2 ·h2. Because g2 ∈ Π2, it can be written as a

word in the generating set for K and the stable letter s. Because of the relations in Π2,

we can use the equalities

s ·k = f(k) ·s and s−1 ·k = f−1(k) ·s−1

to push powers of the stable letter to the right and rewrite g2 = w(k) ·sm, where w(k) is

a word in X±
K and m ∈ Z. Because h2 ∈K, we can further write

g′2 = h−1
1 ·g2 ·h2 = h−1

1 ·w(k) ·sm ·h2 = h−1
1 ·w(k) ·h′

2 ·sm

where h′
2 = fm(h2), with fm an iteration of f or its inverse. Consider the element

h−1
1 ·w(k) ·h′

2 = g′2 ·s−m ∈K.

Because χ(s) = 0, we have

χ1(h
−1
1 ·w(k) ·h′

2) = χ(h−1
1 ·w(k) ·h′

2) = χ(g′2)≥ 0.
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Because K ≤ Π1, there exists a path p2 = (1,w2) from 1 to h−1
1 ·w(K) ·h′

2 contained in

Γ(Π1,X1)χ1
, which again is connected by assumption.

Next, consider the path p3 = (1,w3) in Γ(Π,X ) from 1 to sm determined by the vertices

1, . . . ,sm−σ(m)·2, sm−σ(m)·1,sm,

where σ(m) is the sign of m. (Here, w3 = sm.) Because χ(s) = 0, all of these vertices are

contained in Πχ; in particular, the path p3 is entirely contained in Γ(Π,X )χ.

Finally, because χ2 is well defined over Π2, we have χ(k) = χ2(k) = χ2(f(k)) = χ(f(k)).
As a consequence, χ1(h2) = χ1(h

′
2) ≥ 0, so there exists a path p4 = (1,w4) from 1 to h′

2

contained in Γ(Π1,X1)χ1
.

Concatenating the paths p1,p2,p3,p
−1
4 we obtain a path (1,w1w2w3w

−1
4 ) in Γ(Π,X )

from 1 to

g′1 ·h−1
1 ·w(k) ·h′

2 ·sm ·h−1
2 = g1 ·h1 ·h−1

1 ·w(k) ·sm = g1 ·g2.

One can verify from the construction above that each vertex of the path is contained

in Πχ. Alternatively, one can use the valuation function on the set of words in X ([16,
Section A2.2]), which measures the lowest χ-value over vertices of a path starting at 1,

to get (using [16, Equations A2.7])

vχ(w1w2w3w
−1
4 )

= min{vχ(w1),χ(w1)+vχ(w2),χ(w1w2)+vχ(w3),χ(w1w2w3)+vχ(w
−1
4 )}

=min{0,χ(g′1)+0,χ(g′1 ·g′2 ·s−m)+0,χ(g′1 ·g′2)+vχ(w4)−χ(w4)}
=min{0,χ(g′1),χ(g′1 ·g′2),χ(g′1 ·g′2)−χ(h2)}
=min{0,χ(g′1),χ(g′1 ·g′2),χ(g1 ·g2)}= 0.

We now assume that the lemma holds for n−1; let g be like in Eq. (5) and denote g′

the product of the first 2m− 2 factors. There exist elements h0,h1,h2 ∈K contained in

Πχ such that g′ ·h0, g
′
1 = h−1

0 · g1,n ·h1, g
′
2 = h−1

1 · g2,n ·h2 are contained in Πc. By the
inductive hypothesis, there is a path in p′ = (1,w′) from 1 to g′ ·h0 contained in Γ(Π,X )χ.

Moreover, there exist paths pi = (1,wi),i = 1, . . . 4 (that mirror the role of the similarly

named paths for the case n= 1) with the property that

• p1 = (1,w1) runs from 1 to g′1 ∈Π1 in Γ(Π1,X1)χ1
;

• p2 = (1,w2) runs from 1 to h−1
1 ·w(k) ·h′

2 ∈K in Γ(Π1,X1)χ1
, where g2,n =w(k) ·sm,

and h′
2 = fm(h2);

• p3 = (1,w3) runs from 1 to sm in Γ(Π,X )χ;
• p4 = (1,w4) runs from 1 to h′

2 ∈K in Γ(Π1,X1)χ1
.

Much as before, the concatenation of p′,p1,p2,p3,p
−1
4 yields a path from 1 to g′ · g1,n ·

g2,n = g contained in Γ(Π,X )χ.

Remark. Note that in Lemma 2.2 we do not, nor can we, assume that χ2 ∈ Σ1(Π2);

the regular characters on Π provided by that lemma may appear at first sight surprising.
However, for instance, a careful analysis based on Eq. (2) of the BNS invariants of F2×F2,

thought of as free amalgamated product of two copies of F2×Z (whose BNS invariant is

easily computed), reveals that there exist regular characters that restrict to exceptional
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ones on one (but not both) of the factors. In fact, the combination of Lemmata 2.1 and

2.2 provides the entirety of Σ1(F2×F2).

There is another technical lemma that guarantees the existence of a presentation of the
group Γ that will be convenient in what follows. In order to state it, we will introduce a

new definition.

Definition. Let Γ be a finitely generated group. Denote ab: Γ → H1(Γ;Z)/Tor the

maximal free abelian quotient map. We will say that a presentation of Γ with a
generating set (h1, . . . ,hm,g1, . . . ,gr) is adjusted to ab if ab(hi),i = 1, . . . ,m is a basis of

H1(Γ;Z)/Tor∼= Zm and g1, . . . ,gr ∈ ker ab.

For instance, the usual presentation of a surface group is adjusted to ab, with r = 0.

The following lemma shows that such a presentation always exists. It is certainly well
known, but we provide a proof for completeness.

Lemma 2.3. Let Γ be a finitely generated group; then Γ admits a presentation adjusted

to ab.

Proof. Because Γ is finitely generated there exists an epimorphism π : 〈y1, . . . ,yr〉 → Γ

(where 〈. . . 〉 is the free group on the given set). Let m= b1(Γ). We pick h1, . . . ,hm ∈ Γ such
that ab(h1), . . . , ab(hm) form a basis of H1(Γ)/Tor. Let σ : 〈x1, . . . ,xm〉→ Γ be the unique

homomorphism with σ(xi) = hi, i = 1, . . . ,m. For j = 1, . . . ,r we pick wj ∈ 〈x1, . . . ,xm〉
with ab(σ(wj)) = ab(π(yj)). Let τ : 〈xm+1, . . . ,xm+r〉 → Γ be the unique homomorphism
with τ(xm+j) = π(yj) ·σ(wj)

−1. Note that the collection {σ(xi),τ(xm+j),i= 1, . . . ,n, j =

1, . . . ,r} is a generating set for Γ. It follows that the epimorphism σ∗τ : 〈x1, . . . ,xm+n〉→Γ

defines a presentation of Γ with the desired properties.

Note that, given a presentation adjusted to ab, we can and we will associate a basis

ei,i= 1, . . . ,m for Hom(Γ,Z) =H1(Γ;Z) via ei(hj) = δij,i,j = 1, . . . ,m.

Now we are in position to prove our main result.

Theorem 2.4. Let G be a finitely generated group that can be written as group

extension

1−→K
i−→G

f−→ Γ−→ 1 (6)

where K is a finitely generated group. Assume furthermore that b1(G) > b1(Γ) =m> 0.

Then G algebraically fibres.

Proof. Because G is finitely generated, so is Γ. We choose a presentation of Γ adjusted

to ab and, correspondingly, denoting n=m+ r we have an epimorphism Fn → Γ.
This epimorphism induces a diagram

1 �� K ��

��

Π

��

�� Fn

��

�� 1

1 �� K �� G �� Γ �� 1

(7)

where all vertical maps are epimorphisms.
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Observe that we can write Π as amalgamated product

Π = Π1 ∗K Π2 ∗K · · · ∗K Πn

where each Πi has the form of HNN extension Πi = 〈K,si|siks−1
i = fi(k)〉 for some

automorphism fi : K → K. There are many ways to see that explicitly; for instance,

by applying to Π the method to write a presentation of group extensions, as described,

for example, in [10, Section 10.2].
The mapping torus structure of Πi guarantees the existence of a sequence

1−→K −→Πi
αi−→ Z−→ 0.

Because they vanish on K, each of these maps αi : Πi → Z extends to an epimorphism

(which we denote with the same symbol) αi : Π → Z. The first m of these elements,

identified with primitive elements of H1(Π;Z), can be thought of as pullback of the
classes ei ∈H1(Γ;Z) built from the adjusted presentation of Γ under the monomorphism

H1(Γ;Z)→H1(Fn;Z)→H1(Π;Z); by commutativity of the diagram in (7) we can also

view αi as pullback of the class ai = f∗ei ∈ H1(G;Z). The remaining r classes αi ∈
H1(Π;Z), which by construction do not pull back from Γ nor G, will play little role in
what follows.

Because the action of Fn on H1(K;Z) factors through Fn → Γ, the assumption

that b1(G) > b1(Γ) entails that the αis do not generate the entire group H1(Π;Z) or,
equivalently, the image ofH1(K;R)Fn

→H1(Π;R) is nonzero. In particular, we can assume

the existence of a class γ ∈H1(Π;Z), pullback of a class c ∈H1(G;Z) that is not in the

image of H1(Γ;Z)→H1(G;Z). Restricted to each Πi, the class γi = γ|Πi
: Πi → Z is not

a multiple of αi, because it does not vanish on each K�Πi ≤ Π; in fact, for each i, the

image of γi under the map H1(Πi;Z) → H1(K;Z)Z is nontrivial, because the inclusion

Z→ Fn induces an epimorphism H1(K;Z)Z →H1(K;Z)Fn and γ has nontrivial image in

the latter, because the action of Fn on H1(K;Z) factors through Fn → Γ.
Consider now the partial amalgamation

ΠA := Π1 ∗K Π2 ∗K · · · ∗K Πm ≤Π

of the first m factors of Π. For each factor Πi,i= 1, . . . ,m, we define the classes

βi := αi+μγi : Πi −→ R

where μ is a rational number.

Because these classes agree on the amalgamating subgroups K, they define a class
βA : ΠA →R by the condition βA|Πi

= βi. Without loss of generality, because μ is rational,

we can assume that the resulting βA : ΠA → R has values in Z, and by construction βA

is the pullback of a class bA ∈H1(G;Z).
At this point we want to use Lemma 2.1 to show that, choosing μ small enough, the

character determined by βA is in Σ1(ΠA). First, because [αi] is in Σ1(Πi) and the latter

is open in S(Πi), we can assume that for μ small enough each [βi] is still in Σ1(Πi).
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Next, we claim that [β] is nontrivial on each amalgamating subgroup K. In fact, on each

Πi we have a diagram

1

����
���

K

���
�� βi

�����
����

����
�

1 �� kerβi
�� Πi

βi

��

αi ���
��

Z �� 0

Z

���
���

0

By contradiction, if βi(K) = 0 we would have K�kerβi and there would be a short exact

sequence

1−→ kerβi/K −→Πi/K −→Πi/kerβi −→ 0;

because the latter two groups are infinite cyclic, a surjection is an isomorphism from

which it would follow that K ∼= kerβi. But this would imply that βi is a multiple of
αi, and then so would γi, contrary to our assumption. Next we can invoke (inductively)

Lemma 2.1, which asserts that [βA] ∈Σ1(ΠA) as long as [βA|Πi
] = [βi] ∈Σ1(Πi) and [βA]

is nontrivial on each amalgamating subgroup K. Therefore, [βA] ∈ Σ1(ΠA).
The argument above can be applied verbatim for the class −βA ∈H1(ΠA;Z); the key

point is that, by construction, also the character [−αi] ∈ Σ1(Πi). Summing up, both

[βA],[−βA] ∈ Σ1(ΠA); hence, kerβA is finitely generated.

In the case where we can choose r = 0 (e.g., when Γ is a surface group or the free
group itself) we have ΠA = Π and we would be (essentially) done. But if r > 0 we have

another hurdle, namely, choosing an extension of βA to Π. Obviously, we could follow

the pattern above and define βi := αi +μγi also for the remaining factors. This would
give us an algebraic fibration of Π, but the fibration would not descend to G : the classes

αi,i=m+1, . . . ,n are not pullback of classes on G !

The correct way to proceed is, in some sense, counterintuitive. In fact, on the partial
amalgamation of the last r factors of Π

ΠB := Πm+1 ∗K Π2 ∗K · · · ∗K Πn ≤Π,

we define βB := μγ|ΠB
. Because μ is rational, we can assume (after simultaneous rescaling

if necessary) that βA : ΠA → Z, βB : ΠB → Z are homomorphisms that satisfy βA|K =

μγ|K = βB |K , because on K the αi vanish, hence giving (after rescaling if necessary) a

well-defined epimorphism

β : Π = ΠA ∗K ΠB → Z.

This epimorphism factorises through Π→G, because by construction it is a sum of classes
that do. Note that (and this is the key property) on Πi,i=m+1, . . . ,n we have βi(si) = 0;

in fact, for i=m+1, . . . ,n, the epimorphism γi : Πi →Z sends the stable letter si to 0∈Z,

because the image of si in Γ belongs to ker ab.
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We can now apply inductively Lemma 2.2 to β. As a first step, consider ΠA∗KΠm+1;
[βA] ∈ Σ1(ΠA) and [βK ] ∈ S(K) while [βm+1](sm+1) = 0; Lemma 2.2 gives that

[βΠA∗KΠm+1
] ∈ Σ1(ΠA∗KΠm+1), and we can then repeat the process for the remaining

factors Πi.
As before, we can repeat this argument for the class −β ∈ H1(Π;Z), to deduce that

both [β],[−β] ∈ Σ1(Π); hence, kerβ is finitely generated.

Finally, because β : Π→ Z factorises through Π→G, we have the diagram

1 �� kerβ ��

��

Π

��

β �� Z

∼=
����

�� 0

1 �� kerb ��

��

G

��

b �� Z �� 0

1 1

(8)

where b ∈ H1(G;Z), which entails that the finitely generated group kerβ surjects onto

kerb, which is therefore finitely generated as well. Hence b ∈ H1(G;Z) represents an

algebraic fibration.

Remarks. (1) The reader may have noticed that in the proof of Theorem 1 we actually

need to make use of only one (or any subcollection) of the terms αi ∈H1(Π;Z),i=
1, . . . ,m (say i= 1) and not all simultaneously. This follows by applying Lemma 2.2

inductively to the class β1 := α1 +μγ1 starting with Π1 ∗K Π2 and repeating the

argument until exhausting Π. This bypasses the use of Lemma 2.1.

(2) In Version 2 of [13] the authors have now provided a concurrent proof for the case
n= rank(Γ) = b1(Γ) of Theorem 1.

(3) Note that this theorem holds true for simple reasons when Γ algebraically fibres.

The result above has some consequences in the study of the coherence of the

fundamental group of a surface bundle over a surface F ↪→ X → B. In fact, using

Theorem 1 we can give a proof of a corollary that extends to surface bundles with (virtual)

Albanese dimension 2 the results of [7].

Corollary 2.5. Let F ↪→X → B be a surface bundle over a surface with both base and

fibre of genus greater than 1. If its Albanese dimension a(X) = 2, then the first BNS
invariant and the second BNSR invariant of its fundamental group G= π1(X) satisfy the

relation

Σ2(G)� Σ1(G)� S(G),

and G is noncoherent. If va(X) = 2, G is noncoherent.

Proof. Let X have Albanese dimension 2; by Theorem 2.4, there exists an epimorphism

b : G → Z with finitely generated kernel kerb; hence, [b],[−b] ∈ Σ1(G). By [8, Theorem

4.5(4)] kerb would have type FP2 if and only if the Euler characteristic χ(X) = 0; because
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here χ(X) = (2g(F )−2)(2g(B)−2)> 0, kerb is not finitely presented. Therefore, at least

one among [b],[−b] is not in Σ2(G).

We want to give a second, and somewhat different, proof of noncoherence, based on the
work of [13] that avoids the use of the BNS invariant of G.

Consider any subgroup F2 ≤ Γ and the corresponding commutative diagram

1 �� K ��

��

Λ

��

�� F2

��

�� 1

1 �� K �� G �� Γ �� 1

(9)

with self-explaining notation where all vertical arrows are monomorphisms. Now, by

standard group homology,

H1(K;R)F2
−→H1(K;R)Γ

is an epimorphism. As discussed in the Introduction, the assumption a(X) = 2 is equiv-

alent to the nontriviality of H1(K;R)Γ and so implies the nontriviality of H1(K;R)F2
.

At this point, we invoke [13, Theorem 4.5] where they show that if K is a group that

does not algebraically fibre (as is our case), a group Λ that is K -by-F2 and has nontrivial

H1(K;R)F2
is noncoherent. Because Λ is noncoherent, so is G.

If va(X) = 2, a finite cover of X will satisfy this property; hence, the fundamental group

of X will not be coherent as well.

One can ask whether the techniques of Theorem 1 can be extended to a complete
characterisation of the BNS invariant Σ1(G), at least for the case of surface bundles over

a surface. This appears challenging on several grounds. The first can be appreciated by

pointing out the complexity of the situation already in the case of Kodaira fibrations.
Delzant [6] showed that as long as a(X) = 2, the first BNS invariant is the complement

of the pullback of the character spheres of the bases of all irrational pencils hi : X → Bi

with base a hyperbolic orbisurface. (This includes, whenever possible, surface bundle
maps with base of genus bigger than 1.) From the group-theoretical viewpoint, these

correspond to short exact sequences for G= π1(X) of the form

1−→Mi −→G
hi−→ Ci −→ 1 (10)

where Ci is the fundamental group of the hyperbolic orbisurface Bi and Mi is a finitely
generated group (see, e.g., [5]). As a consequence, Σ1(G) is the complement of a finite

collection of spheres of codimension at least 2, pullback of the character spheres of the

orbisurfaces. An example of this phenomenon arises already in the case of doubly fibreed
Kodaira fibrations (such as Atiyah and Kodaira’s original examples). Moreover, there

exist examples even of Kodaira fibrations that also admit pencils with multiple fibres

(see [3]). But for the case of (non-Kähler) surface bundles the situation can be even more
complex, as the following construction shows.

Proposition 2.6. There exists a surface bundle F ↪→ X
f→ B with base and fibre of

genus greater than 1 whose fundamental group G admits an epimorphism g : G → F2

https://doi.org/10.1017/S1474748021000438 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000438


996 S. Friedl, and S. Vidussi

such that H1(G;R) = f∗H1(Γ;R)⊕g∗H1(F2;R), where Γ := π1(B), and so that the set of

exceptional characters contains two disjoint spheres

f∗(Σ1(Γ)c)∪g∗(Σ1(F2)
c) ⊂ Σ1(G)c.

Moreover, for any epimorphism h : G → C onto the fundamental group of a hyper-

bolic orbisurface C such that the kernel is finitely generated we have g∗(Σ1(F2)
c) ∩

h∗(Σ1(C)c) = ∅.

Proof. We begin with the somewhat lengthy but otherwise straightforward construction

of X.
Let F be a surface of genus 2 and let

K := 〈αi,βi|
2∏

i=1

[αi,βi] = 1〉

be a standard presentation of its fundamental group. (Above and in the rest, we
will always assume implicitly that i = 1,2.) Define an automorphism ϕ ∈ Aut(K) as

follows: let

ϕ(αi) = αiβi; ϕ(βi) = βi;

a straightforward calculation shows that ϕ(
∏2

i=1[αi,βi]) =
∏2

i=1[αi,βi]; hence, ϕ is well

defined; it is immediate to verify that

ϕ−1(αi) = αiβ
−1
i ; ϕ−1(βi) = βi

is similarly well defined and a two-sided inverse to ϕ. We can lift ϕ ∈ Aut(K) to a self-

diffeomorphism of F (which can be easily proven to be orientation-preserving), that we

denote as well by ϕ : F → F , which induces the above automorphism on the fundamental
group K. Out of that, we can define a fibred 3-manifold N as the mapping torus of

ϕ : F → F . Its fundamental group is given by

π1(N) =K�ϕZ= 〈αi,βi,t|αt
i = αiβi,β

t
i = βi,

2∏

i=1

[αi,βi] = 1〉.

The 4-manifold S1 ×N has the structure of F -bundle over T 2. We can pick a trivial

framing of F in S1×N and in the product bundle F ×T 2 → T 2 to define the fibre sum

X := S1×N#FF ×T 2 = S1×N \F ×D2∪F×∂D2 F × (T 2 \D2),

choosing any identification of the fibres and an orientation-reversing diffeomorphism of

∂D2 to get a surface bundle X of fibre F over a genus-2 surface B. It is not difficult to

compute the resulting fundamental group using the Seifert–Van Kampen theorem: S1×
N \F ×D2 deformation retracts to a topological bundle over S1∨S1, with monodromy

ϕ along one factor and trivial monodromy on the other, so that

π1(S
1×N \F ×D2) = 〈αi,βi,s,t|αt

i = αiβi,β
t
i = βi,α

s
i = αi,β

s
i = βi,

2∏

i=1

[αi,βi] = 1〉
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and

π1(F × (T 2 \D2)) = 〈αi,βi,x,y|axi = ai,b
x
i = bi,a

y
i = ai,b

y
i = bi,

2∏

i=1

[αi,βi] = 1〉.

Amalgamation identifies the generators of π1(F ) according to their symbols and adds the

relation [s,t][x,y] = 1, so that G= π1(X) is given by

G= 〈αi,βi,s,t,x,y|αt
i = αiβi,β

t
i = βi,α

s
i = αi,β

s
i = βi,

2∏

i=1

[αi,βi] = 1,[s,t][x,y] = 1〉.

We can proceed now to show that X satisfies the properties of the statement. The key

strategy, which dates back in this context at least to the work of Johnson ([11]; see also
[5, 15]), is based on the fact that finitely generated normal subgroups of free groups or

hyperbolic orbisurface groups are either trivial or finite index.

Following the usual notation, we have the quotient map G
f−→ Γ according to the

sequence in (1). In addition, we can identify a second infinite quotient of G : define a map

g : G→ F2, the free nonabelian group on two generators, by sending α1 and α2 to the two

generators while all other generators are sent to the trivial element. A straightforward

calculation shows that all of the relations in the presentation of G are sent to the trivial
element, namely, g : G→F2 is well defined. (A long exercise – which we do not recommend

to the reader – in Reidemeister–Schreier rewriting process shows that Λ := kerg surjects

to Z∞ and, in particular, is not finitely generated.) The setting relating the two quotients
of G is described in the following diagram:

1
���

��

K

���
��� g

�����
����

����
�

1 �� Λ �� G
g

��

f ���
���

F2
�� 1

Γ

���
���

1

We can see explicitly that g(K) = F2, from which we deduce that KΛ =G. This entails

that f∗H1(Γ;R)∩g∗H1(F2;R) = {0}. Now dimH1(G;R) = 6; hence, there is a direct sum
decomposition

H1(G;R) = f∗H1(Γ;R)⊕g∗H1(F2;R). (11)

We therefore obtain from [16, Corollary B1.8] that

f∗(Σ1(Γ)c)∪g∗(Σ1(F2)
c) ⊂ Σ1(G)c. (12)

Note that (11) and (12) imply that the complement of the BNS invariant of G – that

is, the set of exceptional characters – contains at least two spheres, one of codimension

2 and one of codimension 4, the latter determined by g∗H1(F2;R). We claim that no
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exceptional characters in g∗(Σ1(F2)
c) factorise through a second surface bundle structure

or a pencil-type sequence as in Eq. (10).
To prove this claim, assume by contradiction that g∗(Σ1(F2)

c)∩h∗(Σ1(C)c) �= ∅ where

h : G→ C is an epimorphism onto a hyperbolic orbisurface group such that M := kerh

is finitely generated. We will start by showing that this entails that g : G→ F2 factorises

through h : G→ C. Consider the diagram

1
���

��

M

���
��� g

�����
����

����
�

1 �� Λ �� G
g

��

h ���
��

F2
�� 1

C

��	
		

	

1

Now g(M)≤ F2 is a finitely generated normal subgroup of F2; hence, it must be trivial or

finite index. If it were finite index, then MΛ≤G would be finite index and g∗H1(F2;R)∩
h∗H1(C;R) = {0}, which would imply g∗(Σ1(F2)

c)∩h∗(Σ1(C)c) = ∅. It follows that we
must have g(M)≤F2 trivial. This entailsM ≤Λ; hence,G/M =C admits an epimorphism

onto G/Λ= F2 or, phrased otherwise, g : G→ F2 factorises through h : G→ C. Next, we

will show that this factorisation is not compatible with having b1(G) = 6. In fact, this
would yield the diagram

1
���

��
1

K

���
���

h �� C
���

��

		





G
g

��
h



���

f ���
���

F2
�� 1

M

�����
Γ

��	
		

	

1

������
1

Now h(K) ≤ C is a finitely generated normal subgroup of C, so again it can be either

trivial or finite index. It cannot be trivial, because g(K) ≤ F2 is already nontrivial, so
h(K) ≤ C is finite index. Once again, KM ≤ G is finite index. But then we would have

f∗H1(Γ;R)∩h∗H1(C;R) = {0}. Now an explicit check shows that an orbisurface group C

with an F2 quotient must have b1(C)≥ 4; hence, we would have b1(G)≥ b1(Γ)+b1(C)≥ 8,

which violates the condition b1(G) = 6.

Remark. Note that the information on the BNS invariant of G = π1(X) contained in

the above Proposition 2.6 informs us already that G cannot be a Kähler group, because

it violates the conclusions of [6]. Alternatively, we could use Catanese’s version of the
Castelnuovo–de Franchis theorem (see [4]) to argue that if G were Kähler, the map g

would have to factor through a map to a orbisurface group of genus at least 2. But this

would require, again, that b1(G)≥ 8.
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